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Abstract

Recent works proposed server-side input recovery attacks in federated learning1

(FL), in which an honest-but-curious server can recover clients’ data (e.g., images)2

using shared model gradients, thus raising doubts regarding the safety of FL.3

However, the attack methods are typically demonstrated on only a few models or4

focus heavily on the reconstruction of a single image, which is easier than that of a5

batch (multiple images). Thus, in this study, we systematically re-evaluated state-6

of-the-art (SOTA) attack methods on a variety of models in the context of batch7

reconstruction. For a broad spectrum of models, we considered two types of model8

variations: implicit (i.e., without any change in architecture) and explicit (i.e., with9

architectural changes). Motivated by the re-evaluation results that the quality of10

reconstructed image batch differs per model, we propose angular Lipschitz constant11

of a model gradient function with respect to an input as a measure that explains12

the vulnerability of a model against input recovery attacks. The prototype of the13

proposed measure is derived from our theorem on the convergence of attackers’14

gradient matching optimization, and re-designed into the scale-invariant form to15

prevent trivial server-side loss scaling trick. We demonstrated the predictability of16

the proposed measure on the vulnerability under recovery attacks by empirically17

showing its strong monotonic correlation with not only loss drop during gradient-18

matching optimization but also the quality of the reconstructed image batch. We19

expect our measure to be a key factor for developing client-side defensive strategies20

against privacy threats in our proposed realistic FL setting called black-box setting,21

where the server deliberately conceals global model information from clients22

excluding model gradients.23

1 Introduction24

Federated learning (FL) is a cooperative machine learning between clients as local trainers and25

a central server as a global aggregator [14, 21]. Participants in FL cannot access raw data from26

others and only communicate with one another through gradients, which were believed to leak little27

information of the original data in the past.28

However, recent studies [31, 30, 6, 26, 12] challenge inverting gradients back to original data,29

suggesting that there is potential for an honest-but-curious server to attack by sneakily recovering30

clients’ data from gradients in FL. Their algorithms, so-called gradient inversion attacks, aim at31

optimizing input variables (e.g., images) to match the given gradients under the condition of fixed32

model weights. For better reconstruction quality, state-of-the-art (SOTA) attacks assume that both33

batch normalization (BN) [11] layers’ statistics and private labels are known [6, 26, 12, 8]. However,34
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they are demonstrated on a limited range of global models. Thus, we systematically re-evaluated35

SOTA gradient inversion attacks on a variety of models in the context of batch (or multiple images)36

reconstruction, the recovery of input batch from the averaged gradients over itself, which is more37

difficult to solve than single image reconstruction, the recovery of single image from its gradient. In38

this paper, two kinds of model variations are considered, namely implicit and explicit.39

Implicit model variations refer to a collection of different models with the same architecture. In this40

paper, we consider two types of implicit model variations: BN modes and training epochs.41

• As mentioned previously, SOTA gradient inversion attack methods are demonstrated on models42

with BN layers to assume shared BN statistics. Note that there are two modes of a BN layer,43

namely, train mode and eval mode. In the reality of FL, the server can choose any mode among44

them. Therefore, we re-evaluated SOTA attacks by considering both modes of BN. This paper is45

the first to consider BN modes for the evaluation of gradient inversion attacks. We empirically46

found that the quality of reconstructed batch significantly changes by switching BN modes even47

for the same model weights.48

• By reflecting the reality that clients can encounter global model from the server at any time, we49

consider models with different training epochs for the re-evaluation. This scheme extends the50

scope of previous works’ training epoch choices of black-and-white manner: zero training epoch51

(untrained) and maximum training epochs (fully trained). We empirically found that the best52

reconstruction result was usually found at earlier training epochs, not untrained nor fully trained,53

thus raising the need to expand the evaluation criterion for attack methods.54

Meanwhile, explicit model variations are more straightforward than implicit model variations as they55

only involve architectural changes. In this study, we consider two types of explicit model variations:56

skip connections and channel size.57

• Residual networks (ResNets) [9] are frequently employed in previous works [26, 6, 31, 12] even58

for batch reconstruction, while networks without skip connection are introduced for only for the59

recovery of single image from its gradient [6]. Therefore, we explored how a skip connection60

affects the quality of SOTA gradient inversion attacks in the context of batch reconstruction. Our61

empirical findings suggest that models without skip connection are more robust against the gradient62

inversion attack than residual networks.63

• The reconstruction quality is known to increase with the number of channels, but this property is64

demonstrated on single image reconstruction [30, 6]. Thus, we recap how the number of channels65

affects the attack quality in the context of batch reconstruction.66

By re-evaluating SOTA attacks in a variety of models, we found that the vulnerability against gradient67

inversion attack significantly differs per model, implying the need of more strict evaluation criteria68

for attack methods. Then, clients are required to judge whether a shared model from the server is safe69

or not before sending locally computed gradients back for their privacy. In this study, we consider70

two settings on the transparency of global model information to clients: white-box and black-box.71

