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ABSTRACT

The study of learning causal structure with latent variables has advanced the un-
derstanding of the world by uncovering causal relationships and latent factors.
However, in real-world scenarios, such as those in climate systems, causal rela-
tionships are often nonparametric, dynamic, and exist among both observed vari-
ables and latent variables. These challenges motivate us to consider a general
setting in which causal relations are nonparametric and unrestricted in their occur-
rence, which is unconventional to current methods. To solve this problem, with
the aid of 3-measurement in temporal structure, we theoretically show that both
latent variables and processes can be identified up to minor indeterminacy under
mild assumptions. Furthermore, we demonstrate that the observed causal structure
is identifiable if there is generation variability, roughly speaking, the latent vari-
ables induce sufficient variations in generating the noise terms, by the established
functional equivalence. The primary idea of this framework is to learn causal
representations from causally-related observations, and subsequently address this
problem as a task of general nonlinear causal discovery. Based on these theo-
retical insights, we develop an estimation approach simultaneously learning both
the observed causal structure, latent representation, and latent Markov network.
Experimental results in simulation studies validate the theoretical foundations and
demonstrate the effectiveness of the proposed methodology. In the climate data
experiments, we show that it offers a powerful and in-depth understanding of the
climate system.

1 INTRODUCTION

In real-world observations, such as video data, temperature distributions, and economic investiga-
tions, are often partially observed. Estimating latent variable causal graphs from these observations
is particularly challenging, as the latent variables are in general not identifiable or unique due to the
possibility of undergoing nontrivial transformations (Hyvärinen & Pajunen, 1999), even when the
independent factors of variation are known (Locatello et al., 2019). Several studies have aimed to
uncover causally related latent variables in specific cases. For instance, (Silva et al., 2006) identify
latent variables in linear-Gaussian models using Tetrad conditions (Spearman, 1928), while the gen-
eralized independent noise (GIN) condition (Xie et al., 2020) has been proposed to estimate linear,
non-Gaussian latent variable causal graphs. Recent work employs rank constraints to identify hier-
archical latent structures (Huang et al., 2022). However, these approaches are constrained by linear
relations and require specific types of structural assumptions.

Furthermore, nonlinear Independent Component Analysis (ICA) has established identifiability re-
sults using auxiliary variables (Hyvarinen & Morioka, 2016; 2017; Hyvärinen et al., 2023), showing
that independent factors can be recovered up to a certain transformation of the underlying latent
variables under appropriate assumptions. In contrast, (Zheng et al., 2022; Zheng & Zhang, 2023)
develop identifiability results without auxiliary variables, relying instead on a sparse structure in
the generating process, while Gresele et al. (2021) impose restrictions on the function classes of
generating process. The framework of nonlinear ICA has further been extended to incorporate tem-
poral structures (Hyvarinen & Morioka, 2017; Yao et al., 2022; Lachapelle et al., 2024), utilizing
time-lagged dependencies in temporal data to model dynamic causal mechanisms. Consequently,
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identifying latent structures has become a prominent research focus (Schölkopf et al., 2021). For
instance, (Lippe et al., 2022) propose methods for identifying latent variables in both time-lagged
and instantaneous contexts, (Yao et al., 2023) address settings with partially observed variables,
(Buchholz et al., 2024) explore interventional data under linear mixing assumptions, and (Zhang
et al., 2024) develop a general framework for identifying latent structures using multiple distribu-
tions. However, most prior work assumes that the generating processes from sources to observations
are deterministic, except for a few studies that consider linear additive noise (Khemakhem et al.,
2020; Hälvä et al., 2021; Gassiat et al., 2020)—let alone scenarios where causal relations exist
among observations. Moreover, all of the aforementioned work is constrained by the assumption
of an invertible and deterministic generating function, which is often considered infeasible in many
real-world scenarios.

A typical setting where such methodological assumptions are too restrictive is the climate sys-
tem (Rolnick et al., 2022; Lucarini et al., 2014). With high-level latent variables dynamically chang-
ing and influencing observations (e.g., temperature, humidity) and causal structure (e.g., wind sys-
tem), this presents a challenging problem that necessitates developing a solution to uncover these
complex relationships. To address it, we focus on a temporal causal structure involving dynamic
latent variables driving a latent causal process and causally-related observed variables, with all con-
nections represented through general nonlinear functions. The final objective is to identify these
factors under minimal indeterminacy. For this challenging task, we address three fundamental ques-
tions: (i) What unique attributes of latent variables can be recovered from the causally-related ob-
served variables with the aid of temporal structures? (ii) How to do causal discovery in the presence
of latent variables, without relying on conventional restrictions? (iii) How can empirically identify
both the latent processes and the observed causal structure simultaneously? Begging these questions,
our main contributions are mainly three-fold:

1. We theoretically establish the conditions required for achieving the identifiability of latent
variables from causally-related observations in 3-measurements model.

2. We establish functional equivalence between a nonlinear Structural Equation Model (SEM)
and a nonlinear ICA model, and provide identifiability guarantees of observed causal Di-
rected Acyclic Graph (DAG) in favor of it.

3. Building on these theoretical foundations, we present a comprehensive estimation frame-
work that, to the best of our knowledge, is the first to simultaneously tackle causal repre-
sentation learning and causal discovery. Extensive experiments on diverse synthetic and
real-world datasets validate the effectiveness of our theory and methodology.

2 PROBLEM SETUP

Human 
Activities

Unobserved
Climate
Process

Observed
Region
Temperature

Wind System

!! − 1 ! + 1

Figure 1: Systematic analysis of the climate system. Arrows
indicate the causal relationships.

Causality in climate system.
We begin by motivating our re-
search from the viewpoint of
the climate system. As shown
in Fig 1, the high-level cli-
mate variables—sunshine, CO2
(Stips et al., 2016), ocean
currents (Paulson & Simpson,
1981), and rainfall (Chen &
Wang, 1995)—are not directly
observed. These variables
evolve together through a tem-
poral causal process, changing
gradually and exhibiting causal
relationships across both instan-
taneous and time-lagged inter-
actions (Runge et al., 2019;
Runge, 2020). This dynamic in-
terplay reshapes their influence on temperature, human activities, and wind patterns. Moreover,
regional temperatures interact via wind-driven heat transfer, which is influenced by latent variables
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and human activities (Vautard et al., 2019). Given these properties, we know that the climate is a
forced and dissipative nonlinear system featuring non-trivial dynamics of a vast range of spatial and
temporal scales (Lucarini et al., 2014; Rolnick et al., 2022). Thus traditional causal models fail to
represent this. To address this issue, we formally define the 3-measurement model, and describe how
observed variables and latent variables are causally-related in data generating process by a structural
equation model (SEM) (Spirtes et al., 2001; Pearl, 2009) in a general manner.

Definition 2.1 (3-Measurement Model) Z = {zt−1, zt, zt+1} represents latent variables in three
distinct states, where each state is indexed by its respective time step, we discretize it as t ∈
T = {2, . . . , T − 1} and T ≥ 3. These latent states mutually influence one another. Similarly,
X = {xt−1,xt,xt+1} are observed variables that directly measure zt−1, zt, zt+1 using the same
generating functions g, while xt−1 and xt+1 provide indirect measurements of zt. Let X ⊆ Rdx

denotes the range of xt, and Z ⊆ Rdz denote that of zt, where dz ≤ dx. The model is defined by
the following properties:

• The transformation within zt−1, zt, zt+1 is not measure-preserving.

• Joint density of xt−1,xt,xt+1, zt is a product measure w.r.t. the Lebesgue measure on
Xt−1 ×Xt ×Xt+1 ×Zt, and a dominating measure µ is defined on Zt.

• xt−1,xt and xt+1 are conditional indepedent given zt.

• The distribution over (X,Z) is Markov and faithful to a directed acyclic graph (DAG).

Explanation. The example in Fig. 2 defines xt−1,xt,xt+1 as 3 different measurements of zt
within a temporal structure, since the property of conditional independence given above explicitly
specifies that they possess unique information provided from zt. Conditional independence is stan-
dard in causality (Pearl, 2009; Spirtes et al., 2001; Schölkopf et al., 2021) for learning unobservable
factors. 3-measurement model can apply beyond the climate data, as detailed in Appendix D.

Intuition behind 3-measurement. As shown in Fig. 2, climate time-series data satisfied the 3-
measurement model, which supports the enough information for identification of latent variables,
analogous to the needs in sufficient number of environments: domain changes in multiple distribu-
tion (Hyvärinen et al., 2023; Hyvarinen et al., 2019; Khemakhem et al., 2020; Zhang et al., 2024),
sufficient variability in temporal structure (Yao et al., 2021; 2022; Chen et al., 2024), a sufficient
number of pure children (Silva et al., 2012; Kong et al., 2023; Ng et al.; Huang et al., 2022). The as-
sumption of 3-measurement implies the minimum information required by Hu & Schennach (2008).
If more than 3 measurements are available for the same latent variables, the additional measure-
ments, which also carry information about the latent variables, typically enhance their recovery.

Notation. We conceptualize the data-generating process through the lens of our perspective on the
climate system. It consists of observed variables xt := (xt,i)i∈I with index set I = {1, 2, . . . , dx}
and their causal graph Gxt . Additionally, there are latent variables zt := (zt,j)j∈J indexed by
J = {1, 2, . . . , dz} with the corresponding instantaneous causal graph Gzt . We assume no selection
effects, so samples are drawn i.i.d. from the distribution. Let pa(·) denote the parent variables,
paO(·) represent the parent variables in the observed space, and paL(·) indicate the parent variables
in the latent space. Notably, paL(zt,j) includes latent variables in current time step t and previous
time step t− 1 that are parents of zt,j . Specifically, we assume no time-lagged causal relationships
in the observed space, and that future states cannot influence the past (Freeman, 1983). However,
our methodology can generally be extended to these scenarios; for a discussion, see Appendix G.

Definition 2.2 (Data Generating Process) For xt,i ∈ xt and zt,j ∈ zt, the data generating process
is defined as follows:

xt,i = gi(paO(xt,i),paL(xt,i), st,i); zt,j = fj(paL(zt,j), ϵzt,j ); st,i = gsi(zt, ϵxt,i
), (1)

where gi and fj are differentiable functions, and ϵzt,j ∼ pϵzj are independent noise terms. The
noise st,i depending on zt is modeled by a nonlinear generation from zt and independent noise
ϵxt,i ∼ pϵxi

.
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xt−1 xt xt+1

ztzt−1 zt+1

Figure 2: 3-measurement model. A
example of temporal structure with la-
tent Markov process. xt is the di-
rected (dominating) measurement of
zt, and xt−1, xt+1 represent indirect
measurements.

xt,1 xt,2

st,1 st,2

ϵzt,1 ϵzt,2

zt,1 zt,2

zt−1 zt+1

zt

Figure 3: Data generating process. Within time-index t,
there are two types of noise: ϵzt,i , which denotes indepen-
dent noise, and st,i, which denotes noise on observations
that is dependent on zt. The dashed rectangle represent
zt, the block of latent variables.

We present a graphical depiction of the data-generating process in Fig. 3. The causal relations
within xt highlight a fundamental divergence from previous works in causal representation learn-
ing (Schölkopf et al., 2021), serving as both a challenge and a point of potential breakthroughs.

Extending our analysis of climate systems, the formulation for generating xt,i in the function space
is significantly more general than existing formulations employed in function-based causal discovery
methods. These include the post-nonlinear model (Zhang & Hyvarinen, 2012), nonlinear additive
models (Ng et al., 2022; Rolland et al., 2022; Hoyer et al., 2008), nonlinear additive models with
latent confounders (Zhang et al., 2012; Ng et al.), and models with changing causal mechanisms
and nonstationarity (Huang et al., 2020; 2019; Hyvarinen & Morioka, 2016; 2017). Our approach,
however, extends beyond these, allowing for different subsets of latent variables and parameters to
dynamically control causal edges and generated effects. To illustrate this, we provide a simplified
subcase of the defined generating process using a linear additive equation:

xt,i = g({zt,j | zt,j ∈ paL(xt,i)}) +
∑

xt,j∈paO(xt,i)

bi,j(zt, st,i) · xt,j + st,i, (2)

which captures variations in causal mechanisms driven by latent variables and uncertainties in a
nonlinear manner, a scenario often observed in complex climate systems (Rolnick et al., 2022).

3 MAIN RESULTS

We present theoretical results demonstrating that the underlying causal variables can be recovered,
up to an invertible transformation, from causally-related observations. Specifically, under sparsity
constraints on the latent variable graph, we establish the identifiability of latent causal structure up
to minor indeterminacies.

