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Abstract

A World Model is a compressed spatial and temporal representation of a real
world environment that allows one to train an agent or execute planning methods.
However, world models are typically trained on observations from the real world
environment, and they usually do not enable learning policies for other real en-
vironments. We propose One-Shot World Model (OSWM), a transformer world
model that is learned in an in-context learning fashion from purely synthetic data
sampled from a prior distribution. Our prior is composed of multiple randomly
initialized neural networks, where each network models the dynamics of each state
and reward dimension of a desired target environment. We adopt the supervised
learning procedure of Prior-Fitted Networks by masking next-state and reward
at random context positions and query OSWM to make probabilistic predictions
based on the remaining transition context. During inference time, OSWM is able
to quickly adapt to the dynamics of a simple grid world, as well as the CartPole
gym and a custom control environment by providing 1k transition steps as context
and is then able to successfully train environment-solving agent policies. However,
transferring to more complex environments remains a challenge, currently. Despite
these limitations, we see this work as an important stepping-stone in the pursuit of
learning world models purely from synthetic data.

1 Introduction

World models have emerged as a powerful approach for creating compressed spatial and temporal
representations of real-world environments, enabling efficient agent training and planning in rein-
forcement learning (RL) tasks [Ha and Schmidhuber, 2018, Kaiser et al., 2019, Hafner et al., 2023,
Wu et al., 2022]. These models have shown significant promise in improving sample efficiency and
performance across various RL domains. For instance, SimPLe [Kaiser et al., 2019] demonstrated
strong results on Atari games by using a learned dynamics model to generate simulated data. More
recently, transformer-based world models have pushed the boundaries of sample efficiency and perfor-
mance. TWM [Robine et al., 2023] utilized a Transformer-XL architecture to surpass other methods
on the Atari 100k benchmark [Kaiser et al., 2019], while IRIS [Micheli et al., 2023] and STORM
[Zhang et al., 2023] achieved human-level performance using GPT-style transformers. However,
these approaches typically require training on observations from the target environment, which can be
time-consuming and impractical in many real-world scenarios. Moreover, traditional world models
often lack the ability to generalize across different environments, limiting their applicability in diverse
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Figure 1: OSWM is trained on synthetic data sampled from a prior distribution of randomly initial-
ized, untrained neural networks that mimic RL environments (left). Given a sequence of synthetic
interactions, OSWM is optimized by predicting future dynamics at random cut-offs (center). RL
agents can then be trained on OSWM to solve simple real environments given a context.

RL tasks. The challenge of transferring learned dynamics efficiently to new environments remains a
significant hurdle in the field of model-based RL.

To address these challenges, we explore the potential of training world models with in-context
learning using purely synthetic data. We propose the One-Shot World Model (OSWM), a transformer-
based approach that learns a world model from a synthetic prior distribution. Our method draws
inspiration from Prior-Fitted Networks [Müller et al., 2022] and leverages in-context learning to
adapt to new environments with minimal real-world interactions. By training on a diverse synthetic
prior, OSWM aims to capture a wide range of environment dynamics, potentially enabling rapid
adaptation to various RL tasks. We release our code under https://github.com/automl/oswm
and our contributions can be summarized as follows:

• We explore training world models with synthetic data sampled from a synthetic prior
distribution based on randomly initialized and untrained neural networks, using in-context
learning to predict future dynamics and rewards given previous state and action sequences.

• We demonstrate that our model, One-Shot World Model (OSWM), is capable of adapting
to the dynamics of unseen environments in a one-shot manner by only providing 1,000
randomly sampled transitions as context.

• Although OSWM adaptability is still limited to very simple environments, we show that
training world models on such a synthetic prior surprisingly allows for the training of RL
agents that solve the GridWorld, CartPole gym and a custom control environment.

• We investigate OSWM’s limitations and analyze learned reward functions, as well as
strategies for prior construction and the relevance of context sampling, providing insights
for future improvements in this direction.

2 Related Work

World Models and Model-Based Reinforcement Learning Classical RL often suffers from sam-
ple inefficiency, as it requires many interactions with the environment. Model-Based Reinforcement
Learning (MBRL) mitigates this by learning environment dynamics, allowing agents to train using
simulated data. For example, Ha and Schmidhuber [2018] proposed World Models, which use gener-
ative neural networks to encode compact spatial-temporal representations, optimizing RL efficiency.
MuZero [Schrittwieser et al., 2020] advanced MBRL by learning both environment dynamics and
reward functions, which proved highly effective across board games. Dreamer [Hafner et al., 2020,
2021, 2023] applied learned world models across diverse domains, including real-world robotics
[Wu et al., 2022]. More recently, TD-MPC2 [Hansen et al., 2024] demonstrated scalability and
robustness in continuous control tasks. Transformer-based models have also become prominent, with
TransDreamer [Chen et al., 2022] or TWM [Robine et al., 2023] that excelled in sample efficiency
on Atari 100k. Other Transformer-based approaches such as IRIS [Micheli et al., 2023] or STORM
[Zhang et al., 2023] achieved over 100% human performance on Atari 100k with GPT-style training.
However, Most if not all methods are trained on the target environment and utilize the attention
mechanism to attend to previous parts of the roll-out.