In a white-box setting, clients have an absolute control over global model such as the server; thus,72

clients can directly apply SOTA attacks to the model to assess its vulnerability.73

On the other hand, a black-box setting only allows clients control over model gradients to restrict74

access to the global model possibly due to companies’ secrets. For the client-side measurement of75

privacy leakage in this practical and difficult setting, we propose angular Lipschitz constant of model76

gradients with respect to an input as a predictive measure for the quality of reconstructed samples77

inverted from model gradients.78

This measure is derived from our theorem in Sec. 4 that an attacker’s gradient matching loss function79

drops more abruptly with a smaller L in a particular range, where L is Lipschitz constant of model80

gradients with respect to an input. However, using L as a measure for privacy leakage would be81

inappropriate as L can be any nonnegative value by loss function scaling. Therefore, inspired by82

scale-invariant cosine similarity loss function, we propose the angular Lipschitz constant, a loss83

scaling-invariant alternative to L. We experimentally found that both measure motonically correlates84
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with not only total loss drop during an attacker’s optimization but also the reconstruction quality85

than the norm of gradients. These findings are expected to support the construction of client-side86

defense algorithms particularly for black-box setting, where only model gradients are given to clients87

as minimal information of the model as described in Fig. 5.88

2 Prior Art in the Gradient Inversion Attack89

Given the neural network function fw : Rb×d → Rb×c (w, b, d, c being the model weights, batch size,90

image size, and the number of classes, respectively), and the gradient g∗ = ∂L(fw(x∗),y∗)
∂w computed91

with ground truth input batch (x∗, y∗) ∈ Rb×d×Rb (x∗, y∗ being the image batch, and corresponding92

label batch) and the loss function L : Rb×c × Rb → R (e.g., cross-entropy loss), the goal of gradient93

inversion attack is to reconstruct an image batch x ∈ Rb×d, a resemblance of ground truth image94

batch x∗. In the context of federated learning (FL), fw is the global model, and g∗ is the gradient95

computed from a client. Then, a honest-but-curious server aims to recover the client’s private data x∗.96

A general method to tackle the problem of inverting gradients is to solve an optimization problem97

formulated as follows:98

argmin
x,y

Lgrad(
∂L(fw(x), y)

∂w
,
∂L(fw(x∗), y∗)

∂w
) + αpriorRprior(x), (1)

where Lgrad : RN ×RN → R (N is the size of weights w) is the loss function for gradient matching99

(which closes the distance between current gradients and target gradients), Rprior : Rb×d → R is the100

regularization loss for image prior, with αprior being its coefficient.101

Prior to the advent of packages for automatic differentiation, the gradient term g = ∂L(fw(x),y)
∂w was102

computed as a function of (x, y) in a closed form. For the computation to be tractable, Lgrad was103

set to a squared loss (L(g, g∗) = ||g − g∗||22), and fw was also slightly modified from the original104

design of contemporary neural networks. For example, ReLU activation functions were replaced with105

Sigmoid, and all the strides in convolution modules were excluded from the original ResNet in [31].106

Consequently, the choice of fw was limited.107

Currently, with the advantages of automatic differentiation [22] and advanced deep learning opti-108

mization algorithms [13, 23, 5], solving for optimization problem in (1) becomes tractable for most109

contemporary deep neural networks without the need for modification. Further, the gradient matching110

loss is selected in a broad range from cosine similarity loss (L(g, g∗) = 1− <g,g∗>
||g||||g∗|| ) [6, 12, 10, 26]111

to L2 loss (L(g, g∗) = ||g − g∗||22) [31, 29, 26]. The liberation from the limited choice of loss112

functions and neural network architectures became the trigger of state-of-the-art attack methods.113