3.1 PHASE I: IDENTIFYING LATENT VARIABLES FROM CAUSALLY-RELATED OBSERVATIONS

Definition 3.1 (Linear Operator) Consider two random variables a and b with support A and B,
the linear operator Lb|a is defined as a mapping from a function fa in some function space F(A)
onto the function Lb|a ◦ fa in some function space F(B),

F(A)→ F(B) : fb = Lb|a ◦ fa =

∫
A
gb|a(· | a)fa(a)da. (3)

We consider it is bounded by the Lp-norm, a comprehensive set of all absolutely integrable functions
supported on A (endowed with

∫
A |f(a)| dµ(x) < ∞, where µ is a measure on a σ-field in A),

which is sufficiently indicated by an integral operator.

Theorem 3.2 (Monoblock Identifiability) Suppose observed variables and hidden variables fol-
low the data-generating process in Def. 2.2, observations matches the true joint distribution of
{xt−1,xt,xt+1}, and
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(i) The joint distribution of (X,Z) and their all marginal and conditional densities are
bounded and continuous.

(ii) The linear operators Lxt+1|zt and Lxt−1|xt+1
are injective for bounded function space.

(iii) For all zt, z′t ∈ Zt (zt ̸= z′t), the set {xt : p(xt|zt) ̸= p(xt|z′t)} has positive probability.

Suppose that we have learned (ĝ, f̂ , p(ẑt))
1 to achieve Eq. 2.2, then we have

ẑt = hz(zt) (4)

where hz : Rdz → Rdz is an invertible function.

Proof sketch. A proof is given in Appendix B.1. The intuition is that, with the information from 3
measurements that can completely recover the latent space, some density functions can be identified
by constructing a unique spectral decomposition, up to an indeterminacy in the function space.

Discussion of assumptions Assumption (i) is a moderate assumption for ensuring computable dis-
tribution supporting the subsequent spectral decomposition. Assumption (ii) enables us to take
inverses of certain linear operators. Intuitively, an operator Lb|a will be injective if there is enough
variation in the density of b for different values of a. Special cases of this assumption have been
considered in (Newey & Powell, 2003; Mattner, 1993). Under least variation, e.g., b = a+ ϵ, it still
can be satisfied if Fourier transform of ϵ is everywhere nonvanishing (Mattner, 1993). In general,
it is worth noting that injectivity assumptions are quite weak and commonly made in the literature
on nonparametric identification (Hu & Schennach, 2008; Carroll et al., 2010; Hu & Shum, 2012).
In our case, this condition could be further relaxed in Cor. 3.9, and interestingly, happen to hold the
same view as sufficient variability 3.8 in the following section. Assumption (iii) is much weaker and
distinct from monotonicity. For instance, letM[p(xt | zt)] be monotonic with respect to zt, where
M : P(Xt)→ R can represent any operator locating a distribution, such as expectation E[·]. Given
that Xt spans an infinite space, the existence of an adequateM is generally possible.

We show that this result is compatible with existing identifiability results across multiple settings
in Appendix D. Monoblock identifiability is sufficient to support the step of causal discovery in
Section 3.2. However, without additional constraints, they offer limited insight into the latent causal
structure. To address this, we enforce sparsity on the latent Markov network, as proposed in (Zhang
et al., 2024; Zheng et al., 2023).

Theorem 3.3 (Identifiability of Latent Markov Network (See Appendix B.2))

Once monoblock identifiability (i) ẑt = hz(zt) is established, leveraging two properties of latent
space—namely, (ii) the sparsity in the latent Markov network, (iii) zt,i ⊥⊥ zt,j | zt−1, zt/[i,j] if
zt,i, zt,j (i ̸= j) are not adjacent—it smoothly links up the advanced identification results on causal
representation learning (Zhang et al., 2024; Li et al., 2024) under sufficient variability assumption.
Due to page limitation, we elaborate the theoretical analysis in Appendix B.2.

3.2 PHASE II: IDENTIFYING OBSERVED CAUSAL DAG IN PRESENCE OF LATENT
VARIABLES

In this section, we present an identifiable solution for addressing the problem of general nonlinear
causal discovery with latent variables. First, we demonstrate how to transform the SEM into a
specific nonlinear ICA at the functional level, with the aim of making this problem analytic tractable.

Additional notation. We define the partial Jacobian matrices on g and gm below. For all (i, j) ∈
I × I:

[Jgm(st)]i,j =
∂xt,i

∂st,j
, [Jg(xt, st)]i,j =

{ ∂xt,i

∂xt,j
, i ̸= j

∂xt,i

∂st,j
, i = j

, [Jg(xt)]i,j =

{
∂xt,i

∂xt,j
, i ̸= j

0, i = j
, (5)

and Dgm(st) = diag(∂xt,1

∂st,1
,
∂xt,2

∂st,2
, . . . ,

∂xt,dx

∂st,dx
), Idx

is the identity matrix in Rdx×dx . Specifically,
Jgm(st) represents the derivative of the function in the mixing process (right hand side of 6) from

1We use the hat symbol to denote the estimated variables and functions.
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st to xt. Note that Jg(xt) implies the causal adjacency in the nonlinear SEM (left hand side of 6),
if the assumption below hold true.

Assumption 3.4 (Functional Faithfulness) Causal relations among observed variables are repre-
sented by the support set of Jacobian matrix Jg(xt).

Explanation. Functional faithfulness implies edge minimality in causal graphs, analogous to the
interpretation of structural minimality discussed in Peters et al. (2017) (Remark 6.6) and minimality
in Zhang (2013). More discussion about this assumption could be found in the Appendix C.

Theorem 3.5 (Nonlinear SEM ⇐⇒ Nonlinear ICA) Suppose Assumption 3.4 holds true, then

a) (Existence of Equivalent ICA) There exists a function gmi
which is partial differential to st,i and

xt, making

xt,i = gi(paO(xt,i),paL(xt,i), st,i) and xt,i = gmi
(anL(xt,i), st,i) (6)

describing the same data-generating process as in SEM form (Eq. 1), where anL(·) denotes
variable’s ancestors in zt.

b) (Functional Equivalence) Consider the nonlinear SEM form (left) and nonlinear ICA form
(right) described in Eq. 6), the following equation always holds:

Jg(xt)Jgm(st) = Jgm(st)−Dgm(st). (7)

Proof sketch. See Appendix B.3 for a proof. This proof leverages the properties of DAG to trace the
flow of information from the observed variables to the latent variables zt (used as side information)
and the independent noise term ϵxt

in SEM, and ultimately establish a connection to nonlinear ICA.

xt,1 xt,2

st,1 st,2zt

(a) SEM.

xt,1 xt,2

st,1 st,2zt

(b) Equivalent ICA.

Figure 4: Equivalent SEM and ICA. The red line in Fig. 4a
indicates that information is transmitted from xt,2 in the ob-
served causal DAG, while the gray line in Fig. 4b equiva-
lently represents that xt,2 to xt,1 because of transitivity.

Impact of building equivalence.
With assuming causal sufficiency,
(Shimizu et al., 2006) connects the
causal adjacency matrix B to mix-
ing matrix (I − B)−1 of linear ICA,
the works by (Monti et al., 2020;
Reizinger et al., 2023) attempt to re-
late nonlinear ICA and SEM in non
i.i.d. data, obtain a structural equiva-
lence in the supports of Jacobian ma-
trices. Our approach extends these
efforts by addressing cases involving
latent variables, and make such equivalence closer to validity. In Result a), we demonstrate that for
an SEM representing a DAG structure, there exists a nonlinear ICA model capable of representing
the same data-generating process, an illustrative example is provided in Figure 4b. Subsequently,
Result b) outlines the general relationship between SEM and ICA on their parameters, which natu-
rally infers the corollary below.

Corollary 3.6 If Gxt
is a DAG, gm and g are differentiable to st and xt, respectively, then Jgm(st),

Jg(xt, st) are invertible matrices, and gm and g are bijective within their respective subspaces given
zt. Given results above, observed Causal DAG Gxt

is represented by

Jg(xt) = Idx
−Dgm(st)J

−1
gm(st). (8)

Through functional equivalence, we unveil that nonlinear DAG indicates bijective functions,
eliminating the corresponding assumption in causal discovery under general nonlinear relation-
ships (Monti et al., 2020; Reizinger et al., 2023), thus extending the theory to a broader range
of applications. After that, we represent causal adjacency through the Jacobian matrix of nonlin-
ear mixing functions, going beyond linear relations (Shimizu et al., 2006) and structural equiva-
lence (Monti et al., 2020; Reizinger et al., 2023), allowing for interchangeable use in theories and
implementations. The transformation on Jacobian matrix preserves the information of parameters,
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thereby facilitating theoretical insights in Appendix B.5 and estimation methods in Section 4. Now
the objective for learning observed causal DAG comes to clear:

Identify st to derive the Jacobian matrix Jgm(st), and subsequently obtain Jg(xt).

Remark 3.7 Theorem 3.5 and its corollaries hold true consistently, regardless of the absence of
dependent noise (if st,i = ϵxt,i

) or latent variables (if paL(xt,i) = ∅).

Recalling the generation process of st 2.2, we have st,i ⊥⊥ st,j | zt (i ̸= j), suggesting the use of
nonlinear ICA with auxiliary variables (Hyvarinen et al., 2019; Khemakhem et al., 2020) to identify
st up to trivial indeterminacy.

Theorem 3.8 (Identifiability of Observed Causal DAG) Suppose Assumption 3.4 holds true,

[Generation Variability] let At,k = log p(st,k|zt), assume that At,k is twice differentiable in st,k
and is differentiable in zt,l, l = 1, 2, ..., dz . Suppose there exists an estimated ĝm of the function gm:
x̂t = ĝm(ẑt, ŝt). Let

V(t, k) :=

(
∂2At,k

∂st,k∂zt,1
,
∂2At,k

∂st,k∂zt,2
, . . . ,

∂2At,k

∂st,k∂zt,dz

)
,U(t, k) =

(
∂3At,k

∂st,k∂2zt,1
,

∂3At,k

∂st,k∂2zt,2
, . . . ,

∂3At,k

∂st,k∂2zt,dz

)T

,

(9)
where for k = 1, 2, . . . , dx, 2dx vector functions V(t, 1), . . .V(t, dx),U(t, 1), . . .U(t, dx) are lin-
early independent. Then we attain ordered component-wise identifiability (Definition B.9), and thus
supp(Jg(xt)) = supp(Jĝ(x̂t)), meaning the structure of observed causal DAG is identifiable.

Proof sketch. The intuition of the proof involves the derivation of component-wise identifiability,
with the same strategy used in nonlinear ICA with auxiliary variables (Hyvarinen & Morioka, 2017),
where zt obtained by Theorem. 3.2 serves as this side/auxiliary information. Next, to rule out the
permutation indeterminacy, we apply Lemma 1 of LiNGAM (Shimizu et al., 2006), which leverages
the structural constraints imposed by the DAG structure. Details are presented in B.5.

Discussion of assumption. The variable assumption 3.8 is widely used in nonlinear ICA (Hyvärinen
et al., 2023; Yao et al., 2022), remaining relatively mild in the presence of heteroskedasticity in st
given zt, as illustrated by (Yao et al., 2022). In practical climate science, it has been demonstrated
that, within a given region, human activities (st,i) are strongly impacted by certain high-level cli-
mate latent variables (zt) (Abbass et al., 2022), following a process with sufficient changes, which is
distinct from traditional parametric modeling (Lucarini et al., 2014). It is worth noting that the vari-
ability assumption made here is compatible with injective operator Lst+1|zt and Lst−1|st+1

, implied
by the corollary below.

Corollary 3.9 Under DAG constraints on Gxt
, for all t ∈ T , Lxt|st is injective.

Please find the proof and explanation in Appendix B.6.

4 ESTIMATION METHODOLOGY

Following our theoretical analysis, we propose a estimation framework for Nonparametrically doing
Causal Discovery and causal representation Learning (NCDL), as illustrated in Fig. 5.

Overall architecture. According to the data generation process 2.2, we establish the Evidence
Lower BOund (ELBO) as follows:
LELBO = Eq(s1:T |x1:T ) [log p(x1:T | s1:T , z1:T )]− λ1Dkl(q(s1:T | x1:T )∥p(s1:T | z1:T ))

−λ2Dkl(q(z1:T | x1:T )∥p(z1:T )),
(10)

Where λ1 and λ2 are hyperparameters, and Dkl represents the Kullback-Leibler divergence. We set
λ1 = 4× 10−3 and λ2 = 1.0× 10−2 to achieve the best performance. In Fig. 5, the z-encoder,
s-encoder and decoder implemented by Multi-Layer Perceptrons (MLPs) are defined as:

z1:T = ϕ(x1:T ), s1:T = η(x1:T ), x̂1:T = ψ(z1:T , s1:T ),

respectively, where the neural network ϕ, z-encoder learns the latent variables through denoising,
and s-encoder ψ and decoder η approximate invertible functions for encoding and reconstruc-
tion of nonlinear ICA, respectively.
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Figure 5: The estimation procedure of NCDL. The model framework includes two encoders:
z-encoder for extracting latent variables zt, and s-encoder for extracting st. A decoder
reconstructs observations from these variables. Additionally, prior networks estimate the prior dis-
tribution using normalizing flow, target on learning causal structure based on Jacobian matrix. Ls

imposes a sparsity constraint and Ld enforces the DAG structure on Jacobian matrix. Lkl enforces
an independence constraint on the estimated noise by minimizing its KL divergence w.r.t. N (0, I).

