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ABSTRACT

The biological functions of RNA arise from the interplay of sequence (1D), sec-
ondary structure (2D), and tertiary structure (3D). While existing machine learn-
ing models typically rely on sequence-based representations, recent studies sug-
gest that integrating structural information can improve predictive performance,
especially in low-data regimes. However, different representations have trade-
offs—3D models are sensitive to noise, whereas sequence-based models are more
robust to sequencing noise but lack structural insights. To address this, we in-
troduce HARMONY, a framework that dynamically integrates 1D, 2D, and 3D
representations, and seamlessly adapts to diverse real-world scenarios. Our exper-
iments demonstrate that HARMONY consistently outperforms existing baselines
across multiple RNA property prediction tasks on established benchmarks, offer-
ing a robust and generalizable approach to RNA modeling.

1 INTRODUCTION

RNA is a structurally and functionally versatile biomolecule, playing essential role in gene reg-
ulation, catalysis, and cellular processes (Sharp, 2009). Its properties emerge from the interplay
of linear nucleotide sequences (1D), base-pair interactions forming secondary structures (2D), and
intricate three-dimensional conformations (3D). Each of these representations captures different as-
pects of RNA function, and comprehensive modeling of RNA molecules requires combining the
strengths of all three.

Existing machine learning approaches for RNA property prediction typically rely on sequence-based
representations (Chen et al., 2022; Yang et al., 2023; Penić et al., 2024; Wang et al., 2022; Yazdani-
Jahromi et al., 2025; Prakash et al., 2024). However, recent work has shown that incorporating
structural information, such as 2D base-pairing graphs or 3D atomic geometry, can enhance predic-
tive performance in certain scenarios (Xu et al., 2024; 2025). While 2D and 3D models outperform
sequence-based approaches when high-quality structural data is available—particularly in low-data
or partially labeled settings—3D methods are highly sensitive to sequencing errors and structural
inaccuracies, whereas sequence-based models remain more robust to such noise (Xu et al., 2024;
2025). Thus, if we had prior knowledge of the data quality and labeling conditions, we could select
the most suitable representation and a model accordingly. In practice, though, such information is
often lacking, highlighting a need for adaptive approaches that can dynamically leverage different
RNA representations rather than committing to just one upfront.

To address this limitation, we introduce HARMONY, a framework that dynamically integrates 1D,
2D, and 3D RNA representations to handle varied real-world conditions. Instead of relying on a
single representation, HARMONY leverages RNA’s natural organization to systematically combine
atomic, nucleotide, and molecular-scale information. We conduct experiments on multiple RNA
datasets and demonstrate that HARMONY consistently achieves strong performance across diverse
RNA property prediction tasks, including those with sequencing noise, limited training data, and
out-of-distribution conditions. By eliminating the need for manual selection of the optimal RNA
representation, HARMONY offers a robust and generalizable approach to RNA modeling.

∗This work was done while the author was an intern at Johnson & Johnson.
†Equal contribution as last authors
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2 METHODOLOGY: HARMONY

We introduce HARMONY, a multi-representational model that integrates 1D, 2D and 3D RNA
representations (Figure 1). Each RNA is represented as: G = {G3D,G2D,G1D},
where G3D = {Xat, R} represents RNA 3D structure with atom features Xat ∈ RNat×Fat and atom
positions R ∈ RNat×3 with Nat being the number of atoms. RNA 2D structure G2D = {Xnt, A}
consists of nucleotide features Xnt ∈ RNnt×Fnt and an adjacency matrix A ∈ RNnt×Nnt . The 1D
RNA sequence G1D = {Xseq} encodes RNA’s nucleotide sequence.
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Figure 1: The framework of proposed HARMONY combines 1D,
2D and 3D RNA representations in one model.

First, we apply a 3D encoder f3D to
extract atomic-level representations:

H3D = f3D(Xat, R). (1)

A nucleotide pooling layer maps
atom-wise features to nucleotide-
level representations mean pooling
representations of atoms correspond-
ing to each nucleotide:

H ′
3D = Nuc.Pooling(H3D). (2)

We concatenate the pooled 3D fea-
tures H ′

3D with nucleotide features
Xnt and apply a 2D encoder f2D:

H2D = f2D([Xnt, H
′
3D], A). (3)

Since sequence tokens Xseq align
with nucleotide positions, we con-
catenate them with H2D and apply a
1D encoder f1D:

H1D = f1D([Xseq, H2D]). (4)

Finally, the representations from all dimensions are combined using a differentiable function σ, in
our case an MLP:

H = σ([H3D, H2D, H1D]). (5)

We use EGNN (Satorras et al., 2021) for f3D, the spectral 2D GNN ChebNet (Defferrard et al.,
2016) for f2D, and Transformer (Vaswani et al., 2017) for f1D. This selection is based on prior
findings (Xu et al., 2024; 2025), which identified these models as the strongest 3D, 2D, and 1D
baselines for RNA property prediction, respectively.

