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Abstract

Learning an interpretable representation of data without supervision is an important pre-
cursor for the development of artificial intelligence. In this work, we introduce Kendall
Shape-VAE, a novel Variational Autoencoder framework for learning shapes as it disentan-
gles the latent space by compressing information to simpler geometric symbols. In Kendall
Shape-VAE, we modify the Hyperspherical Variational Autoencoder such that it results in
an exactly rotationally equivariant network using the notion of landmarks in the Kendall
shape space. We show the exact equivariance of the model through experiments on rotated
MNIST.

Keywords: generative models, variational autoencoder, geometry, Kendall shape, ideograms,
equivariance, unsupervised learning

1. Introduction

The learning of reliable, compressed, and information-rich representations is essential in
machine learning. Among the many unsupervised likelihood-based frameworks, Variational
Autoencoders (Kingma and Welling, 2013; Rezende et al., 2014) have proven to be an intu-
itive framework with compelling results and have thus gained popularity in representation
learning and generative image modeling. VAEs allow for learning of low dimensional latent
representations, and can, e.g., be adapted for learning disentangled representations; (Chen
et al., 2018) or modeling of dependencies between random variables in separated latent
spaces (Ilse et al., 2020).

There has been considerable interest in making the latent space invariant to a trans-
formation, but it has been tricky to do so with a VAE framework as it involves separate
training of invariant latent spaces for specific transformations (Bepler et al., 2019) which
cannot be generalized well. Adding a geometric structure to latent space has improved on
the generation capacity of VAEs (Chadebec and Allassonnière, 2021), and could improve on
the notion of disentanglement if the geometry is biased towards it (Davidson et al., 2018).
Alternatively, a few works provide post-hoc explanations via classifiers that map the latent
space to outcome, but they come with their limitations (Liu et al., 2019). For the tasks
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of domain generalization (Ilse et al., 2020; Mitko, 2019) and compressed sensing (Kuzina
et al., 2022) it is important to have explicit control over how the latent space is encoded.

We see a lot of potential in using geometry to structure VAE latent spaces as to obtain
interpretable latents. Towards this end, we present a new VAE framework, the Kendall
Shape VAE. It encodes each image as a geometric symbol, or shape, and does so in a rotation
equivariant manner. Our approach is motivated by our daily use of symbols, pictograms,
and ideograms in general, to represent concepts in a concise geometry form. As such, the
learnt symbols in our Kendall Shape VAEs should be thought of as neural ideograms1.
We illustrate the interpretability of our method by showing how similar the latents of the
two different images of the same class look as well as show that the shape remains consistent.

Our contributions in this paper can be summarized as:

• We introduce Kendall Shape VAE, a fully equivariant VAE with a hyperspherical
latent space, equivalent to a Kendall shape space.

• Points in latent space correspond to landmarks that define shapes in Kendall shape
space. We show that equivalence classes of images are mapped to invariant shapes.

• We show that this shape is truly invariant to rotation and translation, by the use of
equivariant encoder-decoder, and that our method disentangles shape from pose.

• We perform experiments in a simple unsupervised manner without any special equiv-
ariant loss or conditional alignment.

2. Related Work

Variational Autoencoders, as introduced by Kingma and Welling (2013) and Rezende et al.
(2014), have a great advantage of fast and tractable sampling compared to other likelihood
based frameworks. Since then a lot of work has been done to improve on VAE models
by reducing the gap between approximate and true posterior distributions (Rezende and
Mohamed, 2015; Kingma et al., 2016; Cremer et al., 2018), formulating tighter bounds (Li
and Turner, 2016; Burgess et al., 2018b), for extending VAEs to discrete variables (Rolfe,
2017) and addressing posterior collapse (Lucas et al., 2019).

Hierarchical VAEs with advanced neural network architectures with multi-scale depen-
dency between compressed representations, were presented in (Vahdat and Kautz, 2020;
Child, 2020). In (Oord et al., 2017) the prior is learnt and hence results in higher quality
of generation. Many works have focused on disentanglement of latent spaces (Skafte and
Hauberg, 2019; Burgess et al., 2018a; Chen et al., 2018) and explaining latent space of VAEs
(Liu et al., 2019).

