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ABSTRACT

How to promote the robustness of existing deep learning models is a challeng-
ing problem for many practical classification tasks. Recently, Distributionally
Robust Optimization (DRO) methods have shown promising potential to tackle
this problem. These methods aim to construct reliable models by minimizing the
worst-case risk within a local region (called “uncertainty set”) around the em-
pirical data distribution. However, conventional DRO methods tend to be overly
pessimistic, leading to certain discrepancy between the real data distribution and
the uncertainty set, which can degrade the classification performance. To address
this issue, we propose a manifold-based DRO method that takes the geometric
structure of training data into account for constructing the uncertainty set. Specif-
ically, our method employs a carefully designed “game” that integrates contrastive
learning with Jacobian regularization to capture the manifold structure, enabling
us to solve DRO problems constrained by the data manifold. By utilizing a novel
idea for approximating geodesic distance on manifolds, we also provide the the-
oretical guarantees for its robustness. Moreover, our proposed method is easy to
implement in practice. We conduct a set of experiments on several popular bench-
mark datasets, where the results demonstrate our advantages in terms of accuracy
and robustness.

1 INTRODUCTION

Neural network-based image classification methods have achieved significant success (He et al.,
2016), but the data shift issue is still a major obstacle that seriously affects their practical perfor-
mance (Wiles et al., 2022; Fang et al., 2020; Taori et al., 2020). Data distribution shift refers to the
situation that the training and testing data distributions have a certain degree of discrepancy, which
can lead to a decrease in the generalization of the model (Tang et al., 2021; Zhou et al., 2021; Lu
et al., 2020; Zhang et al., 2022). Real-world machine learning tasks often encounter such issues due
to various reasons, such as the changes of data sources (Koh et al., 2021; Lin et al., 2021) or the
process for data collection (Dragoi et al., 2022; García et al., 2015).

If we have sufficient prior knowledge to assume that, the real data distribution falls within an area
surrounding the training data (we denote this area as the “uncertainty set”), it could be possible to
enhance the performance by considering all possible data distributions within such an uncertainty
set. Namely, the goal is to promote the worst-case performance in this uncertainty set. This idea
is called “distributionally robust optimization (DRO)” (Rahimian & Mehrotra, 2019), which has
been used in many machine learning models to address distribution shift (Sagawa et al., 2020; Staib
& Jegelka, 2019; Samuel & Chechik, 2021). In particular, the DRO methods can also be imple-
mented on neural networks through the techniques like gradient flow (Wang et al., 2022), iterative
optimization (Sinha et al., 2018), and surrogate loss (Samuel & Chechik, 2021).

The uncertainty set of DRO is typically defined as the collection of distributions that lie within a
bounded distance from the empirical distribution of the training data. Common choices for mea-
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suring this distance include f -divergences (Duchi & Namkoong, 2021) and the Wasserstein dis-
tance (Gao et al., 2024; Li et al., 2019a). The Wasserstein distance is a popular metric for compar-
ing data distributions, which effectively captures pointwise distance information between samples,
making it well-suited for the tasks like pattern matching, style transfer, and handling distribution
shift (Li et al., 2019b; Ling & Okada, 2007). A formal definition of Wasserstein distance is provided
in Section 3. The DRO methods relying on Wasserstein distance are called “Wasserstein-based
DRO (WDRO)” (Mohajerin Esfahani et al., 2018).

DRO offers significant advantages in terms of generalization and robustness across various do-
mains (Gao et al., 2024; Huang et al., 2022; Wang et al., 2022). However, a major challenge in
implementing DRO lies in the design of an appropriate uncertainty set. An ideal uncertainty set
should effectively capture the underlying distributional uncertainty while can be easily integrated
into the formulation for optimization. Consider WDRO as an example, where we denote the train-
ing data by Ptr. The conventional WDRO approaches often define the following uncertainty set

U(Ptr, δ) = {Q ∈ P(Rd)|W(Q,Ptr) ≤ δ}, (1)

where P(Rd) is the set of all distributions in Rd,W(·, ·) indicates the Wasserstein distance function
and δ > 0 is a pre-specified range for uncertainty. This formulation implies that the uncertainty set
U(Ptr, δ) includes all distributions whose Wasserstein distance from Ptr is at most δ. However, we
are often confronted with a dilemma of setting δ. On the one hand, δ should be set large enough
to ensure robustness. On the other hand, a large δ can also lead to a reduced accuracy on real data,
as the uncertainty set U(Ptr, δ) could encompass unrealistic distributions that deviate significantly
from the true data-generating process.

Our intuition for addressing the above issue comes from the fact that realistic high-dimensional data
(e.g., images) typically locate nearby a low-dimensional manifold (Roweis & Saul, 2000; Tenen-
baum et al., 2000; Yang et al., 2024). In addition, we can utilize the powerful representational
capabilities of neural networks to capture the information from the underlying manifold (Chung
et al., 2016; Cohen et al., 2020). Under these observations, it is reasonable to assume that the data
is supported on a manifoldM, and we consider to construct a new uncertainty set as follows,

Ugw(Ptr, δ) = {Q ∈ P(M)|GW(Q,Ptr) ≤ δ)}, (2)

where GW(·, ·) represents the Geodesic Wasserstein distance (formally defined in Section 3), and
P(M) is the set of distributions supported on the manifold M. This uncertainty set Ugw(Ptr, δ)
defined in Eq.(2) enjoys two important benefits compared with U(Ptr, δ) defined in Eq.(1). First,
it restricts the distribution to locate nearby the data manifold, preventing the DRO algorithm from
being bothered by irrelevant points in the ambient space Rd. Please see an illustrative case in Fig-
ure (1a). Second, we consider the geodesic distance on the manifold, which offers a more precise
measure of the semantic distance between samples for classification (Criminisi et al., 2008; Wang
et al., 2017). To illustrate this, we consider a toy example shown in Figure (1b): the two samples
(images) “A” and “B” lying on the manifold M are not semantically similar, although they have
shorter pairwise Euclidean distance (compared with their geodesic distance).

However, solving the WDRO problem with the uncertainty set Ugw(Ptr, δ) presents significant chal-
lenges. The first challenge is due to the lack of neat representation for the manifold in neural net-
works; second, it is hard to add explicit constraints to the objective function to satisfy the uncertainty
set in WDRO. In this paper, we aim to develop an effective and easy-to-implement approach to tackle
these challenges, and our contributions are summarized below:

1. A novel WDRO model with manifold guided constraint. Our proposed model can effec-
tively identify the directions of semantic variation in the data manifold, where the key idea
relies on a carefully designed game between Contrastive Learning (CL) (Chen et al., 2020)
and Jacobian regularization in the training process. Intuitively, CL is used to encourage
the data to be updated along semantic-variant tangent directions of the manifold, while the
Jacobian regularization is for suppressing the updating direction orthogonal to the mani-
fold. Our training process equipped with such a game can help us to efficiently realize the
WDRO within the uncertainty set defined in Eq.(2).

2. An efficient algorithm for solving the WDRO model. We are aware of several WDRO
algorithms for neural networks, such as (Sinha et al., 2018; Bui et al., 2022), but they
are unable to be directly extended to the manifold constraints, to our best knowledge. To
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(a) (b)

Figure 1: (a) Real images typically reside on or nearby a manifold in the high-dimensional space,
whereas points far away from the manifold could be meaningless, such as random noise (as repre-
sented by the orange point). (b) 3D visualization for a part of the MNIST dataset (Deng, 2012) by
t-SNE (Van der Maaten & Hinton, 2008). The black curve and dashed line respectively represent
the geodesic and Euclidean distances between two images A (digit “1”) and B (digit “5”). Though
their geodesic distance is large, their Euclidean distance is relatively short. Obviously, the geodesic
distance can reveal their semantic difference more accurately.

efficiently capture the manifold information, we utilize the principal singular vectors for
approximating the desired tangent directions of the manifold. Another critical idea in our
algorithm is utilizing the accumulated optimization trajectory for estimating the geodesic
distance. Thanks to the strong concavity of the DRO’s dual form, we can guarantee the
robustness with this estimation in theory. Our algorithm is easy to implement, and the
experimental results illustrate its effectiveness for classification tasks on several benchmark
datasets.

1.1 RELATIONS TO OTHER DRO METHODS.

The works of (Staib & Jegelka, 2017; Sinha et al., 2018; Bui et al., 2022) are closely related to ours,
as they also use the dual form of WDRO to search for worst-case perturbations. However, these
approaches cannot be directly extended to manifold constraints. While they are effective against
adversarial attacks, their overly pessimistic nature can decrease performance on clean data. Another
approach is called “Group DRO” (Sagawa et al., 2020), which aims to optimize performance across
different demographic subgroups, addressing hidden biases and ensuring fairness. The method of f -
divergence DRO (Namkoong & Duchi, 2016; Duchi & Namkoong, 2021), considers the uncertainty
set within a certain f -divergence from the nominal distribution. Several studies tried to incorpo-
rate geometric information into the uncertainty set. Liu et al. (2022) used the shortest path over
a constructed graph as the geodesic distance to guide distribution density transportation. Qiao &
Peng (2023) calculated group centrality based on the affinity between data groups, serving as a good
nominal distribution for group DRO. A full introduction of related works is placed in Appendix A.2.

2 PRELIMINARIES

Notations. Let “Ptr” represent the input set of n labeled data items (x1, y1), · · · , (xn, yn). For each
1 ≤ i ≤ n, xi belongs to the input spaceX ⊂ Rd and yi belongs to the label space Y = {1, · · · , C},
with C being the number of classes. In this paper, we interchangeably use pi and (xi, yi) to denote
the i-th sample point in Ptr. The Euclidean and Frobenius norms are denoted by || · || and || · ||F ,
respectively. We assume Ptr lies near a low-dimensional manifold M in Rd; P(M) denotes the
collection of distributions supported on the manifoldM. For any point x ∈M, TM(x) denotes the
tangent space ofM at x, which comprises all the tangent vectors at x.

Our neural network is denoted as Γ = h ◦ g, where g(·) : X → E is the encoder, h(·) : E → Y
is the classification head and E is the feature space. The network Γ is parameterized by a vector
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θ ∈ Θ, where Θ is the parameter space. We denote the empirical loss as

L(θ, Ptr) =

n∑
i=1

ℓ(θ, pi), (3)

where ℓ(θ, pi) represents the induced loss of the prediction Γ(θ, pi). We are aware of several existing
works that focus on the learned manifolds in “feature space” (LEE et al., 2022; Ma et al., 2023).
But it is worth noting that the manifold studied in our current work is about the “data space”. To
emphasize this distinction, we refer to the manifolds where x and g(x) reside as the data manifold
and the representation manifold, respectively.

Roughly speaking, a manifold is a space where each local area around a point is homeomorphic to a
lower dimensional Euclidean space. We refer readers to the recent textbook (Boumal, 2023) for the
formal definition of manifold. Given two points on a manifold, their geodesic is the curve between
them on the manifold that locally minimizes the path length, and the length of the shortest curve is
called the geodesic distance, which is denoted as dg(·, ·). We also need the following two assump-
tions forM, which are both commonly adopted for optimization problems on manifold (Boumal,
2023).

Assumption 1 M is a complete manifold embedded in an Euclidean space.

Due to the space limit, we leave more explanations on the rationale of Assumption 1 in Section A.1.
Before stating the second assumption, we introduce two important definitions.

Definition 1 (Exponential map (Zhang & Sra, 2016)) Given a point p ∈ M and a vector v ∈
TM(p), let γ : [0, 1] → M be the geodesic trajectory starting from p, satisfying γ(0) = p and
γ′(0) = v with the uniform velocity ∥v∥. We use q := Expp(v) to denote the endpoint γ(1), which
is called the exponential map at (p,v).

The following Definition 2 generalizes the concepts of µ-strongly convexity and β-smoothness from
Euclidean space to manifold.

Definition 2 (Geodesically µ-strongly convex and β-smooth) We say a function f : M → R is
geodesically µ-strongly convex if for any given x ∈ M,v ∈ TM(x), t ∈ [0, 1], the inequality
f (Expx(tv)) ≥ f(x) + t⟨∇Mf(x),v⟩ + t2 µ

2 ∥v∥
2 holds. Furthermore, we say f is geodesically

β-smooth if for any given x ∈ M,v ∈ TM(x), t ∈ [0, 1], the inequality f (Expx(tv)) ≤ f(x) +

t⟨∇Mf(x),v⟩+ t2 β
2 ∥v∥

2 holds.

In this definition, “∇M (f(x))” represents the Riemannian gradient of f at x, a tangent vector in
TM(x) indicating the steepest ascent direction in function value. Under Assumption 1, it equals the
orthogonal projection of the “classical” gradient to the tangent spaces TM(x) (Boumal, 2023). i.e.
∇Mf(x) = Projx (∇f(x)), where the Projx(·) is the orthogonal projection operator that projects
a vector to the tangent space TM(x) and ∇(f(x)) is the gradient in Euclidean space Rd.

Assumption 2 For any θ ∈ Θ, the loss function ℓ(θ,x) is geodesically β-smooth w.r.t. any x ∈M.

