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ABSTRACT
One focus of augmented reality (AR) in robotics has been on en-
riching the interface for human-robot interaction. While such an
interface is often made intuitive to interact with, it invariably im-
poses novel objects into the environment. In situations where the
human already has a focus, such as in a human-robot teaming task,
these objects can potentially overload our senses and lead to de-
graded teaming performance. In this paper, we propose using AR
objects to solely augment natural objects to avoid disrupting our
natural senses while adding critical information about the current
situation. In particular, our case study focuses on addressing the
limited field of view of humans by incorporating persistent virtual
shadows of robots for maintaining situation awareness in proximal
human-robot teaming tasks. We designed a novel process to gener-
ate such shadows and verified that they worked better than other
commonly adopted methodologies in teaming scenarios.
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1 INTRODUCTION
Over the past decade, there has been accelerated growth in robotic
applications, making it no longer far-fetched to envision robots
as part of our lives. What stands out to be most appealing are
teaming applications where humans and robots complement each
other to achieve complex tasks [15]. For effective collaboration, it
is important for the human to maintain team situation awareness,
which is known to benefit teaming performance [7]. Maintaining
team situation awareness, requires the human to monitor the team
status at any point of time. However, given our limited fields of view,
it is easy to lose sight of our robotic teammates and hence the team
situation awareness. This is especially true when we must focus on
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Figure 1: User view of persistent virtual shadow
our own tasks at hand while interacting with robots intermittently.
In such situations, loss of situation awareness can reduce team
productivity and potentially cause serious safety risks.

1.1 Motivating Scenario
Consider Dan, a human worker, and his partner robot in a car
assembly workshop. As a team, Dan is supposed to focus on his
part of the job while the robot performs its tasks. In one scenario,
Dan sends the robot to fetch a hot soldering rod. However, Dan
may not know exactly when the robot will return. He would like to
context-switch to his own tasks before the robot returns instead of
idly waiting for the rod. In such situations, he would prefer to keep
an eye on the robot at all times to avoid safety risks and to ensure
receipt of the rod as soon as it arrives. One main problem we have
here is that we are unable to perceive objects that are outside our
field of view. When robots move behind our back, it is easy to lose
awareness of the current situation.

While there are various ways to circumvent this problem, a
general solution is unfortunately lacking. For example, one solution
is to have the robot announce its status (e.g., approaching) using
beeping sounds. Such a solution only works well when there is
little noise. Another solution is to have the robot always approach
from the front. It however, does not completely address the issue
as the status of the robot while behind the human is lost.

To enable humans to see beyond the limitations of what our eyes
offer, augmented reality (AR) devices are used to insert virtual ob-
jects into real-world to add useful information to the environment.
AR has proven to be useful in industries such as education [2],
health, security, manufacturing [8], and entertainment [20]. While
AR provides an intuitive and general interface for communicating
with humans, applying it to human-robot teaming tasks involves
the following challenges:

(1) Requiring persistent anddynamic informationprojec-
tion: For mobile collaborative robots, dynamic information
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must be constantly communicated to the human to maintain
team situation awareness. Adding a meaningful dynamic
holograms to the environment often requires the holograms
and their dynamics to be custom-made. For example, con-
sider holograms for indicating that a robot is picking up an
object vs. moving forward.

(2) Minimizing visual distractions: Holograms are not part
of our natural environment. So, adding such objects to the
environment, especially when they are dynamic, will be
distracting.

1.2 Contributions
Based on the above discussion, we see an imperative need to de-
velop a fundamentally different principle of applying AR for robots
to communicate with humans without overloading our senses with
humans without overloading our senses. We propose Persistent
Virtual Shadows (PVSs) as a general methodology for maintain-
ing situation awareness without creating much distraction to hu-
mans. Since shadows are encountered every day, their addition to
the environment will be perceived as natural and in no way over-
bearing for us. Furthermore, shadows are seamlessly integrated into
our surroundings and provide rich and high-fidelity information
about the actual objects.

In this paper, we introduce a shadow rendering system that
enables humans to maintain critical information about the robot at
all times. We make use of Hololens to generate the PVS projection
experience (as shown in Fig 1). Instead of creating new objects,
we only augment the existing objects (i.e., robots) via naturalistic
projections to add the needed information to the environment. Our
method is influenced less by environmental conditions, such as
noise and lighting, and provides information that extends beyond
our visual limitations in an intuitive way. Our contributions in this
work include:

(1) Introduced and implemented a novel process for generat-
ing PVSs that involves modeling environment, virtual light
placement, and virtual shadow rendering.

(2) Evaluated PVSs to demonstrate that they are able to commu-
nicate a rich set of information while being less distracting
than the implemented baseline methods.