Our work marries two classes of VAEs in a framework of Kendall shape space VAEs;
equivariant and hyperspherical. Lafarge et al. (2020) proposes an equivariant VAE, where
the latents are equivariant without having information of pose or orientation. Bepler et al.
(2019) disentangles translation and rotation in an image by training a VAE on a spatial grid.
Kuzina et al. (2022) introduces an equivariant prior and results in approximate rotational

1. Kendall Shape VAEs are not limited to inferring geometries of objects as you would with pictograms s.a.

f for representing birds; more generally they represent concepts via ideograms s.a. , for being happy.
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equivariant latents. These equivariant methods have the usual perks of equivariance being
an important inductive bias for image data that significantly reduces model complexity
(Elesedy, 2022). They do, however, suffer from the same limitations as plain VAEs; namely,
the latent space is Euclidean and the common Gaussian priors limits utilization of the space
only locally around the origin. Hyperspherical VAEs (Davidson et al., 2018, 2019), on the
contrary, allow for uniform priors on the sphere, which makes that the entire space (which is
compact) is utilized. Our work inherits best of both equivariant and hyperspherical VAEs.

3. Background

As a preliminary to our method, we first review VAEs and Hyperspherical VAEs (SVAEs).
VAEs: Variational autoencoders consist of a generator pθ(x|z), a prior pθ(z) and an

approximate posterior (encoder?) qϕ(z|x). When we parameterize the joint distribution
by a neural network the marginalization over the latent variables (as to obtain pθ(x)) is
untractable. So instead, our objective is to maximize the evidence lower bound (ELBO),
using an approximate posterior qϕ(z|x). The ELBO is given by

L(θ, ϕ) = Ez∼qϕ(z|x) log pθ(x|z)−DKL[qϕ(z|x)||pθ(z)] .

Hyperspherical VAEs: In the original VAE, the prior and posterior are both defined
as a normal distribution. In SVAE, however, we need to work with distributions on the
sphere, for which the von Mises Fisher (vMF) distribution is the natural choice as it is
the stationary distribution of a convection-diffusion process on the hypersphere Sm−1, just
like the normal is on Rm. The probability density function of the vMF distribution for a
random unit vector z ∈ Sm−1 is defined as

q(z|µ, κ) = Cm(κ) exp(κµT z) ,

where

Cm(κ) =
κm/2−1

(2π)m/2Im/2−1(κ)
,

||µ||2 = 1, and Iν denotes a modified Bessel function of the first kind at order ν. The
Kullback–Leibler divergence can be analytically computed between a vMF distribution
vMF (z|µ, κ) and a uniform distribution on a hypersphere Sm−1 U(x) via

KL(vMF (µ, κ)||U(Sm−1)) = κ
Im/2(k)

Im/2−1(k)
+ log Cm(κ)− log

2(πm/2)

Γ(m/2)

−1

.

4. Kendall Shape VAE (KS-VAE) Framework

In (Davidson et al., 2018), the use of von Mises Fisher (vMF) distribution as a prior is
motivated to support learning distributions lying on non-euclidean manifolds. Consider a
case where the data lies on a circle; the normal VAE tries to force the embedding to be
mapped into an approximated posterior distribution that has support on the entire S1. But
this fails, as in the low dimensions, Gaussian distribution presents probability mass around
the origin, while in high dimensions, it tends to resemble a uniform distribution on the
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surface of a hypersphere, with majority of its mass concentrated on the hyperspherical shell.
By approximating the posterior using vMF in SVAE, the resulting latents are separated on
the surface of the hypersphere and in addtition the model learns more efficiently. In this
work we leverage the benefits of SVAEs, and additionally give a new interpretation by
considering hyperspherical latent vectors as meaningful aligned set of points by relating
them to landmarks in Kendall shape spaces. This new viewpoint on hyperspherical VAEs
further gives insight in how to make them equivariant to rotations, as we show in the next
section.