3 RNA PROPERTY PREDICTION TASKS

We first provide a brief overview of RNA property prediction tasks introduced in prior work (Xu
et al., 2024; 2025). These tasks reflect real-world challenges in computational RNA modeling and
assess how different representations impact performance: Task 1 (Effect of Structural Informa-
tion) examines the impact of incorporating structural information (1D, 2D, and 3D) on predictive
performance. Task 2 (Limited Training Data) Since acquiring large labeled RNA datasets is chal-
lenging, we analyze model performance in data-scarce settings by progressively reducing training
samples. Task 3 (Partial Sequence Labeling) Real-world datasets often contain labels for only
part of the sequence. We test model generalization when only partial annotations are available.
Task 4 (Robustness to Sequencing Noise) assesses robustness to sequencing noise by introducing
controlled mutations during training and testing, simulating realistic sequencing error rates while
keeping property labels clean. Task 5 (Generalization to Out-of-Distribution (OOD) Data) eval-
uates generalization to out-of-distribution data by training models on clean, high-quality sequences
and testing them on noisy data, reflecting deployment in different sequencing conditions or batch
effects. By considering these established tasks, we systematically analyze HARMONY’s ability to
dynamically integrate 1D, 2D, and 3D representations without requiring prior knowledge of task
scenarios.
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4 EXPERIMENTS

We use the COVID, Ribonanza-2k, and Tc-Ribo datasets from (Xu et al., 2024; 2025), where each
task involves regressing a RNA property of interest. Experiments follow the same baselines, hyper-
parameters, and evaluation protocol, using five random (70:15:15) train-val-test splits. Performance
is reported as mean column-wise root mean squared error (MCRMSE) (Wayment-Steele et al., 2022;
Xu et al., 2024; 2025) with standard deviation.

Table 1: Comparison of 1D, 2D, and 3D models
across datasets (MCRMSE ± std.). The best results
are bold. HARMONY consistently achieves state-
of-the-art performance.

Model COVID Ribonanza Tc-Ribo

1D
Transformer1D 0.361±0.017 0.705±0.015 0.705±0.079
RNA-FM 0.591±0.081 0.990±0.144 0.693±0.001
SpliceBERT 0.588±0.077 1.022±0.144 0.708±0.003

2D

Transformer1D2D 0.305±0.012 0.514±0.004 0.633±0.001
GCN 0.359±0.009 0.595±0.006 0.701±0.004
GAT 0.315±0.006 0.534±0.006 0.685±0.024
ChebNet 0.279±0.007 0.468±0.002 0.621±0.022
Graph Transformer 0.318±0.008 0.515±0.001 0.710±0.041
GraphGPS 0.332±0.013 0.523±0.003 0.715±0.012

3D

EGNN 0.480±0.025 0.808±0.023 0.725±0.002
SchNet 0.499±0.003 0.843±0.004 0.696±0.008
FAENet 0.486±0.010 0.834±0.003 0.703±0.011
DimeNet 0.497±0.012 0.855±0.006 0.712±0.004
GVP 0.467±0.010 0.797±0.012 0.744±0.004
FastEGNN 0.477±0.005 0.816±0.014 0.753±0.001

Multi-dim HARMONY 0.271±0.003 0.437±0.006 0.554±0.004

Table 1 presents the results for Task 1, which
evaluates the impact of structural informa-
tion on prediction performance. HARMONY
outperforms all baselines relying on single-
representation inputs, demonstrating that inte-
grating 1D, 2D, and 3D representations leads to
superior predictive performance.

Figure 2 summarizes results for Tasks 2–5
on the Ribonanza-2k dataset, with additional
datasets provided in Appendix Section A. In
Task 2 (model efficiency under limited training
data), HARMONY consistently outperforms
all baselines, indicating its strong sample ef-
ficiency in data-scarce scenarios. In Task 3
(performance with partial sequence labeling),
where models must generalize beyond available
labels, HARMONY achieves results comparable to the best single-modality ChebNet model, sug-
gesting its ability to leverage incomplete annotations effectively.