Despite these successes, transferring learned dynamics across environments remains a significant
hurdle in the field of MBRL. Augmented World Models [Ball et al., 2021] tackle environmental
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dynamics changes by learning a world model from offline data. During training, they provide
predicted dynamics and possible changes as latent context, helping agents generalize to new variations.
Similarly, Evans et al. [2022] uses transformers or RNNs to encode environment parameterization
into a latent space, enabling a world model robust to variations like friction or object mass changes.

Synthetic Data and Priors and RL Synthetic data plays a crucial role in RL, particularly in
methods that transfer knowledge from simulation to real environments, known as sim2real. Domain
randomization [Tobin et al., 2017, Rajan et al., 2023], which varies simulation settings like lighting
and object shapes, enhances generalization and improves the transfer from simulation to the real
world. Pretraining with synthetic data has also gained prominence. For example, Wang et al. [2024]
pretrains the Decision Transformer using synthetic Markov chain data, outperforming pretraining
with natural text (e.g., DPT trained on Wikipedia [Lee et al., 2023]) in both performance and sample
efficiency. Other techniques include training on synthetic reward distributions to allow zero-shot
transfer to new tasks [Frans et al., 2024], while TDM [Schubert et al., 2023] demonstrates strong
few-shot and zero-shot generalization across procedural control environments. UniSim [Yang et al.,
2023] uses internet-scale data to train realistic robotic control models, enabling more efficient RL
training. A meta-learning approach trains Synthetic Environments [Ferreira et al., 2021] for RL that
serve as proxies for a target environment, providing only synthetic environment dynamics. These
synthetic dynamics allow RL agents to significantly reduce the number of interactions needed during
training. Lastly, Prior Fitted Networks (PFNs) [Müller et al., 2022] utilize synthetic priors for
supervised learning, with its adaptation to tabular data, TabPFN [Hollmann et al., 2023], achieving
state-of-the-art results while significantly speeding up inference.

Unlike previous approaches that depend on real-world observations or extensive training in target
environments, we introduce a new approach that trains a transformer world model entirely on synthetic
data sampled from a prior distribution which is based much further away from reality as it based on
randomly initiliazed neural networks. Using the Prior-Fitted Networks paradigm, OSWM employs
in-context learning to adapt to new environments with just a simple context sequence.

3 Method

Let xt =
[
s1:ds
t , a1:da

t

]
denote the concatenated state-action vector (or input) at time step t, where

s1:ds
t represents the state and a1:da

t represents the action, with ds and da being the dimensionalities of
the state and action, respectively. Similarly, let yt =

[
s1:ds
t+1 , rt+1

]
represent the next state and reward

vector (or target). The sequences of these vectors, {x1, . . . , xT } and {y1, . . . , yT }, are summarized
as X1:T and Y1:T , respectively. To ensure consistent input sizes across varying environments, padding
is applied: xt = [s1t , ..., s

ds
t , pads, a

1
t , ..., a

da
t , pada], where pads and pada are zero vectors used to

match the maximum state and action dimensions across environments. The same padding scheme
is applied to yt. The OSWM is trained on synthetic batches (X1:T , Y1:T ) sampled from a prior
distribution PRL. At randomly sampled cut-off positions, the synthetic batches are divided into
context and target data and the model is trained to predict the target data given the context, which we
visualized in Fig. 1 (center).

At inference, OSWM adapts to a new environment using a few context samples (X1:T−1, Y1:T−1)
collected from the real environment, i.e. the target environment (see Fig. 1). This context consist
of state-action transitions and their corresponding rewards, which provide information about the
dynamics of the real environment. To ensure sufficient coverage of the target environment, multiple
transitions are collected, often spanning several episodes. We typically collect 1,000 transitions
from random rollouts, though the collection process can be performed using any policy, ranging
from random to expert-driven actions. We analyze the role of context generation on the predictive
performance of the model in Section 4.3.

Once the context is collected, OSWM predicts the next state and reward (st+1, rt+1) given the current
state-action pair (st, at) and the prior context. The OSWM acts as a learned simulator, enabling RL
agents to interact with predicted dynamics and learning by standard RL algorithms. Note, that the
OSWM is initialized by sampling an initial state from the real environment at inference time. Both
inputs X1:T and targets Y1:T are normalized to zero mean and unit variance. OSWM predicts in
this normalized space, and the predictions are projected back to the original value space using the
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mean and variance of the context data. Finally, we assume that the termination condition of the target
environment is known, but we note that it could also be learned.

3.1 Training the One-Shot World Model (OSWM)

The OSWM is trained on synthetic data sampled from a prior distribution PRL (see Section 4.2),
which is constructed to simulate the dynamics of various environments. The goal is to optimize the
model for predicting the dynamics of unseen target environments based on initial interactions used by
in-context learning. We describe the entire training procedure in Algorithm 1.