Prior estimation of zt and st. We propose using the s-prior network and z-prior network
to recover the independent noise ϵ̂xt

and ϵ̂zt , respectively, thereby estimating the prior distribution
of latent variables ẑt and dependent noise ŝt. Specifically, we first let ri be the i-th learned inverse
transition function that take the estimated latent variables as input to recover the noise term, e.g.,
ϵ̂zt,i = ri(ẑt−1, ẑt). Each ri is implemented by MLPs. Sequentially, we devise a transformation

κ := {ẑt−1, ẑt} → {ẑt−1, ϵ̂zt}, whose Jacobian can be formalized as Jκ =

(
I 0

Jr(ẑt−1) Jr(ẑt)

)
.

Then we have Eq. 11 derived from normalizing flow (Rezende & Mohamed, 2015).

log p(ẑt, ẑt−1) = log p(ẑt−1, ϵ̂zt) + log | ∂ri
∂ẑt,i

|. (11)

According to the generation process, the noise ϵzt,i is independent of zt−1, allowing us to enforce
independence on the estimated noise term ϵ̂zt,i with Lkl. Consequently, Eq. 11 can be rewritten as:

log p(ẑ1:T ) = p(ẑ1)

T∏
τ=2

(
dz∑
i=1

log p(ϵ̂zτ,i) +

dz∑
i=1

log | ∂ri
∂ẑτ,i

|

)
, (12)

where p(ϵ̂zτ,i) is assumed to follow a Gaussian distribution. Similarly, we estimate the prior of st
using ϵ̂xt,i

= wi(ẑt, ŝt), and model the transformation between ŝt and ẑt as follows:

log p (ŝ1:T | ẑ1:T ) =
T∏

τ=1

(
dx∑
i=1

log p
(
ϵ̂xτ,i

)
+

dx∑
i=1

log

∣∣∣∣ ∂wi

∂ŝτ,i

∣∣∣∣
)
. (13)

Specifically, to ensure the conditional independence of ẑt and ŝt, we using Lkl to minimize the
KL divergence from the distributions of ϵ̂xt and ϵ̂zt to the distribution N (0, I), thereby promoting
independence.

Structure learning. The variables ri and wi are designed to capture causal dependencies among
latent and observed variables, respectively. We denote by Jr(ẑt−1) the Jacobian matrix of the func-
tion r, which implies the estimated time-lagged latent causal structure; Jr(ẑt), which implies the
estimation of instantaneous latent causal structure; and Jĝ(x̂t), which implies the estimated ob-
served causal DAG. Considering the observed causal DAG, we first obtain the basic structure of
the observed causal DAG by learning a binary maskM ∼ Ber(σ(γ)), where each edgeMi,j is an

8
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independent Bernoulli random variable with parameter σ(γi,j). The Gumbel-Softmax technique is
employed to learn γ (Jang et al., 2017; Maddison et al., 2017), following Ng et al. (2022). Subse-
quently, we obtained Jĝm(ŝt) from the decoder, and compute the observed causal DAG Jĝ(x̂t)
via Cor. 3.6. Notably, the entries of Jĝ(x̂t) vary with other variables such as ẑt, resulting in a DAG
that may change over time. For the latent structure, we directly compute Jr(ẑt−1) and Jr(ẑt) from
z-prior network as the time-lagged structure and instantaneous DAG in latent space, respectively.

To prevent redundant edges and cycles, a sparsity penalty Ls are imposed on each learned structure,
and DAG constraint Ld are imposed on observed causal DAG and instantaneous latent causal DAG.
Specifically, the Markov network structure for latent variables is computed asM(J) = (I+J)⊤(I+
J). Formally, we define the penalties as follows:∑

Ls = ||M(Jr(ẑt))||1 + ||M(Jr(ẑt−1))||1 + ||Jĝ(x̂t)||1;
∑

Ld = D(Jĝ(x̂t)) +D(Jr(ẑt)), (14)

whereD(A) = tr
[
(I + 1

mA ◦A)
m
]
−m is the DAG constraint from (Yu et al., 2019), withA being

an m-dimensional matrix. || · ||1 denotes the matrix l1 norm. In summary, the overall loss function
of the NCDL model is formalized as:

Lall = LELBO + α
∑

Ls + β
∑

Ld, (15)

where α = 1.0×10−4 and β = 5.0×10−5 are hyperparameters. The discussion on hyperparameter
selects is given in Appendix F.1.

5 EXPERIMENT

5.1 SYNTHETIC DATA

Empirical study. The evaluation metrics and their connections to our theorems is elaborated in
Appendix F.1. We show performance on of the general nonlinear causal discovery and representa-
tion learning in Table 1, and investigate different dimensionalities of observed variables, including
dx = {3, 6, 8, 10, 100∗} (* means add mask by simulated inductive bias, see detailed Appendix F.1).
Our results on these metrics verify the effectiveness of our methodology under identifiabilty, and the
result on dx = 100 with inductive bias makes it scalable to high-dimensional data with prior knowl-
edge of the elimination of some dependences provided by the physical law of climate (Ebert-Uphoff
& Deng, 2012) or LLM (Long et al., 2023), supports our subsequent experiment on real-world data.
The study on different dz can be found in Appendix F.1. Additionally, verification of our theoretical
assumptions through an ablation study can be found in Appendix F.1.

dz dx SHD (Jĝ(x̂t)) TPR Precision MCC (st) MCC (zt) SHD (Jr(ẑt)) SHD (Jr(ẑt−1)) R2

3

3 0 1 1 0.9775 (±0.01) 0.9721 (±0.01) 0.27 (±0.05) 0.26 (±0.03) 0.90 (±0.05)
6 0.18 (±0.06) 0.83 (±0.03) 0.80 (±0.04) 0.9583 (±0.02) 0.9505 (±0.01) 0.24 (±0.06) 0.33 (±0.09) 0.92 (±0.01)
8 0.29 (±0.05) 0.78 (±0.05) 0.76 (±0.04) 0.9020 (±0.03) 0.9601 (±0.03) 0.36 (±0.11) 0.31 (±0.12) 0.93 (±0.02)

10 0.43 (±0.05) 0.65 (±0.08) 0.63 (±0.14) 0.8504 (±0.07) 0.9652 (±0.02) 0.29 (±0.04) 0.40 (±0.05) 0.92 (±0.02)
100∗ 0.17 (±0.02) 0.80 (±0.05) 0.81 (±0.02) 0.9131 (±0.02) 0.9565 (±0.02) 0.21 (±0.01) 0.29 (±0.10) 0.93 (±0.03)

Table 1: Results on different observed dimensionality dx. We run simulations with 5 random
seeds, selected based on the best-converged results to avoid local minima.

Comparison with constraint-based methods on observed causal DAG. To the best of our
knowledge, no existing method employs a comparably general framework based on structural equa-
tion models. Therefore, we compare our approach against two constraint-based methods: FCI (Span-
tini et al., 2018) and CD-NOD (Huang et al., 2020), both of which are designed to discover causal
DAGs while accounting for latent confounders. Additionally, we evaluate methods proposed for
causal discovery on time-series data, including PCMCI (Runge et al., 2019), a climate-specific
method that incorporates time-lagged and instantaneous effects, as well as LPCMCI (Gerhardus
& Runge, 2020), which is proposed for causal discovery in observational time series in the presence
of latent confounders and autocorrelation. As illustrated in Fig.6, NCDL demonstrates superior
performance across different sample sizes, with further improvements observed as the sample size
increases. We observe that FCI struggles when latent confounders are dependent on each other,
often resulting in low recall. CD-NOD assumes pseudo-causal sufficiency, requiring latent con-
founders to be functions of surrogate variables, which is incompatible with general latent variable
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settings. PCMCI ignores latent variables and underlying processes, while LPCMCI, despite consid-
ering latent variables, cannot handle latent processes and requires the absence of edges among latent
confounders. These constraints collectively highlight the advantages of our approach in addressing
such challenges. Additional experimental details can be found in AppendixF.1.
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Figure 6: Comparison with constraint-based methods. We set dx = 6 and dz = 3. We run exper-
iments using 5 different random seeds, and report the average performance on evaluation metrics.

Comparison with temporal (causal) representation learning. We evaluate our method against
the following compared methods including CaRiNG (Chen et al., 2024), TDRL (Yao et al., 2022),
LEAP (Yao et al., 2021), SlowVAE (Klindt et al., 2020), PCL (Hyvarinen & Morioka, 2017), i-
VAE (Khemakhem et al., 2020), TCL (Hyvarinen & Morioka, 2016), and methods handling instan-
taneous dependencies including iCITRIS (Lippe et al., 2022) and G-CaRL (Morioka & Hyvärinen,
2023) in Table 2. The dimensions are set to dz = 3 and dx = 10. The MCC and R2 results for
the Independent and Sparse settings demonstrate that our model achieves component-wise iden-
tifiability (Theorem 3.3). In contrast, other considered methods fail to recover latent variables, as
they cannot properly address cases where the observed variables are causally-related. For the Dense
setting, our approach achieves monoblock identifiability (Theorem 3.2) with the highest R2, while
other methods exhibit significant degradation because they are not specifically tailored to handle
scenarios involving general noise in the generating function. These outcomes are consistent with
our theoretical analysis.

Setting Metric NCDL iCITRIS G-CaRL CaRiNG TDRL LEAP SlowVAE PCL i-VAE TCL

Independent MCC 0.9811 0.6649 0.8023 0.8543 0.9106 0.8942 0.4312 0.6507 0.6738 0.5916
R2 0.9626 0.7341 0.9012 0.8355 0.8649 0.7795 0.4270 0.4528 0.5917 0.3516

Sparse MCC 0.9306 0.4531 0.7701 0.4924 0.6628 0.6453 0.3675 0.5275 0.4561 0.2629
R2 0.9102 0.6326 0.5443 0.2897 0.6953 0.4637 0.2781 0.1852 0.2119 0.3028

Dense MCC 0.6750 0.3274 0.6714 0.4893 0.3547 0.5842 0.1196 0.3865 0.2647 0.1324
R2 0.9204 0.6875 0.8032 0.4925 0.7809 0.7723 0.5485 0.6302 0.1525 0.206

Table 2: Experiments results on simulated data. We consider three scenarios according to our
theory: Independent: zt,i and zt,j are conditionally independent given zt−1; Sparse: zt,i and
zt,j are dependent given zt−1, but the latent Markov network Gzt and time-lagged latent structure
are sparse; Dense: No sparsity restrictions on latent causal graph. Bold numbers indicate the best
performance.

5.2 REAL-WORLD DATA

We use the CESM2 sea surface temperature dataset as our real-world data source for temperature
forecasting and causal structure learning. Due to page limitations, detailed results and further infor-
mation are provided in Appendix F.2.

6 CONCLUSION

We establish identifiability results for uncovering latent causal variables, latent Markov network, and
observed causal DAG, especially in complex nonlinear systems such as climate science. Simulated
experiments validate our theoretical findings, and real-world experiments offer causal insights for
climate science.