For Task 4 (robustness to sequencing noise), where models are evaluated under stable noise condi-
tions, HARMONY achieves the best overall performance, confirming its resilience to sequencing
errors. In Task 5 (generalization to out-of-distribution noise), which assesses adaptability to unseen
noise variations, Transformer1D slightly outperforms HARMONY at high noise levels on Ribo-
nanza, but HARMONY remains superior to all other baselines. Complete experimental results for
other datasets are available in Appendix A. An ablation study (Appendix A.2) systematically evalu-
ates the contribution of 1D, 2D, and 3D representations, demonstrating that removing any individual
component leads to a performance drop, underscoring the importance of integrating all three repre-
sentations.
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(d) Generalization
Figure 2: Experiment results of 5 tasks on Ribonanza dataset. Dotted, solid, and dashed lines
denote 1D, 2D, and 3D methods, respectively.

5 CONCLUSIONS

In this work, we propose HARMONY, a unified framework that integrates 1D, 2D, and 3D RNA
representations to address the diverse challenges in RNA property prediction. By leveraging RNA’s
natural organization spanned by atoms and nucleotides, and combining the strengths of different
representations, HARMONY achieves robust and superior performance across varying real-world
experimental settings on existing benchmarks. Our results demonstrate the potential of HARMONY
to drive biological discovery and facilitate the development of RNA-based therapeutics.
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A MORE EXPERIMENTS

A.1 RESULTS ON OTHER DATASETS

In this section, we provide the complete experiment results of Tasks 2 - 5 on each dataset. The results
of Task 2 and Task 3 are presented in Fig.3 and Fig.4, respectively. In the limited data experiment
(Task 2), HARMONY consistently outperforms all baselines, while in the partial sequence labeling
task (Task 3), it achieves performance comparable to the best ChebNet model. The Tc-Ribo dataset
is excluded from Task 2 since varying the training ratio from 0.25 to 1 requires a larger dataset.
Task 3 is conducted only on nucleotide-level prediction datasets (COVID and Ribonanza), where
the labeled nucleotide ratio per sequence is varied from 0.2 to 1.
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Figure 3: Performance vs. fraction of training data across various datasets.
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Figure 4: Performance vs. partial property labels on COVID and Ribonanza datasets.

The results of Task 4 (Robustness to Noise) and Task 5 (Generalization to Noisy Data) are presented
in Fig.5 and Fig.6, respectively. In the robustness experiments, HARMONY achieves the best over-
all performance. For generalization, while Transformer1D slightly outperforms HARMONY at high
noise levels on the COVID and Ribonanza datasets, HARMONY remains superior to all other base-
lines. HARMONY remains the top-performing model on Tc-Riboswithces dataset.
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Figure 5: Robustness experiments that train and test on noisy datasets.
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Figure 6: Generalization experiments train on clean datasets while test on noisy datasets.

A.2 ABLATION STUDY

To assess the contribution of each dimension to the final performance, we conduct an ablation study
by systematically removing 1D, 2D, and 3D information. The results, presented in Table 2, demon-
strate that the full HARMONY model, which integrates all three types of information, achieves the
best performance. Removing any individual component results in a noticeable performance drop,
highlighting the importance of incorporating sequence, secondary structure, and tertiary structure
features for RNA property prediction.
Table 2: Ablation study on the impact of 1D, 2D, and 3D information. The full HARMONY model
performs the best, while removing any dimension degrades the performance.

COVID Ribonanza Tc-Ribo
HARMONY 0.271±0.003 0.437±0.006 0.554±0.004

HARMONY w/o 1D 0.298±0.003 0.502±0.003 0.597±0.045
HARMONY w/o 2D 0.352±0.005 0.750±0.009 0.674±0.022
HARMONY w/o 3D 0.271±0.009 0.459±0.005 0.600±0.046

A.3 TRAINING DETAILS

All experimental protocols including dataset preprocessing, baselines and hyperparameter tuning
are taken from Xu et al. (2024; 2025). All experiments were conducted on a single NVIDIA A100
GPU. For each baseline, hyperparameters were optimized using Optuna (Akiba et al., 2019), restrict-
ing the search to models with fewer than 10 million parameters that fit within the memory constraints
of an 80GB NVIDIA A100 GPU. Most baseline implementations were sourced from PyTorch Ge-
ometric (Fey & Lenssen, 2019). The Transformer1D model was adapted to Transformer1D2D as
detailed in the paper. For EGNN, we utilized the authors’ implementation (Satorras et al., 2021),
and for SchNet, the implementation from (Joshi et al., 2023) was used.

