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Abstract

Existing video highlight detection methods often struggle to generalize due to
varying content, styles, and audio-visual quality in unseen test videos. We propose
Highlight-TTA, a test-time adaptation framework for video highlight detection that
addresses this limitation by dynamically adapting the model during inference to
better align with the specific characteristics of each test video, thereby improving
its generalization and highlight detection performance. Highlight-TTA is jointly
optimized during training using a self-supervised auxiliary task, cross-modality
hallucinations, alongside the primary task of highlight detection within a meta-
auxiliary training scheme to enable effective adaptation. During testing, we adapt
the trained model using the self-supervised auxiliary task on the test video to
enhance its highlight detection performance. Extensive experiments on three
benchmark datasets demonstrate the effectiveness of Highlight-TTA.

1 Introduction

Video highlight detection involves identifying and extracting the most significant and engaging
moments from video content [1, 2, 11, 35]. This technology is essential in various fields such as
sports, entertainment, education, and social media, where it enhances the user experience by providing
quick access to the most compelling segments. However, videos can vary significantly in terms
of content, context, and visual/audio quality, making it challenging for existing fixed and generic
highlight detection models [28, 35, 32, 1, 2, 19, 17] to perform well across all instances. To tackle
this issue, test-time adaptation (TTA) [29] provides a compelling solution. TTA is essential for
video highlight detection as it enables the model to adapt to the specific characteristics of each video
instance during inference. By adapting the model at test time, it can better account for these variations,
leading to more robust highlight detection results tailored to each individual video. We introduce
Highlight-TTA, which is, to our knowledge, the first framework to integrate test-time adaptation
(TTA) for video highlight detection, to effectively handle diverse video content.

Auxiliary tasks are often used for test-time adaptation (TTA) to provide additional supervision and
improve the generalization of the model [29, 4, 9, 10]. By leveraging related but easier-to-solve
tasks, the model can learn more robust and transferable representations, which can help improve
performance on the primary task, especially when test data differs from training data. In this work, we
present a new self-supervised auxiliary task, called cross-modality hallucinations, for video highlight
detection. Visual and audio modalities provide complementary information, and recent studies have
shown that combining these modalities leads to superior highlight detection performance compared
to using a single modality [1, 19]. Our Highlight-TTA framework utilizes the available visual and
audio modalities within a video to learn to hallucinate the features of one modality from the other.
By performing cross-modality hallucinations, the model can infer missing or obscured information
in one modality based on cues from the other, leading to a deeper understanding of the correlation
between audio and visual components and thereby enhancing its ability to perform the primary task
of highlight detection more accurately. While we could jointly train a model using both auxiliary and
primary tasks, recent studies [4, 9] and our experiments suggest that a joint-trained model is prone
to bias towards improving the auxiliary task at the expense of the primary task. To address this, we
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employ a meta-auxiliary learning approach based on model-agnostic meta-learning (MAML) [6] to
balance the learning of both tasks and prevent the auxiliary task from overshadowing the primary
task. At test time, our model can effectively adapt to each video when fine-tuned using the auxiliary
task, ensuring improved highlight detection performance.

In summary, 1) We propose Highlight-TTA, a test-time adaptation approach for video highlight
detection, which is to our knowledge, the first work to apply test-time adaptation for highlight
detection; 2) We introduce a new self-supervised auxiliary task, cross-modality hallucinations, to
improve highlight detection performance; 3) We propose a meta-auxiliary learning scheme to optimize
the model parameters, ensuring that adapting these parameters through the auxiliary task during
testing improves highlight detection performance; and 4) We conduct extensive experiments on three
benchmark datasets, demonstrating the superiority and effectiveness of our approach.

2 Our Approach

Given a video V , we split it into n clips, with each clip containing a fixed number of frames. From
each clip ci (where i = 1, 2, ...n), we extract its visual features vi ∈ Rdv from a pre-trained visual
feature extractor and audio features ai ∈ Rda from a pre-trained audio feature extractor. We denote
V with its visual features, {vi}ni=1, and audio features, {ai}ni=1. Our method, Highlight-TTA, aims to
find a model Fθ(V ) → H , parameterized by θ that maps V to a set of highlight scores H = {hi}ni=1,
where hi denotes the predicted highlight score of each clip ci in video V . Our primary loss, Lpri, is a
binary cross-entropy loss between H and the ground-truth highlight scores, Hgt.