3 OUR FORMULATION: MANIFOLD-BASED WDRO

We name our model using the uncertainty set (2) as Manifold-based WDRO (MWDRO), which relies
on a new concept called “geodesic Wasserstein distance”. Given two distributions P and Q, the
standard Wasserstein distance measures the optimal transportation cost between them (Peyré et al.,
2019; Villani, 2009). Following that, we define the geodesic Wasserstein distance, where we use the
geodesic distance to measure the pairwise distance between points on the manifoldM:

GW(Q,P ) =

(
inf

π∈Π(Q,P )

∫
M×M

d2g(p, q)dπ (q, p)

) 1
2

, (4)

where the Π(Q,P ) represents the collection of all possible joint distributions combining Q and P
as their marginal distributions. GW(Q,P ) indicates the minimum cost required to transport one
distribution into another under the geodesic distance dg.
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As mentioned before, our objective is to achieve the distributionally robust optimization over the un-
certainty set Ugw(Ptr, δ), as shown in Eq.(2). To realize this goal, we optimize θ ∈ Θ by minimizing
the following MWDRO loss to replace the vanilla empirical loss L(θ, Ptr):

Lδ
DR(θ, Ptr) = supQ∈Ugw(Ptr,δ) {Eq∈Q[ℓ(θ, q)]} . (5)

The above formulation is intractable because it needs to consider continuous distributions within the
uncertainty set under Wasserstein distance; as discussed in (Gao & Kleywegt, 2023), such a WDRO
model involving continuous distributions is an infinite-dimensional optimization problem. Although
a number of theoretical works have been proposed for developing tractable formulations for DRO
problems (Esfahani & Kuhn, 2015; Shafieezadeh Abadeh et al., 2015; Mohajerin Esfahani et al.,
2018; Postek et al., 2016; Lee & Mehrotra, 2015; Hanasusanto & Kuhn, 2018), these methods are
not applicable to our case due to the manifold constraint. To solve the problem Eq.(5), we adopt
the strongly duality property proposed in (Gao & Kleywegt, 2023, Theorem 1) to obtain the dual
form (as Proposition 1 below), and then design our approach with several new ideas relying on this
dual form. Note that their original article considers the general metric space rather than manifold.
Because the geodesic distance also forms a metric on the manifold, we can derive the strong dual
reformulation for Eq.(5) (see Section A.1).

Proposition 1 For a given θ and the data distribution shift threshold δ > 0, the “worst-case” loss
in Eq.(5) can be reformulated as

Lδ
DR(θ, Ptr) = min

ν≥0

{
νδ2 + EPtr

ℓs(θ, pi, ν)
}
, (6)

where ℓs(θ, pi, ν) := sup
q∈M

[
ℓ(θ, q)− νd2g(q, pi)

]
. (7)

Remark 1 Eq.(6) is the dual form of Eq.(5), that is, the optimal value of Eq.(6) is also the optimal
value of Eq.(5). A benefit of such reformulation is that we can ignore the complicated uncertainty
set Ugw(Ptr, δ). Instead, we only add a surrogate loss EPtr

ℓs(θ, pi, ν) to the Eq.(6), which yields
a more succinct formulation for optimizing the problem. However, there are still several significant
challenges remaining unsolved, e.g., the feasible domain is confined to the manifold M. We will
elaborate on the details for solving this new formulation in Section 4.

4 OUR APPROACH FOR SOLVING MWDRO

For ease of understanding, we present an overview of our approach in Section 4.1, showing how to
incorporate the (approximate) manifold constraint into the training process. Next, we offer a detailed
analysis on the manifold-guided game in Section 4.2, explaining why this game can effectively
encodes the manifold’s tangent into our model. Finally, we outline our MWDRO algorithm in
Section 4.3, together with the theoretical quality guarantees.

4.1 THE OVERVIEW OF OUR APPROACH

We adopt the dual formulation from Proposition 1 as the objective function in our model. However,
a major challenge for solving the objective function arises from the surrogate loss in Eq.(7), as it is
difficult to find the supremum within a manifold (which is a non-convex region in high dimensional
space). To solve this optimization problem on the manifold, we require the Riemannian gradient,
which is the orthogonal projection of the “classical” gradient onto the tangent spaces (Boumal,
2023), i.e., ∇Mf(x) = Projx (∇f(x)) as shown in our preliminaries. The central problem, there-
fore, reduces to recovering the tangent space TM(x) for any data point x ∈M. However, obtaining
the tangent space on the data manifold is not an easy job, as the manifold lacks a closed-form repre-
sentation. Our idea for addressing this issue comes from the fact that neural networks usually have
powerful representation abilities, especially for encoding manifold information (Bronstein et al.,
2021; Hu et al., 2023). This motivates us to ask the following question:

Can neural networks also be used to extract the tangent space of a data manifold?

High-level idea. We should emphasize that the learned representation for manifold from neural
networks is not sufficient for extracting tangent space, as demonstrated experimentally in Figure 11
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(Appendix G). A key part of our approach is based on a manifold-guided game for minimizing
a Contrastive Learning (CL) loss (Chen et al., 2020) and a Jacobian regularization term. Roughly
speaking, a CL loss is used for amplifying the differences between samples with distinct semantics in
the feature space; on the other hand, a Jacobian regularization term tries to suppress the differences
in the feature space for preserving the manifold constraint (if we do not have such suppression,
the updating direction could seriously deviate from the manifold). The combination of these two
components enables the encoder g(·) to remain sensitive to variations along the manifold while
insensitive to other directions (a fine-grained analysis is provided in Section 4.2). As a result,
the Jacobian matrix Jg(x) aligns its principal singular vectors with (part of) the manifold’s tan-
gent space. This alignment implicitly encodes the data manifold’s structure and facilitates effective
manifold optimization for MWDRO, as detailed in Section 4.3.

Formally, we introduce the loss for our manifold-guided game:

L∗(θ) = LInfoNCE + λ1Ex∈Ptr
∥Jg(x)∥2F , (8)

where the term LInfoNCE is the objective function of CL (that will be explained latter) and the term
Jg(x) :=

∂xg(θ,x)
∂x is the Jacobian matrix of the encoder g(·) w.r.t. the sample x. The LInfoNCE and

the Jacobian regularization terms are balanced by the coefficient λ1 > 0.

For completeness, we provide more details on the popular self-supervised method CL. For each xi ∈
Ptr, we denote its two randomly generated copies as x′

i,x
′′
i via some random semantic-preserving

augmentation operation (such as cropping or rotating the image). Let P ′
tr = {x′

1, · · · ,x′
n} and

P ′′
tr = {x′′

1 , · · · ,x′′
n}. Given any 1 ≤ i ̸= j ≤ n, we say the couple (x′

i,x
′′
i ) is a “positive pair”,

and the couples (x′
i,x

′
j) and (x′

i,x
′′
j ) are “negative pairs”. The main idea of CL is to align represen-

tations of positive pairs closer, while diversify representations of negative pairs (Tian et al., 2020;
Wang & Isola, 2020; Xue et al., 2022). The Information Noise-Contrastive Estimation (InfoNCE)
loss is a commonly used formulation in CL models (Chen et al., 2020; He et al., 2020):

LInfoNCE = Ei∈[n] [ℓcl(xi)] ,

where ℓcl (xi) = − log
exp (sim (g(x′

i),g(x
′′
i )) /τ)∑

x∈P ′
tr∪P ′′

tr\{x′
i,x

′′
i } exp (sim (g (x′

i) ,g(x)) /τ)
, (9)

τ > 0 is a scalar temperature hyperparameter, and sim(u,v) = u⊤v/∥u∥∥v∥ is the cosine simi-
larity. Intuitively, the InfoNCE loss tends to bring g (x′

i) and g (x′′
i ) to be closer, and meanwhile

repulse g (x′
i) and g (x).

4.2 FINE-GRAINED ANALYSIS ON THE MANIFOLD-GUIDED GAME

In this section, we explain why our proposed method in Section 4.1 can effectively encode the
tangent information of the data manifold into our model. More specifically, what is the advantage of
combining the CL and Jacobian regularization term in our training method, as proposed in Eq.(8)?

To begin our analysis, we need to define some notations. For each data sample x ∈ M, we define
the region containing all the augmentations of x (such as cropping or rotating in CL) onM as the
Semantic-Invariant region “MSI(x)”. We also denote M⊥ := Rd \ M as the Out-of-Manifold
region. Consider the singular value decomposition (SVD) of Jg(x) = U(x)Σ(x)V⊤(x), where
the rank of Jg(x) is r > 0, the diagonal matrix Σ(x) = diag(σ1(x), · · · , σr(x)), and the right
singular vectors of V(x) contains {v1(x), · · · ,vr(x)} (these r vectors form an orthonormal basis).
Given a threshold τ0 > 0, we define the subspace spanned by the principal singular vectors of the
Jacobian as:

Tappr(x, τ0) =
{∑

i∈I
aivi(x) | ai ∈ R

}
,where I = {i | σi(x) ≥ τ0, 1 ≤ i ≤ r} . (10)

In Eq.(10), we truncate the small singular values less than τ0.

Why the game helps to extract tangent information? Due to the loss defined in Eq.(9), the train-
ing process of CL encourages the extracted features of x′

i,x
′′
i ∈MSI(x) to be close, while keeping

the features of negative pairs distinct. Simultaneously, it is known that the Jacobian regulariza-
tion suppresses the feature variations for perturbations of x across all directions (including both the
directions tangent and normal to the manifold) (Ross & Doshi-Velez, 2018). Therefore, we can re-
gard these two objectives as two players in a game: the CL loss preserves feature variations along
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the tangents apart from the Semantic-Invariant region MSI(x), so as to defend against the sup-
pression from the Jacobian regularization. In other words, the manifold-guided game between CL
and Jacobian regularization encourages the space spanned by the Jacobian’s principal singular vec-
tors (truncated by τ0), i.e., Tappr(x, τ0), to approximately align with directions within the tangent
space that induce semantic changes. Therefore, Tappr(x, τ0) serves as an effective approximation
of a subset of the tangent TM(x), specifically capturing directions of significant semantic variation
within TM(x). As we will see later in Section 4.3, Tappr(x, τ0) can be utilized to approximate the
computation of the Riemannian gradient.

Experimental verification. In the above analysis, we assume that Tappr(x, τ0) is a subspace of
the tangent TM(x). We explain the rationale of this assumption here. According to the property
of manifold, a tangent plane characterizes the vicinity of a point on the manifold by a local linear
approximation. Similarly, the Jacobian matrix Jg(x), which contains the partial derivatives of the
features w.r.t. the input data, provides a linear approximation that captures how the feature g(·)
responds to input variations. Under our proposed manifold-guided game, Tappr(x, τ0) represents a
subspace of the tangent TM(x) corresponding to semantic changes. Based on the low-dimensional
manifold assumption, the dimension of Tappr(x, τ0) should be significantly smaller than d, indi-
cating a low-rank structure of the Jacobian. In Figure 2, we plot the cumulative percentage of the
singular values for the Jacobian matrix of the models trained on CIFAR-10/100. We can see that
even a small number of top singular vectors can approximate the Jacobian Jg(x) quite well. For
instance, in CIFAR-10 the cumulative percentage of the top five singular vectors already take over
95% of the sum of all singular values. This concentration of singular values enables us to compute
Tappr(x, τ0) with greater accuracy and efficiency (see Appendix E).

To see the benefit of using our designed game, we compare it with other models in Figure 2. Our
model’s cumulative percentage curve shows the steepest increase at the early stage. This suggests
that we have effectively suppressed the encoder g(·)’s sensitivity to data variations across most di-
rections. We can reasonably assume that the space spanned by the remaining primary singular vec-
tors aligns with directions of semantic variation within the data manifold’s tangent. This alignment
facilitates the solving of MWDRO, as detailed in Section 4.3.
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Figure 2: Cumulative percentage of variance of the Jacobian for different models trained on CIFAR-
10 and CIFAR-100 using ResNet-18, respectively. The cumulative percentage of variance for the
first k singular values is calculated as

∑k
i=1 σi(x)∑r
i=1 σi(x)

. The red line represents our model as described
in Eq.(8). The blue line represents the Auto-Encoder model with Jacobian regularization (Jac+AE),
and the green line represents the CL model with Dropout and L2 regularizer (Dropout+L2).

Remark 2 We also highlight several additional benefits of our proposed manifold-guided game
from a representation learning perspective. By analyzing the characteristics of the encoder g(·), we
show that it is possible to further enhance our approach for capturing a smoother manifold. Due to
the space limit, please refer to Appendix B for the detailed discussion.

4.3 THE ALGORITHM VIA THE MANIFOLD-GUIDED GAME

In this section, we provide our algorithm to solve the MWDRO problem by minimizing Eq.(6) based
on our analysis in Section 4.2. We minimize the MWDRO loss Eq.(6) with the constraint from
the manifold-guided game Eq.(8), to keep the manifold’s tangents being encoded into our model
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effectively in the training process, i.e.,

minθ Lδ
DR(θ, Ptr), s.t. L∗(θ) ≤ ϵ0, (11)

where ϵ0 > 0 is a pre-specified threshold. We convert the problem (11) into an unconstrained
optimization problem by Lagrange duality (Boyd et al., 2004) with λ2 > 0 controlling the magnitude
of regularization:

minθ Lδ
DR(θ, Ptr) + λ2L∗(θ). (12)

Sketch of Algorithm 1. Our MWDRO approach contains two stages. In the first stage, we train
the encoder g(·) by minimizing the manifold-guided loss in Eq.(8). The goal is to ensure g(·) can
yield sufficiently good approximate tangent Tappr(x, τ0) for each data sample x, which is later used
for Riemannian optimization to solve the surrogate loss. In the second stage, we optimize Eq.(12)
by stochastic gradient descent algorithm. A key part of Algorithm 1 is to compute the “worst-case”
distribution in each iteration, which is implemented by Algorithm 2. Roughly speaking, Algorithm 2
employs the Riemannian gradient ascent to approach the worst-case distribution. It is worth noting
that the performance of Algorithm 2 heavily relies on the tangent plane provided by the encoder
g(·), and this is also the reason that we add the constraint “L∗(θ) ≤ ϵ0” in problem (11).