State-of-the-art attack methods provide several assumptions which enable the baseline, which is only114

gradient-based, to be expanded.115

First, the server is supposed to know the private labels of clients’ images. Currently, estimating x116

and y becomes a sequential process, in which y is estimated first, after which x is approximated with117

the estimated y = y∗approx given. Rather than jointly learning x and y in (1), prior works suggest118

estimating y directly by seeing the gradients from ground truth data g∗ before optimization [26, 29].119

Therefore, the problem of estimating labels from gradients is separated from the original optimization120

problem in (1) [3, 25, 16] and some works, which focus on reconstruction of images rather than121

labels, assume that private labels are known [6, 12].122

Second, the local batch statistics {µl(x
∗;w), σl

2(x∗;w)}Ml=1 (µl(x
∗;w), σl(x

∗;w), and M being123

the batch mean of the lth batch normalization layer, batch standard deviation of the lth batch124

normalization (BN) layer, and number of the BN layers, respectively), computed with client’s data125

batch, is given to the server. This assumption reflects a naive approach of a FL algorithm called126

FedAvg [21] on the global model with BN layers [19, 17]. When {µl(x
∗;w), σl(x

∗;w)
2}Ml=1 is127

shared from a client to the server for the update of population statistics in the global model’s BN128

layers, the server as an honest-but-curious adversary would work to add up the batch statistics129

matching loss term to (1) to ensure a stronger attack.130
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Then, optimization problem in (1) can be rewritten by considering both assumptions mentioned131

previously as follows:132

argmin
x

Lgrad(
∂L(fw(x), y∗)

∂w
,
∂L(fw(x∗), y∗)

∂w
)+αpriorRprior(x)+αBN

M∑
l=1

RBN ((µl, σl
2), (µ∗

l , σ
∗
l
2
))

(2)
, where RBN is the BN statistics matching loss and αBN being its coefficient with (µl, σl) =133

(µl(x;w), σl
2(x;w)) and (µ∗

l , σ
∗
l ) = (µl(x

∗;w), σl
2(x∗;w)).134

By solving the optimization problem in (2), high resolution images (e.g. ImageNet [4]) with a135

batch size of up to 40 can be constructed in [26]. However, fw is only considered for three models:136

ImageNet pre-trained ResNet18 model, ImageNet pre-trained ResNet50 model, and MOCO v2 [2]137

pre-trained ResNet50 model fine-tuned with ImageNet. However, there are various choices of fw.138

Although a broad spectrum of fw choices is introduced in [6] (e.g., increasing channel size, models139

with or without skip connection), the authors of the work verified the effect from model variations on140

single image reconstruction as well as considered the optimization problem of the form (1) rather141

than (2). Thus, in this paper, we recap how model variations considered in [6] affect reconstruction142

of multiple images in a batch by solving optimization problem of the form (2) to achieve a better143

quality of reconstructed samples.144

3 Re-evaluation of SOTA Gradient Attacks on a Broad Spectrum of Models145

Prior works in gradient inversion attacks properly select limited range of models with vulnerability146

under the proposed attack methods to demonstrate their effectiveness [26, 12, 30, 6]. Therefore, this147

study aims to re-evaluate state-of-the-art attack methods on a broad spectrum of models. The target148

of our evaluation is attack methods that can solve the optimization problem of the form (2) assuming149

that the server as an honest-but-curious attacker desires to reconstruct multiple private images from150

batch gradients given, which is rarely studied previously. The model variations we considered are151

twofold: implicit and explicit.152

Original

BN with 

eval mode

Untrained e=5 Fully-trainede=10 e=25 e=50 e=150 e=225

BN with 

train mode

Figure 1: Visualization of reconstructed images from implicit model variations of ResNet18.
Here e denotes training epochs. Then, “Untrained” means e = 0, and “Fully-trained” means e = 300
as the ResNet18 model is trained on CIFAR100 training set up to 300 epochs. Reconstructed images
in the red dotted line box come from our choices of e. Original images (a woman image, an apple
image, a beetle image) were randomly sampled from the CIFAR100 validation set.