Network Architecture: To implement Fθ(V ), we extend two state-of-the-art audio-visual highlight
detection networks, JAV [1] and UMT [19], which, at their core, utilize unimodal self-attention
modules to encode temporal dependencies within the same modality and bimodal cross-attention
modules to capture cross-modal relationships. We extend these networks by introducing two hal-
lucination modules with learnable parameters next to the unimodal self-attention modules for our
self-supervised auxiliary task. One hallucination module is fed the self-attended visual features and
hallucinates the self-attended audio features, while the other takes in self-attended audio features and
learns to hallucinate self-attended visual features. Each of these hallucination modules comprises a
self-attention layer sandwiched between two fully-connected layers and includes a skip connection
that bypasses the self-attention layer. We denote our model’s parameters as θ = {θshar, θpri, θaux}.
θpri are the parameters involved only in the primary task, and, θaux represent the parameters of two
cross-modality hallucination modules, which take part only in the auxiliary task. The parameters
involved in both the primary and auxiliary tasks are denoted as θshar.

Cross-Modality Hallucinations: We introduce cross-modality hallucinations as a self-supervised
auxiliary task in our framework. This task trains the model to hallucinate one modality from the other
(i.e., from visual to audio and vice versa), improving its understanding of audio-visual correlations,
enhancing its ability to handle distribution shifts at test time, and ultimately leading to more accurate
highlight detection. We compute the cross-modal visual hallucination loss, Lhal

a→v, using the MSE
loss between the output hallucinated features of our visual hallucination module, SAhal

a→v, and the
self-attended visual features, {vvi }ni=1. We detach the gradients of {vvi }ni=1 ensuring backpropagation
occurs only through the layers in the audio-modality branch. Similarly, using the audio hallucination
module, we calculate the cross-modal audio hallucination loss, Lhal

v→a. We add these two losses to
compute our auxiliary loss, Laux through which the model learns to minimize the difference between
the hallucinated and actual modality features.

Meta-Auxiliary Training: We first train our network using both our primary and auxiliary losses
jointly. This joint-trained model is sub-optimal to be directly used for testing as it does not adapt to
internal information in test video instances. While we could use the auxiliary task to fine-tune this
joint-trained model at test-time, there is a risk that it becomes more biased towards improving the
auxiliary task [4, 9, 10, 29] rather than the primary task. Therefore, following prior work [4, 9, 10],
we propose a meta-auxiliary training strategy which involves training the model using both auxiliary
and primary tasks at training time in a manner that aids adaptation to specific test instance during
testing using the auxiliary task. Our meta-auxiliary training algorithm, as shown in Alg. 1, has
two loops. In the inner loop, given a video instance Vb and its ground-truth Hgt

b from a batch of B
videos, along with our joint-trained model parameters θ, we first make a few gradient updates using
the auxiliary loss Laux. During these inner loop updates, the model parameters {ωshar

b , ωaux
b } are
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Algorithm 1 Meta-Auxiliary Training for Video Highlight Detection

Input: λ: inner learning rate, γ: meta learning rate, V : video, Hgt: ground-truth highlights
Output: θ: learned parameters from meta-auxiliary training
1: Initialize the model with joint-trained weights: θ = {θshar, θaux, θpri}
2: while not converged do
3: Sample a batch of training instances {Vb, H

gt
b }

B
b=1

4: for each b do
5: Compute auxiliary cross-modality hallucinations loss: Laux = Lhal

a→v + Lhal
v→a

6: Compute adapted parameters: {ωshar
b , ωaux

b } ← {θshar, θaux} − λ∇θLaux({θshar, θaux};Vb)
7: Auxiliary task update: {θshar, θaux} ← {θshar, θaux} − λ∇θLaux({θshar, θaux};Vb)
8: end for
9: Primary task update: {θshar, θpri} ← {θshar, θpri} − γ

∑B
b=1∇θLpri({ωshar

b , θpri};Vb, H
gt
b )

10: end while

updated as shown in Line 6 of Alg. 1, where λ is the inner learning rate. This inner loop adaptation
can be performed during test time since it does not rely on ground-truth highlights. The adapted
parameters ωshar

b from the inner updates can then be used to perform our primary task of highlight
detection. This step ensures that the performance on the primary task is highly coupled with the
updates made in the auxiliary task. This process encourages our model to be updated in such a way
that, once adapted to a given video data instance, it enhances the performance of the primary task. As
shown in Line 9 of Alg. 1, in the outer update of the algorithm, we optimize our model parameters θ
based on the primary loss, where γ is the meta-learning rate.