For future work, we aim to address the issue of performance degradation in data with increasing
dimensionality. A possible approach to tackling this challenge is to resort to the divide-and-conquer
strategy, which partitions the high-dimensional problem into a set of overlapping subsets of variables
with lower dimensionality, leveraging the prior knowledge of geographical information.
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A NOTATION

Index Explanation Value

dx number of observed variables dx ∈ N+

dz number of latent variables dz ∈ N+ and dz ≤ dx
t time index t ∈ N+ and t ≥ 3
I index set of observed variables I = {1, 2, . . . , dx}
J index set of latent variables J = {1, 2, . . . , dz}

Variable Explanation Value

Xt support of observed variables in time-index t Xt ⊆ Rdx

Zt support of latent variables Zt ⊆ Rdz

xt observed variables in time-index t xt ∈ Xt

zt latent variables in time-index t zt ∈ Zt

st dependent noise of observations in time-index t st ∈ Rdx

ϵxt independent noise for generating st in time-index t ϵxt ∼ pϵx
ϵzt independent noise of latent variables in time-index t ϵzt ∼ pϵz

zt\[i,j] latent variables except for zt,i and zt,j in time-index t /

Function Explanation Value
pa(· | b) density function of a given b /
pb(a, · | c) joint density function of (a, b) given a and c /
pa(·) variable’s parents /
paO(·) variable’s parents in observed space /
paL(·) variable’s parents in latent space /
anL(·) variable’s ancestors in zt /
g(·) generating function of SEM from (zt, st,xt) to xt Rdz+2dx → Rdx

gm(·) mixing function of ICA from (zt, st) to xt Rdz+dx → Rdx

hz(·) invertible transformation from zt to ẑt Rdz → Rdz

π(·) permutation function Rdx → Rdx

supp(·) support matrix of Jacobian matrix Rdx×dx → {0, 1}dx×dx

Symbol Explanation Value
Gxt

causal graph among observed variables (observed causal DAG) in t /
Gzt causal graph among latent variables in time-index t /

A→ B A causes B directly /
A 99K B A causes B indirectly /
Jg(xt) Jacobian matrix representing observed causal DAG Jg(xt) ∈ Rdx×dx

Jg(xt, st) Jacobian matrix representing mixing structure from (xt, st) to xt Jg(xt, st) ∈ Rdx×dx

Jgm(st) Jacobian matrix representing mixing structure from st to xt Jgm(st) ∈ Rdx×dx

Jr(zt−1) Jacobian matrix representing latent time-lagged structure Jr(zt−1) ∈ Rdz×dz

Jr(zt) Jacobian matrix representing instantaneous latent causal graph Jr(zt) ∈ Rdz×dz

Table 3: List of notations, explanations and corresponding values.

B THEOREM PROOFS

B.1 PROOF OF THEOREM 3.2

Definition B.1 (Diagonal Operator) Consider two random variable a and b with supportA and B,
a function f is defined on some support A. The diagonal operator Db|a maps the function f(a) to
another function Db|a ◦ f(b) defined by the pointwise multiplication of f(x) by some function pb|a
at a fixed point b, b ∈ B,

f(A)→ f(B) : Db|a ◦ fa = gb|a(· | a)fa (16)
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Definition B.2 (Completeness) A family of distribution p(a|b) is complete if the only solution p(a)
to ∫

A

g(a)fa|b(a|b) da = 0 for all b ∈ B (17)

is g(a) = 0. In other words, no matter the range of an operator is on finite or infinite, it is com-
plete if its null space2 or kernel is a zero set. Completeness is always used to phrase the sufficient
and necessary condition for injective linear operator (Newey & Powell, 2003; Chernozhukov et al.,
2007)=.

Theorem B.3 (Theorem XV 4.5 in (Dunford & Schwartz, 1988) Part III) A bounded operator T is
a spectral operator if and only if it is the sum T = S +N of a bounded scalar type operator S and
a quasi-nilpotent operator N commuting with S. Furthermore, this decomposition is unique and T
and S have the same spectrum and the same resolution of the identity.

Properties of linear operator We first outline useful properties of the linear operator to facilitate
understanding of our proof:

i. (Inverse) If linear operator: Lb|a exists a left-inverse L−1
b|a, such L−1

b|a ◦Lb|a ◦pa = pa for all
a ∈ A. Analogously, if Lb|a exists a right-inverse L−1

b|a, such Lb|a ◦ L−1
b|a ◦ pa = pa for all

a ∈ A. If Lb|a is bijective, there exists left-inverse and right-inverse which are the same.

ii. (Injective) Lb|a is said to be an injective linear operator if its L−1
b|a is defined over the range

of the operator Lb|a (Kress et al., 1989). If so, under assumption (i), L−1
a|b exists and is

densely defined over F(A). (Hu & Schennach, 2008).

iii. (Composition) Given two linear operators Lc|b : F(C)→ F(B) and Lc|a : F(A)→ F(C),
with the function space supports defined uniformly on the range of supports for the domain
spaces as characterized by Lb|a, it follows that Lc|a = Lc|b ◦ Lb|a. Furthermore, the
properties of linearity and associativity are preserved in the operation of linear operators.
However, it is crucial to note the non-commutativity of these operators, i.e., Lc|bLb|a ̸=
Lb|aLc|b, indicating the significance of the order of application.

Step 1: implications of d-separation. The definition of latent causal process indicates that zt
d-separates xt−1,xt,xt+1, which implies two limited feedbacks:

• p(xt−1 | xt, zt) = p(xt−1 | zt)
• p(xt+1 | xt,xt−1, zt) = p(xt+1 | zt).

Step 2: transformation in function space. The observed p(xt−1) and joint distribution
p(xt+1,xt,xt−1) directly indicates p(xt+1,xt | xt−1), and then the processes of motions are es-
tablished by noting that

p(xt+1,xt | xt−1) =

∫
Zt

p(xt+1,xt, zt | xt−1)dzt

=

∫
Zt

p(xt+1 | xt, zt,xt−1)p(xt, zt | xt−1)dzt

=

∫
Zt

p(xt+1 | zt)p(xt, zt | xt−1)dzt

=

∫
Zt

p(xt+1 | zt)p(xt | zt,xt−1)p(zt | xt−1)dzt

=

∫
Zt

p(xt+1 | zt)p(xt | zt)p(zt | xt−1)dzt.

(18)

2The null space or kernel of an operator L to be the set of all vectors which L maps to the zero vector:
null L = {v ∈ V : Lv = 0}.
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We incorporate the integration over Xt−1,∫
Xt−1

p(xt+1,xt | xt−1)p(xt−1)dxt−1 =

∫
Xt−1

∫
Zt

p(xt+1 | zt)p(xt | zt)p(zt | xt−1)p(xt−1)dztdxt−1

(19)

Step 3: construct spectral decomposition. By the definition of linear operator 3.1,∫
Xt−1

p(xt+1,xt | xt−1)p(xt−1)dxt−1 = [Lxt;xt+1|xt−1
◦ p](xt+1), (20)

where Lxt;xt+1|xt−1
=
∫
Zt
pxt−1

(xt, · | xt−1)p(xt−1)dxt−1. Through the definition of diagonal
operator B.1, we have

[Lxt;xt+1|xt−1
p](xt+1) = [Lxt+1|ztDxt|ztLzt|xt−1

p](xt+1), (21)

which implies the operator equivalence:

Lxt;xt+1|xt−1
= Lxt+1|ztDxt|ztLzt|xt−1

. (22)

Let’s integrating out xt. First,∫
xt∈Xt

Lxt;xt+1|xt−1
dxt =

∫
xt∈Xt

Lxt+1|ztDxt|ztLzt|xt−1
dxt

then we get
Lxt+1|xt−1

= Lxt+1|ztLzt|xt−1
. (23)

By the Assumption (ii), if the linear operator is injective, by the Lemma 1 in (Hu & Schennach,
2008), L−1

xt+1|zt exists and is densely defined over f(Xt+1), then Eq. 23 can be written as

L−1
xt+1|ztLxt+1|xt−1

= Lzt|xt−1
. (24)

Then the Lzt|xt−1
could be substituted by Eq. 24:

Lxt;xt+1|xt−1
L−1
xt|xt−1

= Lxt+1|ztDxt|ztL
−1
xt+1|zt . (25)

Step 4: uniqueness of spectral decomposition By Assumption (ii), the linear operator is
bounded. Consequently, Lxt;xt+1|xt−1

L−1
xt|xt−1

is also bounded, as established in Section XV.4 of
Dunford & Schwartz (1988). Therefore, we can apply Theorem XV.4.3.5 in (Dunford & Schwartz,
1988) to demonstrate that the spectral decomposition of Lxt;xt+1|xt−1

L−1
xt,xt−1

is unique. In partic-
ular, the operator Lxt+1|ztDxt|ztL

−1
xt+1|zt admits the unique spectral decomposition, corresponding

eigenfunctions and eigenvalues.

This method leveraging the uniqueness of bounded linear operators discussed in (Dunford &
Schwartz, 1988) are commonly utilized in works such as (Hu, 2008; Carroll et al., 2010; Hu & Shum,
2012; Hu & Shiu, 2018), where a spectral decomposition form similar to Eq. 25 is constructed.

Next, we address the indeterminacies associated with this uniqueness and give the solutions from
the perspective of eigendecomposition.

Indeterminacy 1: scaling ambiguity Eigenfunctions corresponding to a given eigenvalue are not
unique under scalar multiplication, as shown below:

Lxt+1|ztDxt|ztL
−1
xt+1|zt = (cLxt+1|zt)Dxt|zt(cLxt+1|zt)

−1,

where c is a non-zero constant. Thus, cLxt+1|zt is an equivalent alternative for the eigenfunc-
tion. Since the condition

∫
Xt+1

pxt+1|zt dxt+1 = 1 must hold, any arbitrary scaling would imply∫
Xt+1

cpxt+1|zt dxt+1 = c. Setting c = 1 is the only way to maintain this normalization, thereby
eliminating the scaling ambiguity.
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Indeterminacy 2: eigenvalue degeneracy When the matrix Dxt|zt has repeated eigenvalues,
eigenvalue degeneracy occurs and an eigenvalue has more than one corresponding eigenvector. For
zt, z

′
t ∈ Zt with zt ̸= z′t, the probability distributions p(xt | zt) and p(xt | z′t) represent distinct

elements within the set of eigenvalues. A mild assumption (iii) ensures that p(xt | zt) ̸= p(xt | z′t),
thereby preventing the repetition of eigenvalues. After resolving this indeterminacy, we can obtain
the complete sets of elements in Dxt|zt and Dxt|ẑt as follows:

{p(xt | zt) | ∀(xt, zt) ∈ Xt ×Zt} = {p(xt | ẑt) | ∀(xt, ẑt) ∈ Xt × Ẑt}.
This indicates that the sets of eigenvalues in Dxt|zt and Dxt|ẑt are identical across their correspond-
ing ranges, which eliminates the eigenvalue degeneracy.

Indeterminacy 3: ordering ambiguity Since the the unordered nature of set, Dxt|ẑt can be ob-
tained from eigenvalues within Dxt|zt assigned with an arbitrary order, e.g., all zt exchange their
rooms (p(xt | zt) here) in the Hilbert’s hotel (Dxt|zt here). Evidently, the ordering permutation is
surjective and injective, we can express this process as:

ẑt = hz(zt),

where hz is an invertible function.

Notably, in the spectral decomposition, resolving the ordering ambiguity presents significant chal-
lenges. Hu (2008) addresses this issue by assuming knowledge of the mapping from pxt

(· | zt) to
zt. This assumption may hold in specific scenarios, particularly in econometrics, where it is com-
mon to assume a paradigm such as zt = g(zt, 0). For example, in a linear additive model with
zero-mean noise (e.g., xt = zt + ϵ), the expected value can serve as a candidate for this mapping:
E[zt + ϵ] = zt. However, identifying such a mapping is nearly impossible when dealing with an
unknown, unrestricted general nonlinear function.

Indeterminacy 4: dimensionality We provide a brief proof that the invertible function hz pre-
serves the dimensionality, that is dẑ = dz . We analyze two scenarios:

i. dẑ > dz: This implies that only dz components in ẑt are required to reconstruct the obser-
vations xt. Any variation in the remaining dẑ − dz components would not affect xt. Let
ẑt, ẑt then we can always find

p(xt | zt,:dẑ−dz
, zt,dẑ−dz :) = p(xt | zt,:dẑ−dz

, z′t,dẑ−dz :), (26)
which contradicts Assumption (iii).

ii. dẑ < dz: This suggests that only dẑ dimensions are sufficient to describe xt, leaving dz−dẑ
components constant, which violates that there are dz latent variables.

In summary, if dimensionality is not preserved, it contradicts the assumptions or the sufficiency of
the latent representation.

B.2 THEOREM 3.3

Once monoblock identifiability is achieved, this work can be further linked to existing research on
identification of latent structure (Zhang et al., 2024; Li et al., 2024).

Theorem B.4 Let ct ≜ {zt−1, zt} andMct
be the variable set of two consecutive timestamps and

the corresponding Markov network respectively. Suppose the following assumptions hold:

• A1 (Smooth and Positive Density): The probability function of the latent variables ct is smooth
and positive, i.e., pct is third-order differentiable and pct > 0 over R2n.

• A2 (Sufficient Variability): Denote |Mct | as the number of edges in Markov networkMct . Let

w(m) =

(
∂3 log p(ct|zt−2)

∂c2t,1∂zt−2,m
, . . . ,

∂3 log p(ct|zt−2)

∂c2t,2n∂zt−2,m

)
⊕(

∂2 log p(ct|zt−2)

∂ct,1∂zt−2,m
, . . . ,

∂2 log p(ct|zt−2)

∂ct,2n∂zt−2,m

)
⊕
(
∂3 log p(ct|zt−2)

∂ct,i∂ct,j∂zt−2,m

)
(i,j)∈E(Mct )

,

(27)
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where ⊕ denotes the concatenation operation and (i, j) ∈ E(Mct
) denotes all pairwise indices

such that ct,i, ct,j are adjacent inMct
. For m ∈ {1, . . . , n}, there exist 4n + 2|Mct

| different
values of zt−2,m as the 4n+ 2|Mct

| values of vector functions w(m) are linearly independent.