Figure 1: KS-VAE pipeline : Images pass through an equivariant encoder and give a pose,
denoted by an arrow (in R2 for simplicity) and a set of landmarks, denoted by
dots. (We connect them with lines to show a geometric symbol). The encoder
maps both of these image from the same class to a canonical orientation and a set
of landmarks. This is then decoded and reconstructed using the extracted pose
to give the final reconstructed images

4.1. Kendall Shape Spaces

(Kendall et al., 1999) defined pre-shapes by k labelled points in Euclidean space Rm. Two
configurations of k labelled points are regarded as the same shape if either of their pre-
shapes can be transformed into the other by a rotation about a shared centroid. The
quotient structure was extended in (Kendall et al., 2009) by defining shape space as the
quotient of the space of landmark configurations by the group of translations, scale, and
rotations.

We follow the notation of (Guigui et al., 2021) which defines a pre-shape space Sk
m with

k points ∈ Rm as the space of m× k matrices, M(m, k). We are interested in mapping the
equivalence class formed by invariant transformations on this set of points or landmarks.
To do so we remove the effects of translation (subtract the mean) and remove effects of
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scaling (divide by Frobenius norm). This defines the pre-shape space

Sk
m = {x ∈ M(m, k)|

k∑
i=1

xi = 0, ||x|| = 1}

which is identified with the hypersphere of dimension Sm(k−1)−1. To remove the effect of
rotations, we define the equivalence relation ∼ on Sk

m by x ∼ y ⇐⇒ ∃R ∈ SO(m) such that
y = Rx for all x, y ∈ Sk

m. For x ∈ Sk
m, let [x] then denote its equivalence class for ∼. This

equivalence relation results from the group action of SO(m) on Rm. From computational
perspective, we need a vector, which we label as x0 ∈ Sk

m, to represent the entire equivalent
class [x0] = {Rx0|R ∈ SO(m)}. As a flattened vector x0 ∈ Rkm, this vector transforms via
the SO(m) group representation ρ(R) := ⊕kR, i.e., a block diagonal matrix with R along
the diagonal.

4.2. The Kendall Shape VAEs Requires Equivariant Encoders/Decoders

In our KS-VAE setting, we consider mappings from (square integrable) images f ∈ L2(Rm)
to a latent pre-shape representation z ∈ Sk

m via an encoder Enc : L2(Rm) → Sk
m. This

mapping should be equivariant if we want the landmarks in Sk
m to be geometrically meaningful

with respect to the content in the input image. That is, the content of the image may exhibit
features or objects at a certain pose/orientation R, like the rotation of a digit in the rotated-
MNIST dataset, or the arbitrary rotation under which a cell might present itself under a
microscope in histopathology (Lafarge et al., 2020). We would want that if the input image
merely rotates that the landmarks rotate accordingly and the actual shape remains invariant
(its content stays the same but only the orientation changes). As often we are interested in
the invariant content of the image f , we can talk about an equivalence class of images [f ],
where each image this class is related via a rotation.

It is important to understand that the equivalence classes themselves are invariant to
scaling, translation and rotations, but the individual members z ∈ [z] and f ∈ [f ] are
covariant vectors under the action of SO(m) and only invariant to translation and scaling.
That is, an encoder Enc : L2(Rm) → Sk

m should be equivariant via

∀g=(x,R,s)∈SIM(m) : Enc(Lgf) = ρ(R) Enc(f) .

with SIM(m) as a group of rotations, translations and scale on SO(m) and Lg the left-
regular representation of SIM(m) on m-dimensional images, given by Lgf(x) = f(g−1x).
Similarly, we want the decoder Dec : Sk

m → L2(Rm) to be equivariant. This can be ensured
if we let them be parameterized by group equivariant CNNs (Cohen and Welling, 2016),
specifically by SIM(m)-CNNs as proposed in (Knigge et al., 2022).

5. Implementation

5.1. Rotation Equivariant Layers

In this work we focus on the notion of rotation equivariance, and assume the datasets
do not exhibit scale variations2 such that our networks do not have to be scale invariant.