Test-time Adaptation: At test-time, we use the model obtained from meta-auxiliary training with
parameters θ to initialize test-time training. Given a test video Vb, we evaluate the auxiliary loss
Laux, which we use to adapt the model to Vb and obtain parameters ωshar

b (Line 6 of Alg. 1) . We
use these adapted parameters ωshar

b , along with the parameters θpri, for highlight detection. We
provide detailed information about our approach and the networks used in Appendix A.2.

3 Experiments and Conclusion

We utilize three benchmark video highlight detection datasets, namely YouTube [28], TVSum [27],
and QVHighlights [16]. We compare with state-of-the-art methods such as VESD [3], LM [35],
Trail. [32], CHD [2], JAV [1] and LSVM [28], on TVSum and YouTube. On QVHighlights, we
compare with prior methods without using textual queries: BT [26], CHD [2], JAV [1], and UMT
[19]. Additionally, for a strong comparison, we extended CHD, a single-modal method that uses
only visual features, to incorporate audio features using early fusion and reported the obtained results.
Table 1, 2, and 3 demonstrate the effectiveness of our Highlight-TTA. Note that the results for CHD,
JAV, and UMT are from our implementation and runs. The performance of both JAV and UMT
improves with the introduction of our Highlight-TTA framework, achieving state-of-the-art results.

VESD LM Trail. CHD CHD JAV JAV + Ours UMT UMT + Ours
(V) (V) (V) (V) (AV) (AV) (AV) (AV) (AV)

t-5 mAP 48.10 56.40 62.80 52.76 55.15 68.42 70.42 80.48 80.96

Table 1: Highlight detection results on TVSum.

LSVM LM Trail. CHD CHD JAV JAV + Ours UMT UMT + Ours
(V) (V) (V) (V) (AV) (AV) (AV) (AV) (AV)

mAP 53.60 56.40 69.10 65.39 65.72 70.18 72.26 74.86 75.63

Table 2: Highlight detection results on YouTube.

Ablation Studies: For our ablation studies, we experiment with our Highlight-TTA framework built
upon the highlight detection network, JAV [1]. In Table 4, we analyze the impact of various steps in
Highlight-TTA and compare against several baseline methods. We first report the results from our
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Method BT CHD CHD JAV JAV + Ours UMT UMT + Ours
(V) (V) (AV) (AV) (AV) (AV) (AV)

mAP 14.36 15.82 17.25 23.98 24.74 24.37 24.47
HIT@1 20.88 17.10 18.60 29.70 31.19 30.97 31.48

Table 3: Results on QVHighlights test set. We report results obtained from their evaluation server.

Method TVSum YouTube QVHighlights val

Joint Meta TTA t-5 mAP mAP mAP HIT@1

✓ 68.30 71.20 24.12 33.16
✓ ✓ 68.50 71.48 24.13 33.10
✓ ✓ 70.25 72.03 24.30 33.10
✓ ✓ ✓ 70.42 72.26 24.31 33.35

Table 4: Impact of joint-training (Joint), meta-
auxiliary learning (Meta), and TTA.