Then for any two different entries ĉt,k, ĉt,l ∈ ĉt that are not adjacent in the Markov networkMĉt

over estimated ĉt,

(i) Each ground-truth latent variable ct,i ∈ ct is a function of at most one of ĉt,k and ĉt,l.

(ii) For each pair of ground-truth latent variables ct,i and ct,j that are adjacent inMct
over

ct, they cannot be a function of ĉt,k and ĉt,l respectively.

Definition B.5 (Intimate Neighbor Set (Zhang et al., 2024)) Consider a Markov networkMZ over
variables set Z, and the intimate neighbor set of variable zt,i is

ΨMct
(ct,i) ≜ {ct,j | ct,j is adjacent to ct,i

and it is also adjacent to all other neighbors of ct,i, ct,j ∈ ct\{ct,i}}

Theorem B.6 (Component-wise Identification of Latent Variables with instantaneous dependen-
cies.) Suppose that the observations are generated by Equation (2.2), and Mct is the Markov
network over ct = {zt−1, zt, zt+1}. Except for the assumptions A1 and A2 from Theorem B.4, we
further make the following assumption:

• A3 (Latent Process Sparsity): For any zt,i ∈ zt, the intimate neighbor set of zt,i is an empty set.

When the observational equivalence is achieved with the minimal number of edges of the estimated
Markov network ofMĉt

, then we have the following two statements:

(i) The estimated Markov networkMĉt
is isomorphic to the ground-truth Markov networkMct

.

(ii) There exists a permutation π of the estimated latent variables, such that zt,i and ẑt,π(i) is one-
to-one corresponding, i.e., zt,i is component-wise identifiable.

Proof sketch. The detailed proofs, starting from ẑt = hz(zt), follow a similar approach as illus-
trated in main results of (Zhang et al., 2024), where zt−1 can be considered as auxiliary variables,
and (Li et al., 2024). The primary difference is that we recover zt by using 3 measurements, while
they use the invertibility assumption.

Broader impact. We present this result to demonstrate the furthest extent our identification can
achieve. Moreover, it highlights the potential of monoblock identifiability from 3-measurement
model: previous works of causal representation learning on temporal data (Li et al., 2024; Yao
et al., 2022; 2021), data with multiple distribution Zhang et al. (2024), and nonlinear ICA with
auxiliary variables Hyvarinen & Morioka (2016); Hyvarinen et al. (2019); Khemakhem et al. (2020)
that are still able to achieve the same identifiability from causally-related and/or noise-contaminated
observations, provided that our mild assumptions are met.

B.3 PROOF OF THEOREM 3.5

Definition B.7 (Causal Order) An observed variable is in the τ -th causal order if only observed
variables in the (τ − 1)-th causal order directly influence it. Specifically, we consider a latent
variable zt is in the 0-th causal order.

B.3.1 PROOF OF RESULT A)

For an observed variable xt,i, we define the setP to include all variables in xt involved in generating
xt,i, initialized as P = paO(xt,i). The upper bound of the cardinality of P is given by U(|P|),
which satisfies U(|P|) = dx − 1 initially. Let Q denote the set of latent variables, and define the
separated set as S, where gsi(paL(xt,i), ϵxt,i) is denoted by st,i. Initially, S = {st,i}. We express
xt,i as

xt,i = gi (P,S,Q) ,
and traverse all xt,j ∈ xt in descending causal order τj , performing the following operations:
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1. Remove xt,j from P and apply Definition 2.2 to obtain
xt,i = f1 (P \ {xt,j},S,Q,paO(xt,j),paL(xt,j), st,j) . (28)

Then, update P ← (P \{xt,j})∪paO(xt,j) andQ ← Q∪paL(xt,j). By Assumption 2.1,
xt,j cannot reappear in the set of its ancestors, resulting in U(|P|)← U(|P|)− 1.

2. Assumption 2.1 also ensures that a variable with a lower causal order does not appear
in the generation of its descendants. Hence, xt,j cannot appear in the generation of its
descendants, since their causal orders are larger than τj . Similarly, st,j , which is involved
in generating xt,j , does not appear in the generation of its descendants. Thus, st,j /∈ S.
Define the new separated set as S ← S ∪ {st,j}, giving

xt,i = f2 (P,S,Q) , (29)
where the new cardinality is updated as |S| ← |S|+ 1.

Given that U(|P|) ≥ |P|, U(|P|) ensures that this iterative process can be performed until |P| = 0.
According to Definition 2.2, all the aforementioned functions are partially differentiable with respect
to st and xt, or they are compositions of such functions. As a result, Q = anzt(xt,i), and there
exists a function gmi such that

xt,i = gmi(anzt(xt,i), st).
Moreover, we observe that st is in fact the ancestors anϵxt

(xt,i) = {ϵxt,j
| st,j ∈ S}, which

are implied in this derivation process since ϵxt,j
is in one-to-one correspondence with st,j through

indexing.

B.3.2 PROOF OF RESULT B)

Bivariate case study. Initially, we present a bivariate example (xt,2 → xt,1) for a better under-
standing: {

xt,1 = g1(zt, xt,2, st,1)

xt,2 = g2(zt, st,2)
,

{
st,1 = gs1(zt, ϵ1)

st,2 = gs2(zt, ϵ2)
. (30)

Since nonlinear function gs1 , gs2 are mutable, xt,1 = g1(zt, g2(zt, st,2), st,1). Then

Jg(xt) =

[
0

∂xt,1

∂xt,2

0 0

]
, Jgm(st) =

[
∂xt,1

∂st,1

∂xt,1

∂xt,2
· ∂xt,2

∂st,2

0
∂xt,2

∂st,2
,

]
, Dgm(st) =

[
∂xt,1

∂st,1
0

0
∂xt,2

∂st,2
,

]
,

(31)
which satisfies Jg(xt)Jgm(st) = Jgm(st)−Dgm(st).

General multivariate case. Considering the mixing function gm, and the functional relation st,j →
xt,i, corresponding [Jgm(st)]i,j , where i, j indicates the row and column index of the Jacobian
matrix, respectively.

For the elements i ̸= j: If there is a directed functional relationship xt,j → xt,i, the correspond-
ing element of the Jacobian matrix is ∂xt,i

∂xt,j
. If the relationship is indirect: xt,j 99K xt,i, then for each

xt,k ∈ paO(xt,i), there must exist either an indirect-direct path xt,j 99K xt,k → xt,i or a direct-
direct path xt,j → xt,k → xt,i. By the chain rule, the directed dependence from st,j to xt,i can
only be expressed as the sum of effects through each component of paO(xt,i) and itself, allowing
[Jgm(st)]i,j to be decomposed as:

[Jgm(st)]i,j =
∑

xt,k∈paO(xt,i)

∂xt,i
∂xt,k

· ∂xt,k
∂st,j

. (32)

For each xt,k /∈ paO(xt,i),
∂xt,i

∂xt,k
= 0, thus Eq. 32 could be rewritten as

[Jgm(st)]i,j =
∑

xt,k∈paO(xt,i)

∂xt,i
∂xt,k

· ∂xt,k
∂st,j

+
∑

xt,k /∈paO(xt,i)

∂xt,i
∂xt,k

· ∂xt,k
∂st,j

=

dx∑
k=1

∂xt,i
∂xt,k

· ∂xt,k
∂st,j

=

dx∑
k=1

[Jg(xt)]i,k · [Jgm(st)]k,j .

(33)
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For the elements i = j: For each xt,k ∈ paO(xt,i), since the DAG structure ensures xt,i would
not appear in the set of ancestors of xt,i, then st,k also would not appear in this set due to its one-to-
one relation to xt,i, giving that ∂xt,k

∂st,i
= 0. Then we have

[Jgm(st)]i,i =
∂xt,i
∂st,i

+ 0

=
∂xt,i
∂st,i

+

dx∑
k=1

[Jg(xt)]i,k · [Jgm(st)]k,i

=
∂xt,i
∂st,i

+

dx∑
k=1

[Jg(xt)]i,k · [Jgm(st)]k,i.

(34)

Since if k = i, [Jg(xt)]i,k = 0; otherwise, if k ̸= i, [Jgm(st)]k,i = 0. Defining Dgm(st) =

diag(∂xt,1

∂st,1
, . . . ,

∂xt,dx

∂st,dx
), Finally, we get

Jg(xt)Jgm(st) = Jgm(st)−Dgm(st). (35)

B.4 PROOF OF COROLLARY 3.6

Eq. 35 states that
(Idx − Jg(xt))Jgm(st) = Dgm(st). (36)

From DAG 2.1 and Assumption 3.4, Jg(xt) represents a DAG structure and can thus be permuted
into a lower triangular form using identical row and column permutations. As a result, Idx

−Jg(xt)
is an invertible matrix for all xt ∈ Xt. Consequently, (Idx − Jg(xt))

−1Dgm(st) must be invertible,
which implies that Jgm(st) is an invertible matrix.

Additionally, we have
supp (Idx

− Jg(xt)) = supp (Jg(xt, st)) (37)
because the diagonal entries of Jg(xt, st) are non-zero. Therefore, Jg(xt, st) is also invertible
because of the property of a permuted lower triangle.

By exchanging the positions of Jg(xt)Jgm(st) and Dgm(st), and then multiplying on the right by
Idx
− Jg(xt), the desired result is obtained directly.

Remark B.8 Consider equation on Cor. 3.6, there might be confusion regarding whether the diag-
onal elements of Jg(xt) are zero. Since Jgm(st) can be rearranged into a lower triangular matrix
through row and column permutations, the diagonal elements of its inverse are simply the recipro-
cals of its diagonal entries. Consequently, the diagonal entries of Dgm(st)Jgm(st)

−1 are all equal
to 1.

B.5 PROOF OF THEOREM 3.8

Definition B.9 (Ordered Component-wise Identifiability) Variables st ∈ Rdx and ŝt ∈ Rdx are
identified component-wise if there exists a permutation π, such that ŝt,i = hsi(st,π(i)) with invertible
function hs,i and π(i) = i.

Explanation. Ordered Component-wise Identifiability implies that the estimated value ŝt,i con-
tains complete information about st,i while being entirely independent of st,j for j ̸= π(i). No-
tably, the permutation π(·) is an identity function, distinguishing this concept from the permutation
indeterminacy commonly encountered in nonlinear ICA (Hyvarinen et al., 2019).

Lemma B.10 (Lemma 1 in LiNGAM (Shimizu et al., 2006)) For any invertible lower triangular
matrix, a permutation of rows and columns of it has only non-zero entries in the diagonal if and only
if the row and column permutations are equal.

Let (ẑt, ŝt, ĝm) be the estimations of (zt, st, gm). By Theorem a),

xt = gm(zt, st); x̂t = ĝm(ẑt, ŝt) (38)
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Suppose we are able to reconstruct observations successfully then xt = x̂t. By the Thm. 3.2,
ẑt = hz(zt) tells us that

p(xt | ẑt) = p(xt | hz(zt)) = p(xt | zt), (39)

since hz is invertible. Now we show that how to convert it to the quantified relationship between st
and ŝt. By the Eq.38,

p(xt | zt) = p(gm(st, ẑt) | zt); p(xt | ẑt) = p(ĝm(ŝt, ẑt) | ẑt). (40)

Then by Eq. 39, we have
p(gm(st, zt) | zt) = p(ĝm(ŝt, ẑt) | ẑt). (41)

By the defination of partial Jacobian matrix,

[Jgm(st)]i,j =
∂xt,i
∂st,j

=
gmi

(st, zt)

∂st,j
, (42)

which is also set up for ĝm. Thm b) has shown that Jgm(st) and Jĝm(ŝt) are invertible matrices,
with the change of variables formula,

1

|Jgm(st)|
p(st | zt) =

1

|Jĝm(ŝt)|
p(ŝt | zt). (43)

We define hs := g−1
m ◦ ĝm, then its correspinding Jacobian matrix |Jhs(ŝt)| =

|Jĝm (ŝt)|
|Jgm (st)| . Obviously

ŝt = hs(st), and

p(ŝt | zt) =
1

|Jhs(ŝt)|
p(st | zt)

log p(ŝt | ẑt) = log p(st | zt)− log |Jhs(ŝt)|.
(44)

Since for any (i, j, t) ∈ J × J × T , we have st,i ⊥⊥ st,j | zt. By (Lin, 1997),

∂2 log p(ŝt | ẑt)
∂ŝt,i∂ŝt,j

= 0. (45)

To see what it implies, we show second-order partial derivative of log p(ŝt | ẑt) w.r.t. (ŝt,i, ŝt,j) is

∂ log p(ŝt | ẑt)
∂ŝt,i

=

n∑
k=1

∂At,k

∂st,k
· ∂st,k
∂ŝt,i

− ∂ log |Jhs(ŝt)|
∂ŝt,i

=

n∑
k=1

∂At,k

∂st,k
· [Jhs(ŝt)]k,i −

∂ log |Jhs(ŝt)|
∂ŝt,i

,

∂2 log p(ŝt | ẑt)
∂ŝt,i∂ŝt,j

=

n∑
k=1

(
∂2At,k

∂s2t,k
· [Jhs

(ŝt)]k,i · [Jhs
(ŝt)]k,j +

∂At,k

∂st,k
· ∂[Jhs(ŝt)]k,i

∂ŝt,j

)
− ∂2 log |Jhs(ŝt)|

∂ŝt,i∂ŝt,j
.