3.1 Implicit model variation: BN modes and training epochs153

While explicit model variation refers to an architectural change such as increasing channel sizes of154

the model, as suggested in [6], implicit model variation is invisible in the architectural level. However,155

changes arise internally within the same architecture such as applying different weights with different156

training epochs or switching the mode of normalization layers (e.g., switching between train and157

eval modes for BN). This is the first work to introduce the concept of implicit model variation. More158
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Figure 2: Plotting the quality of reconstructed samples from implicit model variations of
ResNet18 in terms of MSE (↓, left) and LPIPS (↓, right).

specifically, this is the first time implicit model variation is considered for the evaluation of gradient159

inversion attacks. Interestingly, we experimentally found that the reconstruction quality ranges in a160

broad spectrum over implicit model variations.161

3.1.1 BN modes: motivation162

State-of-the-art gradient inversion attack methods elevate the quality of reconstructed samples by163

introducing batch statistics matching loss to the original problem of gradient matching as in (2).164

Therefore, we adopt a global model with BN layers to realize shared batch statistics in FL. BN165

layer has two modes of operation: train mode and eval mode [11]. However, recent works have166

not specified which mode is set for their demonstration while the malicious server, at least as an167

honest-but-curious attacker, can send a global model with BN layers set to any mode. Therefore,168

this study considers both BN train mode and BN eval mode for the re-evaluation of SOTA gradient169

attacks. Our re-evaluation results show that reconstruction results from different BN modes can be170

significantly different from each other even in terms of the same model weights as in Tab. 1.171

Epoch (e) MSE ↓ PSNR ↑ LPIPS ↓
0 0.8499 ± 0.1996 12.8833 ± 1.241 0.1233 ± 0.0227

5 1.5033 ± 0.1157 10.4366 ± 0.43 0.0915 ± 0.0081

10 1.7985 ± 0.1766 9.87 ± 0.2749 0.1037 ± 0.0099

25 1.8072 ± 0.1042 10.02 ± 0.5716 0.1362 ± 0.0263

50 1.7941 ± 0.3291 9.8666 ± 0.5507 0.1451 ± 0.0153

150 1.7361 ± 0.0783 10.34 ± 0.3732 0.1307 ± 0.0167

225 1.8495 ± 0.2759 10.1866 ± 0.4878 0.1393 ± 0.0214

300 1.8899 ± 0.1575 9.75 ± 0.4313 0.1459 ± 0.0038

(a) BN with eval mode

Epoch (e) MSE ↓ PSNR ↑ LPIPS ↓
0 1.9045 ± 0.0195 8.9265 ± 0.0665 0.2362 ± 0.0113

5 0.6921 ± 0.1601 14.9733 ± 0.9168 0.0459 ± 0.0164

10 1.1367 ± 0.0434 12.5 ± 0.2861 0.0624 ± 0.0035

25 1.3015 ± 0.3402 11.6733 ± 1.4027 0.097 ± 0.04

50 1.66 ± 0.1831 10.0433 ± 0.6354 0.1601 ± 0.041

150 1.6581 ± 0.3138 10.2066 ± 1.1074 0.1444 ± 0.0279

225 1.8497 ± 0.315 9.49 ± 1.008 0.174 ± 0.0151

300 1.8353 ± 0.3703 9.4333 ± 0.8832 0.1812 ± 0.0342

(b) BN with train mode

Table 1: Quantitative comparison between reconstruction results for 50 CIFAR100 images from
ResNet18 model with BN set to (a) eval mode and (b) train mode. MSE (↓), PSNR (↑), and LPIPS
(↓) are used as evaluation metrics. We highlight the best performance for each column in bold.

3.1.2 Training epochs: motivation172

In a scenario of FL, a client can participate at any time during training. Then, a client can encounter173

the global model with arbitrary performance. This fact contradicts previous works’ experimental174

setup, where the global model is chosen in a dichotomous manner: an untrained (or initialized) model175

or a model fully trained on the training set [6, 26]. Therefore, we re-evaluated SOTA inversion176

attacks on models with a broad spectrum of training epochs. We empirically found that the best177

reconstruction quality is usually obtained at earlier training epochs.178

3.1.3 BN modes and training epochs: experimental results179

Setup We trained a ResNet18 model on CIFAR100 [15] training set for 300 epochs using SGD180

optimizer with initial learning rate 0.1, momentum 0.9, and learning rate decay 0.1 applied when181
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e = 150 and e = 225 for the training epoch e. During training, we saved checkpoints of model182

weights when e ∈ {0, 5, 10, 25, 50, 150, 225, 300} to consider the models from different training183

epochs. We oversampled model weights before the first learning decay (0 < e < 150) to cover the184

whole set of dynamically changing model weights in the beginning of training. On the other hand,185

hyperparameters and loss function choices for input reconstruction attacks are borrowed from [10].186

