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ABSTRACT

Modern metrics for generative learning like Fréchet Inception Distance (FID) and
DINOv2-Fréchet Distance (FD-DINOv2) demonstrate impressive performance.
However, they suffer from various shortcomings, like a bias towards specific gen-
erators and datasets. To address this problem, we propose the Fréchet Wavelet
Distance (FWD) as a domain-agnostic metric based on the Wavelet Packet Trans-
form (Wp). FWD provides a sight across a broad spectrum of frequencies in images
with a high resolution, preserving both spatial and textural aspects. Specifically,
we use Wp to project generated and real images to the packet coefficient space. We
then compute the Fréchet distance with the resultant coefficients to evaluate the
quality of a generator. This metric is general-purpose and dataset-domain agnostic,
as it does not rely on any pre-trained network while being more interpretable due
to its ability to compute Fréchet distance per packet, enhancing transparency. We
conclude with an extensive evaluation of a wide variety of generators across various
datasets that the proposed FWD can generalize and improve robustness to domain
shifts and various corruptions compared to other metrics.

1 INTRODUCTION

With the surge of generative neural networks, especially in the image domain, it becomes important
to assess their performance in a robust and reliable way (Heusel et al., 2017a; Binkowski et al., 2018;
Salimans et al., 2016; Kynkäänniemi et al., 2019; Stein et al., 2023). FID (Heusel et al., 2017a) has
emerged as the de facto standard for comparing generative image synthesis approaches. However, it
also shows various shortcomings, such as its reliance on a pre-trained classification backbone, i.e.,
InceptionV3 trained on ImageNet. This, by design, introduces a class dependency into FID leading
to accidental distortions (Sauer et al., 2021). The FID scores actually improve if the evaluation set
resembles ImageNet or if the use of ImageNet pretrained discriminator pushes the output distribution
towards ImageNet, although the image quality remains the same in these cases (Kynkäänniemi et al.,
2023).

To address the domain bias problem caused by the use of a pre-trained network, we propose an
alternative metric based on the Wavelet Packet Transform (Wp). In contrast to other pure frequency
(Narwaria et al., 2012) or spatial (Wang et al., 2004; Horé & Ziou, 2010) metrics, wavelets have
the advantage that they combine both frequency and spatial aspects in one metric. While frequency
information is important (Durall et al., 2020; Dzanic et al., 2020; Rahaman et al., 2019; Schwarz
et al., 2021; Wolter et al., 2022), it alone is insufficient to assess the quality of synthesized images
without considering additional spatial information. Wavelets are thus an ideal representation for a
metric comparing generative approaches for image synthesis. As FID, FWD utilizes the Fréchet
distance of the real and generated set of images as a distance measure, but it is not computed based on
InceptionV3 activation maps. Instead, it utilizes the wavelet-packet frequency band representations
of Wp as illustrated in Figs. 1 and 3. To this end, we first use Wp to transform every image, where
we use the wavelet transform at a fixed level. We then compute the Fréchet distance for each packet
of the transform and average them over all packets. The proposed Fréchet Wavelet Distance (FWD)
thus considers spatial information as well as all frequency bands.

To quantitatively assess those characteristics, we evaluate the proposed metric in terms of its domain
bias and robustness. We further compare the proposed FWD to existing state-of-the-art metrics like
FID, Kernel Inception Distance (KID) and DINOv2-Fréchet Distance (FD-DINOv2) on standard
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Figure 1: The first two images depict the same person, while the last image depicts a different person.
Intuitively, the first two images are more similar than the other pairs of images. When computing the
mean squared error between the images using the penultimate InceptionV3 activations or wavelet
packets, we observe that the wavelet packets produce a low distance for the first two images, as
expected. Surprisingly, according to InceptionV3, the last two images are similar since both images
are classified as ‘microphone’ whereas the first image as ‘groom’. Images from Fli (2024).

datasets. We show that FWD is a more robust metric that does not suffer from the domain bias and
can thus be applied to any dataset. Kynkäänniemi et al. (2023) experimented with optimizing FID by
selecting a subset of images from 250k generated images, where the subset’s InceptionV3 activations
are related to ImageNet classes. Building on this work, we observed a significant improvement in
FID by ≈ 50%, when evaluated on this subset. FD-DINOv2 showed an unintended improvement of
≈ 2% as well. This undesired improvement can likely be explained by the overlap between ImageNet
and the DINOv2 training set. In contrast, FWD remains the same despite the manipulation. We also
show that some unexpected FID results can be attributed to the dataset bias. Furthermore, FWD is
significantly faster to compute. In an effort to produce reproducible work, we provide code for FWD
as a part of the supplementary material.

In summary, this paper makes the following contributions:

1. We propose the Fréchet Wavelet Distance (FWD) as a dataset- and domain-agnostic metric
for evaluation of generative approaches for image synthesis.

2. FWD is an interpretable metric, as the wavelet packet transform splits the frequency space
into hierarchically organized, discrete subbands.

3. We show that the proposed method is computationally inexpensive and robust to corruption,
perturbation, and distractors.

4. We show that FD-DINOv2 addresses the domain bias issue to some extent but at a very high
computational cost. Furthermore, we provide evidence that it is still limited to the domains
of the training data.