At first, the model weights θ are initialized randomly. During each training step, a batch of
(X1:T , Y1:T ) ∼ PRL is sampled, with each batch containing input and target sequences. A context
size eval is sampled from the interval [k, T − 1], where k is the minimum context size used for
the prediction (see Appendix C for more details about the sampling). The model is provided with
X1:eval and Y1:eval to predict future targets Ŷeval+1:T based on the remaining inputs Xeval+1:T . The
training loss is computed using the mean-squared error (MSE) between the predicted and actual
future transitions: L = MSE(Ŷeval+1:T , Yeval+1:T ).

Algorithm 1 Training the OSWM with the synthetic prior

Initialize θ ▷ Initialize OSWM’s parameters
while not finished do

X1:T , Y1:T ∼ PRL ▷ Sample batch from RL prior
eval ∼ U(k, T − 1) ▷ Sample eval size
Ŷeval_pos+1:T ←Mθ(X1:eval, Y1:eval, Xeval+1:T ) ▷ Predict dynamics with OSWM
L←MSE(Ŷeval+1:T , Yeval+1:T ) ▷ Calculate loss
θ ← θ − α∇θL ▷ Update parameters

end while
returnMθ

3.2 Prior for Training OSWM

One of the core contributions of this method is the design of a prior that aims to mimic the properties
of RL environments while incorporating stochasticity for diverse dynamics. The prior consists of two
components: a neural network-based (NN) prior and a physics-based momentum prior. These two
priors are combined, with the states produced by both the NN and momentum priors concatenated
as input to the NN prior for further updates. This split allows the model to capture both complex,
neural network-generated behaviors and simple, physics-driven interactions, like pendulum motion or
velocity-position relations. In Figure 1 (left), we illustrate the mechanics of the NN prior, and below
we describe both priors in more detail.

Neural Network Prior The NN prior generates dynamics using randomly initialized neural net-
works. Each state dimension sit is produced by a separate neural network f i

θi , which is randomly-
initialized and untrained and takes as input the entire previous state st−1 = [s1t−1, ..., s

ds
t−1] and action

at = [a1t−1, ..., a
da
t ]. The next state is computed as sit = f i

θi(st−1, at−1). The networks consist of
three linear layers, with random activations (ReLU, tanh, or sigmoid) after the first two layers, and a
residual connection that aggregates the outputs of the first and second layers. This structure allows for
complex dependencies between state dimensions and actions. To introduce variability, each NN-based
state dimension is initialized with a random scale and offset. When the individual NN prior networks
are reset, which occurs periodically after a pre-defined fixed interval, their initial state values s0 are
sampled from U(0, 1), and then scaled and offset according to the prior configuration (see Table 6 for
the prior hyperparameters in the appendix), ensuring stochastic behavior across environments. This
method allows the model to capture rich and diverse dynamics by introducing different dependencies
between states and actions across dimensions.

Momentum Prior The momentum prior models physical interactions through two components:
velocity and positional updates. Velocity is updated based on the action and gravity (vt+1 =
vt+at ·∆t− g ·∆t), while position is updated using the current velocity (pt+1 = pt+ vt+1 ·∆t). In
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this model, velocity vt and position pt are influenced by factors such as gravity and the current action,
and the position updates rely on velocity. The initial position is sampled from [0, 2π], and the initial
velocity is sampled from U(−3, 3). This setup enables the model to simulate both linear and angular
motion. Angular dynamics can incorporate gravity, and they are represented internally in radians,
though the output can be sine, cosine, or radian values. The momentum prior values are concatenated
with the NN prior values and fed into the NN prior networks for the subsequent transitions.

Rewards and Invariance The reward function follows a similar structure to the NN prior used
for state dynamics but with different inputs, including the new state, action, and the previous
state. This reflects how rewards in real RL environments are based on state transitions and action
costs, such as penalizing high action magnitudes. The reward at time step t can be expressed as:
rt+1 = g(st+1, at, st) where g represents the reward model that takes the new state st+1, the action
at, and, optionally, the previous state st as inputs. To maintain flexibility, the reward is replaced by
a constant reward of 1 with a probability of 0.5, a common approach in tasks like CartPole, where
extending the episode is rewarded, or MountainCar, where faster completion is incentivized. To
prevent the model from overfitting to the order of state-action dimensions, we shuffle both states and
actions and apply identical permutations to X1 and Y1.

4 Experiments

We first test the model’s performance on various environments with the goal to provide an overview
of the capabilities and limitations. We then describe how different prior components affect the
predictions of OSWM, explore the impact of various context generation methods, and analyze learned
reward functions.

4.1 Results for Agent Training

We evaluate the performance of OSWM by training an RL agent using the PPO algorithm [Schulman
et al., 2017], as implemented in stable-baselines 3 [Raffin et al., 2021]. We chose PPO because
it can handle both discrete and continuous action spaces, making it well suited for the variety of
environments in this study. We selected environments that provide a mix of discrete and continuous
state and action spaces, allowing us to assess OSWM’s performance across different types of RL
challenges. The selected environments include two custom environments, GridWorld and SimpleEnv
(see Appendix D for details), as well as CartPole-v0, MountainCar-v0, Pendulum-v1, and Reacher-v4
from the classic control gym suite.