B DETAILED RESULTS

In this section, we present the additional results supporting Figures 3, 4, 5, and 6.

B.1 IMPACT OF DATA AVAILABILITY

The detailed results of partial training data from Figure 3 are shown in Tables 3 and 4.

B.2 IMPACT OF PARTIAL LABELING

The detailed results of the partial labeling sequence from Figure 4 are shown in Tables 5 and 6.

B.3 ROBUSTNESS TO SEQUENCING NOISE

The results of the robustness experiment from Figure 5 are shown in Tables 7, 8, and 9.
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Table 3: Performance (MCRMSE) of different models across various training data (mean ± standard
deviation) fractions on COVID dataset.

COVID 0.25 0.50 0.75 1.00
Transformer1D 0.429 ± 0.018 0.410 ± 0.016 0.375 ± 0.018 0.361 ± 0.017
Transformer1D2D 0.345 ± 0.010 0.330 ± 0.011 0.306 ± 0.014 0.305 ± 0.012
GCN 0.389 ± 0.008 0.377 ± 0.009 0.358 ± 0.014 0.359 ± 0.009
GAT 0.352 ± 0.011 0.342 ± 0.009 0.320 ± 0.014 0.315 ± 0.006
ChebNet 0.320 ± 0.011 0.309 ± 0.009 0.286 ± 0.018 0.279 ± 0.007
Graph Transformer 0.356 ± 0.008 0.344 ± 0.007 0.324 ± 0.016 0.318 ± 0.008
GraphGPS 0.367 ± 0.018 0.362 ± 0.005 0.344 ± 0.010 0.332 ± 0.013
EGNN 0.398 ± 0.001 0.391 ± 0.013 0.368 ± 0.013 0.364 ± 0.003
SchNet 0.419 ± 0.003 0.414 ± 0.011 0.392 ± 0.011 0.390 ± 0.006
FastEGNN 0.460 ± 0.018 0.452 ± 0.015 0.443 ± 0.016 0.444 ± 0.003
MultiDimGNN 0.335 ± 0.003 0.304 ± 0.013 0.289 ± 0.006 0.271 ± 0.016

Table 4: Performance (MCRMSE) of different models across various fractions of training data
(mean ± standard deviation) on Ribonanza dataset.

Ribonanza 0.25 0.50 0.75 1.00
Transformer1D 0.777 ± 0.014 0.740 ± 0.005 0.739 ± 0.001 0.705 ± 0.015
Transformer1D2D 0.630 ± 0.016 0.553 ± 0.015 0.541 ± 0.018 0.514 ± 0.004
GCN 0.668 ± 0.018 0.618 ± 0.017 0.612 ± 0.013 0.595 ± 0.006
GAT 0.600 ± 0.018 0.553 ± 0.026 0.544 ± 0.012 0.534 ± 0.006
ChebNet 0.537 ± 0.019 0.494 ± 0.022 0.499 ± 0.007 0.468 ± 0.002
Graph Transformer 0.567 ± 0.019 0.529 ± 0.013 0.529 ± 0.010 0.515 ± 0.001
GraphGPS 0.581 ± 0.021 0.529 ± 0.015 0.540 ± 0.004 0.523 ± 0.003
EGNN 0.694 ± 0.010 0.650 ± 0.010 0.632 ± 0.015 0.619 ± 0.007
SchNet 0.768 ± 0.008 0.724 ± 0.013 0.715 ± 0.015 0.685 ± 0.006
FastEGNN 0.795 ± 0.007 0.788 ± 0.002 0.774 ± 0.016 0.753 ± 0.015
MultiDimGNN 0.507 ± 0.003 0.463 ± 0.012 0.464 ± 0.003 0.437 ± 0.006

B.4 GENERALIZATION TO OOD DATA

The results of the generalization experiment from Figure 6 are shown in Tables 10, 11, and 12.
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Table 5: Performance (MCRMSE) of different models across various fractions of sequence labeling
(mean ± standard deviation) on COVID dataset.