Algorithm 1 Distributional Robust in Data ManifoldM
Input: training set Ptr = {(xi, yi)}ni=1, a constant ν, step size sequence {αj > 0}Nj=0 .
Output: the final parameter θN+1.

1: Train g(·) to minimize L∗(θ) in Eq.(8). /* The first stage. Training for N0 epochs. */
2: for j = 1, 2, · · · , N do
3: Take a sample from Ptr uniformly at random, which is denoted as pij , and compute a new

point p̂ij ← Evolve({pij},g(·), ν); /* {p′i1 , p
′
i2
, · · · , p′iN } returned by the Evolve function

(Algorithm 2) is an approximation of the “worst case” distribution. */
4: θj+1 ← θj − αj∇θ

(
ℓ(θj , p̂ij )− λ2

(
ℓcl (pij ) + λ1∥Jg(pij )∥2F

))
; /* Objective Eq.(12). */

5: end for/* The second stage. */

To deal with the objective function Lδ
DR(θ, Ptr) = minν≥0

{
νδ2 + EPtr

ℓs(θ, pi, ν)
}

in Eq.(12),
we do not explicitly set the radius δ for the uncertainty set Ugw(Ptr, δ) in Eq.(2). Instead, we
select a ν > 0 to solve the empirical surrogate loss EPtr [ℓs(θ, pi, ν)] rather than prescribing the
robust range δ; this approach, initially proposed by Sinha et al. (2018), has been shown to ensure
certified distributional robustness. However, we cannot directly apply their method due to the lack of
algorithmic tools for dealing with the manifold constraint. Thanks to our constructed approximate
tangent Tappr(x, τ0) in Section 4.2, we can approximate the “worst case” distribution by performing
gradient ascent on the manifold. This process is detailed in Algorithm 2. In the algorithm, we fix
a ν > 0 in Eq.(7), transforming it into a geodesically strongly concave maximization problem.
We iteratively approach the optimal “q” through Riemannian gradient ascent on M: generating a
sequence {q0 = q, q1, · · · , qt, qt+1, · · · }. Let ûqt,q denote the unit vector representing the initial
direction of the geodesic from point qt to point q on the manifold. Following optimization theory on
manifold (Boumal, 2023), we update with a step size α > 0 as follows:

qt+1 = Expqt
(
α∇M (

ℓ(θ, qt)− νd2g(q
t, q)

))
= Expqt

(
αProjqt

(
∇ℓ(θ, qt)

)
− 2ανdg(q

t, q)ûqt,q

)
(13)

Approximation for the geodesic distance. A challenge to solve Eq.(13) is how to estimate the
geodesic distance d2g(q

0, qt). We propose an effective approximation technique for the geodesic dis-
tance dg(q0, qt). Specifically, we approximate dg(q0, qt) using the accumulated optimization trajec-
tory length ptt :=

∑t−1
s=0 ∥α ·gradt∥ in the Step 4 of Algorithm 2. Consequently, we can efficiently

update the worst-case distribution as the Step 2 and 3 of Algorithm 2. Under mild smoothness as-
sumptions, which typically hold for neural networks, we establish the quality of this approximation
in Lemma 1.

Lemma 1 Under Assumption 1 and 2, we fix a constant ν > β to set up Algorithm 2 (recall β is
the smoothness parameter in Assumption 1). Let q∗ denote the optimal solution. Then, Algorithm 2
converges linearly; and for any t > 0, the following inequality holds: ptt ≤ pt∞ ≤

√
κ(
√
κ +√

κ− 1)2dg(q
0, q∗), where κ = ν+β

ν−β .
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Algorithm 2 Evolve(Ξ,g(·), ν)
Input: A sample q, a constant ν and the encoder g(·).
Output: qt+1.

for t = 1, 2, · · · , until convergence do
1. initialize the “potential” for q: pt0 = 0; /* Using “potential” for approximating the geodesic
distance. */
2. gradt = Projqt

(
∇ql(θ, q

t)
)
− 2νptt · ûqt,q

3. qt+1 = Expqt(α · gradt); /* Conduct the gradient ascent on the manifold. */
4. ptt+1 = ptt + ∥α · gradt∥2;

end for

Lemma 1 implies that we can utilize the accumulated step size to approximate the geodesic distance.
This approximation plays a key role in Theorem 1, which establishes the robustness guarantee under
our geodesic distance approximation. The proofs are deferred to Appendix D.

Theorem 1 Suppose Assumption 1 and 2 hold. We select an ν > β in the surrogate loss (Eq.(7)),
and define κ as in Lemma 1. Using the accumulated step size to approximate the geodesic dis-
tance, let θ̂ be the optimal solution of the dual formulation under this approximation. Then
EPtrℓs(θ̂, pi, ν) ≤ c′′ ×minθ EPtrℓs(θ, pi, ν), where c′′ = κ2(

√
κ+
√
κ− 1)4.

Remark 3 As an example, if we set ν ≥ 17β, the result of Theorem 1 indicates that
EPtr

ℓs(θ̂, pi, ν) ≤ 5.1 × minθ EPtr
ℓs(θ, pi, ν). It is also worth noting that a smaller β implies

a larger range for setting the parameter ν, as we require ν > β in Theorem 1. The dependence of
WDRO methods on the smoothness of the loss function has also been discussed in previous works.
For instance, Sinha et al. (2018) showed that β is typically small for neural networks. In Section D.1,
we further explore the value of β and reveal an interesting result: Jacobian regularization is also
beneficial for smaller β.

Algorithm 2 solves the surrogate loss using Riemannian gradient ascent. As introduced in Section 3
and Section 4.1, the Riemannian gradient can be formulated as: ∇Mℓ(θ,x) = Projx (∇xℓ(θ,x)),
where Projx denotes the projection of the Euclidean gradient onto the tangent space TM(x). How-
ever, this exact projection is not directly computable due to the lack of analytical formula for the
tangent TM(x). To overcome this, as shown in Section 4.2, we approximate the tangent information
using Tappr(x, τ0) by the manifold-guided game. Specifically, We approximate the Riemannian gra-
dient as ∇̂Mℓ(θ,x) := Projτ0appr(∇ℓ(θ,x)), where the Projτ0appr(·) is the orthogonal projection op-
erator that projects the Euclidean gradient∇xℓ(θ,x) to the plane Tappr(x, τ0). In our problem, the
loss function ℓ(θ,x) is a composition of functions involving the encoder g(·). This structure enables
us to provide theoretical guarantees regarding the quality of the approximation Projτ0appr(∇ℓ(θ,x)).
Informally, under the assumption that Tappr(x, τ0) ⊆ TM(x) (we analyzed the rationale behind this

assumption in Section 4.2), the error of our approximation
∥∥∥∇Mℓ(θ,x)− ∇̂Mℓ(θ,x)

∥∥∥ is bounded
by O(τ0) (due to space limit, we defer the formal statement to Theorem 2 in Appendix C).

Other implementation details for the Algorithm 2. We replace the exponential map operation
Expqt(·) in Step 3 of Algorithm 2 with a retraction operation, i.e., qt+1 = qt+α ·gradt, which is a
widely used in manifold-based algorithms (Bécigneul & Ganea, 2019). Further implementation de-
tails, including efficient strategies for applying Jacobian regularization and computing the subspace
Tappr(x, τ0), are discussed in Appendix E.

5 EXPERIMENTS

We conduct a series of experiments across several scenarios to evaluate our proposed method.
Specifically, we test it on three typical distribution shift tasks: dealing with noisy data, attacked
data and imbalanced data. All experiments are implemented with PyTorch on a single NVIDIA
RTX 6000 Ada. In our experimental setup, we set the hyperparameters λ1 = 0.01 and λ2 = 1 in
Eq.(8) and Eq.(12) respectively to configure the algorithm, unless otherwise specified.
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Figure 3: Robustness evaluation under Gaussian white noise perturbations. The x-axis represents
the variance of the Gaussian noise, ranging from 0 to 1 (the input data has been normalized). The
results indicate that MWDRO enhances robustness across four datasets compared to baselines.

Basic Evaluation on Noisy Data. We test our model MWDRO against natural image corruptions
by adding Gaussian white noise to images. We use CIFAR-10/100 (Krizhevsky et al., 2012), Tiny-
ImageNet-200 (Krizhevsky et al., 2017), and a medical imaging dataset BuS (Mo et al., 2023) for
image classification. Our model is compared with DropOut+L2 (He et al., 2016), WDRO (Sinha
et al., 2018), KL-DRO (Levy et al., 2020), and Randomized Smoothing (Cohen et al., 2019). Fig-
ure 3 demonstrates that our MWDRO method significantly enhances robustness compared to other
methods.

Further Evaluation on Distributional Shift Scenarios. We conduct additional evaluations on
two typical distributional shift scenarios, detailed in Appendix F. Specifically, we conduct assess-
ments of our model’s resilience against adversarial attacks using the CIFAR-10, CIFAR-100, and
Tiny-ImageNet-200 datasets. Additionally, we evaluate the effectiveness of our proposed method on
long-tailed benchmark datasets to test performance under naturally imbalanced data distributions.

Other Experiments. In Appendix F.5, we compare the running time with the standard WDRO
(which does not consider the data manifold) and other adversarial training algorithms. While our
algorithm requires more time, we achieve better performance on accuracy. We conduct other abla-
tion studies in Appendix F.6 to analyze the effectiveness of the combination of the manifold-guided
game and the MWDRO method.

6 CONCLUSION AND FUTURE WORK

This paper introduces a novel manifold-based WDRO method to enhance the robustness of image
classification. We design a game that integrates contrastive learning with Jacobian regularization to
capture the manifold structure, allowing us to solve DRO problems constrained by the data manifold.
Experiments on several popular benchmark datasets demonstrate the method’s advantages in terms
of accuracy and robustness. Additionally, our manifold-based model could potentially serve as a
framework for other scenarios that require access to the tangent of the data manifold, extending
beyond the MWDRO problem. This is an interesting avenue for future research.
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A APPENDIX

A.1 BACKGROUNDS

In this section, we provide some background on the manifold. For more detailed information, we
refer readers to the comprehensive textbook by Boumal (2023).

Assumption 1 states that the manifold is a complete manifold embedded in a Euclidean space. This
assumption ensures that the manifold’s geometric properties are well-suited for optimization tasks.
Roughly speaking, a complete manifold implies that every geodesic can be extended infinitely, pre-
venting the optimization process from encountering boundaries or undefined regions that could dis-
rupt convergence.

Moreover, we assume that the manifoldM is embedded in a Euclidean space Rd, meaning it inherits
a well-defined metric from the ambient space Rd. This allows us to define geodesic distances, per-
form projections, and compute gradients in a manner that is consistent with the underlying geometry
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of the ambient Euclidean space. Such an embedded manifold also simplifies many computational
tasks, such as the calculation of the Riemannian gradient. Specifically, the Riemannian gradient
∇M (f(x)) can be computed by the orthogonal projection of the “classical” gradient to the tangent
spaces TM(x). i.e., ∇Mf(x) = Projx (∇f(x)), where the Projx(·) is the orthogonal projection
operator that projects a vector to the tangent space TM(x) and∇(f(x)) is the gradient in Euclidean
space Rd.

For the mathematical rigor, we briefly verify that the prerequisites of Gao & Kleywegt (2023, The-
orem 1) are satisfied within our framework, as defined in Eq.(5), by examining the properties of the
manifoldM. By equippingM with the geodesic distance, we can verify that it is a Polish space
(i.e., a separable and complete metric space). Also, the space of Borel probability measures onM is
well-defined. Additionally, the mild Assumption 4 in Appendix C ensures the continuity of our loss
function ℓ(θ, p). These properties allow us to safely apply Gao & Kleywegt (2023)’s strong duality
results within our manifold-based WDRO framework, as formalized in Proposition 1.