2 RELATED WORK

2.1 METRICS FOR GENERATIVE LEARNING

A generative model should generate novel image samples that mirror the training set sample distri-
bution, including data diversity. In a vision context, Salimans et al. (2016) proposed the Inception
Score (IS) as a measure of image quality, independent of the target dataset statistics. The IS is
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computed by measuring the entropy of the class probabilities of an InceptionV3. The score builds
upon the assumption that a generative network that has converged to a meaningful solution will
produce images that will allow InceptionV3 to make predictions with certainty. In other words, a
certain InceptionV3 has a low prediction entropy. IS has been found to be sensitive to different
ImageNet training runs (Barratt & Sharma, 2018). Furthermore, it does not use the statistics of the
real data distribution a Generative Adversarial neural Network (GAN) is trained to model (Heusel
et al., 2017a). In response Heusel et al. (2017a) proposes FID. Instead of measuring the entropy at
the final layer FID is computed by evaluating the Fréchet distance (Dowson & Landau, 1982) the
penultimate network activations computed on both the true and synthetic images. Today, comparing
high-level InceptionV3 features using an FID-score (Heusel et al., 2017a) enjoys widespread adoption.
Variants exist, Kernel Inception Distance (KID) (Binkowski et al., 2018), for example, relaxes the
multi-variate Gaussian assumption of FID and measures the polynomial kernel distance between
Inception features of generated and training dataset. Binkowski et al. (2018) kept the InceptionV3
backbone and replaced Fréchet distance with kernel distance. While FID captures general trends
well, the literature also discusses its drawbacks. Kynkäänniemi et al. (2023) empirically studies the
effect of ImageNet classes on FID for non-ImageNet datasets by using GradCAM. Furthermore,
Kynkäänniemi et al. (2023) examines ImageNet bias using Projected Fast GAN (Proj. FastGAN)
and StyleGAN2. Compared to StyleGAN2, Proj. FastGAN produces more accidental distortions
like floating heads and artefacts Sauer et al. (2021). Surprisingly, Proj. FastGAN’s FID is compa-
rable to StyleGAN2’s in their experiment. Chong & Forsyth (2020) found a generator-dependent
architecture bias, which limits our ability to compare samples for smaller datasets with 50K or
fewer images. Additionally, Parmar et al. (2022) found that both FID and KID are highly sensitive
to resizing and compression. Barratt & Sharma (2018) reported FID sensitivity with respect to
different InceptionV3 weights. While comparing Tensorflow and PyTorch implementations, Parmar
et al. (2022) measured inconsistent scores due to differing resizing implementations. Finally, FID
scores are hard to reproduce unless all details regarding its computation are carefully disclosed (Hug,
2024). Stein et al. (2023) proposed an alternative to over-reliance on InceptionV3, by replacing it
with DINOv2-ViT-L/14 model. We observe this solves the domain bias somewhat at a significant
computational cost. Unfortunately, DINOv2’s training dataset is not publicly available. Consequently,
gaps in the dataset remain hidden. This situation motivates the search for additional quality metrics.

2.2 SPECTRAL METHODS

Prior work found neural networks are spectrally biased (Rahaman et al., 2019). Many architectures
favor low-frequency content (Durall et al., 2020; Gal et al., 2021; Wolter et al., 2022; Zhang et al.,
2022). Related articles rely on the Fourier or Wavelet transform to understand frequency bias. Wavelet
transforms as pioneered by Mallat (1989) and Daubechies (1992) have a solid track record in signal
processing. The Fast Wavelet Transform (FWT) and the closely related Wavelet Packet Transform
(Wp), are starting to appear more frequently in the deep learning literature. Applications include
Convolutional Neural Network (CNN) augmentation (Williams & Li, 2018), style transfer (Yoo et al.,
2019), image denoising (Liu et al., 2020; Saragadam et al., 2023), image coloring (Li et al., 2022),
face aging (Liu et al., 2019), video enhancement (Wang et al., 2020), face super-resolution (Huang
et al., 2017), and generative machine learning (Gal et al., 2021; Guth et al., 2022; Zhang et al., 2022;
Phung et al., 2023). Hernandez et al. (2019) uses the Fourier transform to measure the quality of
human motion forecasting. Zhang et al. (2022) uses a FWT to remove artifacts from generated images.
Phung et al. (2023) focuses on the FWT to increase the inference speed of diffusion models. This
work proposes to use the Wavelet Packet Transform (Wp) as an interpretable metric for generators.

3 FRÉCHET WAVELET DISTANCE (FWD)

We want to tackle the problem of dataset-domain bias. To this end, we propose FWD, which in
turn leverages the Wavelet Packet Transform (Wp). We require two-dimensional filters for image
processing where we use Haar wavelets. Consequently, we construct filter quadruples from the
original single-dimensional filter pairs. The process uses outer products (Vyas et al., 2018):

ha = hLh
T
L,hh = hLh

T
H,hv = hHhT

L,hd = hHhT
H (1)

With a for the approximation filter, h for the horizontal filter, v for the vertical filter, and d for the
diagonal filter (Lee et al., 2019). We construct a Wp-tree for images with these two-dimensional