COVID 0.2 0.4 0.6 0.8 1.0
Transformer1D 0.654 ± 0.040 0.559 ± 0.011 0.480 ± 0.004 0.429 ± 0.034 0.361 ± 0.017
Transformer1D2D 0.502 ± 0.002 0.470 ± 0.052 0.374 ± 0.007 0.325 ± 0.006 0.305 ± 0.012
GCN 0.450 ± 0.012 0.416 ± 0.012 0.397 ± 0.012 0.378 ± 0.011 0.359 ± 0.009
GAT 0.411 ± 0.010 0.376 ± 0.012 0.360 ± 0.012 0.336 ± 0.009 0.315 ± 0.006
ChebNet 0.380 ± 0.007 0.344 ± 0.008 0.325 ± 0.009 0.299 ± 0.007 0.279 ± 0.007
Graph Transformer 0.415 ± 0.012 0.379 ± 0.011 0.362 ± 0.011 0.338 ± 0.004 0.318 ± 0.008
GraphGPS 0.428 ± 0.015 0.400 ± 0.017 0.376 ± 0.013 0.351 ± 0.007 0.332 ± 0.013
EGNN 0.436 ± 0.014 0.421 ± 0.010 0.407 ± 0.004 0.385 ± 0.006 0.364 ± 0.003
SchNet 0.442 ± 0.004 0.429 ± 0.005 0.413 ± 0.001 0.407 ± 0.005 0.390 ± 0.006
FastEGNN 0.497 ± 0.004 0.490 ± 0.007 0.466 ± 0.007 0.469 ± 0.009 0.444 ± 0.003
MultiDimGNN 0.376 ± 0.020 0.361 ± 0.031 0.355 ± 0.006 0.314 ± 0.010 0.271 ± 0.003

Table 6: Performance (MCRMSE) of different models across various fractions of sequence labeling
(mean ± standard deviation) on Ribonanza dataset.

Ribonanza 0.2 0.4 0.6 0.8 1.0
Transformer1D 1.137 ± 0.163 0.929 ± 0.023 0.823 ± 0.018 0.742 ± 0.013 0.705 ± 0.015
Transformer1D2D 0.859 ± 0.025 0.638 ± 0.013 0.632 ± 0.028 0.568 ± 0.013 0.514 ± 0.004
GCN 1.191 ± 0.031 1.026 ± 0.079 1.111 ± 0.206 1.070 ± 0.137 0.595 ± 0.006
GAT 0.703 ± 0.015 0.632 ± 0.025 0.612 ± 0.030 0.560 ± 0.010 0.534 ± 0.006
ChebNet 0.614 ± 0.013 0.546 ± 0.008 0.540 ± 0.008 0.514 ± 0.006 0.468 ± 0.002
Graph Transformer 0.719 ± 0.043 0.607 ± 0.020 0.584 ± 0.015 0.552 ± 0.013 0.515 ± 0.001
GraphGPS 0.743 ± 0.058 0.663 ± 0.026 0.627 ± 0.024 0.651 ± 0.026 0.523 ± 0.003
EGNN 0.882 ± 0.010 0.722 ± 0.021 0.687 ± 0.008 0.665 ± 0.013 0.619 ± 0.007
SchNet 0.810 ± 0.002 0.781 ± 0.009 0.750 ± 0.009 0.725 ± 0.004 0.685 ± 0.006
FastEGNN 1.223 ± 0.008 0.929 ± 0.008 0.860 ± 0.004 0.837 ± 0.004 0.753 ±0.015
MultiDimGNN 0.658 ± 0.016 0.596 ± 0.042 0.536 ± 0.011 0.504 ± 0.013 0.437 ± 0.006

Table 7: Performance (MCRMSE) of various models in robustness experiments on the COVID
dataset (mean ± standard deviation).

Model 0.00 0.05 0.10 0.15 0.20 0.25 0.30
Transformer1D 0.361 ± 0.017 0.386 ± 0.015 0.400 ± 0.010 0.409 ± 0.006 0.428 ± 0.005 0.435 ± 0.003 0.449 ± 0.011
Transformer1D2D 0.305 ± 0.012 0.373 ± 0.007 0.403 ± 0.007 0.428 ± 0.011 0.444 ± 0.015 0.457 ± 0.009 0.463 ± 0.009
GCN 0.359 ± 0.009 0.436 ± 0.009 0.464 ± 0.011 0.481 ± 0.010 0.491 ± 0.012 0.497 ± 0.009 0.501 ± 0.009
GAT 0.315 ± 0.006 0.409 ± 0.009 0.448 ± 0.011 0.471 ± 0.010 0.484 ± 0.012 0.494 ± 0.011 0.500 ± 0.010
ChebNet 0.279 ± 0.007 0.368 ± 0.003 0.423 ± 0.009 0.456 ± 0.007 0.471 ± 0.009 0.481 ± 0.010 0.487 ± 0.008
Graph Transformer 0.318 ± 0.008 0.403 ± 0.008 0.441 ± 0.012 0.467 ± 0.011 0.480 ± 0.012 0.487 ± 0.010 0.494 ± 0.011
GraphGPS 0.332 ± 0.013 0.408 ± 0.012 0.441 ± 0.010 0.464 ± 0.014 0.475 ± 0.012 0.484 ± 0.012 0.487 ± 0.008
EGNN 0.364 ± 0.003 0.432 ± 0.012 0.467 ± 0.009 0.486 ± 0.009 0.499 ± 0.011 0.505 ± 0.012 0.511 ± 0.011
SchNet 0.390 ± 0.006 0.447 ± 0.012 0.477 ± 0.011 0.496 ± 0.009 0.507 ± 0.014 0.513 ± 0.012 0.517 ± 0.010
FastEGNN 0.444 ± 0.003 0.49283 ± 0.008 0.516 ± 0.005 0.516 ± 0.004 0.522 ± 0.002 0.527 ± 0.003 0.540 ± 0.004
MultiDimGNN 0.271 ± 0.003 0.354 ± 0.004 0.389 ± 0.006 0.408 ± 0.007 0.420 ± 0.003 0.430 ± 0.006 0.441 ± 0.001

