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ABSTRACT

In multi-modal reasoning tasks, such as visual question answering (VQA), there
have been many modeling and training paradigms tested. Previous models pro-
pose different methods for the vision and language tasks, but which ones perform
the best while being sample and computationally efficient? Based on our experi-
ments, we find that representing the text as probabilistic programs and images as
object-level scene graphs best satisfy these desiderata. We extend existing models
to leverage these soft programs and scene graphs to train on question answer pairs
in an end-to-end manner. Empirical results demonstrate that this differentiable
end-to-end program executor is able to maintain state-of-the-art accuracy while
being sample and computationally efficient.

1 INTRODUCTION

Many real-world complex tasks require both perception and reasoning (or System I and System II
intelligence (Sutton & Barto, 2018)), such as VQA. What is the best way to integrate perception
and reasoning components in a single model? Furthermore, how would such an integration lead to
accurate models, while being sample and computationally efficient? Such questions are important
to address when scaling reasoning systems to real world use cases, where empirical computation
bounds must be understood in addition to the final model performance.

There is a spectrum of methods in the literature exploring different ways of integrating perception
and reasoning. Nowadays, the perception is typically carried out via neural models: such as CNNs
for vision, and LSTMs (Gers et al., 1999) or Transformers (Vaswani et al., 2017) for language.
Depending on the representation of perception input and their reasoning interface, a method can be
either more towards the neural end of the spectrum or more toward the symbolic end.

For the vision part, models can either use pixel-level or object-level symbolic representation. For
the language part, models can generate either textual attention or programs, where the text is decom-
posed into a sequence of functions. Within the program representations, models typically operate
on a selected discrete program or on probabilistic programs. The reasoning part used to produce the
final answer can either use neural models, symbolic reasoning, or something in between, such as
neural module networks (NMN) or soft logic blocks.

Existing works for NMN methods leverage pixel-level representations and program representations
such as NMN (Hu et al., 2017), Prob-NMN (Vedantam et al., 2019), and Stack-NMN (Hu et al.,
2018). Representative models that use object-level vision also leverage both neural and symbolic
language and reasoning. Models that are more neural are LXMERT (Tan & Bansal, 2019) and NSM
(Hudson & Manning, 2019), while those that are more symbolic are NS-VQA (Yi et al., 2018), NS-
CL (Mao et al., 2019) and NGS (Li et al., 2020). A systematic comparison across these models is
illustrated in Table 1 with more details in Appendix A.

Overall, neural models have more expressive power but with more parameters, while more-symbolic
models have more prior structures built into them but with fewer parameters. There is an interesting
bias-variance trade-off in the model design. By encoding as much bias into the model as possible,
one could reduce sample requirements.

The different choices of perception and reasoning components also limit how the QA models will
be trained. If both components are chosen as neural modules, then the training can be done in a
very efficient end-to-end fashion. If the reasoning is carried out using more discrete operations,
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LXMERT 3 3 3 3
(Prob-)NMN 3 3 3 3 3
Stack-NMN 3 3 3 3

NSM 3 3 3 3
NS-VQA 3 3 3 3 3

NS-CL 3 3 3 3 3
NGS 3 3 3 3

Table 1: A breakdown of VQA models by indicating which method is used with respect to their
vision, language, inference, and training components. Refer to Appendix A for a detailed description
of these methods.

then the perception model needs to sample discrete outputs or take discrete inputs to interface with
downstream reasoning. For instance, if symbolic reasoning is used, REINFORCE (Williams, 1992)
is typically used to train the perception models, which may require many samples during the opti-
mization process. Alternatively, one can also use expensive abduction (Li et al., 2020) to manipulate
the perception models outputs to provide the correct reasoning and then optimize these perception
models using these pseudo-labels. Overall, more neural models will be easier to optimize, while
more symbolic models will need additional expensive discrete sampling during optimization. To
highlight this interesting fact, we call it the neuro-symbolic trade-off.

This neuro-symbolic trade-off also affects sample efficiency and computational efficiency. To be
more sample efficient, the model needs to be less neural, yet, a more neural model can be more com-
putationally efficient during training. Thus a method that can achieve an overall good performance
in terms of both sample and computation efficiency will require systematically determining which
perception and reasoning components should be used and how to integrate them. To design such a
model, we first test which method within each perception and reasoning component works the most
efficiently. From this neuro-symbolic trade-off exploration we can design a model that uses these
most efficient components and compare its overall performance against existing models.

2 PROBLEM SETTING

Before the exploration, we formally define the different choices for the vision, language, and reason-
ing components. In the general VQA setting we are provided with an image I , a natural language
question Q, and an answer A. We now define how these basic inputs are used in each component.

2.1 REPRESENTATION FOR VISION

Given the image I there are two predominant visual representations: pixel and object-level attention.

Pixel Attention. Given an image one can leverage traditional deep learning architectures used
for image representations and classification such as ResNets (He et al., 2016). Here the image is
passed through many residual convolution layers before entering a MLP sub-network to perform a
classification task. From one of these MLP linear layers, an intermediate dense image representation
feature fI ∈ RD can be extracted, denoted by fI = ResNet(I). These features are used further
down the VQA pipeline, where the downstream model computes attention over the relevant part of
the feature based on the question asked.

Object-level. Another paradigm is to leverage object detection models such as Faster R-CNNs
(Ren et al., 2015) to identify individual objects within images. Given objects in the image, one can
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conduct more object-level or symbolic reasoning over the image, instead of reasoning through a
pixel by pixel basis.

In this object-level representation, a set of object location bounding boxes (bbox) can be detected
and labeled directly by using R-CNN asO = {(bbox1, label1), · · · , (bboxT , labelT )} = R-CNN(I)
for a preset number of T objects. Here o ∈ O can be labeled as “small red shiny ball” or “large
green tray” based on what is in the image.

Another approach is to factor the joint bounding box and label prediction into individual components
to be handled by separate models. First the bounding boxes are extracted from the R-CNN as
{bboxi}Ti=1 = R-CNN(I). Then these can be passed into a separate MLP network to retrieve the
labels {labeli}Ti=1 = MLP(ResNet(I[bboxi])), where I[bbox] is cropped image at that bounding
box location. These can be used to define the final set of objects: O = {(bboxi, labeli)Ti=1}.
In such a setup, the benefit is that the R-CNN can be trained just as an object detector for a generic
object class versus the background, whose annotations are easier to obtain. Furthermore, the number
of supervised data the label MLP uses for training can be controlled separately. This is a useful
mechanic during our model efficiency analysis where we work under the assumption that object
bounding box is almost perfect, while object labeling is imperfect and expensive to annotate.