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

level 1 level 2 level 3 level 4

a h

v d

aa ah ha hh

av ad hv hd

va vh da dh

vv vd dv dd

aaa aah aha ahh haa hah hha hhh

aav aad ahv ahd hav had hhvhhd

ava avh ada adh hva hvh hda hdh

avv avd adv add hvv hvd hdvhdd

vaa vah vha vhh daa dah dha dhh

vav vad vhv vhd dav da dav da

vva vvh vda vdh dva dvh dda ddh

vvv vvd vdv vdd dvv dvd ddvddd

Figure 2: Illustration of the Wavelet Packet Transform (Wp). For visualization purposes, we depict a
level-3 transform. All later experiments use a level-4 transform. Image from Jérémy Barande (2024).
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Figure 3: Fréchet Wavelet Distance (FWD) computation flow-chart. Wp denotes the wavelet-packet
transform. Not all packet coefficients are shown, dashed lines indicate omissions. We compute
individual Fréchet Distances for each packet coefficient and finally average across all the coefficients.

filters as illustrated in Fig. 2. Recursive convolution operations with the filter quadruples, i.e.,

CFl
∗ hj = CFl+1

(2)

at every recursion step where ∗ denotes a two-dimensional convolution with a stride of two. The
filter codes Fl+1 are constructed by applying all j ∈ [a, h, v, d] filters to the previous filter codes Fl.
Initially, the set of inputs Fl will only contain the original image CF0

= {X} as shown in Fig. 2. At
level one, we obtain the result of all four convolutions with the input image and have F1 = [a, h, v, d].
At level two, we repeat the process for all elements in F1. F2 now contains two-character keys
[aa, ah, av, ad, . . . , dv, dd] as illustrated in Fig. 2. We typically continue this process until level 4 in
this paper. We arrange the coefficients in CFl

as tensors Cl ∈ RP,Hp,Wp for the final layer. The total
number of packages at every level is given by P = 4l, and Hp = H

4l
and Wp = W

4l
where we denote

the image height and width as H and W . We provide more details on Wp in the Supplementary.

Figure 3 illustrates how we compute the FWD. The process relies on the wavelet packet transform, as
previously discussed. We process N images with C channels in parallel Wp : Is ∈ RN×H×W×C →
C ∈ RN×P×Hp·Wp·C . H,W denotes image height and width as before. To facilitate the ensuing
metric evaluation, we flatten the last axes into (Hp ·Wp ·C). Before computing the packets, all pixels
are divided by 255 to re-scale all values to [0,1]. The metric is computed in three steps. First, we
compute the individual packet mean via

µp(IN ) =
1

N

N∑
n=1

W(In)p, (3)

where In is the nth image in the dataset and p represent the corresponding packet form P packets.
Then we compute the covariance matrix as

Σp(IN ) =
1

N − 1

N∑
n=1

(W(In)p − µp(IN ))(W(IN )p − µp(IN ))T (4)

Here µ ∈ RP×C·Hp·Wp estimate the mean across the number of images, and Σ ∈
RP×C·Hp·Wp×C·Hp·Wp represents the covariance among all the coefficients. Now we are ready
to compute the distances given the packet mean and covariance values,

FDp(r, g) = d(N (µrp ,Σrp),N (µgp ,Σgp))
2 = ||µrp − µgp ||22 + tr[Σrp +Σgp − 2

√
ΣrpΣgp ]. (5)
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(a) Proj. FastGAN on CelebA-HQ FID: 6.358
FWD: 1.388

(b) DDGAN on CelebA-HQ FID: 7.641 FWD:
0.408

Figure 4: Samples from (a) Proj. FastGAN, (b) DDGAN models on Large-scale Celeb Faces At-
tributes High Quality (CelebA-HQ) dataset. The FID prefers Proj. FastGAN irrespective of visual
artefacts and floating heads, whereas our metric (FWD) ranks DDGAN higher than Proj. FastGAN.

With r and g denoting the real and generated images. tr denotes the trace operation. Utilising the
above computed per-packet statistics for both real (µr,Σg) and generated samples (µr,Σg), we
measure the mean of Fréchet Distance (Equation 5) across all packets

FWD =
1

P

P∑
p=1

d(N (µrp ,Σrp),N (µgp ,Σgp))
2. (6)

By averaging the distances of all frequency bands, the FWD captures frequency information across
the spectrum.

4 EXPERIMENTS

Our first series of experiments demonstrates the effect of domain bias on learned metrics, demonstrat-
ing the resilience of FWD to such bias. All experiments were implemented using the same code base.
Implementation We use PyTorch (Paszke et al., 2017) for neural network training and evaluation
and compute FID using (Seitzer, 2020) as recommended by Heusel et al. (2017b). We work with
the wavelet filter coefficients provided by PyWavelets (Lee et al., 2019). We chose the PyTorch-
Wavelet-Toolbox (Wolter et al., 2024) software package for GPU support. FD-DINOv2 and KID are
computed using the codebases from Stein et al. (2023) and Binkowski et al. (2018), respectively.