2. This is a reasonable assumption in many scenarios such as medical imaging where data is often acquired
under a fixed resolution. Scale invariance can be guaranteed with methods such as (Knigge et al., 2022).
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We then require SE(m) equivariant neural networks. We rely on the escnn library (Cesa
et al., 2022; Weiler and Cesa, 2019), which provide a general program for building E(m)
equivariant neural networks. It is based on the construction of feature fields with fibers
(vector-valued feature channels) that transform under specific representations of SO(m).

In light of the escnn library, it is worth noting that our input images are feature fields
with fibers that transform under the trivial representation of SO(m), i.e., each RGB value
in a color image stays invariant under rotation. The output of the encoder Enc (the pre-
shapes) transform via type-1 irreducible representations, which are just the rotation matri-
ces ρ1(R) = R. That is, a vector z ∈ Sk

m of k landmarks in Rm transforms via k rotation
matrices as specified in Subsec. 4.1. The escnn library further requires the specification for
the hidden feature fields, for which we use regular representations (cyclic permutations), as
these fields are compatible with usual activation functions such as ReLU.

5.2. The Encoder: Equivariant vMF Parameter Extraction

In the VAE setting, the encoder should encode for the parameters of vMF distribution on
the ((k− 1)m− 1)-dimensional hypersphere. The vMF is parametrized by a mean µ ∈ Sk

m,
i.e., k landmarks with zero mean and unit norm. As such the encoder equivariantly obtains
µ as k type-1 features which we normalize to unit norm. During training we add a loss on
the squared mean as to ensure that the encoder predicts centered landmarks. The vMF also
requires a concentration parameter κ ∈ R>0, which the equivariant encoder predicts as
a type-0 scalar k̃ that defines κ via κ = softmax(κ̃) + 1 as to ensure a minimum variance
of 1. Finally, the encoder also needs to predict a pose R ∈ SO(m). In 2D, this pose is

encoded as a type-1 vector r̃ ∈ R2, which we normalize to r =

(
rx
ry

)
= r̃

∥r̃∥ from which

we can extract a rotation angle via the arctan, or directly parametrize a rotation matrix

R =

(
rx −ry
ry rx

)
.

5.3. The Posterior Shape-vMF is Invariant to Rotations

The three components (pose R, shape µ, concentration parameter κ) allow us to obtain a
posterior distribution on the equivalence class of shapes [z] by mapping the inferred µ to
a µ0 which represents the canonical shape, or class representative, via µ0 = ρ(R−1)µ. It
is noteworthy that the shape representative µ0 is invariant to input rotations, since due to
equivariance of Enc we have that the parameters as a function of input image f satisfy

∀R̃∈SO(m) : µ[Lg̃f ] = ρ(R̃)µ[f ] and R[Lg̃f ] = R̃R[f ] .

Thus, vector representation of the equivalence class [µ0] represented by µ0 is truly invariant:

∀R̃∈SO(m) : µ0[Lg̃f ] = ρ(R[Lg̃f ]
−1)µ[Lg̃f ] = ρ(R̃R[f ])−1ρ(R̃)µ[f ]

= ρ(R[f ])−1ρ(R̃)−1ρ(R̃)µ[f ] = ρ(R[f ])−1µ[f ]

= µ0[f ] .

Give the above, we are thus able to learn a posterior distribution for the vector represen-
tative z0, which represents the entire equivalence class [f ] via q(z0|f) = vMF (µ0, κ), since
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∀f,f0∈[f ] : q(z0|f) = q(z0|f0). In the generative mode, we sample from this distribution a
representative latent ẑ0 ∼ q(z0|f), map it to the corresponding pose ẑ = ρ(R[f ])z0 using
the estimated pose R, after which we pass ẑ through the equivariant decoder to obtain the
reconstructed image f̂ = Dec(ẑ).

5.4. Summary: The KS-VAE recipe

• Enc(f) → (R, µ, κ)

• Extract the representative latent z0, using z0 = R−1z, where z is latent with a canon-
ical orientation.

• Sampling : ẑ0 ∼ q(z0|[f ])

• Dec(ẑ0) → transforms to ẑ and then reconstructs the image f̂ .