2.2 REPRESENTATION FOR LANGUAGE

The language representations operates on the natural text question Q. Some data sets also provide
intermediate representations of each Q through a function program layout FP . FP represents the
question as a sequence of abstract functionsF as FP = [F1,F2, ...,Ft] forFi ∈ F . These function
programs are used jointly with the visual representations to conduct reasoning to arrive at answer
A. Details about potential realizations of F are described in the following reasoning representation
section 2.3. Given the question Q and its representation FP we can define different approaches for
representing the text.

Text Attention. Just using the embedded text tokens E a model can embed the question Q through
a recurrent network to generate a final question representation hT , where T is the maximum length
sequence. Then hT can be put through an recurrent decoder to obtain a latent function at each step
ct through an attentive combination of the hidden states ct =

∑
T at · ht.

Symbolic Program. If we want to explicitly produce a FP for a corresponding question Q, we
similarly encode the text as done for text attention. During decoding ct is passed through a MLP to
predict a valid function token. Then the most likely program is selected as arg maxFP P (FP | Q).

Soft Program. When choosing a discrete symbolic program, the uncertainty of other function pro-
gram parses is thrown out. Instead the probabilities for each program can be saved and an expected
program can be computed as E[P (FP | Q)]. Intuitively all the possible programs have to be con-
sidered in this scenario which can be intractable. Instead soft program methods such as Stack-NMN
factor this as E[P (FP | Q)] = E[

∏
T P (Ft | Q)] =

∏
T E[P (Ft | Q)]. This enables preserving a

distribution of functions at each step instead of selecting a single one.

2.3 REPRESENTATION FOR REASONING

Given the visual and language representations, the reasoning component use these representations to
derive the final answer A. Here we discuss methods that are neural, symbolic, and soft logic based.

Neural Reasoning. Reasoning can be made directly with the image feature fI and encoded question
hT such asA = MLP([hT ; fI ]) in a purely neural fashion. Other approaches can leverage the object
representationsO. This is done by modulating the attention over whichO correspond to final answer
A, conditioned on hT , as done in NSM or LCGN. LXMERT uses cross-modal attention between
text embeddings E and O to predict the final answer. All these methods are more neural, but the
FP can be leveraged as well to incorporate better biases through symbolic and soft programs.

Symbolic Representations. From the question we can define abstract functions F to generate FP
as described in the previous section. Representing F in a symbolic form enables encoding general
knowledge or certain dataset’s domain specific language (DSL) into a model. This improves model
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interpretability and provides better inductive biases as well. Here we further describe two classes of
these functions: fine grained and coarse.

A fine grained representation of FP is sequence of n-ary predicates, func-
tions with n arguments, composing F . For example, given the question Q =
“What is the shape of the thing left of the sphere?”, a sample fine grained program can be de-
fined as FP = [filter shape(sphere, O),relate(left, O),query shape(O)]
Here the visual representation (O or fI ) and higher level argument concepts, such as sphere, are
used as inputs to each function. We observe clear biases encoded into the function architecture, as
given a scene graph of objects O and their relations, one could walk along this graph using FP to
get the final answer A. The trade-off is that the model has to deal with more complex functions,
whose input arguments and output types can vary. For example relate shape and relate
return a subset of objects, while query shape returns a string. Such formulations are used by
more neuro-symbolic methods such as NS-VQA and NS-CL.

Coarse function types consist of simpler predicates whose arity is fixed, typically 1, over
F . Given the previous question Q, a coarse function can be defined as FP =
[filterθ(fI),relateθ(fI),queryθ(fI)]. Here less structure is required with respect to the
language and visual representation where each function can be parameterized as a NMNs. These re-
quire more parameters than DSL functions but are syntactically easier to handle as they typically just
operate on a fixed dimensional image feature fI , thus implicitly encoding the function arguments.

Symbolic Reasoning. Using any coarse or fine representation type for F , the symbolic rea-
soning can take place over the selected symbolic program FP . We define the high level
execution of the symbolic reasoner to arrive at the answer by executing over FP as A =
〈FP, image representation〉S . In the fine grained and coarse samples this would look like:

A = 〈FP,O〉S = query shape(relate(left, filter shape(sphere, O)))

A = 〈FP, fI〉S = queryθ(relateθ(filterθ(fI)))

Since the structure of the reasoning is discrete, to update the visual and language model weights
requires sampling based learning such as REINFORCE or abductive methods.

Soft Logic Reasoning. When conducting the symbolic reasoning we discard the uncertainty of
the visual representations when generating the labels for O. Instead the probabilities for O can be
saved. Here the uncertainty from the detections can be propagated during the execution in a soft
manner to arrive at A. We can similarly define the soft logic reasoning as A = 〈FP, I〉SL =
EO∼R-CNN(I)[〈FP,O〉S ]. Due to the probabilistic execution, this can be optimized end-to-end.

Now that the components and their corresponding methods have been defined, we explore which
methods are the most efficient for their respective task.

3 NEURO-SYMBOLIC TRADE-OFF EXPLORATION

Many deep VQA models have been developed in the literature with a range of design elements, as
can be seen from Table 1. Which one of these methods is the key factor in making a deep VQA
model sample efficient while at the same time achieving state-of-the-art? In this comparison using
the CLEVR dataset (Johnson et al., 2017), we aim to understand which design elements individually
perform the best. Based on these findings, better end-to-end models can be designed from the indi-
vidual methods selected. More specifically, we will explore the sample and computational efficiency
for the following components:

• Visual representations through pixel attention and object-level methods.

• Reasoning execution through neural modules, symbolic execution, and soft logic.

• Language encoding for questions through text attention, symbolic and soft programs.

For the representations of language and reasoning, we observe that these two components are tightly
coupled. In language we define F and the corresponding FP given Q. In reasoning these functions
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get executed for fine grained functions, or a network gets constructed from neural modules in the
coarse case. For this reason we found it difficult to isolate the language and reasoning exploration.
This motivated us to initially observe the interactions between the vision and reasoning given a
fixed FP . Then by iteratively selecting the best vision and reasoning components, we explore the
most efficient language and reasoning combination. Each method is also explained in more detail in
Appendix D.