4.1 EFFECT OF DOMAIN BIAS

Kynkäänniemi et al. (2023) observed that metrics based on ImageNet-trained network features
emphasize ImageNet-related information. This behaviour is desired when we evaluate generators on
ImageNet or similar datasets. When working with other datasets, this behaviour is misleading.
Datasets As datasets, we use Large-scale Celeb Faces Attributes High Quality (CelebA-HQ) (Karras
et al., 2018), Flickr Faces High Quality (FFHQ), DNDD-Dataset (Yi et al., 2020), an agricultural
dataset, and Sentinel (Schmitt et al., 2019), a remote sensing dataset. These datasets contain images
that are very different from those in ImageNet. More information about the DNDD-Dataset and the
Sentinel dataset can be found in the supplementary material.
Generators We study data-set domain bias effects using the Denoising Diffusion GAN (DDGAN),
Proj. FastGAN and StyleGAN2 networks. Proj. FastGAN is particularly interesting. To improve
training convergence, its discriminator relies on ImageNet weights (Sauer et al., 2021). Prior work
found this architecture to improve FID on image datasets far from ImageNet, without substantially
improving image quality (Kynkäänniemi et al., 2023).
Hyperparameters To examine the effect of data-set bias, we require generators, which are
tuned to produce output that resembles our datasets’ distribution. Specifically, we trained the
Proj. FastGAN for 100 epochs on both CelebA-HQ dataset and DNDD-Dataset, respectively,
using a learning rate of 1e-4 and batch-size of 64 with 8 A100 GPUs. For the Sentinel dataset,
we trained Proj. FastGAN for 150 epochs, using the same hardware and hyperparameters.
For FFHQ, pre-trained weights are available, as well as pre-trained weights for DDGAN on
CelebA-HQ from Xiao et al. (2022). On DNDD-Dataset, we trained DDGAN for 150 epochs
with a learning rate of 1e-4 and batch size of 8 on the same hardware. We also trained the
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Table 1: Comparison of FID, FD-DINOv2 and FWD to depict domain bias. FID prefers
Proj. FastGAN over DDGAN across all the datasets. Whereas FWD prefers DDGAN. We find
that FD-DINOv2 agree with FWD across all datasets except DNDD-Dataset. This might be because
agriculture data is not part of DINOv2’s training set.

Dataset Generator FID ↓ FD-DINOv2↓ FWD(ours)↓

CelebA-HQ Proj. FastGAN 6.358 685.889 1.388
DDGAN 7.641 199.761 0.408

FFHQ Proj. FastGAN 4.106 593.124 0.651
StyleGAN2 4.282 420.273 0.312

DNDD-Dataset Proj. FastGAN 4.675 171.625 1.442
DDGAN 26.233 232.884 1.357

Sentinel Proj. FastGAN 8.96 424.898 0.755
DDGAN 23.615 404.700 0.115
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Figure 5: Distribution of ImageNet Top-1 classes, predicted by InceptionV3 for real, DDGAN
and Proj. FastGAN.(a) depict the distribution for CelebA-HQ dataset and (b) show distribution for
DNDD-Dataset. Although irrelevant for FID computation, the Proj. FastGAN distribution aligns
more closely with real distribution than DDGAN for both the datasets, contributing to lower FID.

DDGAN on the Sentinel dataset for 250 epochs, using a learning rate of 1e-4 and batch size of 4 on
4 A100 GPUs. For StyleGAN2, we use the pretrained weights with the code from Karras et al. (2020).

Table 1 presents the FID, KID, FD-DINOv2 and FWD values across all datasets for the aforemen-
tioned generators. Across all datasets, FID prefers Proj. FastGAN images.

Results Consider the CelebA-HQ-case in more detail. Figures 4a and 4b show images from the
CelebA-HQ variants of Proj. FastGAN and DDGAN. Deformations are visible in the images from
Proj. FastGAN on the left. Generally, we found more deformations in Proj. FastGAN images com-
pared to DDGAN images. DDGAN, in other words produces more high-quality images. Supplemen-
tary Figures 12 and 13 illustrate this observation further. Consequently, it is surprising to see FID
prefer Proj. FastGAN, as we would expect DDGAN to come out on top. We follow Kynkäänniemi
et al. (2023), and investigate further. Figure 5a compares the InceptionV3 output label distribu-
tion of the original-CelebA-HQ images as well as their synthetic counterparts from DDGAN and
Proj. FastGAN. We observe that InveptionV3 produces a label distribution for Proj. FastGAN, which
resembles the distribution from InveptionV3 for the original CelebA-HQ images. The label distribu-
tion for images from DDGAN differs significantly. This discrepancy, also reported by Kynkäänniemi

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Table 2: Comparison of computational efficiency between FID, FD-DINOv2 and FWD. FWD exhibit
the lowest FLOPs and highest throughput. FD-DINOv2 has the highest FLOPs and lowest throughput
because of deep network structure and FID in between. FLOPs are calculated over individual feature
extractors on a single image and throughput is measured over 50k images.

Metric GFLOPs↓ Throughput (imgs/sec) ↑
FID 1.114 526

FD-DINOv2 15.566 53
FWD 0.006 1923

Table 3: Evaluation of FID (ImageNet), FID (CelebA) and FWD on CelebA-HQ and FFHQ datasets.
FID (ImageNet) prefers Proj. FastGAN in both datasets, whereas FID retrained on CelebA and FWD
both prefer DDGAN in these datasets.

Dataset Generator FID (ImageNet) ↓ FID (CelebA) ↓ FWD(ours) ↓

CelebA-HQ Proj. FastGAN 6.358 5.602 1.388
DDGAN 7.641 3.145 0.408

FFHQ Proj. FastGAN 4.106 2.204 0.651
StyleGAN2 4.282 0.897 0.312

et al. (2023), explains why FID produces a misleading verdict. FWD, in contrast, prefers DDGAN,
as we would expect.

The same pattern repeats in the results for our FFHQ-experiments, generally we see FID prefer
Proj. FastGAN images, while FWD puts DDGAN on top. Our observations confirm the experiment
in Kynkäänniemi et al. (2023). In a next step we study the effect of a larger network backbone for the
neural Frećet distance computations. Stein et al. (2023) proposes to replace InveptionV3 with the
much larger pretrained DINOv2 network. Table 1 lists the resulting distance metrics. For CelebA-HQ
and FFHQ, FD-DINOv2 prefers DDGAN images. Here FD-DINOv2 and FWD agree.