A.2 OTHER RELATED WORKS

More DRO methods. DRO demonstrate demonstrate significant advantages in terms of general-
ization and robustness across multiple domains (Gao et al., 2024; Huang et al., 2022; Wang et al.,
2022). The works by (Staib & Jegelka, 2017; Sinha et al., 2018; Bui et al., 2022) are closely related
to ours, as they also use the dual form of Wasserstein Distributionally Robust Optimization (DRO)
to search for worst-case perturbations. However, these approaches cannot extend directly to mani-
fold constraints; while they are effective against adversarial attacks, their overly pessimistic nature
can decrease performance on clean data. Another line of works considers the Group DRO (Sagawa
et al., 2020), which aims to optimize performance across different demographic subgroups, address-
ing hidden biases and ensuring fairness. f -divergence DRO (Namkoong & Duchi, 2016; Duchi &
Namkoong, 2021), on the other hand, considers an uncertainty set within a certain f -divergence
from the nominal distribution. Unlike Wasserstein distance, f -divergence measures the dissimilar-
ity in terms of densities at corresponding points, and becomes infinite when two distributions have
different support sets. This intrinsic difference allows conventional WDRO to extend the training
support, while f -divergence cannot (Liu et al., 2022). Several studies attempt to incorporate geo-
metric information into the uncertainty set. Qiao & Peng (2023) calculate group centrality based on
the affinity between data groups, serving as a good nominal distribution for group DRO. Liu et al.
(2022) employ a k-nearest neighbor graph structure to capture the geometric structure of the dataset,
where shortest paths approximate geodesic distances to guide the transportation of probability mass.
Their Geometric Wasserstein DRO framework constrains the distribution support set to observed
data points. In contrast, our approach learns the data manifold structure through neural networks.
This continuous, differentiable representation offers several advantages: it captures smooth geomet-
ric variations in the data manifold rather than relying on discrete graph approximations; furthermore,
it naturally accommodates out-of-sample points, which enables more flexible adaptation to unseen
data.

Other related robustness methods. Importance weighting (IW) has emerged as a powerful fam-
ily of methods for addressing distribution shift in machine learning (Byrd & Lipton, 2019; Kimura
& Hino, 2024). Several advancements have extended IW techniques for tackling various challenges.
For instance, Shu et al. (2019) developed a meta-learning framework that learns an explicit weight-
ing function to handle biased training data, such as label noise and class imbalance, by leveraging a
small unbiased validation set. Fang et al. (2020) proposed an end-to-end framework that seamlessly
integrates weight estimation and weighted classification through an iterative process. More recently,
Fang et al. (2023) introduced generalized importance weighting (GIW), which extends traditional
IW methods to handle various types of distribution shift, including challenging scenarios where the
training and test distributions have different support sets. Jacobian regularization has been used
to enhance robustness against small perturbations, such as noisy or adversarial data (Jakubovitz &
Giryes, 2018; Hoffman et al., 2019). Jakubovitz & Giryes (2018) empirically demonstrated that it
enhances robustness with minimal impact on the network’s accuracy on clean data. Hoffman et al.
(2019) proposed a computationally efficient implementation of Jacobian regularization. Further-
more, Rifai et al. (2011a;c) applied Jacobian regularization to autoencoders to learn representations
that capture the local directions of variation dictated by the data, thereby improving the accuracy of
classification tasks.
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Contrastive learning methods. Contrastive learning is a powerful self-supervised learning
paradigm that has significantly advanced representation learning (Wang & Isola, 2020; Xue et al.,
2022; Chen et al., 2020; He et al., 2020). Khosla et al. (2020) introduced the supervised contrastive
loss, achieving superior performance compared to cross-entropy on several tasks. However, the
theoretical understanding of contrastive learning (CL) remains limited. Some works interpret the
InfoNCE loss from a mutual information perspective (Bachman et al., 2019; Sordoni et al., 2021),
showing it maximizes mutual information between different views of the data. Other studies (Wang
& Isola, 2020; Huang et al., 2023) analyze the geometry of the embedding space, revealing that
InfoNCE comprises two parts: one ensuring alignment and the other preventing representation col-
lapse. Additionally, CL’s feature embedding has been linked to spectral clustering (Balestriero &
LeCun, 2022) and manifold learning (Hu et al., 2023).

B MANIFOLD LEARNING PERSPECTIVE OF CONTRASTIVE LEARNING

In this section, we explore our proposed manifold-guided game through the lens of manifold learning
and representation learning. By introducing important properties from contrastive learning, we ana-
lyze how our model effectively captures the structure of the data manifold, providing deeper insights
into our approach. In Appendix B.1, we introduce several properties commonly discussed in the con-
trastive learning literature. These properties will aid in analyzing the effects of our manifold-guided
approach, which we consider to be a complement to Section 4.2. Furthermore, in Appendix B.2,
we show that the Jacobian regularization can enhance contrastive learning by preserving neighbour
relationships within the input data, which benefits classification tasks. Building upon this observa-
tion, we refine our model to learn smoother manifolds, further improving its ability to capture the
structure of the data manifold.

B.1 PROPERTIES OF THE CONTRASTIVE LEARNING

A number of manifold learning methods, such as t-SNE (Van der Maaten & Hinton, 2008),
UMAP (Damrich et al., 2023), and Isomap (Balestriero & LeCun, 2022), are based on the neighbour
embedding techniques. These methods aim to preserve essential structural information from high-
dimensional data in a low-dimensional embedding space. This is achieved by learning a mapping
that encodes data points from high-dimensional space into a low-dimensional space, ensuring that
data points that are neighbors in the original space remain closely situated in the embedding space.
Specifically, given a set of points {x1, · · · ,xn} and an encoder g(·), we define the input/embedding
affinity matrices A,B ∈ Rn×n, (i) input space affinity: Ai,j denote the affinity between the sam-
ples xi and xj in the original high-dimensional space; (ii) embedding affinity: Bi,j is the affinity
computed in the embedding space between g(xi) and g(xj). Then the affinity-preserving entropy is
given byLaffinity(g) = −

∑
i ̸=j Ai,j log (Bi,j), which quantifies how well the embedding preserves

the pairwise affinities of the original data.

Definition 3 (Neighbor-preserving property) Let A denote the input space affinity matrix based
on a k-nearest neighbor graph G constructed from the input data. Specifically, Ai,j =
I ((i, j) ∈ G) /|G|, where I is the indicator function and |G| is the total number of edges in
the graph. The embedding affinity matrix B is computed using the Cauchy kernel: Bi,j =

1
|g(xi)−g(xj)|22+1

. An encoder g(·) is called neighbor-preserving if it minimizes the affinity-
preserving entropy Laffinity(g).

The affinity matrices described in Definition 3 are, in fact, the same as those used in the Stochas-
tic Neighbor Embedding (SNE) (Hu et al., 2023) method. Similarly, contrastive learning can be
interpreted as a special case that also minimizes the affinity-preserving entropy, but with different
choices for the affinity matrices. We define these affinities as:

Ai,j =

{
1, if xi and xj are positive pairs
0, otherwise,

(14)

Bi,j =
exp (sim (f (xi) , f (xj)) /τ)∑
k ̸=i exp (sim (f (xi) , f (xk)) /τ)

, (15)
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where sim(·, ·) denotes a similarity measure (e.g., cosine similarity), and τ is a temperature pa-
rameter. With these choices, the affinity-preserving entropy Laffinity(g) = −

∑
i ̸=j Ai,j log (Bi,j)

reduces to the InfoNCE loss in Eq.(9).

By the choice of the input/embedding affinity in Eq.(14)/(15), experimental and theoretical results
in prior works (Wang & Isola, 2020; Hu et al., 2023) show that minimizing the InfoNCE loss leads
to encoders that approximately achieve the properties of perfect alignment and perfect uniformity
(see Definition 4). Specifically, the global minimizer of the contrastive loss requires that features
of positive pairs align (sim(g(x′

i),g(x
′′
i )) tends to 1) and those of negative pairs be as distant as

possible.

Definition 4 (Perfect Alignment/Uniformity (Wang & Isola, 2020)) (i) Perfect Alignment. An
encoder g(·) achieves perfectly alignment over dataset Ptr, if g(x′

i) = g(x′′
i ) almost surely for

all x′
i,x

′′
i ∈ aug(xi),∀xi ∈ Ptr; (ii) Perfect Uniformity. An encoder g(·) achieves perfect unifor-

mity over dataset Ptr if the embeddings g(xi),∀xi ∈ Ptr are maximally separated as |Ptr| points
on the sphere Sde−1 ∈ Rde , where the de is the dimension of the embedding space.

We now re-examine our proposed manifold-guided game from the perspectives of alignment and
uniformity. The repulsive force between negative pairs (i.e., pushing apart g(x′

i) and g(x) in the
InfoNCE loss Eq.(9)) helps preserve maximal information of the data manifold. Simultaneously, the
attractive force between the positive pairs (i.e., pulling together g(x′

i) and g(x′′
i )), combined with

Jacobian regularization, minimizes sensitivity orthogonal to the manifold or directed towards the
semantic-invariant regionMSI(x).

Based on this analysis, we summarize the desired properties of the encoder g(·) as follows: (I)
Sensitivity. The encoder g(x) should change most when the sample x moves along the semantic
variant directions within the data manifold; (II) Insensitivity. The encoder g(x) should change
minimally when moves off the manifold (i.e.,M⊥), or towards the Semantic-Invariant region (i.e.,
MSI(x)).

B.2 TOWARDS SMOOTHER MANIFOLD AND BETTER REPRESENTATION

In this section, we demonstrate that the Jacobian regularization can enhance contrastive learning by
better preserving neighbour relationships within the input data. We have known that the alignment
and uniformity properties (see Definition 4) enable the game between CL and Jacobian regulariza-
tion to shape representations that capture the tangents of the data manifold. However, considering
only the contrastive loss may not adequately preserve the neighbor structure. This is because any
permutation of the mapping x → g (x) for x ∈ Ptr can achieve perfect alignment and uniformity,
thus reaching the global minima of Eq.(9). Figure (4) illustrates this issue with two encoders, g1(·)
and its permutation g2(·). Both achieve perfect alignment and uniformity, but g2(·) preserves the
neighbor relationship of the input data, clustering similar samples (e.g., birds) in the embedding
space. This clustering is beneficial for downstream classification tasks due to the linear separabil-
ity of the features (Wang & Isola, 2020) (as shown in Figure (4b), we can classify the birds in the
embedding space by a linear classifier).

To analyze the quality of neighbor structure preserving, Hu et al. (2023) propose a complexity
measure defined as:

C(g) = Ex,x′

[
∥g(x)− g (x′)∥2
∥x− x′∥2

]
, (16)

where x,x′ are negative pairs as in Eq.(9). This complexity measure captures the degree to which
the mapping g(·) preserves the neighbor structure of the input data in the context of contrastive
learning. For example, in Figure (4), C(g2) < C(g1), which implies g2 preserves the neighbor
structure better than g1. Building on their findings, the Jacobian regularization can be considered
a differential version of this complexity measure, C(g). Our empirical results confirm that Jaco-
bian regularization reduces C(g), thereby enhancing the neighborhood-preserving properties of the
model.

However, the Jacobian provides only a local approximation to C(g) as defined in Eq.(16). Intu-
itively, enforcing smoothness on the Jacobian Jg(x) improves neighborhood preservation by ensur-
ing that the encoder g(·) changes gradually without abrupt variations. Specifically, this smoothness
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(a) Embedding space of g1(·) (b) Embedding space of g2(·)

Figure 4: Both encoders g1(·) and g2(·) achieve perfect alignment and uniformity, reaching the em-
pirical minima of the loss Eq.(9). The encoder g1(·) in Figure (4a) is a permutation of the encoder
mapping g2(·) in Figure (4b). g2(·) preserves the affinity of the input dataset Ptr, with similar sam-
ples (birds, cats and ships) well clustered in the embedding space. We prefer g2(·) as the clustered
features are beneficial for downstream classification tasks due to their linear separability (Wang &
Isola, 2020).

is beneficial for accurately capturing the directions of semantic variation within the data manifold.
As is well known, second-order derivatives (i.e., the Hessian), measure the smoothness of the Jaco-
bian (Rifai et al., 2011b; Zhao & Zhang, 2022). However, computing the Hessian matrix is com-
putationally expensive. To address this, we can use the mixup data augmentation technique (Zhang
et al., 2018) to enhance our manifold-guided game, as mentioned in Remark 2. Specifically, we cre-
ate new samples by mixing a sample xi ∈ Ptr with one of its neighbor xj , forming λxi+(1−λ)xj ,
and incorporate these new samples into the training process. This mixup technique helps stabilize
the Jacobian when x moves along the data manifold, favoring a smoother representation.

We construct the mixed dataset using the mixup (Zhang et al., 2018) technique and denote it as
Pmix
tr :=

{
(x′

i,x
′′
j , λ)|x′

i ∈ P ′
tr,x

′′
j ∈ P ′′

tr,Ai,j ̸= 0, λ ∼ Unif(0, 1)
}

, where A is the input affinity
matrix in Definition 3 and Unif(0, 1) is the uniform distribution over the interval (0, 1).

The modified InfoNCE loss with mixup is defined as:

Lmixup
InfoNCE = LInfoNCE − E

Pmix
tr

log esim(λg(x
′
i)+(1−λ)g(x′′

j ),g(λx
′
i+(1−λ)x′′

j ))/τ∑
x∈P ′

tr∪P ′′
tr\{x′

i,x
′′
i } e

sim(g(x′
i),g(x))/τ

 . (17)

where the notations follow Eq.(9). Then the complete objective function becomes:

L∗(θ) = Lmixup
InfoNCE + λ1 E

x∈P ′
tr∪P ′′

tr∪Pmix
tr

∥Jg(x)∥2F , (18)

The mixup-enhanced loss encourages the model to produce consistent embeddings for interpolated
inputs, helping to smooth the representation and stabilize the Jacobian without the costly Hessian
regularization.