2 RELATEDWORK
AR empowers us to visually perceive and interact with objects that
are not present in the physical world [4]. Due to this ability, it is
used in at least 12 distinct domains [12] that include military [19],
marketing [17], geospatial [11] among others. The increasing use
of this technology has drawn many researchers into the field of AR.

An immediate application of AR is to introduce novel objects that
can be interacted with [10, 13, 20]. The focus has been on making
the objects more interactive and realistic. For example, Wang et.
al [21] make use of lightning and shading of real scenes to modify
AR objects making them more lifelike. In robotics, these objects
can be used as part of the interface to facilitate interaction [9].

Another use of AR is to provide information about objects or
process (e.g., instructions) in the real-world. Such information is of-
ten superimposed onto physical objects or imposed into our views
to display additional information. A closely related work to ours

is the work on intention projection using projectors. In particu-
lar, Anderson et al. [3] projected virtual parts of an object onto
another physical object to highlight the right place to insert the
part. However, the humans in these prior works are required to
pay full attention to the information provided, which may not be
practical in human-robot teaming situations.

The increasing collaboration between humans and robots has
paved way for investigating into effective ways of communication.
Researchers have studied different modalities of communication
other than vision, such as using sound [6, 14]. Others studied more
subtle ways such as body language [16, 18]. However, thesemethods
are not universal and can be easily affected by culture, demography,
etc., in addition to environmental conditions, such as noise.

3 APPROACH
3.1 General Flow
The flow of our persistent shadow rendering process is illustrated
in Fig. 2. As shown in the Fig 2, the robot first sends data about its
orientation and position to the HoloLens. This information from the
robot together with that of the low-energy Hololens scanning (Fig.
3) of the environment are combined to create a virtual environment
in the Hololens akin to the real environment. Based on the robot’s
information and a pre-specified robot 3D model, we create the
shadow of the virtual robot in this virtual environment and extract
the shadow as a hologram. During the shadow generation process,
our approach determines the right position to place our virtual
lights to ensure that the shadow rendered is always in the view
of the human. The necessary steps needed to create the persistent
view of a robot are listed below, which will be detailed later:

(1) Environment Modeling
(2) Virtual light placement
(3) Virtual Shadow Rendering

Figure 2: General flow of the shadow rendering technique

3.2 Environment Modeling
AR devices constantly scan their environment for anchoring and
low-energy mapping. Our method combines the semi-autonomous
nature of SLAM modeling, the accuracy of using pre-built maps
and the easiness of building an environment in a virtual space.

Since the Hololens already possess a 3D scan of any environment,
no extra work is required for mapping the environment. We extract
this information for the use of our environment. The 3d Hololens



generated model is converted into a transparent, cutout shadow-
receiving game object in unity (see Fig. 4). This is done to prevent
the model from interfering with the real-world environment when
deployed. The cutout model is cast onto the surfaces of the real-
world objects. The robot localizes in the real-world environment.

Figure 3: Low-Energy scan of ourworking scene byHololens

To get virtual shadows of the robot onto the real world, we
cast shadows from the robot unto the virtual environment. We
then extract the shape, form and orientation of these shadows and
project them unto the real surfaces corresponding to the cutout
world. The design of unity’s shadow casting algorithm enables the
shadow to pass through objects. To address this issue, our method
assigns the parts of the environment that are irrelevant the color
of black, which makes them transparent in the real world therefore
preventing them from receiving shadows that pass through objects.

Figure 4: A transparent model of our working scene with
robot shadows to be superimposed onto the real-world

3.3 Virtual Light Placement
We use directional light to enable humans see shadows whenever it
is needed. The directional light is made a child of the main camera
to keep it relatively constant. It is rotated such that the beams are
directed towards the HoloLens’ center. It is then strategically placed
such that the robot is always between the Hololens position and
the light source. This ensures the robot’s shadow is always in the
field of view. Due to the sensitivity of the Hololens, a slight tilt
or rotation of the head changes the direction of the directional
light. Unlike position, a relative change in the Euler angles between
the directional light and the camera has significant effects on the
direction of light rays and the intensity of the illumination.

Because the human head makes involuntary movement, the
rotation transforms of the Hololens change a lot. It is therefore nec-
essary to keep the relative orientation of the light source constant.
We scripted the directional light so that the Euler angular difference
between it and the camera (it’s parent) is zero. This enables the
directional light to have constant rotational angles relative to the
camera. This is important in ensuring that we have a constant feed
of the shadow in the human’s field of view.