To investigate further we consider the DNDD-Dataset of agricultural images (Yi et al., 2020) and the
Sentinel (Schmitt et al., 2019) datasets. Samples from the Proj. FastGAN for DNDD-Dataset and
Sentinel datasets are provided in Figures 15 and 17, respectively. Correspondingly, Figures 14 and 16
represent samples from DDGAN for DNDD-Dataset and Sentinel dataset, respectively. In both cases,
FID consistently prefers Proj. FastGAN, which was also the case in all prior experiments. Histograms
of the InceptionV3 label distribution are depicted in Figure 5b. The histograms indicate domain
bias and resemble the observations reported above. On the DNDD-Dataset and Sentinel-datasets, the
verdicts of FD-DINOv2 and FWD are particularly interesting. While both metrics correctly agree on
the sentinel dataset, only FWD correctly prefers DDGAN on the agricultural images.

We carefully chose the DNDD-Dataset dataset, as agriculture images are not commonly used and the
dataset does not resemble ImageNet. We speculate that the LVD-142M dataset may include satellite
imagery, contributing to a consistent ranking. Unfortunately, the closed source of the LVD-142M
dataset used for training DINOv2 (Oquab et al., 2023) complicates a deeper investigation into this
domain bias. In this first set of experiments, we observed that while FD-DINOv2 provides a partial
remedy to the domain bias problems it still produced an inconsistent ordering for the DNDD-Dataset-
images. Furthermore, this partial remedy comes at a great computational cost. Table 2 shows that
FWD is over 36 times faster to compute than FD-DINOv2.

In a second series of experiments, we investigate the effect of retraining which is another expensive
solution to the domain bias problem. To this end, we train InceptionV3 on Large-scale Celeb Faces
Attributes (CelebA). CelebA comes with 40 facial attributes, which we use to train a classifier. After
convergence, we see an exact match ratio of 90% and recalculate FID using this new backbone. The
FID (CelebA) column of Table 3 lists the corresponding scores, and FID (CelebA) and FWD provide
the same order.

However, in the case of the agricultural data set, the retrained FID (DNDD) in Table 4 remains biased,
while FWD produces meaningful domain agnostic results. DNDD-Dataset contains 3600 images
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Table 4: Evaluation of FID (ImageNet) and FID (DNDD) and FWD on theDNDD-Dataset. FID
trained (DNDD) still prefer Proj. FastGAN in this case, because of limited data availability to extract
meaningful representations from the InceptionV3 network. Whereas FWD rank DDGAN images
better.

Dataset Generator FID (ImageNet) ↓ FID (DNDD) ↓ FWD(ours) ↓

DNDD-Dataset Proj. FastGAN 4.675 20.937 1.442
DDGAN 26.233 52.521 1.357

aaa aah aha ahh haa hah hha hhh
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ava avh ada adh hva hvh hda hdh
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vav vad vhv vhd dav da dav da

vva vvh vda vdh dva dvh dda ddh

vvv vvd vdv vdd dvv dvd ddvddd
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Figure 6: Interpretation of FWD. (a) represents the blueprint for level-3 Wp transformation. (b)
and (c) depict the mean absolute packet difference between CelebA-HQ dataset and StyleGAN2,
and DDGAN respectively. (d) shows the per-packet Fréchet distances for StyleGAN2 in orange and
DDGAN in blue.

with 7 classes. Networks are tasked with detecting nutrient deficiency in the soil, such as Sodium,
Calcium, unfertilized, and 4 others. Once more, we use a re-trained InceptionV3 backbone for the
FID computation. In comparison to CelebA or ImageNet, this is a small data set and the re-trained
network does not provide meaningful features. We believe this is a very interesting use case since it
illustrates that the FWD is not just free from data bias, it also provides meaningful feedback for low
resource tasks, where retraining InceptionV3 is not feasible.

In conclusion, experiments in this section indicate that metrics like FID, and FD-DINOv2, while
useful, are prone to domain bias when applied to datasets beyond ImageNet. Contrary, FWD offers a
more consistent, domain-agnostic evaluation along with computation efficiency.

4.2 FWD INTERPRETABILITY

A generative metric is interpretable if and only if we can understand the underlying mechanics that
produce the ranking. This section explains the decisions made by FWD in one specific case.
Dataset and Generators We use CelebA-HQ and we focus on samples from DDGAN and Style-
GAN2.
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Table 5: Matching fringe features for 250k images of FFHQ dataset generated using StyleGAN2. By
optimizing FID, FD-DINOv2 gets optimized indirectly, because ImageNet is part of the DINOv2
training set. Whereas FWD stays resilient to FID optimization.

Metric Random Images FID-Optimized Images Change
FID 4.278 ± 0.019 2.031 ± 0.005 -52.53%

FD-DINOv2 420.223 ± 0.563 414.048 ± 0.905 -1.47%
FWD 0.338 ± 0.017 0.398 ± 0.009 +17.75%

Table 6: Comparing various generative models using Fréchet Wavelet Distance (FWD),Fréchet
Inception Distance (FID), DINOv2-Fréchet Distance (FD-DINOv2), and Kernel Inception Distance
(KID) on CelebA-HQ, LSUN-Churches, LSUN-Bedrooms and ImageNet datasets.