We compute the C(g), as defined in Eq.(16), for well-trained models on the CIFAR-10 and CIFAR-
100 datasets. The results, presented in Table 1, show that Jacobian regularization, particularly when
combined with the mixup technique, significantly enhances the neighborhoods preservation in fea-
ture embeddings. By stabilizing the Jacobian Jg as x traverses the data manifold, our model encodes
the data manifold more smoothly. This yields two key advantages: first, it facilitates better extraction
of tangents on the data manifold; second, the clustered embeddings are beneficial for downstream
classification tasks, as illustrated in Figure 4.
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Table 1: We compute C(g) (as defined in Eq.(16)) for various well-trained models on CIFAR-
10 and CIFAR-100 datasets. The methods compared include: Contrastive Learning (CL, Eq.(9)),
Contrastive Learning with Jacobian regularization (CL+Jac, Eq.(8)), and Contrastive Learning with
both Jacobian regularization and mixup (CL+Jac+mixup, Eq.(17)). We normalize all the results by
dividing them over the results of CL. Lower values indicate better neighbour preservation.

Objectives CIFAR-10 CIFAR-100

CL 1.00 1.00
CL+Jac 0.29 0.40
CL+Jac+mixup 0.10 0.11

C APPROXIMATION OF THE RIEMANNIAN GRADIENT

As discussed in Section 4.1, we utilize the strong duality formulation of the MWDRO problem
presented in Proposition 1 as our objective function. The main challenge in optimizing this function
arises from the surrogate loss defined in Eq.(7). To compute this surrogate loss ℓs(θ, pi, ν) :=
supq∈M

[
ℓ(θ, q)− νd2g(q, pi)

]
, we use the first-order optimization method (Zhang & Sra, 2016).

The update rule is shown in Eq.(13). For clarity, we rewrite it here:

qt+1 = Expqt
(
α∇M (

ℓ(θ, qt)− νd2g(q
t, q)

))
= Expqt

(
αProjqt

(
∇ℓ(θ, qt)

)
− 2ανdg(q

t, q)ûqt,q

)
The above updating steps require the Riemannian gradient, which is the orthogonal projection of the
“classical” gradient to the tangent spaces (Boumal, 2023), i.e. ∇Mf(qt) = Projqt (∇f(qt)).The
central problem, then, is how to recover the tangent space TM(qt) so as to approximate the Rie-
mannian gradient.

In Section 4.2, we design the manifold-guided game for training the feature encoder g(·).
We analyze the singular value decomposition (SVD) of the Jacobian matrix Jg(x) =
U(x)Σ(x)V⊤(x), where U(x) ∈ Rde×r, V⊤(x) = [v1(x), · · · ,vr(x)]

⊤ ∈ Rr×d, and
Σ(x) = diag(σ1(x), · · · , σr(x)). We define the space spanned by the principal singular vectors
of the Jacobian matrix in Eq.(10), i.e., Tappr(x, τ0) := span{vi(x) | σi(x) ≥ τ0, i ∈ [r]}.

As discussed in our main paper, we aim to approximate the Riemannian gradient ∇Mℓ(θ, qt) by
projecting the Euclidean gradient ∇ℓ(θ, qt) onto the subspace Tappr(q

t, τ0). We denote this opera-
tion as Projτ0appr(∇ℓ(θ, qt)). In what follows, we analyze the rationale behind this approximation.
We begin with assumptions we require.

The key idea is utilizing Tappr(x, τ0) to approximate a subset of the tangent TM(x), capturing
directions of significant semantic variation within TM(x). We formalize this as Assumption 3.

Assumption 3 For some τ̂ ≥ 0, Tappr(x, τ̂) is a subspace of the tangent plane TM(x) for any
x ∈M.

Now, let us examine the loss function ℓ(θ,x). We can view it as a composition of functions involving
g(x). The loss ℓ(·) is usually continuous w.r.t. g(x), as detailed in Assumption 4.

Assumption 4 The loss function ℓ(θ,x) is differentiable with respect to g(x). Moreover, ℓ(θ,x)
is L-Lipschitz with respect to g(x). This means that for any two inputs x1 and x2, the inequality
|ℓ(θ,x1)− ℓ(θ,x2)| ≤ L∥g(x1)− g(x2)∥ holds for any parameter θ.

Remark 4 In classification tasks, a common choice is ℓ(θ,x) = CE
(
Softmax

(
g(x)

))
, where

CE(·) is the cross-entropy loss. It is well-known that ∇g(x)ℓ(θ,x) = Softmax(g(x)) − y, where
y is the one-hot label corresponding to x. Therefore, ∥∇g(x)ℓ(θ,x)∥ ≤ 2, implying that the cross-
entropy loss is 2-Lipschitz with respect to g(x).

Theorem 2 (Approximation of Riemannian Gradient) Under Assumptions 3 and 4, for any τ̂ ≤
τ0 ≤ maxi σi, Projτ0appr(∇ℓ(θ, qt)) approximates the Riemannian gradient ∇Mℓ(θ, qt) with the
following error bound:

∥∥∇Mℓ(θ, qt)− Projτ0appr(∇ℓ(θ, qt))
∥∥
2
≤ L · τ0.
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Proof. By the chain rule, we can express the classical gradient as:

∇ℓ(θ, qt) = ∂ℓ

∂g
Jg(q

t) =
∂ℓ

∂g
UΣV⊤ (19)

Let w = [w1, · · · , wr] =
∂ℓ
∂gU. Then the gradient can be expressed as: ∇ℓ(θ, qt) = wΣV⊤ =∑r

i=1 wiσivi. The approximate projection operator with threshold τ0 is defined as:

Projτ0appr(∇ℓ(θ, qt)) =
∑

i:σi≥τ0

wiσivi (20)

The Riemannian gradient is obtained by projecting the classical gradient onto the tangent space at
qt. This projection can be decomposed as follows:

∇Mℓ(θ, qt) = Projqt
( r∑

i=1

wiσivi

)
=

r∑
i=1

Projqt
(
wiσivi

)
=
∑

i:σi≥τ̂

wiσivi +
∑

i:σi<τ̂

Projqt
(
wiσivi

)
(21)

Eq.(20) follows directly from the definition of the approximate tangent space Tappr(x, τ̂).

By Assumption 3, we have Tappr(x, τ̂) ⊆ TM(x), which together with the definition of Tappr(x, τ̂)
establishes Eq.(21).

The difference is:

∇Mℓ(θ, qt)− Projτ0appr(∇ℓ(θ, qt)) =
∑

i:τ̂≤σi<τ0

wiσivi +
∑

i:σi<τ̂

Projqt
(
wiσivi

)
(22)

Taking the norm and using the orthogonality of vi:

∥∇Mℓ(θ, qt)− Projτ0appr(∇ℓ(θ, qt))∥22 ≤
∑

i:σi<τ0

|wi|2σ2
i (23)

By Assumption 4, we have ∥ ∂ℓ∂g∥2 ≤ L. Since U is an orthonormal matrix, ∥U∥2 = 1, thus∥∥∥ ∂ℓ
∂gU

∥∥∥
2
≤ L. Therefore we have

∑
i:σi<τ0

|wi|2σ2
i < τ20

∑
i:σi<τ0

|wi|2 < τ20

r∑
i=1

|wi|2 ≤ L2τ20 (24)

Taking the square root:

∥∇Mℓ(θ, qt)− Projτ0appr(∇ℓ(θ, qt))∥2 ≤ L · τ0 (25)

□

This theorem provides a justification for approximating the Riemannian gradient by projecting onto
Tappr(x, τ0).

D THEORETICAL ASPECTS OF THE DISTRIBUTIONAL ROBUST

D.1 JACOBIAN TERM AND THE SMOOTHNESS ASSUMPTION

In this section, we demonstrate that the Jacobian regularization term serves as an upper bound for
β, which characterizes the smoothness of our model as Assumption 2. Since the data manifoldM
is embedded in the ambient Euclidean space Rd, without loss of generality, we focus on discussing
smoothness within Rd.
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We derive the second derivative of f(g(x)) with respect to the input sample x. The smallest
value β can take is the largest eigenvalue of the Hessian at any point x ∈ X . In our setting,
β = supx∈X λmax

∂2ℓ
∂x2 .

∂2ℓ

∂x2
=

∂

∂x

(
∂ℓ

∂x

)
=

∂

∂x

(
∂ℓ

∂g
· Jg

)
=

∂

∂x

(
∂ℓ

∂g

)
· Jg +

∂ℓ

∂g
· ∂Jg

∂x

= J⊤
g HℓJg +

m∑
i=1

∂ℓ

∂gi
· ∂

2gi

∂x2

= J⊤
g HℓJg +

∂ℓ

∂g
·Hg (26)

The notations used are:

– Jg: Jacobian of g, dimension de × d.
– Hℓ: Hessian matrix of the loss ℓ(·) with respect to g(·), dimension de × de.

– Hg =
∂Jg

∂x = ∂2g
∂x2 (x): Hessian tensor of g(·), dimension de × d× d.

– ∥ · ∥2: spectral norm of a matrix, i.e., the largest singular value.

Using the sub-multiplicative property of the norm ∥ · ∥2, we have

λmax(J
⊤
g HℓJg) ≤ ∥J⊤

g ∥2 · ∥Hℓ∥2 · ∥Jg∥2 (27)

λmax

(
∂ℓ

∂g
·Hg

)
≤ ∂ℓ

∂g
·
[
∥Hg(i, :, :)∥2

]⊤
i

(28)

Assuming the second partial derivatives of g and ℓ are continuous, then Hℓ and Hg(i, :, :) for all
i ∈ [de] are symmetric. Further, it is not hard to verify that J⊤

g HℓJg and ∂ℓ
∂g ·Hg are also symmetric.

Applying Weyl’s inequality for eigenvalues, we get:

λmax(
∂2ℓ

∂x2
) ≤ λmax(J

⊤
g HℓJg) + λmax

(
∂ℓ

∂g
·Hg

)
= ∥Hℓ∥2 · ∥Jg∥22 +

∂ℓ

∂g
·
[
∥Hg(i, :, :)∥2

]⊤
i

(29)

Note that ∥Jg∥2 ≤ ∥Jg∥F . For the Hessian term, following the approximation from (Jakubovitz &
Giryes, 2018; Martens et al., 2012), we have ∥Hg(i, :, :)∥2 ≈ ∥Jg(i, :)

⊤Jg(i, :)∥2 = ∥Jg(i, :)∥22.
Thus

∂ℓ

∂g
·
[
∥Hg(i, :, :)∥2

]⊤
i
≤ ∂ℓ

∂g
·
[
∥Jg(i, :)∥22

]⊤
i
=

de∑
i=1

∂ℓ

∂gi
∥Jg(i, :)∥22 ≤ ∥

∂ℓ

∂g
∥∞∥Jg∥2F (30)

Finally we have

λmax(
∂2ℓ

∂x2
) ≤ (∥Hℓ∥2 + ∥

∂ℓ

∂g
∥∞)∥Jg∥2F (31)

Consequently, we can conclude that the Jacobian regularization term ∥Jg(x)∥2F provides an upper
bound for β.

D.2 PROOF OF LEMMA 1

We can verify that the following proposition holds according to Definition 2. Please refer to
(Boumal, 2023) for more detailed information.
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Proposition 2 Under Assumption 2, for a given p ∈ M and a constant ν > β, the function
ℓ(θ, pt)− νd2g(p

t, p) is geodesically (ν − β)-strongly concave and geodesically (ν + β)-smooth.

Proof.[of Lemma 1] Algorithm 2 solves the surrogate loss as defined in Eq.(7). For brevity, we
denote ℓ(θ, q) as ℓ(q). The surrogate loss is given by:

ℓs(q
0, ν) := sup

q∈M

[
ℓ(q)− νd2g(q, q

0)
]

(32)

It can be shown that the function ℓ(q) − νd2g(q, q
0) is geodesically (ν − β)-strongly concave and

geodesically (ν + β)-smooth (ν > β > 0). Thus its condition number, defined as the ratio of the
smoothness parameter to the strong concavity parameter, satisfies κ = ν+β

ν−β .

We introduce a sequence of auxiliary functions for the t-th iteration of Algorithm 2 as follows,

ιt(q) = ℓ(q)− νt · d2g(q0, q), (33)

where νt is the value computed as ν · (ptt)2

d2g(q
0,qt) (with ν0 = ν). It is not hard to note that νt ≥ ν for

all t ≥ 0. Therefore, the function ιt(q) is geodesically (νt − β)-strongly concave and geodesically
(νt + β)-smooth, with νt > ν > β > 0. As a result, its condition number satisfies κt =

νt+β
νt−β ≤

ν+β
ν−β = κ.