Method TVSum YouTube QVHighlights val

t-5 mAP mAP mAP HIT@1

JAV + Pseudo-label 66.71 69.84 24.26 32.71
JAV + TENT [31] 69.12 70.36 23.99 32.19
JAV + EATA [21] 69.81 70.67 24.09 32.77
JAV + Ours 70.42 72.26 24.31 33.35

Table 5: Comparison of our Highlight-TTA with
other test-time adaptation methods.

joint-trained model, which is jointly trained on both the primary loss and the auxiliary cross-modality
hallucination loss. Next, we examine the effect of using our auxiliary loss for updating the joint-
trained model during test time directly, without the meta-auxiliary training step. It is noteworthy that
this simple method already outperforms existing methods, demonstrating the effectiveness of using
cross-modality hallucinations as an auxiliary task for highlight detection. Finally, in the last row,
our Highlight-TTA which integrates joint-training, meta-auxiliary training, and test-time adaptation
outperforms all of the baseline methods. Moreover, to evaluate the effectiveness of Highlight-TTA, in
Table 5, we compare it with popular TTA methods, including TENT [31] and EATA [21]. We also
compare it with a simple confidence-based pseudo-labeling technique [15, 33, 34, 20], using this
technique as an auxiliary task instead of the cross-modality hallucinations in our Highlight-TTA. We
present additional experiment details and ablation studies in Appendix A.3 and A.4, respectively.

Qualitative Results: In Fig. 1, we compare the predictions of a generic, fixed joint-trained model
based on JAV with those of the JAV + Highlight-TTA (ours) on a test video from TVSum, which
achieves better alignment with the ground-truth highlights.

Figure 1: Qualitative results on an example test video from TVSum. The yellow region corresponds
to the ground-truth annotations. We indicate the predicted scores of the joint-trained JAV model with
a red line, while the sky-blue region represents the predictions of JAV + Highlight-TTA (ours).

Conclusion: Recent highlight detection methods, despite their advancements, face significant
challenges in generalizing to unseen test videos. These methods typically rely on a generic highlight
detection model for each test video, which does not account for the unique characteristics and
variations of individual test videos. Consequently, their performance suffers during testing. To address
this, we propose Highlight-TTA, a test-time adaptation framework for video highlight detection.
Our approach involves jointly optimizing Highlight-TTA using a self-supervised auxiliary task,
cross-modality hallucinations, alongside the primary task of highlight detection in a meta-auxiliary
training scheme to enable effective adaptation during test-time. Extensive experiments and ablation
studies conducted on three benchmark datasets demonstrate the effectiveness of Highlight-TTA.
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A Appendix

A.1 Related Work

Video highlight detection has garnered significant attention in recent years, driven by the growing
demand for efficient content viewing and summarization. Many approaches have been proposed to
tackle this problem, spanning from traditional rule-based techniques to cutting-edge deep learning
based methods. Early works often relied on handcrafted features and heuristics to identify key
moments or segments within videos [27]. However, with the advent of deep learning, researchers
have shifted towards data-driven approaches for highlight detection that learn representations directly
from raw video data. Many of high performing highlight detection approaches rely on manually
annotated frame-level supervision [8, 12, 32, 38, 1, 19]. To alleviate the burden of acquiring costly
labeled data, some methods leverage cheaper video-level tags or category information for weak
supervision [36, 3, 11, 22, 35, 37]. However, these approaches often require access to large-scale
external datasets for training. Notably, some recent unsupervised methods have also shown promising
results [2, 17]. Despite these advancements, existing methods typically struggle to generalize well
since they focus on a generic highlight detection model, which suffers when applied directly to new,
unseen testing videos due to distribution shifts between training and testing data. To address this
challenge, inspired by recent success of test-time adaptation [29], we propose Highlight-TTA, a
test-time adaptation framework for video highlight detection.

Our work is related to a popular meta-learning algorithm, MAML [6], which enables rapid learning
and adaptation to a new task using only a few training examples. Additionally, our work is connected
to the meta-auxiliary learning framework (MAXL) [18], which generates auxiliary labels to enhance
the primary task using ground-truth labels. Recent studies in point clouds [9, 10] and image deblurring
[4] have explored meta-auxiliary learning combined with test-time adaptation. To our knowledge,
we are the first to explore test-time adaptation using meta-auxiliary learning for video highlight
detection. Additionally, we introduce a new self-supervised auxiliary task, cross-modal hallucinations,
to leverage multimodal audio-visual information for effective video highlight detection.

A.2 Additional Details of Our Approach

We illustrate our Highlight-TTA framework in Figure 2 where we lay out our meta-auxiliary training
and test-time adaptation method for video highlight detection. Our meta-auxiliary training mechanism
for enabling effective and fast adaptation to each test instance utilizes two loop. We first obtain
adapted parameters using the auxiliary loss present in the inner loop. Next, we evaluate and update
the model weights in the outer loop by using the primary loss computed from the adapted parameters.
Given a test video instance during testing, we update the parameters of model using the auxiliary
task to adapt specifically to the given test video. With the adapted model, we detect highlights of the
given video.