6. Experiments

In this section, we perform experiments with KS-VAE and compare it with standard VAE
and SVAE. Here all the models are trained in an unsupervised way, without any prior
knowledge on the equivalence classes or the poses of every instance.

6.1. Qualitative results

For qualitative results, we demonstrate that KS-VAE is rotationally equivariant. For each
equivalence class (or each orbit), KS-VAE can learn a representative f0. The KS-VAE is
able to encode every input image to its orbit, as well as extract the corresponding pose
R ∈ SO(m) that it has relative to the representative. We observe that the KS-VAE seems
to map the digits 6 and 9 to the same equivalence class. This is efficient whilst still allowing
to discern the two via the estimated pose within the class. For each image, it generates a
shape which remains consistent when the image is transformed.

In Figure 2, the first column corresponds to a rotated digit from MNIST dataset, the
second column is its reconstruction, the third column is the reconstruction using a canonical
orientation and the last column contains a shape made using four landmark points for the
different digits.

6.2. Quantitative Results

Here in Table 1, we quantify and characterise the differences in various VAE models in
the task of equivariant learning and show that Shape-VAE outperforms standard VAE and
SVAE.

All VAEs use the same architectures for the encoder and decoder; in KS-VAE, however,
the conv-layers are replaced by their group convolutional counter parts for the C8 cyclic
permutation group (8 rotations covering SO(2)). The input images are padded with ones
at the bottom and right in order to obtain images of size 29× 29. The encoder performs 7
convolutions (followed by ReLU) with 5x5 kernels, without padding as to shrink the image
to a single pixel. The decoder also consists of 7 layers with 5x5 convolutions, but with
padding size 4 as to iteratively expand t he image size to 29 × 29. The feature channels
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Figure 2: For each digit: Original rotated MNIST image, its reconstructions, reconstruction
of the class representative (f0 decoded from z0), and inferred latent shape z0
consisting of four landmarks.
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increase (decrease) linearly in the encoder (decoder) from 8 in the first layer to 96 in the
last layer.

Table 1: Comparing total loss (KL divergence + reconstruction error) for vanilla VAE,
SVAE and KS-VAE, for training without rotated images and testing on rotated
images. We note down the loss after training for 10 epochs to show the efficient
learning in KS-VAE compared to VAE and SVAE

Model Model type Dataset Params Loss

vanilla VAE not equivariant rot MNIST 44.4M 240.3
SVAE not equivariant rot MNIST 44.4M 190.2
KSVAE equivariant rot MNIST 3.2M 168.6

7. Discussion

Like any other hypserspherical model, this one too faces with the vanishing surface area
problem. It shows unstable behavior of hyperspherical models in high dimensions. The
surface area of a hypersphere for dimension m is defined as

Sm−1 =
2πm/2

Γ(m/2)
.

As S(m−1) → 0 as m → ∞, this leads to unstable behavior. Additionally different number
of landmarks leads to different shape resulting to different shapes for the same class/image.
However, this could be remedied using a conditional VAE and figuring out the optimal
number of landmarks for the most intuitive shape.

It is noteworthy that the shapes, i.e., the collection of landmarks, do not exclusively
contain information about shape in the common sense, but also includes variations in writing
style and line thickness. In that sense, it is not any different to hypershperical VAEs except
that our method is equivariant to rotations.

In future work, we intend to disentangle the representation in a pure shape component,
and a separate appearance component which could encode for style, texture etc. As such,
our method could provide the fundamentals for learning disentangled representations in
terms of shape-pose akin to classical active appearance models.

8. Conclusion

In this paper, we proposed a novel VAE framework that successfully learns consistent sym-
bols for equivalence classes of images, which disentangles pose from shape. In addition
to the interpretable nature of the latent space, KS-VAEs outperform both standard VAEs
as well as hyperspherical VAEs in terms of representational efficiency. This underpins the
efficiency in representing abstract concepts in the form of geometric symbols. Towards this
end, we presented a Kendall Shape-VAE framework for learning neural ideograms.
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