Dataset Image Size Method FID↓ KID↓ FD-DINOv2↓ FWD↓ (ours)

C
el

eb
A

H
Q

256

DDIM Song et al. (2021) 32.333 0.0313 654.482 12.317
DDPM (Ho et al., 2020) 19.101 0.0152 341.838 4.697

StyleSwin (Zhang et al., 2022) 23.257 0.0264 255.404 1.528
StyleGAN2 (Karras et al., 2020) 15.439 0.0155 593.344 0.476

DDGAN (Xiao et al., 2022) 7.203 0.0034 199.761 0.408

C
hu

rc
he

s

256

DDIM (Song et al., 2021) 11.775 0.0043 538.400 4.919
DDPM (Ho et al., 2020) 9.484 0.0036 454.402 3.546

StyleSwin (Zhang et al., 2022) 3.187 0.0005 435.967 2.835
StyleGAN2 (Karras et al., 2020) 4.309 0.0007 444.044 0.753

B
ed

ro
om

s

256 DDIM (Song et al., 2021) 25.857 0.0094 452.419 9.521
DDPM (Ho et al., 2020) 16.251 0.0058 392.481 5.187

Im
ag

eN
et

64

Imp. Diff. (VLB) (Nichol & Dhariwal, 2021) 33.522 0.0264 670.952 2.182
EDM (Karras et al., 2024) 12.295 0.0108 113.704 1.160

BigGAN (Brock et al., 2019) 5.128 0.0024 170.601 0.441
Imp. Diff. (Hybrid) (Nichol & Dhariwal, 2021) 3.091 0.0006 96.208 0.392

Section 3 formulates FWD as an average of per packet FWD scores. This design choice allows
us to understand the overall FWD-score in terms of the individual packet coefficients for each
frequency band. Figures 6b and 6c depict the mean absolute difference per packet between the
original CelebA-HQ and generated samples from StyleGAN2 and DDGAN, respectively. Figure 6d
presents both generators’ per-packet FWD. Figure 6(d) shows that DDGAN has a lower Fréchet
distance. Overall, we observe that the mean absolute packets translate into per packet Fréchet
distances, which validates the FWD overall.

4.3 EVALUATION OF ROBUSTNESS

The section follows up on prior work by Kynkäänniemi et al. (2023). The authors generate a large
set of samples and find a specific combination of images with an optimal FID. Weighted sampling
produces possible combinations. The process chooses images according to a corresponding weight.
The weights or drawing probabilities are optimized with FID as the objective function. We follow this
process and sample 50k images from a large set with optimized weights as probabilities. We employ
generated images from StyleGAN2 and real-world images from the FFHQ dataset. Table 5 lists the
resulting FID, FD-DINOv2 and FWD values. We observe that FWD is robust to FID optimization,
whereas FD-DINOv2 showed a little reduction by optimizing FID.

In addition to FID optimization, we study the impact of image perturbation in supplementary Figure 7.
We find that FWD and FD-DINOv2 is closer to a bijective mapping in the presence of perturbation
than FID. This behaviour is desirable since we would always expect a larger distance if for example
more noise is added. This is not always the case for FID. Consider for example the last quarter of the
uniform noise intensity in (b), where FID falls even though more noise is added.
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4.4 COMPARISON TO STATE-OF-THE-ART

To understand the spectral qualities of existing generative methods for image synthesis, we evaluated
various Diffusion and GAN models across a wide range of benchmark datasets.
Datasets We compare common metrics and our FWD on CelebA-HQ (Karras et al., 2018), the
Church and Bedroom subsets of the Large-scale Scene UNderstanding (LSUN) dataset (Yu et al.,
2015), and finally ImageNet (Russakovsky et al., 2015). In order to retain consistent spatial and
frequency characteristics across various image sizes, we use level 4 packet transform for 256x256
images. Furthermore, we reduce the transformation level by a factor of 1 for reduction in image size
by half.
Generators For the evaluation, we use the diffusion approaches Denoising Diffusion Probabilistic
Models (DDPM) (Ho et al., 2020), Denoising Diffusion Implicit Models (DDIM) (Song et al., 2021),
Improved Diffusion (Nichol & Dhariwal, 2021), DDGAN (Xiao et al., 2022), EDM (Karras et al.,
2024), as well as the GAN approaches like StyleGAN2 (Karras et al., 2019), StyleSwin (Zhang et al.,
2022) and BIGGAN (Brock et al., 2019).
Hyperparameters All generators are evaluated with pretrained weights as provided by the respective
paper codebases.
Metrics We compute FID, KID, FD-DINOv2 and finally our own FWD. Table 6 lists all numbers.
FID-scores are from the standard implementation by Seitzer (2020). For CIFAR10, we use 50k
images to evaluate all metrics. The ImageNet numbers are computed with 50k images from the
validation set. For CelebAHQ and LSUN we work with 30k images.

Considering CelebA-HQ, FID, KID, FD-DINOv2 and FWD agree most of the time. Considering
FID and FWD, only DDPM and StyleSwin are swapped. FWD therefore delivers a comparable
quality metric in this case. The ordering remains largely unchanged for LSUN churches. In terms
of FWD, we observe a stable ranking across the two datasets. Except DDPM and StyleSwin, which
are swapped. We observe larger changes in magnitude for FID-scores when making the switch
from CelebA-HQ to LSUN churches. The switch moves us towards ImageNet, since "church" is
an ImageNet class, but "face" is not. Supplementary Figure 11b depicts the histograms of top-1
classes classified by InceptionV3 on LSUN churches for DDPM and StyleSwin. We observe that
StyleSwin matches the activation histograms of LSUN churches more accurately than the histograms
of DDPM. This observation is a manifestation of domain bias and explains the FID inconsistency for
both generators.

