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ON INCORPORATING INDUCTIVE BIASES INTO VAES

Ning Miao1* Emile Mathieu1 N. Siddharth2 Yee Whye Teh1 Tom Rainforth1*

ABSTRACT

We explain why directly changing the prior can be a surprisingly ineffective mech-
anism for incorporating inductive biases into variational auto-encoders (VAEs),
and introduce a simple and effective alternative approach: Intermediary Latent
Space VAEs (InteL-VAEs). InteL-VAEs use an intermediary set of latent variables
to control the stochasticity of the encoding process, before mapping these in turn to
the latent representation using a parametric function that encapsulates our desired
inductive bias(es). This allows us to impose properties like sparsity or clustering
on learned representations, and incorporate human knowledge into the generative
model. Whereas changing the prior only indirectly encourages behavior through
regularizing the encoder, InteL-VAEs are able to directly enforce desired character-
istics. Moreover, they bypass the computation and encoder design issues caused by
non-Gaussian priors, while allowing for additional flexibility through training of
the parametric mapping function. We show that these advantages, in turn, lead to
both better generative models and better representations being learned.

1 INTRODUCTION

VAEs provide a rich class of deep generative models (DGMs) with many variants (Kingma & Welling,
2014; Rezende & Mohamed, 2015; Burda et al., 2016; Gulrajani et al., 2016; Vahdat & Kautz, 2020).
Based on an encoder-decoder structure, VAEs encode datapoints into latent embeddings before
decoding them back to data space. By parameterizing the encoder and decoder using expressive neural
networks, VAEs provide a powerful basis for learning both generative models and representations.

The standard VAE framework assumes an isotropic Gaussian prior. However, this can cause issues,
such as when one desires the learned representations to exhibit some properties of interest, for example
sparsity (Tonolini et al., 2020) or clustering (Dilokthanakul et al., 2016), or when the data distribution
has very different topological properties from a Gaussian, for example multi-modality (Shi et al.,
2020) or group structure (Falorsi et al., 2018). Therefore, a variety of recent works have looked to
use non-Gaussian priors (van den Oord et al., 2017; Tomczak & Welling, 2018; Casale et al., 2018;
Razavi et al., 2019; Bauer & Mnih, 2019), often with the motivation of adding inductive biases into
the model (Davidson et al., 2018b; Mathieu et al., 2019b; Nagano et al., 2019; Skopek et al., 2019).

In this work, we argue that this approach of using non-Gaussian priors can be a problematic, and even
ineffective, mechanism for adding inductive biases into VAEs. Firstly, non-Gaussian priors will often
necessitate complex encoder models to maintain consistency with the prior’s shape and dependency
structure (Webb et al., 2018), which typically no longer permit simple parameterization. Secondly,
the latent encodings are still not guaranteed to follow the desired structure because the ‘prior’ only
appears in the training objective as a regularizer on the encoder. Indeed, Mathieu et al. (2019b) find
that changing the prior is typically insufficient in practice to learn the desired representations at a
population level, with mismatches occurring between the data distribution and learned model.

To provide an alternative, more effective, approach that does not suffer from these pathologies,
we introduce Intermediary Latent Space VAEs (InteL-VAEs), an extension to the standard VAE
framework that allows a wide range of powerful inductive biases to be incorporated while maintaining
an isotropic Gaussian prior. This is achieved by introducing an intermediary set of latent variables
that deal with the stochasticity of the encoding process before incorporating the desired inductive
biases via a parametric function that maps these intermediary latents to the latent representation itself,
with the decoder taking this final representation as input. See Fig. 1 for an example.
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Figure 1: Example InteL-VAE with star-like data. We consider the auto-encoding for two example
datapoints (x1 and x2, shown in green), which are first stochastically mapped to Y using a Gaussian
encoder. This embedding is then pushed forward to Z using the non-stochastic mapping gψ , which is
a radial mapping to enforce a spherical distribution. Decoding is then done in the standard way from
Z , with the complexity of the decoder mapping simplified by the induced structural properties of Z .

The InteL-VAE framework provides a variety of advantages over directly replacing the prior. Firstly,
it directly enforces our inductive biases on the representations, rather than relying on the regularizing
effect of the prior to encourage this implicitly. Secondly, it provides a natural congruence between
the generative and representational models via sharing of the mapping function, side-stepping the
issues that non-Gaussian priors can cause for the inference model. Finally, it allows for more general
and more flexible inductive biases to be incorporated, by removing the need to express them with an
explicit density function and allowing for parts of the mapping to be learned during training.