3.1 VISUAL REASONING

To test the visual perception and the reasoning components we break down the tests into two parts.
First we first determine which visual representation is more efficient: pixel attention or object-
centric. Second we find the reasoning method that best complements the selected visual representa-
tion.

Sample Efficiency

QA Pixel Att. Object-level
Data % Stack-NMN NS-CL

1% 47.1 96.1
5% 66.8 97.2

10% 93.5 98.8 0 0.2 0.4 0.6 0.8 1
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Figure 1: Sample and computational efficiency for pixel attention and object-level vision represen-
tations. The sample efficiencies experiments just use a total percentage of the available QA pairs
and report the validation score after convergence. The computational efficiency is evaluated on the
10 % QA data and are run 5 times. The train samples indicate the number of examples seen by the
model over time (iteration × batch size).

Pixel Attention versus Object-level. We compare pixel attention Stack-NMN and object-level NS-
CL representation methods. We chose these two models as their visual representations differ but had
continuous end-to-end reasoning methods given a fixed FP .

We set up this experiment by training and freezing each model’s language components on CLEVR
question program pairs (Q,FP ) to isolate the effects of visual methods. Then the visual representa-
tion is trained from scratch using different percentages of CLEVR text question and answer (Q,A)
pair data (QA Data %), where no object level supervision is provided.

The sample and computational efficiencies are illustrated in Table 1, which indicate object-level
representations work better. Object-level detectors are able to leverage cheap object locations labels
for localization and can leverage MLPs to classify objects given a dense feature fI ∈ RD. In con-
trast, pixel-wise methods needs to learn the object attention maps through more parameter intensive
convolutional layers over I ∈ RL×W×3 where D < L×W × 3 channels.

Symbolic versus Soft Logic Reasoning. Since we will use fine grained object-level O information,
we don’t need to conduct parameter intensive pure neural reasoning over fI . This lets us leverage
of function programs FP . Similarly, given O, we don’t use coarse NMN functions, which are only
compatible operating over fI . We focus on testing fine grained F to determine the best way to
reason over the answer A = 〈FP, I〉∗, either using symbolic or soft logic.

We use NS-CL which already performs soft logic over (Q,A) pairs. To test the symbolic reasoning
we replace the soft functions F defined in NS-CL by discrete counterparts, similar to the symbolic
execution performed by NS-VQA. To train the symbolic reasoning with QA data, we test REIN-
FORCE and abduction based optimization, denoted as NS-RL and NS-AB respectively. The results
in Table 2 indicate that propagating the uncertainty of the object predictions through soft logic leads
to gains in computational efficiency as well as final performance. Abduction has benefits over RE-
INFORCE as it is able to selectively sample the object probabilities, which shows to be a more
efficient procedure as the accuracy of the vision model increases.
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Sample Efficiency

QA
Data % NS-RL NS-AB NS-CL

1% 47.1 59.8 96.1
5% 72.8 76.6 97.2
10% 81.3 84.2 98.8 0 0.2 0.4 0.6 0.8 1
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Figure 2: Sample and computational efficiency for soft versus symbolic reasoning. We take soft
logic NS-CL and modify the reasoning to become symbolic. Then we optimize these symbolic
methods through REINFORCE and abduction for NS-RL and NS-AB respectively.

At this point we have been testing the visual components and present the benefits of object-level
representation and soft logic reasoning. Given these two methods, we now explore which language
representation would be the most efficient to use.

3.2 LINGUISTIC REASONING

To test our language representation we want to determine the most efficient representation for Q.
Taking into account the vision experiments, we find NS-CL’s operation over object-level representa-
tions and executing soft logic reasoning over a fixed FP to be the most suitable approach. To build
off of this, we want to understand the best representation of FP for reasoning. Therefore we look at
symbolic and soft approaches. Recall the tight integration between the language representation and
reasoning means that we investigate these two components in a joint fashion.

Sample Efficiency

QA Symbolic Progs. Soft Progs.
Data % NS-CL Stack-NMN

1% 86.5 81.3
5% 89.2 90.2

10% 92.1 94.3 0 0.2 0.4 0.6 0.8 1
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Table 2: Sample and computational efficiency for pixel attention and object-centric vision represen-
tations.

Symbolic versus Soft Execution. To test the language representation, we similarly train and freeze
the visual representations to isolate the effects of the language models. These language models are
then trained are also trained end-to-end on (Q,A) pairs without ground truth FP .

We compare NS-CL, which uses fine grained symbolic programs and soft logic reasoning over O
to Stack-NMN which uses coarse soft programs and neural reasoning over fI . For Stack-NMN the
language and vision are trained jointly, but for NS-CL the language parser is trained disjointly from
the vision. During testing the computation efficiency results, we equally divided the iterations by the
curriculum learning setup described in their work. This led to more stable accuracy improvements
over training on random samples as done in NS-VQA.

The results are presented in Table 2 and we generally see slower convergence than the vision tri-
als. This is due to the fact that the program produced has to be perfect to reason correctly, while
some mis-labeled objects may not lead to incorrect reasoning. Furthermore we encounter spurious
predictions of incorrect FP leading to the correct answer, prolonging training.
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Looking closer at the results, at 1% QA data, the symbolic representation is on top. We posit
that this is due to model exhaustively sampling the program space over an end-to-end approach
given limited data. However, as the amount of data increases, the end-to-end soft programs show
better accuracies and computational efficiency. With the results from these language and vision
experiments, we now have an understanding of which methods are the most efficient for VQA.

4 VISION AND LANGUAGE END-TO-END REASONING.

We iteratively experimented on different visual, language, and reasoning VQA components to deter-
mine which methods had the best accuracy and efficiency trade-offs. Based on this, we determined
the following desiderata for efficient VQA methods:

• Soft programs to propagate language parsing uncertainty.

• Object-level detection models with pre-trained localization for object based reasoning.

• Soft logic functions to propagate the uncertainties from the vision and language branches.

• End-to-end differentiability to efficiently optimize the perception and reasoning jointly.