Meta-auxiliary Training

Model

Video Cross-modal
Hallucination
(Auxiliary Task)

inner
update

Highlight
Detection

(Primary Task)

Annotations

outer
update

Videos with
highlight annotations

Test-time Adaptation using Cross-Modal Hallucination

A test video
instance

Cross-modal
Hallucination
(Auxiliary Task)

Highlight
Detection

(Primary Task)

Shared
Weights

forward
gradient flow

highlight scores
...

test-time
adaptation

Figure 2: Illustration of our meta-auxiliary training and test-time adaptation method for video
highlight detection. During the meta-auxiliary training stage, we initially obtain adapted parameters
using the auxiliary loss present in the inner loop. Next, we evaluate and update the model weights in
the outer loop by using the primary loss computed from the adapted parameters. At test-time, we
update the model using the auxiliary task to adapt specifically to a given test video instance.

Next, we describe the architecture of our highlight detection network built upon JAV [1] in more detail
here. Fig. 3 illustrates a schematic overview of our network. At its core, our network initially employs
unimodal self-attention layers [30] to capture clip-level temporal relationships within each modality
using their features. Subsequently, these self-attended visual and audio features are fed into bimodal
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cross-attention layers to encode cross-modal dependencies and produce bimodal attended features.
Finally, the self-attended features and bimodal attended features are combined and forwarded to
fully-connected layers to predict the highlight score of each clip in the video. We built upon this
network by introducing two cross-modal hallucination modules, one to hallucinate self-attended
audio-features while the other hallucinates self-attended visual features.

highlight 
scores

...

...

hallucinated
visual features

hallucinated
audio features

...

visual
features

audio
features

Figure 3: Illustration of our network architecture.

Concretely, given a video with n clips, our audio-
visual model firstly processes the clip-level
visual features {vi}ni=1 using a self-attention
layer SAv→v and the clip-level audio fea-
tures {ai}ni=1 using another self-attention layer
SAa→a. Then, we feed the self-attended vi-
sual features {vvi }ni=1 into our cross-modal au-
dio hallucination module SAhal

v→a to hallucinate
self-attended audio features {aai }ni=1. Simi-
larly, we send the self-attended audio features
{aai }ni=1 to our cross-modality visual halluci-
nation module SAhal

a→v, to hallucinate the self-
attended visual features {vvi }ni=1. On the other
hand, two bimodal attention layers BMAv→a

and BMAa→v are also fed the self-attended vi-
sual features {vvi }ni=1 and self-attended audio
features {aai }ni=1 to produce bimodal attended
features, {vai }ni=1 and {avi }ni=1, respectively. Finally, a score regressor module (SR) combines the
self-attended and bimodal attended features using a set of learnable weights and passes them through
two fully-connected layers to predict the highlight score hi for each clip in the video V .

As mentioned in Sec. 2, we also incorporate our Highlight-TTA framework into another state-of-
the-art audio-visual highlight detection network, UMT [19]. UMT is a multi-modal transformer
model that includes two unimodal encoders, one for video and one for audio. The features from
these unimodal encoders are fused using a cross-modal encoder to capture cross-modal dependencies.
Similar to JAV, we extend UMT with two cross-modal hallucination modules by reusing its unimodal
encoder modules.

A.3 Datasets and Settings

We utilize three benchmark video highlight detection datasets, namely YouTube [28], TVSum [27],
and QVHighlights [16]. YouTube contains videos from six classes- parkour, dog, gymnastics, skating,
skiing, and surfing with about 100 videos in each category. We utilize the standard train-test splits
provided with the dataset. TVSum is a smaller dataset with 50 videos across 10 categories including
changing vehicle tire, making sandwich, and so forth. We follow prior works [1, 2, 25] and utilize
a random train-test split with a ratio of 80:20. We run our experiments on TVSum five times and
report the average performance. QVHighlights is a large dataset containing about 10,000 videos. The
dataset is primarily designed for query-focused video highlight detection and moment retrieval. Each
video is associated with corresponding textual queries and saliency/highlight scores. The dataset has
canonical train, validation, and test splits with a ratio of 70:15:15. Since our method only requires
videos, we ignore the user query annotations. For a fair comparison, we evaluate our method against
prior non-query-based methods on this dataset.