(46)
Therefore, for each value zt,l, l ∈ J , its partial derivative w.r.t. zt,l is always 0. That is,

∂3 log p(ŝt | ẑt)
∂ŝt,i∂ŝt,j∂zt,l

=

n∑
k=1

(
∂3At,k

∂s2t,k∂zt,l
· [Jhs

(ŝt)]k,i · [Jhs
(ŝt)]k,j +

∂2At,k

∂st,k∂zt,l
· ∂[Jhs

(ŝt)]k,i
∂ŝt,j

)
≡ 0,

(47)
where we have made use of the fact that entries of Jhs

(ŝt) do not depend on zt,l.

By Assumption 3.8, since each term in the equation is linearly independent, maintaining the equality
requires setting [Jhs

(ŝt)]k,i · [Jhs
(ŝt)]k,j = 0 for i ̸= j. This implies that each row of Jhs

(ŝt)
contains at most one non-zero entry, corresponding to an unnormalized permutation matrix.

DAG eliminates permutation indeterminacy of ICA. Next, we show that the structure of a DAG
inherently avoids such a permutation (Shimizu et al., 2006; Reizinger et al., 2023). We leverage the
following properties:

1. The inverse of a lower triangular matrix remains a lower triangular matrix.
2. A matrix representing a DAG can always be permuted into a lower-triangular form using

appropriate row and column permutations.
3. Corollary 3.6 of functional equivalence, which states that:
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JgL(xt) = Idx
−DgL

m
(st)J

−1
gL
m
(st); Jg(xt) = Idx

−Dgm(st)J
−1
gm(st) (48)

where JgL(xt) and JgL
m
(st) are (strictly) lower triangular matrices obtained by permuting Jg(xt)

and Jgm(st), respectively. DgL
m
(st) is the diagonal matrix extracted from JgL

m
(st). Consequently,

we can express the relationship between Jgm(st) and JgL
m
(st) as follows:

JgL(xt) = PdxJg(xt)P
⊤
dx

=⇒ Jgm(st) = PdxJgL
m
(st)D

−1
gL
m
(st)P

⊤
dx
Dgm(st), (49)

where Pdx
is the Jacobian matrix of a permutation function on the dx-dimensional vector. Conse-

quently, by Jgm(st) = Jĝm(ŝt)Jhs(st), we obtain
Jĝm(ŝt) = Pdx

JgL
m
(st)D

−1
gL
m
(st)P

⊤
dx
Dgm(st)J

−1
hs

(st), (50)

Using Lemma B.10, we obtain PdxD
−1
gL
m
(st)P

⊤
dx
Dgm(st)Jhs(ŝt) = Idx , which implies J−1

hs
(st) =

D−1
gm(st)DgL

m
(st), a diagonal matrix. Consequently, Jĝm(ŝt) and Jgm(st) have the same support,

meaning Jĝ(x̂t) and Jg(xt) share the same support as well, according to Corollary 3.6. Thus, by
Assumption 3.4, the structure of observed causal DAG is identifiable.

Remark B.11 Since the Jacobian matrix changes w.r.t other variables in the function, the scaling
of Jg(xt) is also not invariant. However, due to the support stability (changes in the modulus of
non-zero elements in a lower triangular matrix do not alter the support of this matrix inverse), the
support of Idx

−Dgm(st)J
−1
gm(st) remains invariant under scaling indeterminacy of Jgm(st), which

is resulted by that the identification of st can only be achieved in a component-wise manner.

B.6 PROOF OF COROLLARY 3.9

Since the transformation from st to xt is invertible and deterministic, the probability density function
for xt can be expressed as:

p(xt) =

{
1

|Jgm (st)|p(st), xt = gm(st)

0, xt ̸= gm(st)

Hence, the conditional probability can be represented using the Dirac delta function:
p(xt | st) = δ(xt − gm(st)).

By recalling Def. 3.1, we can rewrite p(xt) in terms of the linear operator Lxt|st acting on pst :

p(xt) = Lxt|st ◦ pst(xt) =

∫
St

δ(xt − gm(st))p(st) dst.

We consider p(xt | st) as an infinite-dimensional vector, and the operator Lxt|st as an infinite-
dimensional matrix:

Lxt|st = [δ(xt − gm(st))]
⊤
xt∈Xt

.

By Corollary 3.6, since Jgm(st) is invertible, for any two different points st, s′t ∈ St (st ̸= s′t), we
have gm(st) ̸= gm(s′t). This implies that the supports of δ(xt − gm(st)) and δ(xt − gm(s′t)) are
disjoint. Thus, [δ(xt − gm(st))]

⊤
xt∈Xt

forms an infinite-dimensional permutation matrix, ensuring:

null [δ(xt − gm(st))]
⊤
xt∈Xt

= {0(∞)},
which denotes the definition of completeness as stated in Definition B.2, indicating that Lxt|st is
injective.

Explanation. By the nature of distribution transformation, we can decouple the linear operator
mentioned in Assumption (ii) in two parts: deterministic measurements (operator between st and
xt) and noised measurements:

Lxt+1|zt = Lxt+1|st+1
◦ Lst+1|zt ; Lxt−1|xt+1

= Lxt−1|st−1
◦ Lst−1|st+1

◦ Lst+1|xt+1
(51)

This corollary demonstrates that the observed causal DAG does not affect the overall injectivity of
the linear operator, thereby relaxing Assumption (ii). Consequently, we can focus solely on the
completeness of the noisy measurement processes Lst+1|zt and Lst−1|st+1

. These formulations, as
defined in Def. 2.2, have been extensively studied in prior works (D’Haultfoeuille, 2011; Hu &
Shiu, 2018; Mattner, 1993), suggesting that the completeness conditions are not difficult to satisfy.
Furthermore, this result ensures that the generation variability and transition variability assumptions
made here are compatible with the injectivity of Lst+1|zt and Lst−1|st+1

, aiming to ensure that gs
and ϵxt provide sufficient variability to zt.
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C ASSUMPTION DISCUSSIONS

Injectivity of linear operator It is currently difficult to formalize precise conditions for injec-
tivity or completeness. Specifically, if p(a | b) can be expressed as pϵ(a − b), such as in linear
additive noise models, then Lb|a is injective if and only if the Fourier transform of pϵ is non-
vanishing everywhere (Mattner, 1993). For instance, the Fourier transform of a Gaussian distri-
bution is p̂ϵ(k) = exp

(
−σ2k2

2

)
. However, this condition is quite restrictive as it imposes stringent

smoothness and decay properties on pϵ, which are not always observed in real-world distributions.
For example, the Laplace distribution has a Fourier transform that decays to zero, while the uniform
distribution has zeros at regular intervals, failing to meet the requirement of non-vanishing every-
where in R. Similar results for more general distribution families can be found in (D’Haultfoeuille,
2011).

In contrast, conditional heteroscedasticity can substantially relax these strong requirements on ϵ.
This is because completeness demands linear independence of all pb(· | a) over the infinite space
of a ∈ A. When p(a) changes, p(b) undergoes a non-trivial variation, ensuring that the operator
Lb|a remains ”non-singular.” In our context, the effects of latent climate variables on the noise term,
such as human activities, are significant. Consequently, completeness holds since Corollary 3.9
guarantees that the relationships in xt do not disrupt these conditions.

Discussion of functional faithfulness. Functional faithfulness corresponds to the edge minimal-
ity Zhang (2013); Lemeire & Janzing (2013); Peters et al. (2017) for the Jacobian matrix Jg(xt)

representing the nonlinear SEM xt = g(xt, zt, ϵxt
), where ∂xt,j

∂xt,i
= 0 implies no causal edge, and

∂xt,j

∂xt,i
̸= 0 indicates causal relation xt,i → xt,j . This assumption is fundamental to ensuring that

Jacobian matrix reflects the true causal graph. If our functional faithfulness is violated, the results
can be misleading, but in theory (classical) faithfulness Spirtes et al. (2001) is generally possible as
discussed in Lemeire & Janzing (2013) (2.3 Minimality). As a weaker version of it, edge minimality
holds the same property. If needed, violations of faithfulness can be testable except in the triangle
faithfulness situation Zhang (2013). As opposed to classical faithfulness Spirtes et al. (2001), for
example, this is not an assumption about the underlying world. It is a convention to avoid redundant
descriptions.

Extension to multiple time lags. The theoretical results are still valid when extending beyond a
first-order Markov process. For example, in a second-order Markov process, 6 measurements are
needed, with each consecutive pair of observed variables representing a unique measurement group.
The central latent variables d-separate these groups, ensuring monoblock identifiability. Other iden-
tifiability properties are similarly preserved, depending on the model’s structure and functional form.

Surrogates of dependent noise. Conditional independence of st is the primary key for discov-
ering observed causal DAG. In scientific applications where the noise st cannot be presumed to be
dependent on zt or other things, one may resort to alternative constraints, such as structural spar-
sity (Zheng et al., 2022; Zheng & Zhang, 2023) or multi-domain frameworks (Hyvarinen et al.,
2019; Khemakhem et al., 2020; Hyvärinen et al., 2023; Zhang et al., 2024), refrain from imposing
generation variability. Nevertheless, these modifications inevitably constrain the generality of the
methodology, which limits its applicability to climate science.

D BROADER IMPACT

Broader applications of 3-measurement model. In contrast to directly defining xt−1,xt and
xt+1 as measurements of zt are widely used in nonparametric identification in economic (Hu &
Schennach, 2008; Carroll et al., 2010), which anchors the ’reference frame’ to latent variables and al-
lows for variability in the measurement process, our definition pertains to fixing the reference frame
to observations, which ensures an invariant measurement process while the latent variables vary,
which is commonplace to encounter such varying in causal mechanisms in practice (arising from
heterogeneous data or time series), thereby marrying it to numerous causal representation learning
tasks, including climate analysis (Brouillard et al.; Yao et al., 2024), video understanding (Yao et al.,
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2022; Chen et al., 2024), natural language processing (Yan et al., 2024; Rajendran et al., 2024), and
multi-view data such as 3D vision (Yao et al., 2023), multimodality (Morioka & Hyvarinen, 2023).

Crucially, in our case where climate data (Rasp et al., 2020; Kaltenborn et al., 2023) is typical a
discrete time-series data, T would be a subset of N+, similar to the tasks in (Hyvarinen & Morioka,
2017; Yao et al., 2022; Lippe et al., 2022), but T is not restricted to time-series which can be a
discrete set aims at indexing measurement on arbitrary dimension. For the supervised learning (Hy-
varinen et al., 2019; Zhang et al., 2013), it can represent class labels or domain variables. For
economic measurements, it can index the measuring objective such as group in the investigation of
self-reported education (Kane et al., 1999).

Generalization of identifiability. The findings above lay the groundwork for our subsequent anal-
ysis by elucidating the relationship between the estimated latent variables ẑt and the true variables
zt, derived from nonparametric observations under 3 different measurement settings. These results
generalize to broader causal discovery tasks that involve hidden confounders (Cai et al., 2023; Kong
et al., 2023; Spirtes et al., 2013; Huang et al., 2022; Li et al., 2023), if the completeness of linear
operators holds true. Moreover, the approach is not restricted to identifying latent variables from
causally-related observations, but allows the identification in noisy observations beyond linear ad-
ditive models (Khemakhem et al., 2020; Hälvä et al., 2021; Gassiat et al., 2020) and replies why,
loosely speaking, the invertible neural network is not necessary in practices with the past of the com-
ponents in the time series, as mentioned in (Hyvarinen & Morioka, 2017; Hyvarinen et al., 2019).
The analysis here can also be extended to discrete cases, where the linear operator may be finite,
differing only in the conditions stated in Assumption (i).

Connections to nonlinear ICA. Non-invertible methods (Chen et al., 2024) leverage temporal
context information to recover latent variables (in our case, ẑ = hz(z)). Similarly, our approach
does not rely on additional invertibility assumptions for the mixing functions (Zheng et al., 2022;
Kong et al., 2023; Lachapelle et al., 2024) and utilizes contextual information, such as the temporal
structure, to provide more general results, even in the presence of general nonclassical noise.