In GridWorld, the agent navigates a discrete, 8x8 grid to reach a target location, receiving a positive
reward for reaching the target and small penalties for each step, and the environment is considered
solved when the agent consistently reaches the target efficiently. SimpleEnv involves moving a point
along a 1D continuous line toward the center, with rewards negatively proportional to the distance
from the center. CartPole-v0 is solved with an average reward of 195, MountainCar-v0 with an
average reward of -110, Pendulum-v1 maximizes the reward when balancing the pendulum upright,
and Reacher-v4 is solved with an average reward of around -3.75.

We trained agents for 50k steps in all environments, except MountainCar-v0, where training was
extended to 200k steps with actions repeated five times to enhance exploration. All PPO hyperpa-
rameters were kept in their default settings. In all experiments, unless stated otherwise, OSWM was
provided with 1k context steps collected from the real environment using random actions.

4.1.1 Quantitative Evaluation of Agent Performance

In Table 1, we compare the average performance of 100 test episodes for three agents: OSWM-PPO,
PPO, and a Random Baseline. OSWM-PPO is trained purely on the dynamics predicted by OSWM
using 1k context steps from the real environment, while PPO is trained only on the real environment,
and the Random Baseline selects actions randomly. Since OSWM’s synthetic rewards may not
be indicative of the current agent’s performance on the real environment, we evaluate each agent
periodically after 100 training steps. Moreover, as discussed below in Section 4.1.2, training the agent
too long on OSWM can result in performance degradation. Therefore, we apply an early stopping
heuristic that takes the best agent training checkpoint. We do this on a per-seed-basis and compute
the mean over multiple seeds.
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Environment OSWM-PPO PPO Random Baseline
GridWorld 5.2 ± 0.0 5.2 ± 0.0 -14.2 ± 0.3
CartPole-v0 196.5 ± 4.2 200.0 ± 0.0 21.3 ± 3.9
SimpleEnv -4.7 ± 5.2 -0.8 ± 0.1 -256.2 ± 16.6
MountainCar-v0 -200.0 ± 0.0 -110.5 ± 2.1 -200.0 ± 0.0
Pendulum-v1 -1185.4 ± 31.2 -268.9 ± 22.2 -1230.3 ± 8.6
Reacher-v4 -10.2 ± 0.9 -4.6 ± 0.3 -42.8 ± 0.3

Table 1: Average performances over 3 seeds on 100 test episodes of 3 different agents (higher values
are better). OSWM-PPO is a PPO agent trained only on the OSWM, PPO is a PPO agent trained
on the real environment and the random baseline is an agent taking random actions. All agents are
evaluated on the real environment, and we apply an early stopping heuristic for each seed before we
compute the mean.

In GridWorld, OSWM-PPO matches PPO with a reward of 5.2, outperforming the random baseline
(-14.2) and demonstrating robustness in simple environments. In CartPole-v0, OSWM-PPO achieves
196.5, close to PPO’s 200 (random baseline: 21.3). Also in SimpleEnv, OSWM-PPO reaches -4.7,
performing well compared to PPO (-0.8) and significantly better than the random baseline (-256.2).
These results are particularly surprising, as they show that pretraining on synthetic dynamics generated
by random, untrained neural networks can still lead to strong performance in certain tasks, even
without direct training on real environment data.

In more complex environments like MountainCar-v0 and Pendulum-v1, OSWM-PPO struggles to
match PPO, with larger gaps in rewards, indicating that the approach here is less effective. However,
for Reacher-v4, OSWM-PPO shows noticeable improvement, coming closer to PPO performance
and performing far better than the random baseline. In MountainCar-v0, the model appears inferior at
interpolating behavior in unseen states or areas of the environment, as the random context covers only
a small part of this task. In contrast, Pendulum-v1 should benefit from better exploration through
random actions, as the initial state covers all pendulum rotations, and the random actions provide a
wide range of velocities. Despite this, OSWM does not provide sufficiently accurate dynamics to
support effective training, suggesting that Pendulum-v1 requires more precise control and dynamic
predictions than OSWM can currently offer. This may be due to the inherent difficulty posed by these
environments, including sparse rewards and continuous action spaces, which likely require more
sophisticated priors to improve performance.

4.1.2 Performance Progression Across Training Steps

To better understand the progression of agent training when training on OSWM, we report the learning
curves in Figure 2. Here, we depict the mean evaluation rewards over training steps for three PPO
agents using OSWM, with the best and worst performances highlighted.2 Performance is measured
on the real environment over 10 test episodes.

In the GridWorld environment (left), agents quickly solve the task after minimal interaction, with
only one agent showing slightly suboptimal behavior after about 15,000 steps. This demonstrates the
robustness of OSWM in simple environments.