To further introduce a number of novel specific realizations of the InteL-VAE framework, showing
how they can be used to incorporate various inductive biases, enforcing latent representations that
are, for example, multiply connected, multi-modal, sparse, or hierarchical. Experimental results show
their superiority compared with baseline methods in both generation and feature quality, most notably
providing state-of-the-art performance for learning sparse representations in the VAE framework.

To summarize, we a) highlight the need for inductive biases in VAEs and explain why directly
changing the prior is a suboptimal means for incorporating them; b) propose InteL-VAEs as a simple
but effective general framework to introduce inductive biases; and c) introduce specific InteL-VAE
variants which can learn improved generative models and representations over existing baselines on a
number of tasks. Accompanying code is provided at https://github.com/NingMiao/InteL-VAE.

2 THE NEED FOR INDUCTIVE BIASES IN VAES

Variational auto-encoders (VAEs) are deep stochastic auto-encoders that can be used for learning
both deep generative models and low-dimensional representations of complex data. Their key
components are an encoder, qϕ(z|x), which probabilistically maps from data x ∈ X to latents z ∈ Z;
a decoder, pθ(x|z), which probabilistically maps from latents to data; and a prior, p(z), that completes
the generative model, p(z)pθ(x|z), and regularizes the encoder during training. The encoder and
decoder are parameterized by deep neural networks and are simultaneously trained using a dataset
{x1, x2, ..., xN} and a variational lower bound on the log-likelihood, most commonly,

L(x, θ, ϕ) := Ez∼qϕ(z|x) [log pθ(x|z)]−DKL (qϕ(z|x) ∥ p(z)) . (1)

Namely, we optimize L(θ, ϕ) := Ex∼pdata(x) [L(x, θ, ϕ)], where pdata(x) represents the empirical data
distribution. Here the prior is typically fixed to a standard Gaussian, i.e. p(z) = N (z; 0, I).

While it is well documented that this standard VAE setup with a ‘Gaussian’ latent space can be
suboptimal (Davidson et al., 2018a; Mathieu et al., 2019b; Tomczak & Welling, 2018; Bauer & Mnih,
2019; Tonolini et al., 2020), there is perhaps less of a unified high-level view on exactly when, why,
and how one should change it to incorporate inductive biases. Note here that the prior does not play
the same role as in a Bayesian model: because the latents themselves are somewhat arbitrary and the
model is learned from data, it does not encapsulate our initial beliefs in the way one might expect.

We argue that there are two core reasons why inductive biases can be important for VAEs: (a)
standard VAEs can fail to encourage, and even prohibit, desired structure in the representations we
learn; and (b) standard VAEs do not allow one to impart prior information or desired topological
characteristic into the generative model.
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Considering the former, one often has some a priori desired characteristics, or constraints, on the
representations learned (Bengio et al., 2013). For example, sparse features can be desirable because
they can improve data efficiency (Yip & Sussman, 1997), and provide robustness to noise (Wright
et al., 2009; Ahmad & Scheinkman, 2019) and attacks (Gopalakrishnan et al., 2018). In other settings
one might desire clustered (Jiang et al., 2017), disentangled (Ansari & Soh, 2019; Kim & Mnih, 2018;
Higgins et al., 2018) or hierarchical representations (Song & Li, 2013; Sønderby et al., 2016; Zhao
et al., 2017). The KL-divergence term in Eq. (1) regularizes the encoding distribution towards the
prior and, as a standard Gaussian distribution typically does not exhibit our desired characteristics, this
regularization can significantly hinder our ability to learn representations with the desired properties.

Not only can this be problematic at an individual sample level, it can cause even more pronounced
issues at the population level: desired structural characteristics of our representations often relate to
the pushforward distribution of the data in the latent space, qϕ(z) := Epdata(x)[qϕ(z|x)], which is both
difficult to control and only implicitly regularized to the prior (Hoffman & Johnson, 2016).

(a) Data (b) VAE
Figure 2: VAE learned generative distri-
bution Ep(z)[pθ(x|z)] for mixture data.