Table 8: Performance (MCRMSE) of various models in robustness experiments on the Ribonanza
dataset (mean ± standard deviation).

Model 0.00 0.05 0.10 0.15 0.20 0.25 0.30
Transformer1D 0.705 ± 0.015 0.733 ± 0.010 0.769 ± 0.014 0.782 ± 0.005 0.794 ± 0.010 0.805 ± 0.017 0.823 ± 0.005
Transformer1D2D 0.514 ± 0.004 0.635 ± 0.004 0.714 ± 0.014 0.763 ± 0.008 0.790 ± 0.009 0.811 ± 0.014 0.830 ± 0.008
GCN 0.595 ± 0.006 0.750 ± 0.014 0.846 ± 0.008 0.893 ± 0.003 0.912 ± 0.005 0.924 ± 0.005 0.929 ± 0.005
GAT 0.534 ± 0.006 0.691 ± 0.015 0.785 ± 0.006 0.850 ± 0.003 0.877 ± 0.001 0.904 ± 0.007 0.915 ± 0.007
ChebNet 0.468 ± 0.002 0.611 ± 0.012 0.720 ± 0.006 0.802 ± 0.011 0.841 ± 0.003 0.876 ± 0.007 0.897 ± 0.008
Graph Transformer 0.515 ± 0.001 0.670 ± 0.011 0.768 ± 0.011 0.833 ± 0.008 0.870 ± 0.006 0.893 ± 0.010 0.908 ± 0.007
GraphGPS 0.523 ± 0.003 0.677 ± 0.017 0.772 ± 0.006 0.832 ± 0.006 0.872 ± 0.004 0.896 ± 0.011 0.912 ± 0.006
EGNN 0.619 ± 0.007 0.764 ± 0.003 0.847 ± 0.003 0.889 ± 0.005 0.904 ± 0.003 0.917 ± 0.000 0.922 ± 0.002
SchNet 0.685 ± 0.006 0.814 ± 0.006 0.873 ± 0.004 0.897 ± 0.004 0.908 ± 0.004 0.918 ± 0.005 0.922 ± 0.005
FastEGNN 0.753 ± 0.015 0.857 ± 0.001 0.884 ± 0.005 0.908 ± 0.001 0.914 ± 0.004 0.920 ± 0.003 0.922 ± 0.003
MultiDimGNN 0.437 ± 0.006 0.577 ± 0.011 0.662 ± 0.014 0.744 ± 0.003 0.786 ± 0.025 0.801 ± 0.008 0.840 ± 0.004
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Table 9: Performance (MCRMSE) of various models in robustness experiments on the Tc-
riboswitches dataset (mean ± standard deviation).