3.4 Shadow Rendering
Unity uses a depth buffer system to keep track of all surfaces that
are close to the light. If any surface comes in direct line with light
source, the surface will be illuminated. The other surfaces will not
be illuminated thereby being in the shadow [1]. We model our
shadows of the robot using the unity shadow rendering approach.
After the shadows are created, and rendered onto the virtual objects,
it takes the form of the object (just like any shadow). To prevent
projecting unnecessary information, we disable shadow casting for
all objects except for the robot. We then model these shadows as
game objects and render them via HoloLens (just like any hologram)
into the real world. Since the virtual world is a replica of the real
world, a mere scaling of the shadow by the right amount will align
them perfectly with real world objects giving the real shadow effect.

Figure 5: Discretized environment viewed in ROS

4 EXPERIMENTAL DESIGN
We evaluated three different methods that can be used to maintain
a robot’s status in proximal human-robot teaming. They included
our persistent virtual shadow method (PVS), a method that uses an
arrow to indicate the robot’s status, and a minimap method. The
two baseline methods were chosen since they are commonly used
methods for providing situation awareness [5]

For fair assessment, we kept the same scenarios and environment
for all methods. The survey was a between-subject design. For
experimental purposes, we mapped and modeled the environment
into a ROS world (Fig. 5). The modeled world was discretized to
enable participants specify a particular location by mentioning the
number assigned to it.

Recorded videos of real-life human collaboration with robots
(Fig. 6) were given to the participants in the survey. After taking the
survey, participants were provided the NASA Task Load standard



Figure 6: The human-robot teaming task setting and user view of the three methods: arrow, map, shadow, respectively

questionnaire (TLX) for subjective studies and evaluation of the
effectiveness of the methods used.

For each method, the evaluation is divided into 2 separate parts:
1) position and orientation and 2) movement. This is done to gauge
and show how effective our method is for projecting a rich set of
information about the robot’s status. We showed various pictures
and videos of the robot shadow in different positions and orienta-
tions. The robot also performed different activities while behind
the human. These same scenarios were used for the map and arrow
methods. The participants were tasked to identify, e.g., where the
robot was and what it was doing. Fig. 6 shows sampled screenshots
of the three methods presented to the participants in the survey.

5 RESULTS AND ANALYSIS
We recruited 70 human subjects to take the survey on Mturk. 18 out
of the total responses were discarded for failing the sanity checks.

5.1 Position and Orientation
From Fig. 7, it is observed that both arrow and map methods per-
formed badly in one of the categories. Arrow did not perform well
for position. This is mainly because arrows are able to correctly
point to a direction of an object but not able to provide much depth
information. The lack of depth information made it difficult for
participants to estimate the position of the robot. The map method
did better because we are used to reading maps and obtain spatial
awareness when reading them. It was therefore easy to estimate the
robot’s position. PVS performed comparable to map if not better.
However, the map did worse in orientation. This is due to the fact
that the representation of the robot on the map is circular.

PVS outperformed the other methods for orientation. This is be-
cause neither the map nor arrow methods are able to communicate
information about the object’s orientation or shape. Shadows on
the other hand is a projection of the real object so it provides infor-
mation about both. The participants in the map and arrow methods
however can tell orientation based on the robot’s movement.

Figure 7: Results for position, orientation and movement

5.2 Movement
In general, PVS performed better than the two baselines. The reason
has to dowith the details presented by the shadowmethod. Shadows
provide high-fidelity dynamic information about the actual objects.
The map method however performed poorly.

A student t-test is performed between each pair of methods based
on the overall accuracy. It yielded a p-value of 0.001 between the
shadow and the map method. Similarly, we got a p-value of 0.007
between the shadow and the arrow method.

Fig 8 presents the result of subjective metrics. Even though we
did not observe a significant difference between methods (which
may be due to sample size), it is observed that the shadow appeared
to have outperformed the other methods in most of the metrics. One
main metric worth discussion is “Frustration”. When people are not
able to solve a problem or are not able to figure out something, their
frustration level increases. Having the lowest frustration score for
the shadow is an indication that, the shadowmethod did not distract
the users much. Surprisingly, most people thought the shadow was
less physically demanding. This could be due to the fact that it is
easy to correlate the position of the actual robot with its shadow.
In which case, participants did not have to scroll up and down the
pages to figure out the status of the robot.

Figure 8: NASA TLX results with standard deviation bars

6 CONCLUSIONS
In this paper, we address the problem of maintaining situation
awareness in proximal human-robot teaming. We apply AR tech-
nology to augment the existing objects rather than create new ones
to minimize distractions while providing useful information. We
propose persistent virtual shadows to enable the human maintain
sight of the robot during interaction tasks. Our study has shown
that our method is effective and introduces less distraction.
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