For CartPole-v0 (center), agents show strong early performance, with the mean curve stabilizing after
a brief drop. The best-performing agent continues to improve, while the worst-performing agent
experiences a notable drop-off later in training. This phenomenon, where initial improvements are
followed by a decline, can be attributed to gaps in the OSWM’s understanding of certain environment
dynamics. For instance, OSWM might model the dynamics accurately at higher angular velocities but
struggle at lower velocities, failing to account for subtle drifts that are not captured. As a result, the
agent may receive overconfident reward signals, leading to poor performance when these unmodeled
drifts become significant in the real environment.

In SimpleEnv (right), agents exhibit a sharp initial increase in performance, followed by a plateau or
decline. The worst-performing agent’s reward nearly returns to its initial level, highlighting variability
in training outcomes. This suggests that while OSWM supports learning, the one-shot prediction

2We point out that the mean curves in Fig. 2 do not use the early stopping heuristic and therefore, do not
correspond to the mean values of Tab. 1 where we take the mean over early stopped agents.
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(a) (b) (c)

Figure 2: Evaluation scores for RL agent training on the OSWM for GridWorld, CartPole-v0, and
SimpleEnv. Blue shows the mean over 3 runs, with the standard deviation in light blue. Orange and
green depict the best and worst-performing agents, respectively.

approach can introduce variability in performance, particularly in continuous environments where
fine control is crucial.

4.2 Studying the Prior

In this section, we analyze the behavior of the Neural Network (NN) prior used in OSWM, which
generates diverse dynamics through randomly initialized neural networks. To understand the state
dynamics produced by the NN prior, we sample batches of data, reflecting what OSWM encounters
during training. For each prior dimension (e.g., the agent’s position in GridWorld), we calculate the
minimum and maximum values and divide them into 100 equal bins, visualizing the distribution
for each dimension. The histograms in Fig. 3 show three distinct types of distributions produced
by the NN prior. Some prior dimensions exhibit highly peaked distributions, as shown in Fig. 3a,
where most values fall within a narrow range. For other dimensions, we observe wider and smooth
distributions with a more even spread of values, as seen in Fig. 3b. Finally, some prior dimensions
follow multimodal distributions, with two or more distinct peaks, as depicted in Fig. 3c. This pattern
of three distinct distribution types is commonly observed across various dimensions.

The variation in distribution types suggests that the NN prior can capture both simple and more
complex, multimodal scenarios. However, as shown in Table 2 (left), using only the NN prior impacts
OSWM-PPO performance in environments like CartPole-v0, where momentum is key for modeling
the pole’s angular dynamics. In contrast, GridWorld and SimpleEnv, which do not entail momentum,
perform similarly to when both the NN and momentum priors are used (see Table 1). MountainCar-v0,
Reacher-v4, and Pendulum-v1 were unsolvable before, and as expected, removing complexity from
the prior does not make them solvable. This highlights that while the NN prior’s multimodality
supports diverse behaviors, it is insufficient for tasks that rely on accurate momentum-based dynamics.
The distributions of the momentum prior are reported in Appendix A. The right column of Table 2 on
improved context generation is analyzed further in Section 4.3.

(a) (b) (c)

Figure 3: Typical distribution patterns generated by the NN prior: (a) highly peaked, (b) wide or
smoother, and (c) multi-modal distributions.

4.3 Studying the Context Sampling

Context is crucial for the predictive performance of OSWM. This section explores how different
context sampling methods affect the model’s predictions. Assessing the role of sampling strategies
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Environment NN Prior Only Improved Context
GridWorld 5.2 ± 0.0 3.9 ± 1.9
CartPole-v0 191.7 ± 11.2 108.0 ± 34.6
SimpleEnv -1.3 ± 0.3 -2.5 ± 0.8
MountainCar-v0 -200.0 ± 0.0 -200.0 ± 0.0
Pendulum-v1 -1217.4 ± 40.9 -1245.0 ± 25.1
Reacher-v4 -10.0 ± 0.6 -

Table 2: Average performances when the OSWM is trained with the NN prior only (left; with
randomly sampled context), as well as when a more sophisticated context sampling strategy is
adopted (with NN+momentum prior). Higher values are better.

requires multiple agent trainings in OSWM and evaluations across multiple test episodes and envi-
ronments. Since this is computationally expensive, we make use of a proxy dataset to evaluate the
effectiveness of various sampling strategies more efficiently. The details of the generation of the
proxy set are provided in Appendix B, but a high-level overview is given here.

The proxy set is created from transitions collected in the real environment using a PPO agent trained
to perform at the expert level. First, the PPO agent is used to generate 5000 expert transitions across
multiple episodes. From this, 500 transitions are sampled for each of three settings: 0% randomness
(expert actions only), 50% randomness (half expert, half random) and 100% randomness (random
actions only). This total of 1500 transitions spans expert behavior to exploratory actions and the
proxy. The intuition behind mixing random and expert transitions is to cover states that are not
typically encountered by an expert agent alone and thus, the proxy set can capture a wider range of
environment dynamics. We then tested five different context sampling strategies: random (actions
sampled uniformly), repeat (random actions repeated for three steps), expert (policy solving the
environment), p-expert (mixing PPO expert and random actions 50/50), and mixture (first third
random, second third p-expert, final third PPO expert).