We are motivated to combine the existing Stack-NMN and NS-CL frameworks we tested to syn-
thesize such a model. However, during our trade-off exploration we found it non-trivial to simply
combine different methods across visual, language and reasoning components. We address two
challenges regarding storing the intermediate computation in memory and the overall optimization
when using these selected methods.

4.1 MEMORY

The first challenge is incompatibility at the reasoning level. NS-CL leverages fine grained functions
that leverage objects O. The outputs of all of Stack-NMN’s soft programs that operate only on fI
passed through coarse NMNs. To make such soft programs from Stack-NMN compatible with fine
grained functions and object-level data, the memory storage handling the intermediate functional
computation has to store object-level data as well.

We design such a memory structure by pre-assigning different object-level data modalities to differ-
ent parts of a memory matrix M ∈ RT×(A+C+1). Here the first dimension T is the stack dimen-
sion used to store intermediate function outputs for future use, similar to Stack-NMN. The second
(A + C + 1) dimension are the rows that store the heterogeneous values while Stack-NMN only
stores a D dimensional image feature fI . The first A dimensions in the row indicate the object set
attentions mdet, or which objects the model is paying attention to at that step. The C stores concate-
nated categorical value outputs possible by our vision models such as mcolor and msize. The final
dimension mnum is reserved for some accumulated score such as count or a boolean bit for true
or false questions. For the CLEVR specific case the object attentions mdet ∈ RA. The categorical
values are [mcolor;mshape;mtexture;msize] ∈ RC , and the numeric slot mnum ∈ R.

This enables computing the reasoning softly over NS-CL like object-level predictions and Stack-
NMN function program layouts as EO∼R-CNN(I)[〈

∏
T E[P (Ft | Q)], O〉S ]. After reasoning, the

answers can be directly read from the memory instead of being inferred as a multi-class label.
This is done by directly predicting the the question type from Q and accessing the correspond-
ing memory location. For example if the question was asking about the color then we would return
arg maxmcolor. Now that we have this fully differentiable architecture, we focus on the optimiza-
tion procedure.

4.2 OPTIMIZATION

The second challenge is that Stack-NMN trains end-to-end while NS-CL iterates between REIN-
FORCE for program parsing and end-to-end training for visual concept learning. NS-CL fixes the
language model while end-to-end training vision, while we want to jointly optimizing both lan-
guage and vision models. This results in a much larger optimization landscape prone to spurious
predictions from end-to-end training on QA data.
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To mitigate this we initially start by training the the vision MLP and language LSTM models with
a small amount of the direct supervision, using between 0.1% - 1% of such data. This is done
over the object (I[bbox], label) and language (Q,FP ) pairs available in CLEVR. Then we train
end-to-end on (Q,A) pair data where we have losses for categorical and numerical answers using,
cross entropy and MSE losses respectively. Additionally, we found it useful to add the initial direct
supervision losses and data when training end-to-end as well, weighted by hyperparameters α and
β. We formulate this as a regularization method that prevents the models from diverging to spurious
predictions when only provided with QA labels. We further provide details and demonstrate the
efficacy of this regularization in Appendix C. All these terms give our overall loss as:

LE2E = LQA XEnt + LQA MSE + αLO XEnt + βLFP XEnt

From these extensions over Stack-NMN and NS-CL we construct a fully Differentiable end-to-end
Program executor (DePe). A more detailed description DePe’s architecture and examples can be
found in Appendix B.

5 EXPERIMENTS

We built DePe using the desiderata over efficient VQA methods and now we test its overall end-to-
end performance jointly on vision and language. First we compare it to our base NS-CL and Stack-
NMN methods in terms of our desired sample and computational complexity. Then we compare
DePe’s accuracy against other VQA methods.

5.1 EFFICIENCY PERFORMANCE

Sample Efficiency

QA
Data % Stack-NMN NS-CL DePe

1% 43.6 68.1 65.4
5% 66.6 86.7 87.7
10% 80.6 98.8 98.0 0 0.2 0.4 0.6 0.8 1
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Figure 3: A comparison of efficiencies during joint training of vision and language. We test DePe
with 0.1 % directly supervised labels.

We compare the efficiencies of DePe, Stack-NMN, and NS-CL in Table 3. To test the computational
efficiency of NS-CL we trained the program parser till each iteration step, fixed the parser, and then
trained the vision components end-to-end given the fixed parser.

Overall the results reflect the results reported during our component-wise testing. In terms of the
computational efficiency, NS-CL (Mao et al., 2019) uses REINFORCE to optimize its FP parser,
which requires many more iterations to converge. Stack-NMN (Hu et al., 2018) is also able to
optimize end-to-end, but trains the fI representation requiring more training samples. DePe us-
ing Stack-NMN soft programs and object-level execution from NS-CL is able to more efficiently
optimize over either method alone.

In terms of sample efficiency NS-CL and DePe are comparable given enough data since the models
execute similarly once NS-CL language models are fine tuned. Since DePe is trained on some
directly supervised data we also attempted directly supervising Stack-NMN and NS-CL, but saw
similar performance as discussed in the model detail in Appendix D.
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Method Vision Language Reasoning Training 100% Data 10% Data

MAC Pixel Text Att. Neural E2E 98.9 67.3
TbD Pixel Symbolic Prog. Neural E2E 99.1 54.2

Prob-NMN Pixel Symbolic Prog. Neural E2E 97.1 88.2
Stack-NMN Pixel Soft Prog. Neural E2E 96.3 86.8
LXMERT Object Text Att. Neural E2E 97.9 66.5

LCGN Object Text Att. Neural E2E 97.9 64.8
NGS Object Symbolic Prog. Symbolic Abduction 100.0 87.3

NS-VQA Object Symbolic Prog. Symbolic RL 99.8 92.1
NS-CL Object Symbolic Prog. Soft Logic E2E + RL 99.2 98.8

DePe (0.1%) Object Soft Prog. Soft Logic E2E 99.0 98.0
DePe (1.0%) Object Soft Prog. Soft Logic E2E 99.5 99.3

Table 3: Performance of DePe and other VQA models using 100% and 10% QA pair supervision.
Here we show DePe using 0.1% and 1% of the direct supervision on O and FP .