The gradient at qt, computed in step 2 of Algorithm 2, is∇Mιt(q
t) = Projqt

(
∇ql(θ, q

t)
)
−2νptt ·

ûqt,q , where ûqt,q denotes the unit vector representing the initial direction of the geodesic from point
qt to point q on the manifold. Let qt,∗ denote the optimal solution of maximizing ιt(q). According
to Algorithm 2, the update step is given by: qt+1 = Expqt(α · ∇Mιt(q

t)), where α ∈ [0, 2
ν+β ) is

the step size. We select α = 1
ν+β . Given that ιt is (νt + β)-smooth, we have:

ιt(q
t,∗)− ιt(q

t+1) ≤ ιt(q
t,∗)− ιt(q

t)− 1

2(νt + β)
∥∇Mιt(q

t)∥2 (34)

Furthermore, by (Boumal, 2023, Lemma 11.28), we obtain: ∥∇Mιt(q
t)∥2 ≥ 2(νt − β)(ιt(q

t,∗) −
ιt(q

t)), substituting this into Eq.(34) yields:

ιt(q
t,∗)− ιt(q

t+1) ≤ (1− 1

κt
)(ιt(q

t,∗)− ιt(q
t)) ≤ (1− 1

κ
)(ιt−1(q

t−1,∗)− ιt−1(q
t)) (35)

By recursively applying this inequality, we obtain linear convergence:

ιt(q
t,∗)− ιt(q

t+1) ≤ (1− 1

κ
)t(ι0(q

0,∗)− ι0(q
1)) (36)

Utilizing the geodesically (ν − β)-strong concavity, we have:

dg(q
t+1, qt,∗)2 ≤ 2

ν − β
(ιt(q

t,∗)− ιt(q
t+1))

≤ 2

ν − β
(1− 1

κ
)t(ι0(q

0,∗)− ι0(q
1))

≤ 2

ν − β
(1− 1

κ
)t+1(ι0(q

0,∗)− ι0(q
0)) (37)

By the β + ν smoothness, we have ι0(q
0,∗) ≤ ι0(q

0) + β+ν
2 dg(q

0, q0,∗)2. Then

dg(q
t+1, qt,∗) ≤

√
κ

√
1− 1

κ

t+1

dg(q
0, q0,∗). (38)

Let c =
√

1− 1
κ ∈ (0, 1). Then, we can rewrite as: dg(qi, q∗) ≤ ci

√
κdg(q

0, q∗).

By triangle inequality, for any i ≥ 0, we have:

dg(q
i, qi+1) ≤ dg(q

i, qi,∗) + dg(q
i+1, qi,∗)

≤ ci
√
κdg(q

0, q∗) + ci+1
√
κdg(q

0, q∗),
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which simplifies to:

dg(q
i, qi+1) ≤ ci(1 + c)

√
κdg(q

0, q∗). (39)

Summing over all steps along the trajectory, we obtain:

t−1∑
i=0

dg(q
i, qi+1) ≤ (1 + c)

√
κ

t−1∑
i=0

cidg(q
0, q∗) =

(1 + c)(1− ct)

1− c

√
κdg(q

0, q∗). (40)

Taking t→∞, we have:

pt∞ =

∞∑
i=0

dg(q
i, qi+1) ≤ 1 + c

1− c

√
κdg(q

0, q∗).

Since 1+c
1−c

√
κ =
√
κ(
√
κ+
√
κ− 1)2, finally we have:

ptt ≤
√
κ(
√
κ+
√
κ− 1)2dg(q

0, q∗),∀t ≥ 0 (41)

□

D.3 PROOF OF THEOREM 1

As mentioned in our main paper, we do not explicitly set the radius δ for the uncertainty
set Ugw(Ptr, δ) in Eq.(2). Instead, we select a ν > 0 to solve the empirical surrogate loss
EPtr

[ℓs(θ, pi, ν)] rather than prescribing the robust range δ; this approach, originally proposed by
Sinha et al. (2018), has been shown to ensure certified distributional robustness. Then the objec-
tive function Lδ

DR(θ, Ptr) = minν≥0

{
νδ2 + EPtrℓs(θ, pi, ν)

}
is simplified to EPtrℓs(θ, pi, ν). The

following proposition provides the relationships between δ (the radius in Eq.(5)) and ν (the dual
variable in Proposition 1).

Proposition 3 (Relationships between δ and ν) For a given θ, consider the dual objective function
in Eq.(6),

(i) For ν2 ≥ ν1 ≥ 0, we denote δ1, δ2 such that ν1, ν2 are the minimizer of
Lδ1
DR(θ, Ptr),Lδ2

DR(θ, Ptr) respectively. Then we have δ1 ≥ δ2.

(ii) With Assumption 1, fix a constant ν > β and let δ2 = −
∂
∑

pi∈Ptr
ℓs(θ,pi,ν)

∂ν . Then
Lδ
DR(θ, Ptr) = νδ2 + EPtr

ℓs(θ, pi, ν).

Proof.

Proof of (i)
We first establish the monotonic relationship between ν and δ. This result is intuitive, but for com-
pleteness, we provide a rigorous proof here. From the strong duality property proposed by Gao &
Kleywegt (2023, Theorem 1),

Lδ
DR(θ, Ptr) = inf

ν≥0

{
νδ2 + sup

Q
{EQ[ℓ(θ, q)]− νGW(Q,P )}

}
= min

ν≥0

{
νδ2 + EPtrℓs(θ, pi, ν)

}
(42)

Besides, from the Proposition 1 of (Sinha et al., 2018), we have

sup
Q
{EQ[ℓ(θ, q)]− νGW(Q,P )} = EPtr

ℓs(θ, pi, ν) (43)

For any ν2 ≥ ν1 ≥ 0, Since ν1, ν2 are the minimizer of Lδ1
DR(θ, Ptr),Lδ2

DR(θ, Ptr) respectively. Let
Q1 ∈ arg sup

Q
{EQ[ℓ(θ, q)]− ν1GW(Q,Ptr)}, Q2 ∈ arg sup

Q
{EQ[ℓ(θ, q)]− ν2GW(Q,Ptr)}, we

have δ1 ∈ {GW(Q,Ptr) | Q ∈ Q1} and δ2 ∈ {GW(Q,Ptr) | Q ∈ Q2}.
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It is not hard to know

sup
Q
{EQ[ℓ(θ, q)]− ν1GW(Q,Ptr)} ≥ sup

Q
{EQ[ℓ(θ, q)]− ν2GW(Q,Ptr)} (44)

Considering that a larger radius δ results in a larger loss Lδ
DR(θ, Ptr), it follows that δ1 ≥ δ2.

Proof of (ii)

Now we derive the precise relationship between ν and δ. From (Gao & Kleywegt, 2023, Lemma 3
(ii)), we know that ℓs(θ, pi, ν) is convex and non-increasing in ν. Recall that in Eq.(7), we define
ℓs(θ, pi, ν) as ℓs(θ, pi, ν) := sup

q∈M

[
ℓ(θ, q)− νd2g(q, pi)

]
. Building on this formulation, we further

define the following quantities:

D(θ, ν, pi) := lim sup
δ↓0

{
dg(qi, pi) : ℓ(θ, qi)− νd2g(qi, pi) ≥ ℓs(θ, pi, ν)− δ

}
, (45)

D(θ, ν, pi) := lim inf
δ↓0

{
dg(qi, pi) : ℓ(θ, qi)− νd2g(qi, pi) ≥ ℓs(θ, pi, ν)− δ

}
. (46)

Furthermore, (Gao & Kleywegt, 2023, lemma 3 (iv)) shows that Dp(θ, ν, pi) is a subderivative of
ℓs(θ, pi, ν) with respect to ν. Specifically:

−D2
(θ, ν, pi) ≤

∂ℓs(θ, pi, ν)

∂ν
≤ −D2(θ, ν, pi) (47)

Now, define r2min(θ, pi, ν) := min
qi∈M

{dg(qi, pi) | ℓ(θ, qi) − νdpg(pi, qi) = ℓs(θ, pi, ν)} as the mini-

mum distance between pi and all the qi’s that attain the supremum of ℓ(θ, qi) − νdpg(pi, qi) inM.
Similarly, define r2max(θ, pi, ν) := max

qi∈M
{dg(qi, pi) | ℓ(θ, qi) − νdpg(pi, qi) = ℓs(θ, pi, ν)} as the

maximum distance between pi and all the qi’s that attain the infimum of ℓ(θ, qi)−νdpg(pi, qi) inM.
Thus, we have the following inequality:

−r2max(θ, pi, ν) ≤ −D
2
(θ, ν, pi) ≤

∂ℓs(θ, pi, ν)

∂ν
≤ −D2(θ, ν, pi) ≤ −r2min(θ, pi, ν) (48)

Note that ℓ(θ, pi) is geodesically β-smooth with respect to pi, and ℓ(θ, qi) − νd2g(qi, pi) is at
least geodesically (ν − β)-strongly concave and (ν + β)-smooth. Therefore, r2min(θ, pi, ν) =
r2max(θ, pi, ν), which we denotes as r2(θ, pi, ν) in the following. Finally, we obtain

δ2 = −EPtr

∂ℓs(θ, pi, ν)

∂ν
= EPtrr

2(θ, pi, ν) (49)

□

Lemma 2 Under Assumption 1, let the expected surrogate loss be denoted by Ls(θ, Ptr, ν) =
EPtr

ℓs(θ, pi, ν). The corresponding estimated value, computed with the approximate geodesic dis-
tance in Algorithm 2, is denoted as L̂s(θ, Ptr, ν). By fixing ν > β and setting ν′ = c1ν, where
c1 = κ(

√
κ+
√
κ− 1)4, we have the following relationship:

Ls(θ, Ptr, ν
′) ≤ L̂s(θ, Ptr, ν) ≤ Ls(θ, Ptr, ν). (50)

Proof.

Consider the surrogate loss ℓs(θ, pi, ν) := sup
q∈M

[
ℓ(θ, q)− νd2g(q, pi)

]
in Eq.(7). It is clear that

ℓs(θ, pi, ν) ≥ ℓs(θ, pi, ν
′) for ν ≤ ν′ as shown in Proposition 3. Now, consider the approximated

surrogate loss defined as ℓ̂s(θ, pi, ν) = sup
q∈M

[
ℓ(θ, q)− νd̂2g(q, pi)

]
, where d̂2g(q, pi) is an approxi-

mated distance as stated by Lemma 1. Therefore, we have

ℓs(θ, pi, ν
′) ≤ ℓ̂s(θ, pi, ν) ≤ ℓs(θ, pi, ν).

By taking the expectation over the dataset Ptr, we complete the proof.
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□

Proof.[proof of Theorem 1] Let c1 = κ(
√
κ +
√
κ− 1)4 and denote ν′ = c1ν. Recall that θ̂ is the

solution of minθ EPtr
ℓs(θ, pi, ν) using the approximate geodesic distance, i.e., min

θ
L̂s(θ, Ptr, ν) =

L̂s(θ̂, Ptr, ν). By Lemma 2, it follows that

min
θ
Ls(θ, Ptr, ν

′) ≤ Ls(θ̂, Ptr, ν
′) ≤ min

θ
L̂s(θ, Ptr, ν) ≤ min

θ
Ls(θ, Ptr, ν) (51)

From Proposition 3(ii), we know that ∂ℓs(θ,pi,ν)
∂ν = −r2(θ, pi, ν). Recall that r2(θ, pi, ν) :=

min
qi∈M

{dg(qi, pi) | ℓ(θ, qi) − νdpg(pi, qi) = ℓs(θ, pi, ν)} represents the minimum distance between

pi and all the qi’s that attain the supremum of ℓ(θ, qi) − νdpg(pi, qi) inM. Furthermore, since the
function ℓ(θ, qi)− νd2g(qi, pi) is at least geodesically (ν−β)-strongly concave and (ν+β)-smooth
for a given pi, there exists an Si := |∇ℓ(θ, pi)| ≥ 0 satisfies Si

ν+β ≤ r(θ, pi, ν) ≤ Si

ν−β . Thus, we
can express ℓs(θ, pi, ν′) as:

ℓs(θ, pi, ν
′) = ℓs(θ, pi, ν →∞) +

∫ ν′

∞
−r2(θ, pi, t)dt = ℓ(θ, pi) +

∫ ν′

∞
−r2(θ, pi, t)dt. (52)

∫ ν′

∞
−r2(θ, pi, t)dt ≥

∫ ν′

∞
−
(

Si

t+ β

)2

dt =
S2
i

t+ β

∣∣∣∣ν′

∞
=

S2
i

ν′ + β

Similarly, for ℓs(θ, pi, ν), we have:

ℓs(θ, pi, ν) = ℓ(θ, pi) +

∫ ν

∞
−r2(θ, pi, t)dt.

∫ ν

∞
−r2(θ, pi, t)dt ≤

∫ ν

∞
−
(

Si

t− β

)2

dt =
S2
i

t− β

∣∣∣∣ν
∞

=
S2
i

ν − β

We have ℓs(θ, pi, ν) ≤ ℓ(θ, pi) +
S2
i

ν−β and ℓs(θ, pi, ν
′) ≥ ℓ(θ, pi) +

S2
i

ν′+β . As ℓ(θ, pi) ≥ 0, we
obtain the following bound:

EPtrℓs(θ, pi, ν) ≤
ν′ + β

ν − β
EPtrℓs(θ, pi, ν

′) (53)

Combining this with Eq. (51), we have

EPtr
ℓs(θ̂, pi, ν) ≤

ν′ + β

ν − β
EPtr

ℓs(θ̂, pi, ν
′)

≤ c1ν + β

ν − β
min
θ
L̂s(θ, Ptr, ν),

≤ c1κmin
θ

EPtr
ℓs(θ, pi, ν) (54)

which completes the proof. □

E DETAILS FOR IMPLEMENTATION

In Algorithm 1, for the sake of simplicity, we omit two potentially time-consuming aspects: Jacobian
regularization and the SVD for computing the subspace Tappr(x, τ0). For the former issue, Jaco-
bian regularization can be efficiently implemented using random projection (Hoffman et al., 2019),
thereby circumventing the necessity of computing the full Jacobian and only slightly increasing
training time. Regarding the latter issue, we utilize an efficient randomized singular value decom-
position (SVD) method (Halko et al., 2011), which is particularly well suited to our setting. This is
because, under our approach, the top singular vectors of the Jacobian matrix are highly concentrated
as shown in Figure 2 and 8, which will benefit both the efficiency and effectiveness of the algorithm.
Further details are provided below.
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Randomized SVD method The randomized SVD algorithm approximates the range of Jg ∈
Rde∗d by projecting it onto a lower-dimensional subspace using a random Gaussian matrix Ω ∈
Rd∗ds , where the ds is the target dimension. Let Y = JgΩ ∈ Rde×ds denote this projection. We
compute the SVD of the smaller matrix Y, yielding Y = ŨΣ̃Ṽ. The approximate right singular
vectors of Jg are given by V̂ = ΩṼ. Please refer to (Halko et al., 2011) for more details.