We also consider the LSUN-Bedrooms and ImageNet 64 datasets, where FID and FWD agree. We
expect pristine performance for FID on ImageNet since this setting is perfectly in its data-domain.
Yet, FD-DINOv2 places EDM (Karras et al., 2024) ahead of BigGAN, which is surprising since this
does not match with the ranking from FID. FID and FWD agree and arrive at the same ranking.

5 CONCLUSION

Modern generative models exhibit frequency biases (Durall et al., 2020), while commonly used
metrics such as FID, KID and FD-DINOv2 are affected by domain bias (Kynkäänniemi et al., 2023).
To address these limitations, FWD accounts for frequency information without introducing a domain-
specific bias. Even though FD-DINOv2 offers a partial solution to this issue, it comes at a very high
computational cost and has thus a negative environmental impact. In response, this paper introduced
FWD a novel metric based on the wavelet packet transform. Our metric allows consistent, domain-
agnostic evaluation. At the same time, its formulation is computationally efficient. Our findings
show that FWD is robust to input perturbations and interpretable through the analysis of individual
frequency bands. Optimizing FID or FD-DINOv2 metrics can negatively impact reproducibility, if
optimized samples are not provided. In such cases, the use of FWD in conjunction with traditional
metrics ensures a comprehensive and accurate evaluation of generative models while also helping to
detect and mitigate domain bias.
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Figure 7: Figures depicting the effect of perturbations like (a) Gaussian blurs and (b) uniform noise
corruption as well as (c) jpeg-compression on FID, FWD and FD-DINOv2.

A SUPPLEMENTARY

A.1 ACRONYMS

Wp Wavelet Packet Transform

CelebA Large-scale Celeb Faces Attributes

CelebA-HQ Large-scale Celeb Faces Attributes High Quality

CNN Convolutional Neural Network

DDGAN Denoising Diffusion GAN

DDIM Denoising Diffusion Implicit Models

DDPM Denoising Diffusion Probabilistic Models

DNDD-Dataset Deep Nutrient Deficiency Dikopshof Dataset

FD-DINOv2 DINOv2-Fréchet Distance

FFHQ Flickr Faces High Quality

FID Fréchet Inception Distance

FWD Fréchet Wavelet Distance

FWT Fast Wavelet Transform

GAN Generative Adversarial neural Network

IS Inception Score

KID Kernel Inception Distance

LSUN Large-scale Scene UNderstanding

MSE Mean Squared Error

Proj. FastGAN Projected Fast GAN

VAE Variational AutoEncoder

A.2 THE FAST WAVELET AND WAVELET PACKET TRANSFORMS

This supplementary section summarizes key wavelet facts as a convenience for the reader. See, for
example, Strang & Nguyen (1996); Mallat (1999) or Jensen & la Cour-Harbo (2001) for excellent
detailed introductions to the topic.

The Fast Wavelet Transform (FWT) relies on convolution operations with filter pairs. Figure 8
illustrates the process. The forward or analysis transform works with a low-pass hL and a high-pass
filter hH. The analysis transform repeatedly convolves with both filters,

xs ∗1 hk = ck,s+1 (7)
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Figure 8: Overview of the Fast Wavelet Transform (FWT) computation. hL denotes the analysis
low-pass filter and hH the analysis high pass filter. fL and fH the synthesis filter pair. ↓2 denotes
downsampling with a factor of two, ↑2 means upsampling. The analysis transform relies on stride
two convolutions. The synthesis or inverse transform on the right works with stride two transposed
convolutions. Hk and Fk with k ∈ [L,H] denote the corresponding convolution operators.
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Figure 9: Scematic drawing of the full Wavelet Packet Transform (Wp) in a single dimension.
Compared to Figure 8, the high-pass filtered side of the tree is expanded, too.

with k ∈ [L,H] and s ∈ N0 the set of natural numbers, where x0 is equal to the original input signal
x. At higher scales, the FWT uses the low-pass filtered result as input, xs = cL,s if s > 0. And ∗1
as the 1d-convolution operation. The dashed arrow in Figure 8 indicates that we could continue to
expand the FWT tree here.

The Wavelet Packet Transform (Wp) additionally expands the high-frequency part of the tree. A
comparison of Figures 8 and 9 illustrates this difference. Whole expansion is not the only possible
way to construct a wavelet packet tree. See Jensen & la Cour-Harbo (2001) for a discussion of other
options. In both figures, capital letters denote convolution operators. These may be expressed as
Toeplitz matrices Strang & Nguyen (1996). The matrix nature of these operators explains the capital
boldface notation. Coefficient subscripts record the path that leads to a particular coefficient.