5.2 COMPARATIVE PERFORMANCE

We present the accuracy comparison across different VQA models in Table 3. All models are able
to achieve 96%+ given the full data set, but we are more interested in the results with lower sample
complexity. At 10% data we observe that methods with continuous inference and DSL based neural
modules, such DePe, NS-CL, Stack-NMN and Prob-NMN (Vedantam et al., 2019) scale better. The
other methods are more on the neural side, such as TbD (Mascharka et al., 2018), MAC (Hudson
& Manning, 2018), LXMERT (Tan & Bansal, 2019), and LCGN (Hu et al., 2019), require more
data to converge. Methods that discretely sample, such as NS-VQA (Yi et al., 2018) or NGS (Li
et al., 2020), can also achieve high accuracies given more training data, but in practice, require
many iterations to converge and result in high variance results compared to continuous methods.

6 CONCLUSION AND FUTURE WORK

In VQA there are different paradigms of modeling the visual, language, and reasoning representa-
tions. In addition to the final model performance, we are interested in understanding model effi-
ciency in these complex perception and reasoning tasks. First we introduced the existing models
with their corresponding vision, language, reasoning, and training components used. Then we for-
mally defined these components and the common method representations used within each compo-
nent. In order to determine which methods were the most sample and computationally efficient, we
iteratively tested the vision, reasoning, and language components. These results showed that object-
level, soft program, soft logic, and end-to-end training were important for efficient VQA. Following
this we modified existing models to leverage all of these efficient methods in a joint manner. We
showed that this model, DePe, was the most efficient while retaining state-of-the-art performance.

Based on these methods we look forward to testing DePe on larger real-world data sets. Since
our model uses generic function programs to operate over language and vision it can be extended
to different data sets with minimal modifications. Furthermore we plan to investigate how to use
concepts embeddings similar to NS-CL within our memory instead of one-hot representations. We
will also be interested in testing how the object-level representations work on questions involving
both object and image level reasoning.
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A MODEL COMPARISONS

We explore a few comparative works that contain a variety of training strategies used for VQA. Each
method type handles the vision, language, reasoning and training in different fashions.

LXMERT. Reasoning over images based on questions is carried out via Transformer like deep
architecture. Such neural reasoning module can be easily interfaced with neural perception modules,
and optimized end-to-end with perception module jointly. Since such model incorporate few prior
structures into the model, it contains lots of parameters and requires lots of question-answer pairs in
order to achieve good results.

NMN methods. With Neural Module Networks (NMN), the language is turned into a discrete
function program over neural modules which act on pixel level attention to answer questions. The
discrete function program allows reasoning steps to be executed exactly. However, such design also
makes the entire model not end-to-end differentiable. One needs to use REINFORCE to optimize
the model for producing the function program.

An extension of NMN is Prob-NMN where the predicted program is supervised over a small set of
samples. These ground truth programs provide a prior distribution over valid programs. This prior
is used to determine future valid programs and enforce systematic program layouts.

In Stack Neural Module Network, reasoning instructions in the question are executed as a neural
program over neural modules which act on pixel level attention to answer questions. This neural
program execution approach produces a soft function program, where discrete reasoning structures,
such as differentiable pointer and stack, are incorporated into the neural program executor. This
enables Stack-NMN to maintain uncertainty over which reasoning steps are selected.

GNN Methods. In Neural State Machine (NSM) and Language-Conditioned Graph Neural Net-
works (LCGN), images are represented as object and relations, and graph neural networks condi-
tioned on the language feature are used as reasoning modules. Graph neural networks are structured
networks, which can represent logical classifier in graphs. Such graph neural networks and deep
perception architectures are end-to-end differentiable. However, the architecture is quite generic,
and requires large number of question-answer pairs to train.

NS-CL. In Neural Symbolic Concept Learner, questions are turned into a symbolic program with
soft logic function, which are then executed end-to-end on object attention produced by the vision
model. The soft logic makes the reasoning step end-to-end differentiable. However, the functional
programs are still discrete in structure, making the entire model not end-to-end differentiable. One
needs to use REINFORCE to optimize the model for producing the function program.

NGS. Neural-Grammar-Symbolic performs abduction, where both the image and language are turn
into discrete object by sampling from the perception model, and symbolic program is exected to
generate the answers.

In abductive learning, the symbolic reasoning step is directly interpretable, and many existing logic
reasoning engine can be used. However, the model is not end-to-end differentiable. Discrete opti-
mization is needed to generate supervision for the vision and language model to be updated.

B DIFFERENTIABLE END-TO-END PROGRAM EXECUTOR

The overall DePe architecture, as shown in Figure 4, consists of multiple sub-parts. The percep-
tion models that encode the vision and the question. The soft logic functions F closely follow the
domain-specific language (DSL) provided by CLEVR. We implement them in a probabilistic man-
ner based on the signature, detailed in Appendix E. The function execution results are stored in a
differentiable memory that maintains a stack of these operations. As our model executes step by
step, this memory is used as a buffer for the reasoning chain’s probabilistic steps leading to a final
answer.

B.1 PERCEPTION

Object detection. For our vision, we use object-level detection through a Mask R-CNN (He et al.,
2017) to extract the corresponding bounding boxes of the objects. We then take detected objects and
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Memory
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VQR Cell

VQR Cell VQR Cell 

DePe Overall

Repeat for K reasoning steps

... ...Figure 4: Our model ingests the image and extracts object-centric information. The question (textual
input) is used by the question parser, which first embeds the question through an LSTM encoder.
This embedding is used to predict the question type, which will be used to retrieve the answer from
memory at the final step. The encoded text is passed to a decoder, which at every step predicts
attention over which functions to execute and each function’s arguments at the current step. The
objects, arguments, and any preceding memory inputs are used by each function to execute, stored in
memory belonging to each function. These function memories are weighted by functional attention
and fused, which updates the original memory. The decoding and the VQR Cell execution run a
fixed number of times, and then the answer is extracted from the final memory.

pass them through a pre-trained ResNet-50 model (He et al., 2016) to extract image features. These
features are fed into models to predict object attributes from the image features and their bounding
boxes’ object relations.

Question parser. The parser takes in the text input and encodes it through a Bi-LSTM to generate
the final hidden state. This hidden state is used in the program parser processes where a function
model predicts the attention over which soft function is to be used at that step. Additionally, these
functions may contain arguments, such as filter shape[cube], so for each class of functions,
we have a model to predict a distribution over the possible attributes. The hidden state is also used
to predict question type, which is used to select the final memory answer at the end of the execution.