E EXTENDED RELATED WORK

Causal discovery algorithms in climate. A prominent approach for causal discovery in climate
analysis is PCMCI (Runge et al., 2019), which is specifically designed for linearly dependent time-
series data. PCMCI effectively captures time-lagged dependencies and instantaneous relationships.
Subsequently, (Runge, 2020) extended this method to handle nonlinear scenarios. However, these
methods do not account for latent variables, which limits their ability to accurately model real-
world climate systems. Recently, several causal representation learning methods inspired by climate
science have been developed. For example, (Brouillard et al.) assumes single-node structures to
achieve identifiability, while (Yao et al., 2024) employs an ODE-based approach to gain insights into
climate-zone classification. Nevertheless, these approaches still overlook the dependencies among
observed variables.

Comparisons with Jacobian-based methods. Nonlinear causal discovery methods often lever-
age the Jacobian matrix or its byproduct to identify DAGs and ensure identifiability. For example,
LiNGAM (Shimizu et al., 2006) uses a mixing matrix in linear settings, while (Lachapelle et al.,
2019) and (Rolland et al., 2022) apply the Jacobian to nonlinear models for acyclicity constraints.
In dynamical systems, (Atanackovic et al., 2024) adopt a Bayesian approach using Jacobians of
SEMs, and (Zheng et al., 2023) learn Markov structures using the Jacobian of the data generation
process. Jacobian properties also support identifiability in IMA (Gresele et al., 2021) and causal
models with non-i.i.d. data (Reizinger et al., 2023), while (Liu et al., 2024) handle mixed models
with score-based method. Table 4 summarizes these methods against our approach.
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Method f Data J CD CRL Identifiability
(Shimizu et al., 2006) Linear Non-Gaussian Jf−1 ✓ × ✓
(Lachapelle et al., 2019) Additive Gaussian Jf−1 ✓ × ×
(Gresele et al., 2021) IMA All Jf × × ✓
(Zheng et al., 2023) Sparse All Jf × × ✓
(Rolland et al., 2022) Additive Gaussian J∇x log p(x) ✓ × ×
(Atanackovic et al., 2024) Cyclic (ODE) All Jf ✓ × ×
(Reizinger et al., 2023) All Assums. 2, F. 1 Jf−1 ✓ × ✓
(Liu et al., 2024) Mixed Gaussian J∇x log p(x) ✓ × Partial
Ours All All Jf−1 ✓ ✓ ✓

Table 4: Comparison of different methods based on their property in function type (f ), data, Jacobian
(J), causal discovery (CD), causal represnetation learning (CRL), and achievement of identifiability.

F EXPERIMENT DETAILS

F.1 ON SIMULATION DATASET

Evaluation metrics. Due to the nature of monoblock identifiability (Theorem 3.2), we use the
coefficient of determination R2 between the estimated variables ẑt and the true variables zt, where
R2 = 1 indicates perfect alignment. We employ kernel regression with a Gaussian kernel to es-
timate the nonlinear mapping. For recovering latent components in Theorem 3.3), we apply the
Spearman Mean Correlation Coefficient (MCC). We use the Structural Hamming Distance (SHD)
to evaluate similarity of learned latent and observed causal structure. Specifically, considering the
indeterminacy of the permutation of identified latent variables, we align the instantaneous latent
causal structure Jr(ẑt) and time-lagged latent causal structure Jr(ẑt−1) by permuting the learned
adjacency matrices to match the ground truth. As a surrogate metric to learn observed causal DAG,
we evaluated recovery of st using unpermuted MCC, corresponding to the identification strategy
shown in Theorem 3.8. The recovered observed and latent causal DAG are further evaluated using
SHD, divided by the number of possible structures. Based on such evaluation process, we also report
TPR (recall), precision, and F1 among the comparisons with constraint-based methods.

Simulation process As defined in Def 2.2, under the Independent setting for the latent temporal
process and dependent noise variable st, we use the generation process from (Yao et al., 2022).
For observational causal relations, we randomly generate lower triangular matrices and apply equal
row and column permutations to obtain a mixing structure, which is combined with an MLP network
generated from zt and st using LeakyReLU units. This simulation is also used for Sparse and Dense
settings, controlling graph degree after removing diagonals. Each independent noise is sampled from
normal distributions.

Baselines implementation details. We utilized publicly available implementations for TDRL,
CaRiNG, and iCRITIS, covering the majority of the employed methods. As G-CaRL’s code was
not released, we re-implemented it based on the details provided in the original paper. Addition-
ally, since the iCRITIS setup was originally designed for image inputs, we adapted it by replacing
its encoder and decoder components with a Variational Autoencoder with same hyperparameters in
NCDL.

Mask by inductive bias. Continuous optimization faces challenges like local minima (Ng et al.,
2022; Maddison et al., 2017), making it difficult to scale to higher dimensions. However, incorpo-
rating prior knowledge on the low probability of certain dependencies (Spirtes et al., 2001; Runge
et al., 2019) enables us to compute a mask. To validate this approach using physical laws as observed
DAG initialization F.2 in climate data, we mask 3

4 of the lower triangular elements in a simulation
with dx = 100, a ratio much lower than in real-world applications.

Comparison with constraint-based methods. Constraint-based methods rely on Conditional In-
dependence (CI) tests and do not require a specified form of structural equation models (SEMs),
making them a nonparametric approach. However, CI test-based methods generally return equiva-
lence classes of graphs rather than a unique solution. For example, algorithms such as FCI produce
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Partial Ancestral Graphs (PAGs), and CD-NOD similarly yields equivalence classes. In our imple-
mentation, we utilize the Causal-learn package (Zheng et al., 2024) for FCI and CD-NOD and
the Tigramite library (Runge et al., 2019) for PCMCI and LPCMCI. We employ a near-optimal
configuration for these methods to facilitate fair comparisons. The details for each method are as
follows:

(i) FCI: We use Fisher’s Z conditional independence test. For the obtained PAG, we enumerate
all possible adjacency matrices and select the one closest to the ground truth by minimizing
the Structural Hamming Distance (SHD).

(ii) CD-NOD: We concatenate the time indices [1, 2, . . . , T ] of the simulated data into the ob-
served variables and only consider the edges that exclude the time index. We use kernel-based
CI test since it demonstrates superior performance here. We consider all obtained equivalence
classes and select the result that minimizes SHD relative to the ground truth.

(iii) PCMCI: We use partial correlation as the metric of conditional independent test. We enforce
no time-lagged relationships in PCMCI and run it to focus exclusively on contemporaneous
(instantaneous) causal relationships. In the Tigramite library, this can be achieved by
setting the maximum time lag τmax to zero. This effectively disables the search for lagged
causal dependencies. We select contemporary relationships as the ultimate result.

(iv) LPCMCI: Similarly to PCMCI, we use partial correlation as the metric of conditional inde-
pendent test, and select the contemporary relationships as the causal graph obtained.

Study on dimension of latent variables. We fix dx = 6 and vary dz = {2, 3, 4} as shown in
Table 5. The results indicate that both the Markov network and time-lagged structure are identifiable
for lower dimensions. However, as the latent dimension increases, there is a decline in identifiability
of the latent structure, highlighting ongoing challenges in the continuous optimization of latent
process identification (Zhang et al., 2024; Li et al., 2024). Nevertheless, monoblock identifiability
(R2) remains satisfied across all settings.

dx dz SHD (Gxt ) TPR Precision MCC (st) MCC (zt) SHD (Gzt ) SHD (Mlag) R2

6
2 0.12 (±0.04) 0.86 (±0.02) 0.85 (±0.04) 0.9864 (±0.01) 0.9741 (±0.03) 0.15 (±0.03) 0.21 (±0.05) 0.95 (±0.01)
3 0.18 (±0.06) 0.83 (±0.02) 0.80 (±0.04) 0.9583 (±0.02) 0.9505 (±0.01) 0.24 (±0.06) 0.33 (±0.09) 0.92 (±0.01)
4 0.23 (±0.02) 0.80 (±0.06) 0.74 (±0.01) 0.9041 (±0.02) 0.8931 (±0.03) 0.33 (±0.03) 0.48 (±0.05) 0.91 (±0.02)

Table 5: Results on different latent dimensions. We run simulations with 5 random seeds, selected
based on the best-converged results to avoid local minima.

Setting MCC (st) R2

A 0.6328 0.34
B 0.7563 0.67
C 0.7052 0.85

Table 6: Assumption abla-
tion study. We mainly present
these result to verify the neces-
sity of our assumptions.

Assumption ablation study. We further validate our identifiabil-
ity theory using dz = 3 and dx = 6. In simulating data, we remove
conditionsthat are nontrivial to our theories, including:

(i) A (Def. 2.1): Ensuring zt conditionally independent
and replacing the transition function with an orthogonal
matrix, violating the 3-measurement Hu & Schennach
(2008).

(ii) B (Assumption (ii)): Violating the injectivity of linear
operators using gs: zt = zt−1 + ϵzt , where ϵzt ∼
Uniform(0, 1) is a typical violation Mattner (1993) for in-
jectivity of Lzt|zt−1

, as well as Lxt−1|xt+1
.

(iii) C (Assumption 3.8): Violating the generation variability
assumption with st = q(zt)+ϵxt , where ϵxt ∼ N (0, Idx)
and q is a mixing process, results in a linear additive Gaus-
sian model without heteroscedasticity. Such a setup sig-
nificantly reduces variability, as discussed in Yao et al.
(2022)..

As shown in Table 6, without these assumptions, we cannot achieve monoblock identifiability or
identify the observed causal DAG, leading to a decrease in R2 and MCC (st). In summary, these
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results further confirm the validity of our theory and the necessity of these assumptions, especially
under challenging conditions where they are disrupted.

Hyperparameter sensitivity We also test the hyperparameter sensitivity of NCDL with respect to
the sparsity and DAG penalty, as these hyperparameters have a significant influence on the perfor-
mance of structure learning. In this experiment, we set dz = 3 and dz = 6. As shown in Fig. 7, the
results demonstrate robustness across different settings, although the performance of structure learn-
ing is particularly sensitive to the sparsity constraint. Notably, an excessively large DAG penalty at
the beginning of training can result in a loss explosion or the failure of convergence.

α 1× 10−5 5× 10−5 1× 10−4 5× 10−4 1× 10−3 1× 10−2

SHD 0.23 0.22 0.18 0.27 0.32 0.67

β 1× 10−5 5× 10−5 1× 10−4 5× 10−4 1× 10−3 1× 10−2

SHD 0.37 0.18 0.20 / / /

Table 7: Hyperparameter sensitivity. We run experiments using 5 different random seeds for data
generation and estimation procedures, reporting the average performance on evaluation metrics. ”/”
means loss explosion.

F.2 ON REAL-WORLD DATASET

CESM2 Pacific SST. CESM2 dataset employs monthly Sea Surface Temperature (SST) data gen-
erated from a 500-year pre-2020 control run of the CESM2 climate model. The dataset is restricted
to oceanic regions, excluding all land areas, and retains its native gridded structure to preserve spa-
tial correlations. It encompasses 6000 temporal steps, representing monthly SST values over the
designated period. Spatially, the dataset comprises a grid with 186 latitude points and 151 longitude
points, resulting in 28086 spatial variables, including 3337 land points where SST is undefined, and
24749 valid SST observations. To accommodate computational constraints, a downsampled version
of the data, reduced to 84 grid points (6 × 14), is utilized. This subset is specifically chosen to
facilitate the investigation of oceanic temperature dynamics and underlying climate mechanisms.

WeatherBench (Rasp et al., 2020). WeatherBench is a benchmark dataset specifically tailored for
data-driven weather forecasting. We specifically selected wind direction data for visualization com-
parisons within the same time period, maintaining the original 350,640 timestamps. Wind system is
considered as the dominating factor resulting in potential instantaneous causal relationships among
the temperature in different regions.

Initialization observed DAG. We incorporate the Spatial Autoregressive (SAR) model as a prior
in the continuous optimization of the causal DAG structure matrix Ĝxt

to mitigate local minima and
improve optimization stability, convergence rate, and computational complexity. The SAR model,
commonly used in geography, economics, and environmental science, captures spatial dependencies
defined as X = Zβ + λWX + E, where W is the spatial weights matrix, and E is a disturbance
term. Setting β = 0 results in a pure SAR model:

X = λWX+E.

We define W based on Euclidean distances constrained by Mloc, where [Mloc]i,j = 1{∥s2 −
s1∥2 ≤ 50}, with s1 and s2 representing the locations of two regions. The rationale is that regions
cannot be instantaneously connected if they are separated by a large physical distance. This configu-
ration captures potential instantaneous causal effects only between spatially adjacent regions within
a specified distance threshold of 50 units.