Features: Following prior work on TVSum and YouTube [2, 1], we extract visual features from each
clip using a 3D-CNN (ResNet-34) backbone. For the videos of QVHighlights, following [16, 19], we
extract visual features using SlowFast [5] and video encoder of CLIP (ViT-B/32) [24]. To extract
audio features, on all three datasets, we use PANN [14] audio network pre-trained on AudioSet [7].

Evaluation Metrics: On QVHighlights, we utilize Mean Average Precision (mAP) for evaluation,
which takes into account the highlight scores of all the clips, and HIT@1, which considers the hit
ratio of the clip with the highest score for each video. Following prior work [16], we consider only
the clips rated as Very Good by users to be highlights during evaluation. Following existing works
[2, 1], on YouTube, we report Mean Average Precision (mAP), and on TVSum, we report the mean
average precision on the top five predicted clips (top-5 mAP). We report all metrics as percentages.
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Implementation Details: We implement our method using PyTorch [23] and use the official im-
plementations of JAV [1] and UMT [19] as the backbones in our method. In the outer loop update
of meta-auxiliary training (Algorithm 1), we use the Adam optimizer [13] with a learning rate of
λ = 5× 10−5. We use the same optimizer and learning rate for joint-training as well. For the inner
update of our meta-auxiliary training and during test-time adaptation, we use the SGD optimizer
with a learning rate of γ = 1× 10−1. We employ three gradient updates during training and testing
to adapt our model using the auxiliary loss in Line 6 of Alg. 1. We implement our Highlight-TTA
framework by building upon JAV [1] and UMT [19]. For the JAV model, on the YouTube dataset, we
train for 30 epochs during joint training and 10 epochs during meta-auxiliary learning. On TVSum,
we train for 100 epochs during joint training and 20 epochs for meta-auxiliary learning. On the larger
QVHighlights dataset, we train for 15 epochs in both phases. For the UMT model, we train for 100
epochs on the YouTube dataset during both joint training and meta-auxiliary learning. On the TVSum
dataset, we train for 200 epochs in both phases, and on the QVHighlights dataset, we train for 50
epochs during both phases. We train our models on one NVIDIA GeForce RTX 2080 Ti 12GB GPU.

A.4 Additional Ablation Experiments

Number of gradient updates: In Table 6, we examine the impact of the number of gradient updates
using the cross-modality hallucinations auxiliary task in the inner loop of meta-auxiliary training
(Alg. 1) and test-time adaptation of Highlight-TTA (Sec. 2). We use the same number of gradient
updates in both training and testing, which is intuitive and has been found useful in prior work [4, 10].
Overall, we find that our model performs best with three gradient updates across all datasets, allowing
the model to sufficiently adapt to the internal information of each test instance. However, further
increasing the number of updates does not yield any additional performance boost.

No. of gradient updates TVSum YouTube QVHighlights val

top-5 mAP mAP mAP HIT@1

1 68.68 71.04 24.26 31.74
2 69.08 71.07 24.07 32.13
3 70.42 72.26 24.31 33.35

Table 6: Impact of number of gradient updates on model performance using cross-modality hallucina-
tions for meta-auxiliary training and test-time adaptation.

A.5 Additional Qualitative Results

In Fig. 4, we present additional qualitative results on a test video on surfing from the YouTube dataset.
We again compare the predictions of a generic, fixed joint-trained model based on JAV with those of
JAV + Highlight-TTA (ours), which improves highlight detection predictions and aligns better with
the ground-truth highlights.

Figure 4: Additional qualitative results. We denote the ground-truth highlight annotations as yellow
regions. The predicted scores of the joint-trained model are indicated by a red line, while the sky-blue
region represents the predictions of our Highlight-TTA. For the surfing video from the YouTube
dataset, the overall alignment of highlight predictions with ground-truth highlights improves with
Highlight-TTA, as the highlight score for the non-highlight clips decreases.
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