For evaluation, OSWM is provided with 1000 context steps from each strategy, and the proxy set is
used to assess their impact on model predictions (Table 3 in the appendix) by computing the mean
squared error (MSE) between predicted dynamics and true targets from the proxy set. Based on the
proxy loss, the best strategy is selected for each environment and evaluated in Table 2 (right). In
complex tasks like MountainCar-v0 and Pendulum-v1 (using mixture), even with improved context,
these environments remain unsolved. For Reacher-v4 (random), simple random sampling proves
best, reflecting that basic methods can sometimes capture the necessary dynamics. In SimpleEnv
(p-expert), the improved context sampling enhances performance. GridWorld (mixture) sees minimal
variation, with random sampling generally being sufficient to capture its simpler dynamics. Overall,
p-expert and mixture often yield the best results, while repeat and expert strategies are less effective.
Random proves to be a reliable default, offering solid performance across many environments.

4.4 Studying the Reward Function

Visualizing the reward function across environments reveals the dynamics learned by OSWM and
their differences from the real environment. Figure 4 shows the reward analysis, with each plot

(a) Real GridWorld (b) OSWM GridWorld (c) Real CartPole (d) OSWM CartPole

Figure 4: Reward distributions for the real and OSWM GridWorld and CartPole environments.
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generated based on the rewards predicted by OSWM given a random seed and a randomly sampled
context.

In the GridWorld environment, each triangle corresponds to an action, which means that for every
state (x, y) we represent four possible actions. OSWM smooths the reward function, making it easier
for agents to be guided toward a goal state. Nevertheless, some inaccuracies appear in the reward
distribution, for instance, in areas like the bottom-right corner, where states are rewarding instead of
penalizing. We hypothesize that this may stem from a combination of undersampled states in the
context as well as the inherent smoothness induced by the synthetic prior training.

For CartPole, the reward distribution predicted by OSWM is smoother than in the real environment,
and we argue that this makes it easier for the agent to keep the pole upright. However, this smoothness
can result in certain states near instability receiving rewards when they should be penalized.

We report the results for Pendulum and further details in Appendix E. The original Pendulum reward
function is already dense and OSWM mostly mimics the original reward function. However, OSWM
seems to provide higher rewards for safe states, for instance, where the pendulum is almost upright.
In some of the originally penalizing states, OSWM rewards the agent, which may negatively affect
the model’s ability to capture nuanced control at the edges of the pendulum’s range of motion. This
could potentially explain the weaker performance on Pendulum.

Our results suggest that the smooth reward distributions produced by OSWM may be a reflection of
the multifaceted prior dimensions analyzed in Section 4.2. The mixture of distribution types, ranging
from peaked to smooth distributions, is mirrored in the learned smooth-reward function. Despite
some imprecision in certain states, this smoothness helps the agent efficiently grasp the environment’s
dynamics, particularly in sparse reward environments where the combination of a smooth synthetic
prior and in-context learning proves to be well-suited. These observations are consistent across
multiple seeds, and no specific seeds were cherry-picked for the results presented here.

5 Conclusion

We introduced One-Shot World Model (OSWM), a world model trained purely on synthetic data
sampled from a prior distribution based on randomly initialized, untrained neural networks by
leveraging In-context Learning. Despite the simplicity of the prior, OSWM achieved promising
results as it is able to train RL agents to solve tasks like GridWorld and control tasks such as
CartPole-v0, demonstrating the potential of synthetic pretraining in Model-Based Reinforcement
Learning. Although the model still struggles with more complex environments like Pendulum-v1
and MountainCar-v0, our empirical analysis suggests that improving the priors and refining context
sampling are key to enhancing performance. Our results highlight the potential of synthetic pretraining
in RL, suggesting that with further optimization, this approach could be a key step towards foundation
world models, capable of tackling increasingly complex tasks. With further optimization of the prior,
synthetic pretraining could enable the development of more generalizable foundation world models,
offering a scalable solution for RL training, especially when evaluating real-world environments is
costly and challenging.
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A Studying the Momentum Prior

Unlike the Neural Network prior, the Momentum prior is based on physics-driven dynamics, modeling
velocity and positional updates to simulate environments with simple physical laws.

To analyze the behavior of the Momentum prior, we generate histograms in the same manner as with
the NN prior, sampling batches of data and calculating the minimum and maximum values for each
dimension. These dimensions reflect aspects like velocity and position, which are updated according
to basic physical interactions such as gravity or action forces. The range of each dimension is then
divided into 100 equal bins, and the occurrences in each bin are counted to visualize the distribution
of values.

The Momentum prior produces a variety of distributions across dimensions, as shown in Figure 5. In
some cases, we observe broad distributions with values spread uniformly across the range (Fig. 5a).
This often occurs in environments with elastic reflections or angular motion without gravity. In
other cases, the distribution is multi-modal, featuring multiple peaks (Fig. 5b), which can arise from
non-elastic reflections or angular dynamics with insufficient torque to overcome gravity. Finally,
some dimensions exhibit sparse distributions (Fig. 5c), where values cluster into a few discrete states.
This pattern typically results from environments lacking friction or other forces that would normally
smooth out the motion.