Results As expected from their difference in batch statistics computation, BN with train mode187

and BN with eval mode show different reconstruction results both qualitatively (see Fig. 1.) and188

quantitatively (see Fig. 2 and Tab. 1.). When BN is set to eval mode, partial information (e.g. colors189

or shapes) is barely leaked in reconstructed images only for the cases e = 0 and e = 5 as described190

in Fig. 1 and Fig. 2. On the other hand, for BN with train mode, the quality of reconstructed images191

were sufficient enough to identify the object in each image only for the cases e = 5, 10, 25. Unlike192

the BN mode set to eval mode, it is remarkable that reconstructed images from BN with train mode193

in Fig. 1 are noisy images for e = 0. For the cases e ≥ 50, input reconstruction failed for both BN194

modes and reconstructed images even from the same target gradients look significantly different195

for different BN modes. However, both BN with train mode and BN with eval mode have similar196

reconstruction quality in terms of both mean squared error (MSE) and Learned Perceptual Image197

Patch Similarity (LPIPS) [28] in Fig. 2 and Tab. 1. Therefore, in the early stage of training, a global198

model would be privacy threatening with high probability.199

3.2 Explicit model variation: skip connection and channel size200

Explicit model variations involve change in architecture level like removing skip connections in201

residual blocks or increasing the number of channels in convolution module, which are the kinds202

considered in previous works but on single image reconstruction. Therefore, we re-explore the effect203

of skip connection and channel size on the model’s vulnerability against gradient inversion attack204

but in the context of batch reconstruction. Skip connection helps information flow both forward205

and backward through the network, thus input reconstruction is expected to be easier for residual206

networks but harder for models without skip connection [9]. On the other hand, increasing channel207

size implies increasing dimension of gradients, which is the capacity of gradients to store information.208

Therefore, we expect that more information about input would be compressed in gradients when the209

number of channels increase.210

Figure 3: Visualization of reconstructed images
from ConvNet on CIFAR100. In each image
block, the images at the positions of the red, pink,
and green borders denote the original image, the
reconstruction with BN (eval mode), and the re-
construction with BN (train mode), respectively.
Original images were randomly sampled from CI-
FAR100 validation set.

ResNet18 ResNet18-2 ResNet18-4
# channel

0.03

0.04

0.05
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LP
IP
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Figure 4: Plotting the best reconstruction quality in terms of LPIPS
(↓) among model variations through training epochs for ResNet18,
ResNet18-2, ResNet18-4 models with BN eval (orange) and train
(blue) modes. e = 5 or e = 10 usually result in the best reconstruction
quality. As channel size increases, the reconstruction quality increases
for BN eval but decreases for BN train.

3.2.1 Skip connection and channel size: experimental results211

Setup Instead of ResNet18, we trained a ConvNet model, ResNet18-2 model, and ResNet18-4212

model for explicit model variations. ConvNet, which is introduced in [6] for the first time, is a213

convolutional neural network without skip connection and ResNet18-2 and ResNet18-4 being ResNet214

with channel size doubled and quadrupled, respectively. Note that we apply implicit variations215

considered in the Sec. 3.1 to the models. Training conditions and hyperparameters for both model216

training and attack methods are kept the same with the setup in the previous section.217
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Figure 5: White-box (left) and black-box (right) FL settings.
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(b) ResNets, BN train (rs = −0.87)
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Figure 6: Proposed measure L̃x∗ is approximately a monotonic decreasing function with respect
to Linit − Lfinal, the difference between initial (Linit) and final losses (Lfinal) among (a) all
models, (b) ResNet models with BN train mode, and (c) ResNet models with BN eval mode
considered in Sec. 3.

Results Reconstructed images from ConvNet models with the best quality, in terms of LPIPS,218

are listed in Fig. 3. For ConvNet models, reconstructed images, even with the best quality, are219

far from original images visually due to severe artifacts. Therefore, as expected from the role of220

skip connection in residual networks, a network without skip connection like ConvNet seems to be221

robust against input recovery attacks. Then, ConvNet models would be considered as global model222

candidates for privacy protection in FL despite of their worse performance than that of residual223

networks.224

By contrast, the best averaged reconstruction results among the sampled training epochs e ∈225

{0, 5, 10, 25, 50, 150, 225, 300} are plotted in Fig. 4 for ResNet18, ResNet18-2, and ResNet18-226