Proposition 4 ((Halko et al., 2011)) Let Jg be a de × d (d ≫ de) matrix with singular values
σ1 ≥ σ2 ≥ · · · ≥ σde

. We compute the approximate SVD by the randomized method described
above, and setting the target dimension to ds = 2dτ0 +1. Then the expected approximation error in
the Frobenius norm, ∥Jg − JgV̂V̂⊤∥F , is bounded by:

E∥Jg − JgV̂V̂⊤∥F ≤
√
6

2

 de∑
j=ds+1

σ2
j

1/2

, (55)

The term
(∑de

j=ds+1 σ
2
j

)1/2
represents the square root of the sum of the squared singular values

beyond the ds-th component. The Jacobian matrix Jg, derived from g trained using our manifold-
guided game approach, shows a rapid decay in its singular values, as demonstrated in Figures 2
and 8. As a result, the majority of the singular values are concentrated in the top few ones. This
concentration allows for an efficient and accurate computation of the subspace Tappr(x, τ0) defined
in Eq.(10). To see this more concretely, consider an image task with an input dimension of d =
224∗224∗3 and an output dimension de = 128 (typically used in contrastive learning). In this case,
performing the singular value decomposition (SVD) on Jg requires approximately 0.7 GFLOPs
(giga floating-point operations) . For comparison, the cost of a forward propagation in Resnet-18 is
1.8 GFLOPs.

Moreover, we leverage advanced automatic differentiation tools available in the deep learning frame-
work PyTorch (Paszke et al., 2019). Specifically, we avoid the explicit computation of Jg by using
Jacobian-vector and vector-Jacobian product operations (jvp and vjp). These operations elimi-
nate the need to store the full Jacobian matrix and further improve computational efficiency. Addi-
tionally, we update the approximated tangent information every few iterations in Algorithm 2. In
Appendix F.5, we compare the running time with standard WDRO (which does not consider the
data manifold) and other adversarial training algorithms. While our algorithm requires more time
(around 1.5 times), it achieves better performance on accuracy.

F EXPERIMENTS

We conduct a series of experiments across several scenarios to evaluate our proposed method.
Specifically, we test it in three typical distribution shift tasks: dealing with noisy data, attacked
data and imbalanced data. All experiments ware implemented with PyTorch on a single NVIDIA
RTX 6000 Ada, and each instance is repeated by 5 times. In Section F.1, we present the dynamic
update mechnism for the hyperparameter ν. In Section F.2 and F.3, we show that our method out-
performs current WDRO methods and certain SOTA defense techniques for clean and contaminated
data. In Section F.4, we conduct data augmentation based on MWDRO to address the over-fitting
issue and improve generalization on limited data. In our experimental setup, we set the hyperparam-
eters λ1 = 0.01 and λ2 = 1 in Eq.(8) and Eq.(12) respectively to configure the algorithm, unless
otherwise specified.

F.1 SELECTING STRATEGY FOR THE LAGRANGIAN PARAMETER IN EQ.(6)

In this section, we briefly introduce the dynamic adjustment approach for the Lagrangian parameter
ν in Eq.(6) as proposed in Uni-DR (Bui et al., 2022). We have modified some notations for our
scenarios, and the readers may check the paper for more details on this method.

In Algorithm 3, let νj denote the value of ν at iteration j. The parameter ην represents the learning
rate for updating ν, determining how quickly ν adjusts in response to the perturbation discrepancy;
δ is the predefined maximum allowable perturbation radius in Eq.(2); and dg(qi, q̂i) is the geodesic
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distance between the adversarial example q̂i and the original input qi, which can be approximated
by the accumulated steps as shown in Lemma 1. Finally, 1

n

∑n
i=1 dg(qi, q̂i) represents the average

(population) perturbation cost over a batch of n samples.

When computing perturbed samples, ν is dynamically adjusted, with the adjustment magnitude
controlled by the parameter ην . Intuitively, if the average geodesic distance between adversarial
and benign samples is smaller than a specified threshold, ν decreases in the next iteration to allow
adversarial samples q̂i to deviate further from the benign samples qi, and vice versa.

Algorithm 3 Algorithm 1 using dynamic ν

Input: training set Ptr = {(xi, yi)}ni=1, a constant ν, step size sequence {αj > 0}Nj=0 .
Output: the final parameter θN+1.

1: Train g(·) to minimize L∗(θ) in Eq.(8).
2: for j = 1, 2, · · · , N do
3: For each sample pi ∈ Ptr, compute the corresponding adversarial point p̂i ←

Evolve({pi},g(·), νj);
4: Updating νj+1 according to Eq.(56).
5: θj+1 ← θj − αj

1
n

∑n
i=1∇θ

(
ℓ(θj , p̂i)− λ2

(
ℓcl (pi) + λ1∥Jg(pi)∥2F

))
;

6: end for

The dynamic adjustment of ν is governed by the following update rule:

νj+1 = νj − ην

(
δ − 1

n

n∑
i=1

dg(qi, q̂i)

)
. (56)

We still need to select an initial ν0 to setup this dynamic adjustment strategy. As illustrated in
(Bui et al., 2022), the performance of WDOR is relatively insensitive to the choice of ν0 when the
dynamic strategy is employed. Following the recommendation in (Bui et al., 2022), we set ν0 = 0.5
across all experiments.

F.2 EVALUATION ON NOISY DATA

To assess the robustness of our model against natural corruptions, we introduce perturbations to
each original image using Gaussian white noise. The resulting corrupted image is denoted as x′ =
x+ ϵ, ϵ ∼ N

(
0, σ2

noiseI
)
. We adjust the noise levels with different values for σnoise.

Datasets. CIFAR-10 and CIFAR-100 (Krizhevsky et al., 2012) are two popular datasets for image
classification, each of which consists of 60000 color images of 32 × 32 pixels, the former one are
divided into 10 classes, with 6000 images per class and the latter one contains 100 classes, with 600
images per class. Tiny-ImageNet-200 (Krizhevsky et al., 2017) is a subset of the ImageNet dataset,
comprising 100000 images across 200 classes, each with 500 images. The images are resized to
64 × 64 pixels and include both RGB and grayscale channels. BuS (Mo et al., 2023) is a medical
image dataset that contains 1519 malignant and 886 benign benign breast ultrasound images. We
employ this medical image dataset as noise in medical images is a critical issue.

Compared methods. We compare our proposed MWDRO with four baselines: DropOut+L2 (He
et al., 2016) as the standard method for image classification, a practical implementation of WDRO
proposed by (Sinha et al., 2018), and the KL-DRO by (Levy et al., 2020). The randomized smooth-
ing method RS proposed by (Cohen et al., 2019).

Figure 5 demonstrates that our MWDRO method significantly enhances robustness compared to
other methods, particularly as the noise level increases.
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Figure 5: Evaluation of robustness against Gaussian white noise perturbations. The x-axis represents
the variance of the additive Gaussian noise, ranging from 0 to 1 (the input data has been normalized).
The results demonstrate that our MWDRO method significantly improves robustness across datasets.

F.3 EVALUATION ON ADVERSARIAL ATTACK

In this section, we evaluate the robustness of our proposed method, MWDRO, against adversarial
attacks. We conduct experiments on two widely-used datasets: CIFAR-10, CIFAR-100 and Tiny-
ImageNet-200. These datasets are standard benchmarks for assessing the effectiveness of adversarial
defenses.

We utilize a variety of adversarial attack methods to evaluate the performance of our model. The
attacks include Fast Gradient Sign Method (FGSM) (Madry et al., 2018), Projected Gradient Descent
(PGD) (Kurakin et al., 2018), AutoAttack (AA) (Croce & Hein, 2020), the Jacobian-based Saliency
Map Attack (JSMA) (Brendel et al., 2019) and C&W (L2) by (Carlini & Wagner, 2017). Complete
results are presented in Table 2, Table3, and Table 4.

We compare our proposed MWDRO with four baselines: a practical implementation of WDRO
proposed by (Sinha et al., 2018), a unified WDRO framework Uni-DR (Bui et al., 2022) and the
popular adversarial training methods PGD-AT (Madry et al., 2018) and TRADES (Zhang et al.,
2019). For both PGD-AT and TRADES algorithms, we set the defense perturbation bounds ϵ to
match their corresponding attack scenarios as shown in Table 2, 3 and 4. And their adversarial
attacks were executed with 40 iterations and a step size of 0.005.

Table 2: Comparisons of clean and adversarial accuracies against different attacks for the Tiny-
ImageNet-200. Best scores are highlighted in boldface.

Tiny-ImageNet-200 WDRO TRADES PGD-AT MWDRO
(δ = 0.01)

MWDRO
(δ = 0.005)

Clean accuracy 28.47 39.48 40.23 43.82 55.42
PGD (ε = 0.01) 8.37 14.83 15.26 17.62 15.18

AA (ε = 0.01) 6.13 11.23 12.38 13.48 10.73

C&W (λ = 0.01) 9.81 12.46 16.32 17.26 13.34
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Table 3: Comparisons of clean data accuracy and adversarial accuracies against different attacks
for the CIFAR-10 dataset. The table displays the performance of four different baselines and our
proposed method MWDRO. Each method is evaluated on clean data and under various adversarial
attacks (FGSM, PGD, JSMA, AA, and C&W) with different perturbation strengths. Best scores are
highlighted in boldface.

CIFAR-10 WDRO TRADES Uni-DRO
(δ = 0.03) PGD-AT MWDRO

(δ = 0.03)
MWDRO
(δ = 0.06)

Clean accuracy 83.10 87.49 85.48 85.41 88.45 85.71

FGSM (ε = 0.03) 57.64 73.18 73.35 72.44 77.51 76.92
FGSM (ε = 0.06) 48.38 53.33 52.65 51.58 68.28 68.11

PGD (ε = 0.03) 39.37 45.40 47.65 44.81 48.28 49.32
PGD (ε = 0.06) 12.38 19.59 20.02 14.23 23.58 27.65
JSMA (ε = 0.03) 54.29 74.51 74.39 73.85 79.56 74.53
JSMA (ε = 0.06) 40.01 66.27 67.41 64.25 74.47 73.90

AA (ε = 0.03) 41.38 45.74 45.85 43.05 47.73 45.28
AA (ε = 0.06) 11.11 14.78 14.02 13.69 14.34 15.89
C&W (λ = 0.01) 46.38 54.74 55.85 52.05 57.73 55.91

Table 4: Comparisons of clean data accuracy and adversarial accuracies against different attacks
for the CIFAR-100 dataset. The table displays the performance of four baselines and our proposed
method MWDRO. Each method is evaluated on clean data and under various adversarial attacks
(FGSM, PGD, JSMA, AA, and C&W) with different perturbation strengths. Best scores are high-
lighted in boldface.

CIFAR-100 WDRO TRADES Uni-DRO
(δ = 0.01) PGD-AT MWDRO

(δ = 0.01)
MWDRO
(δ = 0.02)

Clean accuracy 66.28 67.94 67.67 67.64 69.58 67.25

FGSM (ε = 0.01) 38.71 48.05 49.54 45.97 49.96 48.41
FGSM (ε = 0.02) 20.26 35.82 36.47 29.33 35.97 37.01
PGD (ε = 0.01) 41.36 44.55 45.59 42.64 46.42 46.21
PGD (ε = 0.02) 17.95 31.49 32.22 22.24 33.71 32.10

JSMA (ε = 0.01) 34.15 46.51 47.71 45.37 49.24 38.91
JSMA (ε = 0.02) 28.27 36.84 39.53 33.30 45.72 33.64

AA (ε = 0.01) 20.38 44.74 44.85 40.32 47.52 41.74
AA (ε = 0.02) 9.69 14.76 15.01 14.69 15.14 15.87
C&W (λ = 0.01) 20.38 28.74 29.85 28.05 28.93 26.44

F.4 EVALUATION ON LONG-TAILED DATA

In this section, we evaluate the effectiveness of our proposed method, MWDRO, in handling long-
tailed data distributions. Long-tailed datasets present a challenge due to the significant imbalance
between the frequency of common and rare classes. We conduct our experiments on two long-
tailed benchmark datasets: CIFAR-10-LT and CIFAR-100-LT. The imbalance in these datasets is
quantified by the imbalance factor (IF), which represents the ratio of the number of samples in the
most frequent class to those in the least frequent class. We test our method on three versions of
these datasets with imbalance factors of 10, 50, and 100. e compare MWDRO with several baseline
methods designed to address long-tailed distributions: Decouple (Hong et al., 2021): Disentangle
the label distribution from the model prediction; Reweight (Cui et al., 2019): Reweight the loss;
Resample (Cui et al., 2019): Over-sampling minor classes; Focal Loss (Lin et al., 2017): Weighting
difficult samples; SSL (Khosla et al., 2020): a representation learning method; DRO-LT (Samuel
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& Chechik, 2021): A DRO method designed for long-tail learning. We chose three long-tailed
versions with imbalance factors (IF) of 10, 50, and 100 for training and the results shows that
in highly imbalanced dataset, our MWDRO method combing with basic re-sampling/re-weighting
strategy achieve best accuracy.