Model 0.00 0.05 0.10 0.15 0.20 0.25 0.30
Transformer1D 0.705 ± 0.079 0.698 ± 0.071 0.736 ± 0.004 0.672 ± 0.003 0.739 ± 0.008 0.694 ± 0.011 0.675 ± 0.047
Transformer1D2D 0.633 ± 0.001 0.697 ± 0.031 0.742 ± 0.003 0.708 ± 0.008 0.681 ± 0.001 0.762 ± 0.022 0.738 ± 0.016
GCN 0.701 ± 0.004 0.758 ± 0.003 0.747 ± 0.005 0.744 ± 0.004 0.733 ± 0.013 0.740 ± 0.011 0.765 ± 0.009
GAT 0.685 ± 0.024 0.749 ± 0.017 0.770 ± 0.047 0.734 ± 0.021 0.737 ± 0.009 0.753 ± 0.001 0.747 ± 0.011
ChebNet 0.621 ± 0.022 0.766 ± 0.014 0.754 ± 0.021 0.738 ± 0.014 0.763 ± 0.039 0.778 ± 0.048 0.739 ± 0.004
Graph Transformer 0.703 ± 0.054 0.754 ± 0.005 0.754 ± 0.006 0.773 ± 0.008 0.810 ± 0.087 0.742 ± 0.004 0.754 ± 0.005
GraphGPS 0.702 ± 0.028 0.785 ± 0.053 0.805 ± 0.092 0.750 ± 0.006 0.755 ± 0.060 0.769 ± 0.031 1.078 ± 0.469
EGNN 0.663 ± 0.010 0.750 ± 0.001 0.739 ± 0.002 0.749 ± 0.005 0.749 ± 0.001 0.749 ± 0.001 0.756 ± 0.013
SchNet 0.655 ± 0.038 0.762 ± 0.005 0.742 ± 0.002 0.771 ± 0.037 0.746 ± 0.005 0.791 ± 0.016 0.730 ± 0.016
FastEGNN 0.710 ± 0.010 0.733 ± 0.007 0.749 ± 0.006 0.748 ± 0.006 0.752 ± 0.008 0.758 ± 0.017 0.761 ± 0.010
MultiDimGNN 0.554 ± 0.004 0.672 ± 0.034 0.734 ± 0.042 0.704 ± 0.052 0.712 ± 0.052 0.661 ± 0.038 0.708 ± 0.062

Table 10: Performance (MCRMSE) of various models in generalization experiments on the
COVID dataset (mean ± standard deviation).

Model 0.00 0.05 0.10 0.15 0.20 0.25 0.30
Transformer1D 0.361 ± 0.017 0.382 ± 0.022 0.402 ± 0.018 0.436 ± 0.015 0.461 ± 0.021 0.478 ± 0.015 0.494 ± 0.016
Transformer1D2D 0.305 ± 0.012 0.406 ± 0.016 0.466 ± 0.017 0.513 ± 0.016 0.545 ± 0.027 0.581 ± 0.025 0.596 ± 0.018
GCN 0.359 ± 0.009 0.459 ± 0.011 0.508 ± 0.011 0.550 ± 0.014 0.572 ± 0.016 0.601 ± 0.014 0.612 ± 0.008
GAT 0.315 ± 0.006 0.437 ± 0.013 0.490 ± 0.013 0.528 ± 0.008 0.555 ± 0.013 0.580 ± 0.015 0.592 ± 0.012
ChebNet 0.279 ± 0.007 0.415 ± 0.017 0.483 ± 0.023 0.538 ± 0.025 0.571 ± 0.029 0.604 ± 0.030 0.621 ± 0.028
Graph Transformer 0.318 ± 0.008 0.449 ± 0.015 0.501 ± 0.018 0.543 ± 0.015 0.571 ± 0.019 0.596 ± 0.014 0.609 ± 0.014
GraphGPS 0.332 ± 0.013 0.443 ± 0.011 0.496 ± 0.006 0.536 ± 0.005 0.559 ± 0.010 0.586 ± 0.007 0.593 ± 0.005
EGNN 0.365 ± 0.011 0.458 ± 0.014 0.504 ± 0.018 0.530 ± 0.020 0.549 ± 0.021 0.565 ± 0.022 0.572 ± 0.022
SchNet 0.390 ± 0.006 0.457 ± 0.011 0.491 ± 0.008 0.515 ± 0.007 0.531 ± 0.010 0.543 ± 0.009 0.556 ± 0.002
FastEGNN 0.444 ± 0.003 0.491 ± 0.020 0.511 ± 0.014 0.524 ± 0.009 0.533 ± 0.006 0.541 ± 0.003 0.543 ± 0.001
MultiDimGNN 0.271 ± 0.003 0.377 ± 0.013 0.437 ± 0.006 0.476 ± 0.016 0.500 ± 0.008 0.531 ± 0.012 0.535 ± 0.014

Table 11: Performance (MCRMSE) of various models in generalization experiments on the Ribo-
nanza dataset (mean ± standard deviation).