For the vision and the language, all prediction models are small MLPs. We denote the set of trainable
vision and text models parameters as θvision, and θtext respectively.

B.2 MEMORY

In the CLEVR DSL, the functions have different types of inputs and outputs. Stack-NMN used
neural modules to approximate these DSL functions, thus were able to make the image attention
output of a consistent length. Since we are using the soft version of the DSL, we had to design a
memory structure that could handle varying input and output modalities and sizes.

Memory block. To create a heterogeneous memory structure, we pre-assigned different modalities
to different parts of a matrix. This memory matrix block M ∈ RT×(A+C+1) is used to store the
intermediate results of the function computation.
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Here the first dimension T is the stack dimension on which the function outputs are stored in dif-
ferent steps of the execution. The second (A + C + 1) dimension are the rows that store the het-
erogeneous values. For the rows, A elements in the row indicate the object set attentions mdet,
or which objects the model is paying attention to at that step. The C stores the categorical value
outputs possible by our vision models such as mcolor or msize. For example if there are 6 possible
colors, then mcolor ∈ R6. The final dimension mnum is reserved for some accumulated score such
as count or a boolean bit for true or false questions. For the CLEVR specific case the object at-
tentions mdet ∈ RA. The categorical values are [mcolor;mshape;mtexture;msize] ∈ RC , and the
numeric slot mdet ∈ R.

Stack structure. Choosing which row t ∈ T of the memory is accessed is handled by the stack.
This enables the model to accurately retrieve the previous one or two stack values as needed by the
functions, instead of to predict which locations in memory to use.

Some functions may require just looking at the previous output from the VQR Cell, such as
chain-like questions over a scene graph through functions such as filter, relate, sum.
Such functions will pop from and then push to the same memory row. There are situations
where functions need multiple inputs as well, such as comparison functions attribute equal,
count equal. These functions will thus pop two values from the stack and will only push back
one. These function signatures are summarized in Table 7 in Appendix E.

Stack manipulation. Each function will have access to the stack, which abstracts the memory
management appropriately through push and pop operations. The stack memory M is initialized at
random and a one-hot memory pointer p ∈ RT , starting at p0 = 1. Each function returns a row m
or a specific slice such as mcolor to be updated in memory.

To push a row m onto the stack we follow the Stack-NMN convention updating the pointer as
p = 1d conv(p, [0, 0, 1]) and the memory row Mi = Mi · (1 − pi) + m · pi. Here the convolution
is just moving the one hot pointer left by one in a differentiable manner. Then only the memory
row that contains the one hot pointer is updated with the row m. Similarly to pop a value we
perform the following retrieve the row m =

∑T
t=1 pi · Mi and push back the pointer right by

p = 1d conv(p, [1, 0, 0]).

B.3 VQR CELL

The visual question reasoning (VQR) Cell is responsible for the step by step executions over the
vision and the text to get to the answer. Compared to previous methods that executed these DSL
functional programs in a discrete sequence, we generate probabilistic output over all the functions
F at each step. With this approach, we can propagate the uncertainties of the object detections and
the question parser for end-to-end learning. An example of this execution is visible in Figure 5.

Soft function execution. Each function has different return values and signatures. Since functions
can have different input and output requirements, they require to be at different positions of the
stack. Therefore each function is given its copy of the memory stack to operate over.

Once the memory outputs for each function are com-
puted, they have to be weighted by which function our
model is most likely needed for this step. This is done
by using the function attention weights w computed by
the question parser. These weights scale each function’s
memory and the pointer and then computes a weighted
sum, which is then used to update the global memory
M and pointer p, as shown in Algorithm 1. This global
memory is then copied for all the function memories in
the next Cell iteration. The cell executes for a fixed num-
ber of iterations and is set to a number such that it can
cover most ground truth program lengths.

Algorithm 1: VQR Cell itera-
tion
for j ∈ [1, |F|] do

Mj , pj = Fj(M,p)
end
Mave =

∑|F|
j=1 wj ·Mj

p = softmax(
∑|F|
j=1 wj · pj)

M = M · (1− p) +Mave · p

Final answer. After the last iteration of VQR Cell execution, the final answer is chosen by the
memory corresponding to most probable question type. For example if we predict the question is
asking about the color, then we return argmax(mcolor). If we predict the question type is about
count, then we return mnum. Since our memory structure is heterogeneous, taking argmax over the
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  {cylinder: .00, sphere: .62, cube: .00}
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"Sphere"

Iter 4. P(Relate) = 0.85 * P(behind) = .88 * P(behind) = [.01, .00, .97])        =  [ .00, .00, .72] -> mdet

Iter 5. P(Unique) = 0.99       *    sharpen(mdet)  =  [ .00, .98, .00] -> mdet

Iter 6. P(Query Shape) = 0.72 * P(shape=sphere | obj = 3) = .89  *    mdet =  [ .00, .41, .10] -> mshape

1
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3

Figure 5: Here is a sample execution for the vision and text in DePe. For the simplicity of the
diagram, we don’t include all the probability traces and just show the ones corresponding to the max
probability. For the vision, the predictions correspond to the objects detected in the scene (marked
with 1, 2, 3 in the picture). For each execution, we store the multiplication in the corresponding
memory row, and retrieve the final memory to answer the question.

entire row m may lead to an incorrect label due to parts of the memory storing values at different
ranges, such as probabilities ∈ [0, 1] or counts ∈ Z+.

B.4 OPTIMIZATION

The objective is to minimize the overall loss based on the predictions retrieved from memory. This
involves a multi-task loss as we are predicting categorical and numeric answers to questions to op-
timize over θtext, θvision. This is done by minimizing the cross entropy loss for categorical answers
and a mean squared error loss for numeric ones: L = LQA XEnt + LQA MSE .

This optimization, particularly for the text has posed to be a difficult problem from scratch as there
are many candidate functions at each step in the function program. Furthermore spurious programs
can be proposed in early stages of training, corresponding to the shortest programs that answer the
question, but don’t align with the ground truth semantics.

To address this, models such as NS-CL, employ structural constraints when training their text parser.
They employ a fixed number of concepts tokens used to parse the question and discrete templates for
the parser to follow. In addition they leverage curriculum learning and switch between optimizing
the parser and vision models to support both the discrete and continuous training methods.