Table 5: Accuracies of ResNet32 on long-tailed CIFAR-10 and CIFAR-100 datasets. The table
shows the performance of various methods across datasets with different imbalance factors (10%,
50%, and 100%). Baseline methods include Decouple, Reweight, Resample, Focal Loss, DRO-
LT, and SSL. Our proposed method, MWDRO, and its combination with re-sampling/re-weighting
strategies are highlighted. The best accuracy for each dataset and imbalance factor combination is
highlighted in boldface.

Dataset
CIFAR-10-LT CIFAR-100-LT

100% 50% 10% 100% 50% 10%

Decouple (Hong et al., 2021) 70.4 76.2 86.4 41.2 46.8 57.9

Focal Loss (Lin et al., 2017) 70.3 76.7 86.6 38.4 44.3 55.7

DRO-LT (Samuel & Chechik, 2021) 73.7 77.2 86.9 45.4 55.3 61.2
SSL (Khosla et al., 2020) 67.3 75.4 86.5 37.5 44.0 56.7

Reweight (Cui et al., 2019) 70.5 74.8 86.4 34.0 43.9 57.1

+MWDRO 74.5 76.9 86.7 46.7 56.2 60.5

Resample (Cui et al., 2019) 66.5 74.8 86.4 33.4 43.9 55.1

+MWDRO 72.8 77.5 86.2 43.5 52.6 58.2

F.5 TIME COMPARISON

In Algorithm 1 and Algorithm 2, for the sake of simplicity, we omit two potentially time-consuming
aspects: Jacobian regularization and the SVD for computing the subspace Tappr(x, τ0). Details on
efficient implementation are provided in Appendix E. Table 6 presents the experimental results on
running times, normalized relative to the running time of WDRO. The experimental environments
are consistent with those in Appendix F.3.

Table 6: Comparison of normalized running time for different methods across datasets. We train
each method with 200 epochs. All running times are normalized by dividing them by the running
time of WDRO.

Dataset WDRO TRADES Uni-DRO PGD-AT MWDRO

CIFAR-10 1.0 0.826 1.481 1.264 1.471

CIFAR-100 1.0 0.947 1.489 1.172 1.434

Tiny-ImageNet-200 1.0 1.191 1.148 1.460 1.521

BuS 1.0 1.071 1.364 1.169 1.521

In the above Table 6, we compare computational running times across various methods using 200
epochs, following standard practices in prior work such as (Bui et al., 2022). As expected, our
method requires longer computational time than WDRO because it maintains a similar workflow
while incorporating additional data manifold information. As shown in Table 6, our method requires
approximately 50% more computation time per epoch compared to classical WDRO.

However, our method exhibits faster convergence — a natural consequence of working with a more
focused uncertainty set (a subset of WDRO’s uncertainty set). Leveraging this characteristic, we
implemented early stopping, where training halts when the robust performance on the validation set
shows no improvement for 5 consecutive epochs.
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Tables 7 and 8 present the results across various datasets. With early stopping enabled, our method
achieves comparable total training times while delivering superior accuracy and robustness, demon-
strating an effective balance between computational efficiency and model performance.

Table 7: Comparison of clean accuracy and adversarial robustness across different methods on var-
ious datasets. “Clean” represents accuracy on the original test set, while “PGD” shows accuracy
under adversarial attack. ϵ denotes the perturbation bound for PGD attacks.

Dataset Evaluation WDRO TRADES Uni-DRO PGD-AT MWDRO

CIFAR-10
Clean 80.42 86.79 85.51 82.18 88.21

PGD (ϵ = 0.03) 41.58 47.35 49.64 45.52 52.27

CIFAR-100
Clean 64.38 67.32 66.92 41.47 68.17

PGD (ϵ = 0.01) 41.79 45.72 47.20 43.91 49.54

Tiny-ImageNet-200
Clean 30.09 39.11 39.37 36.87 41.36

PGD (ϵ = 0.01) 7.41 14.67 14.92 14.46 14.80

BuS
Clean 74.71 77.92 78.29 75.92 81.74

PGD (ϵ = 0.01) 58.28 66.73 68.53 63.99 69.48

Table 8: Comparison of normalized running time for different methods across datasets. Early stop-
ping criteria were applied consistently across all methods. All running times are normalized by
dividing them by the running time of WDRO.

Dataset WDRO TRADES Uni-DRO PGD-AT MWDRO

CIFAR-10 1.0 0.994 1.070 1.126 1.115

CIFAR-100 1.0 1.15 1.139 1.142 1.108

Tiny-ImageNet-200 1.0 1.098 1.121 1.174 1.123

BuS 1.0 1.071 1.094 1.217 1.118

F.6 OTHER ABLATION STUDIES FOR THE MWDRO.

We conduct the ablation studies to analyze the effectiveness of the manifold-guided game and the
MWDRO method. As shown in Table 9, models trained using the manifold-guided game without
DRO (i.e., regularized only by Eq.(8)) demonstrate significant vulnerability to adversarial attacks.

Table 9: We report the Top-1 accuracy on various datasets for both the MWDRO model and models
trained without the DRO method, which are regularized solely by the manifold-guided game in
Eq.(8). The evaluation includes three types of attacks: PGD (ϵ = 0.01), AA (ϵ = 0.01), and C&W
(λ = 0.01) except for CIFAR-10, except for CIFAR-10, where ϵ = 0.03 is used for both PGD and
AA attacks.

Cifar10 Cifar100 Tiny-ImageNet-200

PGD AA C&W PGD AA C&W PGD AA C&W

Only with Eq.(8) 43.29 42.82 48.16 24.71 28.69 20.17 7.07 7.83 10.14
MWDRO 48.28 47.73 57.73 46.42 47.52 28.93 15.47 11.64 14.73

F.7 OTHER EXPERIMENTAL RESULTS

In the first stage of Algorithm 1, the encoder g(·) is trained for N0 epochs following the objective
of the manifold-guided game, as defined in Eq.(8). This training phase is crucial for obtaining
sufficiently accurate tangent information for each data sample x. This stage ensures g(·) can yield
sufficiently good approximate tangent Tappr(x, τ0) for each data sample x, which is later used
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for the gradient ascent to solve the surrogate loss in Eq.(7). Figure 7 illustrates the impact of the
hyperparameter N0 on the accuracy of our model across various datasets.
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Figure 6: The effects of the hyperparameter N0 on model accuracy across different datasets. We
evaluate the model’s performance on CIFAR-10, CIFAR-100, TinyImage-200, and BuS datasets,
varying the starting epochs N0 for the second stage of Algorithm 1. Figure 6a and 6b are the
achieved accuracy on both attacked (PGD, ϵ = 0.01) and clean datasets, respectively.
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Figure 7: The effects of the hyperparameter N0 on accuracy across different datasets. We evaluate
the model’s performance on CIFAR-10, CIFAR-100, TinyImage-200, and BuS datasets with various
starting epochs N0 for the second stage of Algorithm 1. Gaussian noise with a variance of σ2 = 0.22

is added to all datasets to test the robustness.

Figure 8 shows the cumulative variance percentage of the Jacobian for various models trained on
Tiny-ImageNet-200 and BuS datasets. Our model exhibits the most rapid initial increase in cu-
mulative variance percentage, indicating that fewer singular vectors are needed to approximate the
tangent space effectively.
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Figure 8: Cumulative percentage of variance of the Jacobian for different models trained on Tiny-
ImageNet-200 and BuS datasets using ResNet-18, respectively. The cumulative percentage of vari-
ance for first k singular values is calculated as

∑k
i=1 si(x)∑r
i=1 si(x)

. The red line represents our model as
described in Eq.(8). The blue line represents the Auto-Encoder model with Jacobian regularization
(Jac+AE), the green line represents the CL model with Dropout and L2 regularizer (DropOut+L2),
the yellow line represents the CL model without Jacobian regularization (CL).

G VISUALIZATIONS

This section presents comprehensive visualizations demonstrating our manifold-guided approach’s
mechanisms and effectiveness. We showcase the method’s ability to learn meaningful geometric
structures through various experiments, including analysis of manifold dynamics on toy datasets,
comparison of learned tangent spaces across different models, and visualization of perturbation
trajectories on the MNIST dataset. Our results illustrate how the proposed approach successfully
constrains perturbations to follow the intrinsic data manifold structure.

Figure 9 provides a schematic illustration of our methodology. The encoder g(x) should change
most when the sample x moves along the semantic variant directions within the data manifold; while
changing minimally when moves off the manifold (i.e., M⊥), or towards the Semantic-Invariant
region (i.e., MSI(x)). This results in a distinctive “spiked” distribution of the Jacobian matrix’s
singular values (as shown in Figure 2), where the top singular vectors naturally correspond to the
semantic variant directions in the tangent.

Figure 10 illustrates the procedure for obtaining the perturbed samples described in Algorithm 2 for
a 2D toy manifold dataset. The blue dots are generated based on a quadratic function x2 = −x2

1.
Specifically, we sample points along x2 = −x2

1 and add Gaussian noise with variance δ2 = 0.01. To
train the encoder g, we employ our manifold-guided game framework, where the augmentation op-
eration is simplified to adding small noise. The tangent at any given point x1 is approximated using
the largest singular vector of the Jacobian Jg((x1,x2)). For further simplification, we assume each
point has a gradient direction of (0, 1) when optimizing the surrogate loss in Eq. equation 7, imply-
ing that perturbation directions for all points are the unit vector (0, 1) as depicted in Figure 10(b).
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Figure 9: This picture depicts the mechanism of our proposed manifold-guided game.

We select 7 (S1 to S7 marked in Figure 10) points from x2 = −x2
1 as the starting points and observe

the trajectory with or without the tangent constraint. Figure 10(a) illustrates that our manifold-
guided game extracts local tangent information, effectively constraining points to move approxi-
mately along the manifold rather than other directions. Figure 10(b) shows that the samples move
freely along the given gradient direction.

Figure 11 provides a qualitative comparison of tangent spaces learned by different models: (i) dis-
plays original image from the CIFAR-10 dataset. The subsequent rows show extracted tangent vec-
tors from three models: (ii) the standard ResNet-18; (iii) a model trained with a smoothness penalty
term λEϵ∼N (0,σ2)∥f(x + ϵ) − f(x)∥22 (λ takes 0.01), and (iv) a model trained with our proposed
manifold guided game. This comparison highlights that our method more effectively captures mean-
ingful directions of variation within the data manifold, consistent with the analysis in Section 4.2
and Appendix B.

Figure 10 illustrates the perturbation trajectories on the MNIST dataset. (a) depicts an original sam-
ple from the MNIST dataset. (b) and (c) depict perturbed samples after 50 iterations, generated
using the LeNet model trained with standard training and our manifold-guided game, respectively.
(d) provides a t-SNE visualization (perplexity = 20) of MNIST digits, along with the perturbed sam-
ples from each iteration. Different colors represent distinct digit classes (0–9), while the green and
black lines illustrate the perturbation trajectories. While the t-SNE does not perfectly represent the
underlying geometric structure of the dataset, it offers valuable insights. Specifically, perturbations
without manifold constraints can push data points to meaningless regions. In contrast, our manifold-
guided game effectively restricts the exploration space, resulting in a smaller and more meaningful
uncertainty set for Wasserstein Distributionally Robust Optimization (WDRO). This demonstrates
that our approach enhances the robustness of the model by aligning perturbations with the intrinsic
data geometry.
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(a)

(b)

Figure 10: Comparison of trajectory optimization with and without manifold constraints. We apply
our manifold-guided game to learn the underlying manifold structure, then simulate the Algorithm 2
for solving the perturbed samples with or without the manifold constraint. (a) shows trajectories
constrained to follow the learned manifold structure. (b) shows that perturbation directions for all
points are simplified as the unit vector (0, 1). Here Si are the starting points.
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Figure 11: Visualization of the tangents learned by different ResNet-18 models. (i) displays original
images from the CIFAR-10 dataset. The subsequent rows show extracted tangent vectors from
three models: (ii) the standard ResNet-18; (iii) a model trained with a smoothness penalty term
λEϵ∼N (0,σ2)∥f(x+ϵ)−f(x)∥22 (λ takes 0.01); and (iv) a model trained with our proposed manifold
guided game. These visualizations reveal the models’ learned local geometric structure.
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(a) (b) (c)

(d)

Figure 12: Visualization of perturbation trajectories on the MNIST dataset. (a) An original sample
from the MNIST dataset. (b) and (c) show the corresponding perturbed samples after 50 iterations,
generated using LeNet model trained with standard methods and our manifold-guided game, re-
spectively. (d) A t-SNE visualization (perplexity = 20) of MNIST digits, along with the perturbed
samples mentioned above at each iteration. Different colors represent distinct digit classes (0–9),
while the green and black lines illustrate the perturbation trajectories.
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