These distribution patterns reflect the diversity of physical interactions captured by the Momentum
prior. Compared to the NN prior, the behavior here is more interpretable, as it directly corresponds to
simplified physical models of motion and interaction.

(a) (b) (c)

Figure 5: Typical distribution patterns generated by the Momentum prior: (a) broad, (b) multi-modal,
and (c) sparse distributions.

B Context Generation Evaluation

To further investigate the effect of different context-generation strategies, we performed an evaluation
using a proxy loss for full OSWM training and RL agent evaluation. The proxy set was constructed
by generating transitions from a PPO agent trained on each specific environment. These transitions
included state-action pairs, next states, and rewards.

We simulated different levels of randomness to capture a range of behaviors. Specifically, we
generated rollouts with 0% randomness (only expert actions), 50% randomness (half expert, half
random), and 100% randomness (only random actions). For each level of randomness, we collected
5000 transitions across multiple episodes and randomly subsampled 500 transitions per level, resulting
in a total of 1500 transitions per environment. This proxy set was used to compute the mean squared
error (MSE) between the predicted dynamics from OSWM and the actual transitions.

The intuition behind why we believe the proxy set is effective lies in its ability to cover a wide range
of environment dynamics. Certain environments, like MountainCar-v0, require exploration using
both efficient, expert-like actions to solve the task, and suboptimal actions to discover diverse states in
the environment. Similarly, for environments like CartPole, non-goal-oriented actions—such as those
where the pole is not upright or the cart velocity is high—allow the model to observe critical states not
typically encountered by an expert agent alone. By including random actions in the proxy set, we aim
to capture these middle-ground dynamics, such as a scenario in MountainCar where a fast-moving
car decelerates, a behavior not covered by either purely expert or random actions. Additionally, this

12



strategy helps represent the trajectory from suboptimal to successful actions, enhancing OSWM’s
capacity to generalize across different levels of agent performance.

The results for each context-generation strategy (random, repeat, expert, p-expert, and mixture) across
the various environments are shown in Table 3. This table provides a detailed view of how the
different strategies affect the proxy loss, which serves as a reliable proxy for predictive performance.

Environment Random Repeat Expert p-expert Mixture
GridWorld 0.468 0.413 NaN 0.218 0.203
CartPole-v0 0.0048 0.0054 0.0138 0.00079 0.00186
MountainCar-v0 0.00065 0.00025 5e-05 1.19e-05 8.5e-06
SimpleEnv 0.38 0.701 9.614 0.103 0.139
Pendulum-v1 0.025 0.03173 0.0779 0.0578 0.018
Reacher-v4 0.312 0.552 1.456 0.347 0.322

Table 3: Proxy loss with respect to the different context generation techniques. Mean squared error
loss for 1500 validation transitions in the corresponding environment. The best performance per
environment is in bold.

C Hyperparameters

The hyperparameters for the OSWM can be found in table 4. For training the OSWM, the hyperpa-
rameters can be found in 5.

Hyperparameter Value
Embedding size 512
Number of Attention Heads 4
Hidden size 1024
Number of layers 6
Embedding size 512

Table 4: Hyperparameters defining the OSWM transformer architecture.

Hyperparameter Value
Optimizer AdamW
β1, β2 0.9, 0.999
ϵ 1e−8

Weight decay 0.0
Initial Learning Rate 5e−5

Batch size 8
Epochs 50
Steps per epoch 100
Warm-up epochs 12
Sequence length 1001
Maximum eval position 1000
Minimum eval position 500
Eval position sampling function pi =

1
((max−min)−i)q

q for eval function 0.4

Table 5: Hyperparameters that define the training pipeline of the OSWM training.

D Custom Environment Details

This following section will describe the details of the custom environment used to evaluate the
OSWM. First, the GridWorld environment will be described, afterward the SimpleEnv.
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D.1 Custom GridWorld

The GridWorld environment is designed as a simple environment with discrete states and actions. It
is deliberately easy to solve, as its main goal is to test the modeling capabilities of the OSWM in an
easy base case. This is further helped by the fact that for discrete spaces, the OSWM predictions are
rounded to the next integer value. This allows us to use the same condition for termination. And give
the agent the same interface as the real environment.

Figure 6: Visualization of the custom GridWorld environment. Terminal states are in red, goal states
are in green, and initial states are highlighted in black. Immediate reward in the cells.

The GridWorld consists of an 8x8 grid. Observations are the x-postion and y-postion. Actions are
4 discrete moves (up, down, left, and right). With the outer ring of cells being terminal states with
a negative ten reward. The goal states give a positive ten reward and are located in the second last
column to the right. They span from the second row to the second last row. Each step gives a negative
one reward and a small positive (0.01 ∗ xpos) for being further to the right. Episodes are truncated
after exceeding 25 episode steps. The agent starts the episode at xpos = 1 and with a ypos between 1
and 6. A visualization of the GridWorld can be found in fig. 6.