Other models, such as NS-VQA, train on a small portion of the supervised labeled data. In this
manner no such restrictions on the concepts, templates, or curriculum learning, but require labeling
of ground truth programs. In this work we explore the pre-trained route. We pre-train our models
with a small percentages (0.1-1%) of visual and textual data. When we use X% pre-training data,
we sample X% of the training questions. Then we directly supervise our question parser and vision
models on those QA programs and their corresponding vision scenes.

Additionally, we found it useful to add these direct supervision losses when training end-to-end
with corresponding weights α and β. We formulate this as a regularization method that prevents the
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models from diverging to spurious predictions when the training signal is only coarse QA labels.

L = LQA XEnt + LQA MSE + αLObj XEnt + βLText XEnt

The full definitions and learning strategies for the losses are available in Appendix C.

C OPTIMIZATION DETAILS

If given and Image I and a question Q our model makes a prediction as follows. We first make
predictions of the objects and text components as:

ŷ = DePe(I,Q; θtext, θvision)

We look to minimize the following loss L.

LQA XEnt = − 1

N

N∑
i

C∑
j

Iyi∈cat · yij log ŷj

LQA MSE =
1

N

N∑
i

Iyi∈num · ||yi − ŷnum||2

L = LQA XEnt + LQA MSE

We note that for stable convergence we include the pre-training data to our loss function. These are
the cross entropy loss for the object attribute and relation predictions LObj XEnt. These are also the
cross entropy loss for the question parser predictions of the functions at each step LText XEnt. This
gives us our final loss function:

L = LQA XEnt + LQA MSE + αLObj XEnt + βLText XEnt

We include two scalar terms for the pre-training losses to balance the models behavior to find local
minima within the QA losses and focusing too much on optimizing the smaller number of pre-
training samples. Setting these hyperparameters is more prelevant when the ratio of pre-training to
QA samples is low, since the pre-training samples provide a weak signal, but should be respected.
We find that setting α = β =

√
% of QA data, works well in practice to balance this ratio. The

gains of setting these hyperparmeters can be seen in Table 4.

0.1% pre-train 0.5% pre-train 1% pre-train
% QA Data α = β base weight ∆ base weight ∆ base weight ∆

5% 3 87.7 97.9 10.2 97.1 99.1 2.0 98.8 99.2 0.4
10% 6 92.3 98.0 5.7 96.6 99.2 2.6 99.1 99.3 0.2
100% 10 93.1 99.0 5.9 97.7 99.4 1.7 99.4 99.5 0.1

Table 4: Absolute validation accuracy gains by adding pre-training loss weights. The gains were
computed against the baseline method of α = β = 1.

We use Adam to optimize with lr = 1e−4, β1 = 0.9, β2 = 0.999, ε = 1e−8 and set our batch size
to 1024.

D EXPERIMENTS

Here we outline the details of the training procedure for the end-to-end training and efficiency ex-
periments. We follow the default training procedure for the relevant work if it is not modified in this
section.
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D.1 LXMERT

For LXMERT we were interested in exploring if the cross modal architecture could implicitly encode
our attention based reasoning process, as conveyed by the recent Transformer literature. There were
a couple of approaches that we tried during our tests.

The initial tests and the results we reported were the based on the original architecture proposed in
the paper as well as using the pre-trained weights the authors provided. This used 9, 5, and 5 layers
of the language encoder NL, the cross modality encoder, and the region of interest (RoI) object
encoder NR respectively.

We also test the initializing the RoI encoder from scratch since the CLEVR features are more simpler
than the ones used in pre-training on real images. Additionally we tested LXMERT with fewer
layers, NL = 4, NX = 2, NR = 2, which we report in Table 5.

% QA Data LXMERT Pre-trained LXMERT Scratch LXMERT 422

100 97.9 98.0 95.6
50 95.3 93.5 90.4
25 89.2 69.27 70.71
10 66.5 50.55 52.72

Table 5: LXMERT CLEVR performance on different subsets of data and configurations.

D.2 STACK-NMN

When experimenting with Stack-NMN we first trained the entire model on 100% of the CLEVR
data using the ground truth layout and save it. For the visual representation experiments we take the
trained model and freeze the LSTM weights while resetting the vision weights. For the language
representation we freeze the CNN and NMN weights without the expert layout.

When training Stack-NMN for direct supervision, we train the model with the ground truth layout
but only on 0.1% of the data. Then we take load this model and ran it on the corresponding 1, 5, and
10% QA data without the expert layout. With only 0.1%, we didn’t see any sample of computational
performance differences on end-to-end training.

We used the same settings as the original paper and trained all variations for 200k iterations.

D.3 NS-CL

When testing NS-CL end-to-end we require iterating between optimizing the language program
parser and training the vision concept models, done in a REINFORCE and end-to-end fashion re-
spectively. When conducting the computational complexity experiments we had to train and test the
program parser and vision models at fixed number of training samples. To do this we divide up the
total number of training samples uniformly into 10 curriculum lessons used in the original NS-CL.
We then tune the program parser with the data belonging to the cumulative curriculum up to those
number of training samples. Given this program parser we tune the vision models end-to-end over
the same number of training samples. This way we have a better picture of NS-CL’s behavior as a
function of the training iterations.

To make NS-CL more comparative to DePe, we also use the 0.1% direct supervision data improve
the NS-CL initial performance. We similarly train the program parser on the (Q,FP ) pairs, thus
start off at similar accuracies. Unlike DePe, NS-CL uses similarities between text and vision con-
cepts, soit was unclear how to directly supervise the vision model given the object data. Similar to
Stack-NMN we test a burn-in strategy where we train the entire model end-to-end with the QA Data
from the corresponding 0.1% direct supervision then train using the 10% QA data for 150 epochs.
Here we observed no significant gains from just start off with the supervised vision parser.

In the reasoning representation experiments we test NS-CL with discrete reasoning. Here we took
the original soft logic F defined in the NS-CL paper and replaced them with symbolic logic as used
in NS-VQA. Then we used REINFORCE to optimize when training on QA data in NS-RL. In NS-
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AB we use abduction to find the most likely change in the object concept prediction to make the
resulting reasoning provide the correct answer. We discuss this in the next section.