4 models with varied BN modes. When BN is set to the eval mode, the reconstruction quality227

increases as the number of channels increases as expected. However, the reconstruction quality228

worsens as the number of channels increases for BN set to the train mode, which breaks the belief229

from previous works that increasing channel size makes input recovery attack easier [6, 30]. However,230

the reconstruction quality obtained with BN train mode is better than that with BN eval mode for all231

models considered except ResNet18-4, where their LPIPS range overlaps, implying that BN train232

mode is vulnerable against input recovery attacks than BN eval mode. The quantitative results for233

ConvNet, ResNet18-2, and ResNet18-4 are provided in Appendix A1.234

4 Lipschitz Smoothness for Client-Side Privacy Leakage Detection235

For privacy-preserving FL, choosing global model robust against any server-side input reconstruction236

attack method would be important. At the least, global model should be robust against well-known237

SOTA gradient inversion attack methods to alleviate clients’ anxiety about any potential leakage from238

gradient sharing with the server. If clients can access the global model with the same level of a central239

server (white-box), applying SOTA attack methods directly to the global model with private images240

would be the best way for assessing whether or not the global model presents a risk to the client’s241

privacy. However, in general, global model information would be opaque to clients due to company242
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secrets. As clients should communicate with the server via locally computed gradients, we suppose243

the black-box setting, where model gradients are given to clients as minimal information of the global244

model. Therefore, we provide a helpful measure for developing the system for clients to examine245

whether the given global model is safe in terms of privacy by using gradients computed with their246

self-controlled inputs. Note that white-box and black-box are described in Fig. 5.247

4.1 Angular Lipschitz smoothness: motivation248

If a function f : Rn → Rm is Lipschitz smooth (or the derivative of f is Lipschitz continuous) with249

constant L, then the following holds: ||∇f(x)−∇f(y)|| ≤ L||x− y|| ∀x, y ∈ Rn. The concept of250

Lipschitz smoothness or Lipschitz continuity is frequently employed to prove convergence theorem251

of gradient descent methods for optimization [24, 7, 27, 20, 18, 1]. This study employs the concept252

of Lipschitz smoothness to prove the following theorem in the context of gradient matching problem.253

Theorem 1 (Monotonic decreasing loss function). Suppose ∇wL(f(x), y) is Lipschitz continuous254

with respect to x with constant L and Lx
grad = ||∇wL(f(x), y)−g∗||22 is given as a gradient matching255

loss. Then, when gradient descent △x is applied with step size µ > 0 and L > ϵ for some ϵ > 0, the256

following holds:257

Lx+△x
grad ≤ Lx

grad −
1

L2
||
∂Lx

grad

∂x
||22. (3)

258

Inequality (3) implies that gradient matching loss strictly decreases as the gradient descent steps259

unless the gradient term
∂Lx

grad

∂x is zero (i.e. gradient matching loss already converges). Furthermore,260

a gradient descent with a small L (or large 1
L2 ) can accelerate the convergence of gradient matching261

optimization but with the premise that L > ϵ for ϵ > 0. This premise is required to ensure the262

first-order Taylor approximation for ∇wL(f(x+△x), y) in the proof in Appendix A2. Therefore, in263

a particular range of L (i.e., L > ϵ), we hypothesize that a global model with smaller L experiences a264

sharper loss drop in gradient matching optimization. We empirically found that L is not too small for265

most models, thus meeting the premise in reality.266

For the empirical verification of the hypothesis in the context of input reconstruc-267

tion, we desire to compute Lipschitz smoothness constant locally around x∗, Lx∗,ϵ =268

sup||x−x∗||<ϵ,x ̸=x∗
||∇wL(f(x),y)−∇wL(f(x∗),y)||

||x−x∗|| , with small ϵ, for the models considered in Sec-269

tions 3.1 and 3.2. Recent works on computing precise upper bound of L only focus on multi-layer270

perceptrons (MLP) due to the difficulty of computing L for normalization layers or residual layers.271