Model 0.00 0.05 0.10 0.15 0.20 0.25 0.30
Transformer1D 0.705 ± 0.015 0.747 ± 0.005 0.796 ± 0.006 0.828 ± 0.008 0.860 ± 0.013 0.886 ± 0.013 0.899 ± 0.003
Transformer1D2D 0.514 ± 0.004 0.685 ± 0.014 0.857 ± 0.008 0.986 ± 0.015 1.055 ± 0.007 1.142 ± 0.020 1.192 ± 0.034
GCN 0.595 ± 0.006 0.857 ± 0.018 0.993 ± 0.012 1.054 ± 0.034 1.094 ± 0.043 1.129 ± 0.061 1.139 ± 0.075
GAT 0.534 ± 0.006 0.778 ± 0.021 0.919 ± 0.030 1.003 ± 0.056 1.047 ± 0.073 1.076 ± 0.082 1.093 ± 0.091
ChebNet 0.468 ± 0.002 0.699 ± 0.005 0.881 ± 0.038 1.025 ± 0.095 1.083 ± 0.111 1.165 ± 0.185 1.200 ± 0.220
Graph Transformer 0.515 ± 0.001 0.752 ± 0.005 0.930 ± 0.013 1.067 ± 0.036 1.124 ± 0.033 1.194 ± 0.080 1.224 ± 0.104
GraphGPS 0.523 ± 0.003 0.771 ± 0.026 0.958 ± 0.068 1.087 ± 0.142 1.116 ± 0.195 1.154 ± 0.202 1.165 ± 0.196
EGNN 0.691 ± 0.006 0.815 ± 0.004 0.975 ± 0.026 1.138 ± 0.078 1.228 ± 0.079 1.350 ± 0.173 1.395 ± 0.187
SchNet 0.685 ± 0.006 0.844 ± 0.006 0.949 ± 0.022 1.068 ± 0.035 1.157 ± 0.069 1.270 ± 0.049 1.342 ± 0.117
FastEGNN 0.753 ± 0.015 0.857 ± 0.001 0.912 ± 0.007 0.939 ± 0.011 0.940 ± 0.010 0.952 ± 0.008 0.957 ± 0.001
MultiDimGNN 0.437 ± 0.006 0.655 ± 0.018 0.715 ± 0.011 0.824 ± 0.046 0.878 ± 0.051 0.918 ± 0.052 0.939 ± 0.060

Table 12: Performance (MCRMSE) of various models in generalization experiments on the Tc-
riboswitches dataset (mean ± standard deviation).

Model 0.00 0.05 0.10 0.15 0.20 0.25 0.30
Transformer1D 0.705 ± 0.079 0.711 ± 0.038 0.732 ± 0.007 0.753 ± 0.019 0.815 ± 0.091 0.803 ± 0.062 0.796 ± 0.079
Transformer1D2D 0.633 ± 0.001 0.705 ± 0.007 0.745 ± 0.008 0.749 ± 0.017 0.800 ± 0.034 0.766 ± 0.017 0.754 ± 0.014
GCN 0.701 ± 0.004 0.774 ± 0.026 0.781 ± 0.051 0.782 ± 0.062 0.825 ± 0.093 0.845 ± 0.072 0.858 ± 0.126
GAT 0.685 ± 0.024 0.829 ± 0.074 0.958 ± 0.131 0.926 ± 0.152 1.037 ± 0.297 0.998 ± 0.213 1.036 ± 0.392
ChebNet 0.621 ± 0.022 0.824 ± 0.185 0.862 ± 0.251 0.888 ± 0.302 0.997 ± 0.439 0.983 ± 0.412 1.045 ± 0.514
Graph Transformer 0.710 ± 0.041 0.759 ± 0.035 0.770 ± 0.047 0.776 ± 0.054 0.815 ± 0.101 0.795 ± 0.085 0.822 ± 0.115
GraphGPS 0.715 ± 0.012 0.751 ± 0.016 0.801 ± 0.023 0.795 ± 0.014 0.833 ± 0.025 0.814 ± 0.022 0.830 ± 0.018
EGNN 0.663 ± 0.010 0.760 ± 0.043 0.898 ± 0.134 0.901 ± 0.123 0.849 ± 0.053 1.058 ± 0.239 1.192 ± 0.453
SchNet 0.655 ± 0.038 1.368 ± 0.449 1.099 ± 0.320 1.419 ± 0.491 0.900 ± 0.119 1.957 ± 0.858 2.025 ± 0.779
FastEGNN 0.710 ± 0.011 0.854 ± 0.079 0.806 ± 0.032 0.863 ± 0.020 0.846 ± 0.110 0.849 ± 0.079 0.988 ± 0.131
MultiDimGNN 0.554 ± 0.004 0.686 ± 0.197 0.656 ± 0.021 0.743 ± 0.139 0.691 ± 0.118 0.826 ± 0.164 0.672 ± 0.024
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