Linear regression coefficients capture inter-variable relationships and are used in causality research
to construct an initial causal structure, reducing the search space. We build a sparse adjacency
matrix by regressing x1:T,i on b · [Mloc]i · x1:T,[dx]\i, where b · [Mloc]i represents the regressed
coefficients, corresponding to the off-diagonal elements of i-th row of the initial matrixMinit.
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Computation of the observed causal DAG in climate system. In addition to using the mask
gradient-based method for mask estimation, we compute the causal DAG by multiplying the mask
with the Jacobian matrix derived from 6 data points to explicitly capture the dynamic causal mech-
anisms. The causal structure is defined as:

Ĝxt = supp(M̂xt ∗ Jĝ(xt) ∗Minit)

A threshold of 0.15 is applied to obtain the final binary adjacency matrix. To compute the partial
Jacobian Jĝ(xt) with respect to st while holding zt constant, set requires grad=False for zt,
and use autograd.functional.jacobian in PyTorch.

Implications of not including time-lag effects in the observed space. In this paper, we assume
time-lagged effects are fully captured by the latent variables, as the temporal resolution of CESM2
data is relatively coarse with 1 month interval. The temperature interactions by the wind system
(observed causal DAG) occurs over a relatively short timescale, unlike the continuous and long-term
processes of high-level latent variables (e.g., oceanic circulation patterns or gradual atmospheric
pressure changes). Empirically, we also found time-delayed dependence (autocorrelation) in the
CESM2 data is very small. Thus, we prefer to interpret causal effects through wind system as being
completed within each time step.

Real-world data experiments. Our analysis yields two main results: (i) temperature forecasting,
which demonstrates the effectiveness of the learned representations, and (ii) visualization of the
inferred causal graph across regions, validated against contemporaneous wind patterns. As sum-
marized in Table 8, our approach surpasses existing time-series forecasting models in precision,
due to existing temporal causal representation learning cannot handle cases where observations are
causally-related and the generating function is non-invertible, restricting their usability in real-world
climate data. Computational cost of NCDL with other methods in the experiments can be seen in
paragraph. 8. To compare against the estimated observed causal DAG, we use wind data from (Rasp
et al., 2020) for the same period. In Fig. 7, the inferred causal structures closely correspond to actual
wind patterns over the sea surface, accurately capturing the overall spatial dynamics and corroborat-
ing prior findings. Moreover, regions near coastlines exhibit denser causal connections, suggesting
potential influences from anthropogenic activities or topographic features, thereby enriching our
understanding of the underlying mechanisms governing the climate system.

NCDL (Ours) TDRL CARD FITS MICN iTransformer TimesNet Autoformer

Dataset Len MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

CESM2 96 0.410 0.483 0.439 0.507 0.409 0.484 0.439 0.508 0.417 0.486 0.422 0.491 0.415 0.486 0.959 0.735
CESM2 192 0.412 0.487 0.440 0.508 0.422 0.493 0.447 0.515 1.559 0.984 0.425 0.495 0.417 0.497 1.574 0.972
CESM2 336 0.413 0.485 0.441 0.505 0.421 0.497 0.482 0.536 2.091 1.173 0.426 0.494 0.423 0.499 1.845 1.078

Table 8: The MSE and MAE results for different prediction lengths in temperature forecasting.
Lower values indicate better forecasting performance. Bold numbers represent the best performance
among the models, while underlined numbers denote the second-best performance.
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Figure 7: Comparison of observed causal DAG obtained by NCDL and wind system. Top:
Visualization of learned instantaneous causal graph. Bottom: Visualization of the wind system.
The blue arrows indicate the causal adjacency, while the red arrows represent the wind direction
in the respective area. Notably, NCDL effectively identifies the underlying causal graph, show-
ing a high degree of overlap with the real-world system. For instance, it captures the westward
trend in the central sea region. However, in the sea/land interaction zones, the learned causal edges
appear disorganized, losing clear patterns and becoming much denser than in other regions. Our
result suggests that causal relationships are more intricate in these areas beyond wind system, likely
due to the influence of human activities Vautard et al. (2019) and other factors arising from soil-
atmosphere/cloud-temperature interactions, and land–sea warming contrasts Boé & Terray (2014).

Runtime and computational efficiency. We report the computational cost of the different meth-
ods considered. The comparison considers metrics including training time, memory usage, and
corresponding performance MSE in forecasting task. Note that inference time is not included in
the comparison, as our work focuses on causal structure learning through continuous optimization
rather than constraint-based methods.
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Figure 8: Comparison of computational cost. Different colors represent different methods, while
the size of the circles corresponds to memory usage. The prediction length is set to 96.

Fig. 8 shows that our NCDL method simultaneously learns the causal structure while achieving
the lowest MSE, highlighting the importance of building a transparent and interpretable model.
Furthermore, NCDL exhibits similar training time and memory usage compared to mainstream time-
series forecasting models in the lightweight track.

G DISCUSSIONS OF ALLOWING TIME-LAGGED CAUSAL RELATIONSHIPS IN
OBSERVED SPACE

In this section, we demonstrate that our proposed framework is compatible with the consideration
of time-lagged effects, with providing potential solutions.

xt−2 xt−1 xt xt+1

zt−1zt−2 zt zt+1

z′t

x′
t

Figure 9: 4-measurement model with time-lagged effects in observed space. xt could be con-
sidered as the directed (dominating) measurement of zt, and xt−2, xt−1 and xt+1 provide indirect
measurements of zt. For identifying the time-lagged causal relationships in observed space, we con-
sider z′t = (zt−1, zt) as the new latent variables, and x′

t = (xt−1,xt) as the new observed variables,
to apply our functional equivalence b).
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G.1 PHASE I: IDENTIFYING LATENT VARIABLES FROM TIME-LAGGED
CAUSALLY-RELATED OBSERVATIONS

For the identification of latent variables, we adopt the strategy outlined in (Carroll et al., 2010; Hu
& Shum, 2012) to construct an spectral decomposition. We extend this approach to develop a proof
strategy that establishes monoblock identifiability, as stated in Theorem 3.2.

We begin by defining the 4-measurement model, which includes time-series data with time-lagged
effects in the observed space as a special case.

Definition G.1 (4-Measurement Model) Z = {zt−2, zt−1, zt, zt+1} represents latent variables
in four continuous time steps, respectively. Similarly, X = {xt−2,xt−1,xt,xt+1} are observed
variables that directly measure zt−2, zt−1, zt, zt+1 using the same generating functions g. The
model is defined by the following properties:

• The transformation within zt−2, zt−1, zt, zt+1 is not measure-preserving.

• Joint density of xt−2,xt−1,xt,xt+1, zt is a product measure w.r.t. the Lebesgue measure
on Xt−2 ×Xt−1 ×Xt ×Xt+1 ×Zt and a dominating measure µ is defined on Zt.

• Limited feedback: p(xt | xt−1, zt, zt−1) = p(xt | xt−1, zt).

• The distribution over (X,Z) is Markov and faithful to a directed acyclic graph (DAG).

Limited feedback explicitly assumes that future events do not cause past events and excludes instan-
taneous effects from xt to zt. As illustrated in Fig. 9, xt−2,xt−1,xt,xt+1 are defined as different
measurements of zt, forming a temporal structure characteristic of a typical 4-measurement model.
Under the data-generating process depicted in Fig. 9, and based on the assumption of limited feed-
back, we propose the following framework:

p(xt−1,xt,xt+1,xt+2) =

∫
Zt

p(xt+1 | xt, zt)p(xt|xt−1, zt)p(xt−1,xt−2, zt)dzt

=

∫
Zt

p(xt+1 | xt, zt)p(xt,xt−1, zt)p(xt−2 | zt,xt−1)dzt.

(52)

Discussion of achieving monoblock identifiability. Comparing Eq. 52 with Eq. 18, which repre-
sents the foundational result for proving monoblock identifiability under the 3-measurement model,
we extend the identification strategy from (Carroll et al., 2010; Hu & Shum, 2012) to the 4-
measurement model. This forms the critical step in our identification process. We adopt assumptions
analogous to those in (Carroll et al., 2010; Hu & Shum, 2012) and Theorem 3.2, and suppose the
followings:

(i) The joint distribution of (X,Z) and their all marginal and conditional densities are bounded
and continuous.

(ii) The linear operators Lxt+1|xt,zt and Lxt−2,xt−1,xt,xt+1,zt are injective for bounded function
space.

(iii) For all zt, z′t ∈ Zt (zt ̸= z′t), the set {xt : p(xt|zt) ̸= p(xt|z′t)} has positive probability.

hold true. Similar to the proof of our monoblock identifiability (Theorem B.1), except for the condi-
tional independence introduced by the temporal structure, the key assumptions include an injective
linear operator to enable the recovery of the density function of latent variables and distinctive eigen-
values to prevent eigenvalue degeneracy. The primary difference is the property limited feedback,
where we can adopt the strategy in (Carroll et al., 2010) to construct a unique spectral decomposi-
tion, where (xt−2,xt−1,xt,xt+1, zt) correspond to (X,S,Z, Y,X∗), respectively.

Following this, we apply the key steps of our identification process as detailed in the Appendix B.1.
Ultimately, we can establish that the block (zt,xt) is identifiable up to an invertible transformation:

(ẑt, x̂t) = hx,z(zt,xt). (53)

where hx,z : Rdx+dz → Rdx+dz is a invertible function. Since the observation xt is known and
suppose x̂t = xt, this relationship indeed represents an invertible transformation between ẑt and zt
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as
ẑt = hz(zt). (54)

With an additional assumption of a sparse latent Markov network, we achieve component-wise
identifiability of the latent variables, as stated in Theorem B.4 in appendix, leveraging the proof
strategies of (Zhang et al., 2024; Li et al., 2024). These results are stronger than those in (Carroll
et al., 2010).

G.2 PHASE II: IDENTIFYING TIME-LAGGED OBSERVED CAUSAL DAG

Unified modeling across neighboring time points. In the presence of time-lagged effects in the
observed space, such as xt−1 → xt, alongside the causal DAG within xt, as depicted in Figure 9,
we show that by introducing an expanded set of latent variables z′t = (zt−1, zt) and an expanded
set of observed variables x′

t = (xt−1,xt), the property of functional equivalence is preserved.
Moreover, identifiability continues to hold, and, broadly speaking, it becomes more accessible due to
the incorporation of Granger causality principles in time-series data (Freeman, 1983), if we assume
that future events cannot influence or cause past events.

xt,1 xt,2

st,1 st,2zt

xt−1,1 xt−1,2

st−1,1 st−1,2zt−1

(a) Time-lagged SEM.

xt,1 xt,2

st,1 st,2zt

xt−1,1 xt−1,2

st−1,1 st−1,2zt−1

(b) Equivalent ICA.

Figure 10: Equivalent time-lagged SEM and ICA in the case with time-lagged causal relation-
ships in observed space. The red lines in Fig. 10a indicate that information are transmitted by the
instantaneous and the time-lagged observed causal DAGs, while the gray lines in Fig. 10b represent
that the information transitions are equivalent to originating from contemporary st and previous
(zt, st−1,2) within the mixing structure.

Functional equivalence in presence of time-lagged effects. As shown in Fig. 10, we show that, if
we consider the time-lagged causal relationship in observed space, it still can be processed with the
technique as in our paper proposed, through considering time-lagged causal relationships as a part
of observed causal DAG, by reformulating z′t = (zt−1, zt), x′

t = (xt−1,xt) and s′t = (st−1, st),
to apply the Theorem b). Specifically, the time-lagged effects from xt−2 can be considered as
side information, which does not make difference to causal relationships from xt−1 to xt and its
corresponding ICA form.

G.3 ESTIMATION METHODOLOGY

Slided window. Building on the analysis above, we aggregate two adjacent time-indexed observa-
tions into a single new observation. By employing a sliding window with a step size of 1, we obtain
T − 1 new observations along with their corresponding latent variables, thereby aligning with the
estimation methodology described in Section 4.
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Structure pruning. For structure learning, given the assumption that future climate cannot cause
past climate, we can mask 1

4 of elements in the causal adjacency matrix during implementation,
as depicted in Fig. 11. Compared with the original implementation, the masking simplifies the
difficulty of optimization by reducing the degrees of freedom in the graph.
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(a) Causal adjacency matrix of SEM.

!!"#,#

!!"#,%

!!,#

!!,%

!!"#,# !!"#,% !!,# !!,%

Cause

Effect

"!"#,#

"!"#,%

"!,#

"!,%

!!"#,# !!"#,% !!,# !!,%

Noise

Observation

(b) Mixing matrix of equivalent ICA.

Figure 11: Interpreting Fig. 10 with causal adjacency matrix of the SEM and the mixing ma-
trix of the equivalent ICA. The diagonal lines indicate masked elements, as future events cannot
cause past events, and self-loops are not permitted. Black blocks represent the presence of a causal
relationship or functional dependency in the generating function gm, while white blocks indicate the
absence of such a relationship.
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