D.2 Custom SimpleEnv

The SimpleEnv serves to provide a first intuition for continuous action and state space environments,
while using simplistic dynamics. Similar to the GridWorld, it is designed to be easily solved by RL
agents with smooth and dense goal-oriented rewards.

It has 1-dimensional continuous action space (a ∈ [−10., 10.]) and a 1-dimensional continuous
state space (s ∈ [−30., 30.]). The immediate reward is the negative absolute state, r = −1 · abs(s).
Episodes have a fixed length of 20 steps. The dynamics of the environment are defined by the action
being added to the state, st = st−1 + at. The initial state of the environment is sampled uniformly
between -5 and 5.

D.3 Solved Reward for Custom Environments

To establish the solved threshold for custom environments, a relative score is determined based on a
comparison between expert performance and random actions. This approach allows for the definition
of a consistent threshold across various environments. The solved reward is calculated using the
following equation:

Rsolved = Rmax − (Rmax −Rrandom)× 0.03 (1)

In this equation, Rmax represents the expert-level performance, while Rrandom is the expected
reward when taking random actions. The coefficient of 0.03 is chosen as it aligns with the solved

14



threshold established for the CartPole-v0 environment, providing a standard for evaluating other
environments.

E Additional Reward Function Analysis

Here, we conduct the reward function analysis for the Pendulum environment, shown in Figure 7.
The original environment’s reward function is already dense, and OSWM generally preserves this
dense structure. However, OSWM introduces more discrete rewards, especially in states where the
pendulum is near upright, offering higher rewards compared to the real environment. In some extreme
states, where penalties should be applied, OSWM rewards the agent instead. This smoothing may
reduce the model’s ability to capture more precise control at the edges of the pendulum’s motion
range, which could explain the model’s inferior performance in this task. For both the Cartpole and
Pendulum environments, the reward depends solely on the angular position. To assess whether the
OSWM can accurately model this relationship, we plot the results based on this dimension, although
the observation space for both environments has higher dimensionality. We aggregate the results as
follows.

We sample 1000 observation-action pairs and predict the dynamics using OSWM. For Pendulum, the
entire observation space is sampled, while for Cartpole, the velocity components of the observation
space are capped at a magnitude of 5. The angular position is discretized into 100 bins for Pendulum
and 20 bins for Cartpole. For each bin, we compute the mean over all observations that fall within
that bin to represent the relationship between angular position and the predicted reward.

(a) Real Pendulum (b) OSWM Pendulum

Figure 7: Reward distributions for the real and OSWM Pendulum environments.

F BO for Prior and Model Hyperparameter

In order to determine the ideal hyperparameter for both the OSWM model and the underlying prior,
an automatic optimization was performed. For the prior, especially, the architecture of the neural
networks in NN prior play a crucial role in its performance. The library used for this optimization is
HpBandSter. The model is trained for a fixed 50 epochs, we omit using Hyperband, as it is unclear
how the different complexity of priors plays into the reliance of the low-cost proxy for the OSWM.
The optimization was performed for 45 iterations with 3 workers. The configuration space and results
can be found in 6. The target function, being optimized, is the same validation loss used for evaluating
the context generation types in Sec. 4.3.

For the optimization of the encoder and decoder models of the OSWM, the same optimization was
performed. The baseline is a linear encoder and decoder, for more complex data, a more expressive
encoder and decoder might aid in representation. Additionally, it allows us to separately encode
action and state, and separately decode the next state and reward. The choices for encoding and
decoding are a standard MLP or a model with separate MLPs concatenating both outputs, denoted
with Cat. An overview of the entire configuration space and the results are given in table 7.
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Hyperparameter Type Range/Choices Final
Number hidden layer integer [1, 6] 1
Width hidden layers integer [8, 64] 16

Use bias bool [True, False] False
Use dropout bool [True, False] False

Dropout probability cond. float [0.1, 0.9] -
Activation Functions bool (each) [relu, sin, sigmoid, tanh] (sin, tanh)

Initial state scale float [1., 20.] 18.14
Initial state offset float [1., 5.] 3.28
Use layer norm bool [True, False] True

Use residual connection bool [True, False] True
Table 6: Hyperparameters of the NN Prior optimized using BO. Each hyperparameter, with its type,
the range or choices, and final best performing value.

Hyperparameter Type Range/Choices Final
Encoder type categoric [MLP, Cat] Cat

Encoder width categoric [16, 64, 256, 512] 512
Encoder depth Integer [1,6] 3

Encoder activation categoric [ReLU, sigmoid, GeLU] GeLU
Encoder use bias bool [True, False] True

Encoder use res connection bool [True, False] True
Decoder type categoric [MLP, Cat] Cat

Decoder width categoric [16, 64, 256, 512] 64
Decoder depth Integer [1,6] 2

Decoder activation categoric [ReLU, sigmoid, GeLU] sigmoid
Decoder use bias bool [True, False] False

Decoder use res connection bool [True, False] True
Table 7: The hyperparameters of the encoder and decoder of the OSWM optimized using BO. Each
hyperparameter, with its type, the range or choices, and final best-performing value.
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