We construct filter quadruples from the original filter pairs to process two-dimensional inputs. The
process uses outer products Vyas et al. (2018):

ha = hLh
T
L,hh = hLh

T
H,hv = hHhT

L,hd = hHhT
H (8)

With a for approximation, h for horizontal, v for vertical, and d for diagonal Lee et al. (2019). We
can construct a Wp-tree for images with these two-dimensional filters. Figure 10 illustrates the
computation of a full two-dimensional wavelet packet tree. More formally, the process initially
evaluates

x0 ∗ hj = cj,1 (9)

with x0 equal to an input image X, j ∈ [a, h, v, d], and ∗ for two-dimensional convolution. At higher
scales, all resulting coefficients from previous scales serve as inputs. The four filters are repeatedly
convolved with all outputs to build the full tree. The inverse transforms work analogously. We refer
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X
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Ha ↓2 Hh ↓2 Hv ↓2 Hd ↓2

aa ah av ad

↑2 Fa ↑2 Fh ↑2 Fv ↑2 Fd

↑2 Fa ↑2 Fh ↑2 Fv ↑2 Fd

X̂

Figure 10: Two dimensional Wavelet Packet Transform (Wp) computation overview. X and X̂ denote
input image and reconstruction respectively. We compute the Fréchet Wavelet Distance (FWD) using
the wavelet packet coefficients p. The transform is invertible, the distance computation is therefore
based on a lossless representation.

to the standard literature Jensen & la Cour-Harbo (2001); Strang & Nguyen (1996) for an extended
discussion.

Compared to the FWT, the high-frequency half of the tree is subdivided into more bins, yielding a
fine-grained view of the entire spectrum. We always show analysis and synthesis transforms to stress
that all wavelet transforms are lossless. Synthesis transforms reconstruct the original input based on
the results from the analysis transform.

A.3 HISTOGRAM MATCHING - INCEPTIONV3

A.4 GENERATIVE ARCHITECTURES

Prior work mainly falls into the three GAN, Diffusion, and Variational AutoEncoder (VAE) ar-
chitecture groups. The StyleGAN architecture family Karras et al. (2019; 2020; 2021) is among
the pioneering architectures in generative vision. GAN’s allow rapid generation of high-quality
images but suffer from training instability and poor mode coverage Salimans et al. (2016). Sauer
et al. (2021) proposed the Projected Fast GAN (Proj. FastGAN)-architecture, which stabilizes and
improves training convergence by introducing ImageNet pre-trained weights into the discriminator.
The upgraded discriminator pushes the output distribution towards ImageNet. VAE models, on the
other hand, Kingma & Welling (2014); Van Den Oord et al. (2017) enable the generation of diverse
image sets, but are unable to produce high-quality images.

Diffusion models Sohl-Dickstein et al. (2015); Ho et al. (2020); Peebles & Xie (2023) have emerged
as a very promising alternative and produce high-quality images Ho et al. (2020); Dhariwal & Nichol
(2021) in an autoregressive style. DDPMs, for example, are Markovian processes that learn to
gradually separate added noise from data during training. During infernce images are generated
from Gaussian noise via a reverse process that requires iterating through all steps to generate an
image. Song et al. (2021) reduced the number of sampling steps by introducing DDIM, which
rely on a deteministic non-Markovian sampling process. Furthermore, Nichol & Dhariwal (2021)
proposed the use of strided sampling, to reduce the sampling timesteps and also provide a performance
improvement by using cosine- instead of linear sampling. Moreover, Nichol & Dhariwal (2021)
adopt a weighted variational lower bound to supplement the Mean Squared Error (MSE) loss. In an
attempt to solve the generative learning trilemma (image quality, diversity and fast sampling), Xiao
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Figure 11: Histogram matching using top-1 classes from InceptionV3 network to explain the change
in FID ranking changes between StyleSwin and DDPM on both (a) CelebAHQ and (b) LSUN church
datasets.

et al. (2022) proposed Denoising Diffusion GAN (DDGAN). The paper parameterizes a conditional
GAN for the reverse diffusion process and demonstrates faster generation speed.

A.5 COMPUTE DETAILS

In principle, our experiments run on single GPUs. For some experiments, we used up to 16 nodes
with 4 Nvidia A40 GPUs each at a large scientific computing centre.

A.6 DNDD-DATASET

DNDD-Dataset contains 3600 images with 7 classes. Networks are tasked with detecting nutrient
deficiency in the soil, such as Sodium, Calcium, unfertilized, and 4 others. The images of sugar beet
are captured over the 2019 growth period. Capturing occurred at the long-term fertilizer experiment
(LTFE) Dikopshof near Bonn. The images were annotated with seven types of fertilizer treatments.
The dataset is used for image classification and domain adaptation.

We train the Proj. FastGAN and DDGAN models on this dataset. We further preprocessed the dataset
by splitting the 1000x1000 resolution image to 256x256 resolutions. This resulted in 57600 images
overall. The training details are further provided in the main paper.

A.7 SENTINEL DATASET

The Sentinel dataset consists of 180,662 triplets of Synthetic Aperture Radar (SAR) image patches
collected from Sentinel-1 and Sentinel-2 missions. From these, we only use ROIs_2017_Winter
subset images, which contain 31,825 images. We train the Proj. FastGAN and DDGAN on this
subset. The original images are in "tif" format and conversion to "jpg" is made using the official
codebase provided in Schmitt et al. (2019).

A.8 ADDITIONAL SAMPLES
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Figure 12: Samples from CelebA-HQ generated from DDGAN.
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Figure 13: Samples from CelebA-HQ generated from Proj. FastGAN.
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Figure 14: Samples from DNDD-Dataset generated from DDGAN.

21



1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

Figure 15: Samples from DNDD-Dataset generated from Proj. FastGAN.
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Figure 16: Samples from Sentinel dataset generated from DDGAN.
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Figure 17: Samples from Sentinel dataset generated from Proj. FastGAN.
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