Inductive biases can also be essential to the generation
quality of VAEs: because the generation process of stan-
dard VAEs is essentially pushing-forward the Gaussian
prior on Z to data space X by a ‘smooth’ decoder, there
is an underlying inductive bias that standard VAEs prefer
sample distributions with similar topology structures to
Gaussians. As a result, VAEs can perform poorly when
the data manifold exhibits certain different topological
properties (Caterini et al., 2020). For example, they can
struggle when data is clustered into unconnected com-
ponents as shown in Fig. 2, or when data is not simply-connected. This renders learning effective
mappings using finite datasets and conventional architectures (potentially prohibitively) difficult. In
particular, it can necessitate large Lipschitz constants in the decoder, causing knock-on issues like
unstable training and brittle models (Scaman & Virmaux, 2018), as well as posterior collapse (van den
Oord et al., 2017; Alemi et al., 2018). In short, the Gaussian prior of a standard VAE can induce
fundamental topological differences to the true data distribution (Falorsi et al., 2018; Shi et al., 2020).

3 SHORTFALLS OF VAES WITH NON-GAUSSIAN PRIORS

(a) Directly replacing p(z) (b) InteL-VAE

Figure 3: Prior-encoder mismatch. We train (a)
a VAE with a sparse prior and (b) an InteL-VAE
with a sparse inductive bias on 2 dimensional sparse
data. Figure shows target latent distribution p(z)
(blue), learned variational embeddings qϕ(z|x) of
exemplar data (green), and data pushforward qϕ(z)
(red shadow) for each method. Simply replacing the
prior does not help the VAE match prior structure
on either a per-sample or population level, whereas
InteL-VAE produces an effective match.

Though directly replacing the Gaussian prior
with a different prior sounds like a simple so-
lution, effectively introducing inductive biases
can, unfortunately, be more complicated.

Firstly, the only influence of the prior dur-
ing training is as a regularizer on the encoder
through the DKL (qϕ(z|x) ∥ p(z)) term. This
regularization is always competing with the
need for effective reconstructions and only has
an indirect influence on qϕ(z). As such, simply
replacing the prior can be an ineffective way
of inducing desired structure at the population
level (Mathieu et al., 2019b), particularly if
p(z) is a complex distribution that it is difficult
to fit (see, e.g., Fig. 3a). Mismatches between
qϕ(z) and p(z) can also have further deleteri-
ous effects on the learned generative model: the
former represents the distribution of the data in latent space during training, while the latter is what is
used by the learned generative model, leading to unrepresentative generations if there is mismatch.

Secondly, it can be extremely difficult to construct appropriate encoder mappings and distributions for
non-Gaussian priors. While the typical choice of a mean-field Gaussian for the encoder distribution
is simple, easy to train, and often effective for Gaussian priors, it is often inappropriate for other
choices of prior. For example, in Fig. 3, we consider replacement with a sparse prior. A VAE with a
Gaussian encoder struggles to encode points in a manner that even remotely matches the prior. One
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might suggest replacing the encoder distribution as well, but this has its own issues, most notably
that other distributions can be hard to effectively parameterize or train. In particular, the form of the
required encoding noise might become heavily spatially variant; in our sparse example, the noise
must be elongated in a particular direction depending on where the mean embedding is. If the prior
has constraints or topological properties distinct from the data, it can even be difficult to learn a mean
encoder mapping that respects these, due to the continuous nature of neural networks.

4 THE INTEL-VAE FRAMEWORK

To solve the issues highlighted in the previous section, and provide a principled and effective method
for adding inductive biases to VAEs, we propose Intermediary Latent Space VAEs (InteL-VAEs). The
key idea behind InteL-VAEs is to introduce an intermediary set of latent variables y ∈ Y , used as a
stepping stone in the construction of the representation z ∈ Z . Data is initially encoded in Y using a
conventional VAE encoder (e.g. a mean-field Gaussian) before being passed through a non-stochastic
mapping gψ : Y 7→ Z that incorporates our desired inductive biases and which can be trained, if
needed, through its parameters ψ. The prior is defined on Y and taken to be a standard Gaussian,
p(y) = N (y; 0, I), while our representations, z = gψ(y), correspond to a pushforward of y. By first
encoding datapoints to y, rather than z directly, we can deal with all the encoder and prior stochasticity
in this first, well-behaved, latent space, while maintaining z as our representation and using it for
the decoder pθ(x|z). In principle, gψ can be any arbitrary parametric (or fixed) mapping, including
non-differentiable or even discontinuous functions. However, to allow for reparameterized gradient
estimators (Kingma & Welling, 2014; Rezende & Mohamed, 2015), we will restrict ourselves to gψ
that are sub-differentiable (and thus continuous) with respect to both their inputs and parameters.
Note that setting gψ to the identity mapping recovers a conventional VAE.