Therefore, Lx∗,ϵ is estimated as L̃x∗ = maxn ̸=0
||∇wL(f(x∗+n),y)−∇wL(f(x∗),y)||

||n|| by sampling 1,000272

noises (n) from the Gaussian distribution N (0, 0.0012) in our experiments.273

However, L̃x∗ can be any nonnegative value by scaling loss function L. If L is scaled by nonnegative274

scalar k, then L̃x∗ is scaled by k too, allowing L̃x∗ to be manipulated by the server using simple275

loss scaling. Therefore, inspired by the cosine similarity loss function, which is scale-invariant,276

we propose the angular Lipschitz constant ˜Lcos
x∗ = maxn ̸=0

1−cs(∇wL(f(x∗+n),y),∇wL(f(x∗),y))
1−cs(x∗,x∗+n) (cs277

being the cosine similarity loss) as a loss scaling-invariant alternative to L̃x∗ . We find hat ˜Lcos
x∗ shows278

a strong monotonic correlation with the quality of reconstructed samples, demonstrating the potential279

of ˜Lcos
x∗ to be imperative for client-side defense methods.280

4.2 Angular Lipschitz smoothness: experimental results281

We computed L̃x∗ and the attacker’s loss drop Linit − Lfinal (Linit and Lfinal being the initial and282

final losses, respectively) for the models and input batches considered in Sec. 3 (Fig. 6a). We also283

quantified their correlation using the Spearman’s rank correlation coefficient rs, which quantifies284

how two variables are in a monotonic relationship. rs = 1 (rs = −1) means that one variable is285

a completely monotonic increasing (decreasing) function with respect to the other one. Then, L̃x∗286

is almost a monotonic decreasing function with respect to Linit − Lfinal with rs = −0.78, thus287

validating our hypothesis. For ResNet models with BN train (Fig. 6b), L̃x∗ and Linit − Lfinal288

show a stronger monotonic correlation than that for ResNet models with BN eval (Fig. 6c) with289

8



0 0.05 0.1 0.15 0.2 0.25
LPIPS

0

5

10

15

20

25

jjg
$
jj 2

ResNet18 train
ResNet18-2 train
ResNet18-4 train

(a) ||g∗||2, BN train (rs = 0.55)

0 0.05 0.1 0.15 0.2 0.25
LPIPS

0

5

10

15

20

25

~ L
x
$

ResNet18 train
ResNet18-2 train
ResNet18-4 train

(b) L̃x∗ , BN train (rs = 0.79)
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(e) L̃x∗ , BN eval (rs = 0.71)
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Figure 7: Comparison of ||g∗||2, L̃x∗ , and ˜Lcos
x∗ in terms of the correlation between LPIPS of

reconstructed samples for ResNet models with BN train (top) and BN eval (bottom)

rs = −0.85. As in Tab. 1 and Fig. 1, reconstructed samples are closer to their original images in BN290

train mode, thus L̃x∗ , which is computed around the ground truth x∗, seems to fit more to BN train291

while L should be estimated around the solution from the attack method rather than x∗ for the case of292

BN eval. However, clients cannot access to the solution from the the attack method in the black-box293

setting. The plot of L̃x∗ and Linit − Lfinal for the ConvNet models is provided in Appendix A3.294

5 Limitations and Future Work295

Our hypothesis can be extended to the correlation between Lipschitz constant and the quality of296

reconstructed samples, rather than loss drop. Zero gradient matching loss does not mean complete297

recovery of original images due to the existence of twin data [30], two different data input with298

identical model gradients. However, we empirically found that both L̃x∗ and ˜Lcos
x∗ show positive299

monotonic correlations with the quality of reconstructed samples, in terms of LPIPS (lower value is300

better) (Fig. 7). In particular, they beat the baseline measure, the norm of given gradients (||g∗||2),301

which was implicitly believed to be the amount of information within the gradients in previous works,302

by a wide margin, in terms of rs. Therefore, we expect L̃x∗ and ˜Lcos
x∗ to be the key factors for303

developing future client-side defense strategies.304

6 Conclusions305

Here, we re-evaluated the SOTA attack method on a broad spectrum of models in the context of306

batch reconstruction, which is rarely studied in previous works. We considered model variations307

of two types: implicit, which changes in model weights or BN modes within the same architecture,308

and explicit, with changes in architecture. The re-evaluation results indicate that the quality of the309

reconstruction attack varies depending on the implicit or explicit model changes. Therefore, inspired310

by our theorem related to the convergence of gradient matching optimization and scale-invariance311

of the cosine similarity loss function, we propose an explainable and predictive measure for privacy312

leakage, an angular Lipschitz constant Lcos, which is invariant to trivial loss scaling attacks from313

malicious servers. We empirically find that Lcos shows a strong monotonic correlation with the314

quality of reconstructed samples, thus expecting the potential of Lcos to be a key factor for clients’315

defense strategies in a black-box setting, where only model gradients are given as minimal information316

about the global model to clients.317
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