D.4 NS-AB ABDUCTION

Abduction involves determining which detection mdet changes are required to correctly answer the
question given a fixed discrete function program.

At a high level these changes are done by making the most likely change that makes the output
answer right. In NGS they use a tree based formulation and in our implementation we retain our
stack implementation. Our stack implementation lets us test abduction proposals in a greedy efficient
manner, but leads to a smaller search of the detection space leading to the ground truth answer
instead of a spurious one. We describe the details of our implementation below.

D.4.1 POLICY DEFINITION

The function programQ = {fi}T , fi ∈ F tells us to execute a sequence of T operations or functions
fi. If there are multiple reasoning branches that are aggregated, the execution trace follows a DAG
dependency structure. We use a Markov decision process (MDP) formulation for the execution
process:

• A policy mt
det ∼ πθ(m

t
det|mt

∗, ft, I) with vision models parameters θvision will take the
operation execution from the previous stage mt

∗, the operator indicator ft and image I , and
output an action at. Memory from the previous stage mt

∗ could be any memory slice such
as mdet,mattr,mnum. This action mt

det corresponds to the object selections made for the
current operation from the input image.
• The action will cause the state mt

∗ to be updated to mt+1
∗ , and the transition is described

by P (mt+1
∗ |mt

∗,m
t
det, ft). This is the operation execution for the current stage. This is

carried by logic function ft as described in Table 7.

After this sequence of operations, we obtain the a rewardR(A,mt+1
∗ ) by comparing the last selected

state with the answer A, and tell us whether the answer is correct or not. If the answer is correct
R = 1, and otheriwse 0. Then the expected correctness of answer given the uncertainty in πθ and P
is

E[R(A,mt+1
∗ )], where (1)

mt+1
∗ ∼ P (mt+1

∗ |mt
∗,m

t
det, ft), at ∼ πθ(mt

det|mt
∗, ft, I), m0

∗ = ∅, ∀t = 1, . . . , T (2)

D.4.2 OPTIMIZATION

Given m data points expressed as image I , questions Q and answer A triplets:
(I1, Q1, A1), . . . , (Im, Qm, Am), the learning problem can be expressed as:

π∗θ = arg max
πθ

m∑
i=1

E[R(Ai,m
i,t+1
∗ )] (3)

Label abduction. If for a particular data point (I,Q,A) the answer according to the model is
incorrect, one can try to find corrections by making minimal corrections ci to the model detections
as follows:

c∗1, . . . , c
∗
T = argminc1,...,cT D(m1

det, . . . ,m
T
det‖c1, . . . , cT ) (4)

s.t. R(A,mt+1
∗ ) = 1 makes the answer right. (5)

mt+1
∗ ∼ P (mt+1

∗ |mt
∗, ct, ft),∀t = 1, . . . , T (6)

where D(‖) is some distance measure between the corrections ci and the model predictions mi
det.

For instance, D(‖) can be the negative likelihood of the correction under our model πθ, or the edit
distance.

Intuitively, we want to attempt the most likely corrections iteratively to find a solution by minimizing
D(‖). Sampling all possible corrections at once, can cause right answers through spurious label
changes, which we want to mitigate.
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Sampling methods. Due to the compositional nature of the reasoning tasks, we attempt to optimize
c∗i in a greedy fashion at each step of the program from i = 1 to i = T instead of jointly from
i ⊆ {1, . . . , T}.
This better enforces the consistency constraint when a single c∗i update leads to valid program execu-
tions. Valid executions mean that the predicted or abduced labels c∗i lead to a final answer, whether
right or wrong. This is opposed to making conflicting changes in all c∗i , c

∗
j where i 6= j, leading

to a failed program execution due to the manual abduced changes. If this greedy approach fails to
find an answer, we fall back on exhaustively sampling mi

det ∼ πθ at all program levels for a fixed
number of iterations.

E MODULAR SOFT-LOGIC FUNCTIONS

The descriptions of the variables and constants used to describe memory components are listed
in Table 6. The functions used are in Table 7. For notation simplicity, the function arguments are
assumed to be popped from that function’s memory copy or predicted from the text or vision models.

Name Module Description Values

D Hyperparameter Number of objects Z+

γ Hyperparameter Shift value R

τ Hyperparameter Scalar value R

mdet Memory Gates determining the active object detections {[0, 1]}D

mnum Memory Storage for numerical and boolean operations R

mattr Memory Probability distribution over that attribute R|attr|

parg Text Function argument probability distribution R|attr|,R|rel|

Prel Vision Object pairwise relation predictions RD×D×|rel|

Pattr Vision Image attribute prediction per object RD×|attr|

Table 6: Description of functional arguments and constants.
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Signature Implementation

scene() mdet := 1

unique(mdet) mdet := ( mdet
1−mdet )/sum( mdet

1−mdet )

count(mdet) mnum := sum(mdet)

exist(mdet) mnum := max(mdet)

intersect(m1
det,m

2
det) mdet := min(m1

det,m
2
det)

union(m1
det,m

2
det) mdet := max(m1

det,m
2
det)

equal integer(m1
num,m

2
num) mnum := sigmoid((τ − |m1

num −m2
num|)/(γ · τ))

greater than(m1
num,m

2
num) mnum := sigmoid((m1

num −m2
num − γ)/τ)

less than(m1
num,m

2
num) mnum := sigmoid((m2

num −m1
num − γ)/τ)

relate(mdet, Prel, parg) mdet := (mdet)
>(Prel)(parg)

filter attr(mdet, Pattr, parg) mdet := min(mdet, (Pattr)(parg))

query attr(mdet, Pattr, parg) mattr := min(parg, (Pattr)
>(mdet))

same attr(mdet, Pattr) mdet := ((Pattr)(Pattr)
> � (1− I))(mdet)

equal attr(m1
attr,m

2
attr) mnum := (m1

attr)
>(m2

attr)

Table 7: Implementation details for each modular function. mdet,mnum,mattr correspond to differ-
ent parts in the memory representing attentional masks, numerical results, and attributes. parg is the
distribution of functional arguments produced by the question parser, while Prel and Pattr are rela-
tion and attribute predictions given by the perception module. Hyper-parameters D = 50, τ = 0.25
and γ = 0.5 and attribute functions are split further by each attr ∈ {shape, color,material, size}.
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