As shown in Fig. 1, the auto-encoding process is now X qϕ−→ Y gψ−−→ Z pθ−→ X . This three-step
process no longer unambiguously fits into the encoder-decoder terminology of the standard VAE and
permits a variety of interpretations; for now we take the convention of calling qϕ(y|x) the encoder
and pθ(x|z) the decoder, but also discuss some alternative interpretations below. We emphasize
here that these no longer respectively match up with our representation model—which corresponds
to passing an input into the encoder and then mapping the resulting encoding using gψ—and our
generative model—which corresponds to N (y; 0, I)pθ(x|z = gψ(y)), such that we sample a y from
the prior and then pass this through through gψ and the decoder in turn.

The mapping gψ introduces inductive biases into both the generative model and our representations
by imposing a particular form on z, such as the spherical structure enforced in Fig. 1 (see also Sec. 6).
It can be viewed as a shared module between them, ensuring congruence between the two. This
congruence allows us to more directly introduce inductive biases through careful construction of gψ ,
without complicating the process of learning an effective inference network. In particular, because
Y is treated as our latent space for the purposes of training, we sidestep the inference issues that
non-Gaussian priors usually cause. Moreover, because all samples must explicitly pass through gψ
during both training and generation, we can more directly ensure the desired structure is enforced
without causing a mismatch in the latent distribution between training and deployment.

Training As with standard VAEs, training of an InteL-VAE is done by maximizing a variational
lower bound (ELBO) on the log evidence, which we denote LY . Most simply, we have

log pθ,ψ(x) := log
(
Ep(y) [pθ(x|gψ(y))]

)
= log

(
Eqϕ(y|x)

[
pθ(x|gψ(y))N (y; 0, I)

qϕ(y|x)

])
≥Eqϕ(y|x)[log pθ(x|gψ(y))]−DKL (qϕ(y|x) ∥ N (y; 0, I)) =: LY(x, θ, ϕ, ψ).

(2)

Note that the regularization is on y, but our representation corresponds to z = gψ(y). Training
corresponds to the optimization argmaxθ,ϕ,ψ Ex∼pdata(x) [LY(x, θ, ϕ, ψ)], which can be performed
using stochastic gradient ascent with reparameterized gradients in the standard manner. Although
inductive biases are introduced, the calculation, and optimization, of LY is thus equivalent to the
standard ELBO. In particular, parameterizing qϕ(y|x) with a Gaussian distribution still yields an
analytical DKL (qϕ(y|x) ∥ N (y; 0, I)) term.

Alternative Interpretations It is interesting to note that our representation, gψ(y), only appears in
the context of the decoder in this training objective. As such, we see that an important alternative
interpretation of InteL-VAEs is to consider gψ as being a customized first layer in the decoder, and our
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test–time representations as partial decodings of the latents y. This viewpoint allows it to be applied
with more general bounds and VAE variants (e.g. Burda et al. (2016); Le et al. (2018); Maddison et al.
(2017); Naesseth et al. (2018); Zhao et al. (2019)), as it requires only a carefully customized decoder
architecture during training and an adjusted mechanism for constructing representations at test–time.

Yet another interpretation is to think about InteL-VAEs as implicitly defining a conventional VAE
with latents z, but where both the non-Gaussian prior, pψ(z), and our encoder distribution, qϕ,ψ(z|x),
are themselves defined implicitly as pushforwards along gψ, which acts as a shared module that
instills a natural compatibility between the two. Formally we have the following theorem.
Theorem 1. Let pψ(z) and qϕ,ψ(z|x) represent the respective pushforward distributions of N (0, I)
and qϕ(y|x) induced by the mapping gψ : Y 7→ Z . The following holds for all measurable gψ:

DKL (qϕ,ψ(z|x) ∥ pψ(z)) ≤ DKL (qϕ(y|x) ∥ N (y; 0, I)) . (3)

If gψ is also an invertible function then the above becomes an equality and LY equals the standard
ELBO on the space of Z as follows

LY(x, θ, ϕ, ψ) = Eqϕ,ψ(z|x)[log pθ(x|z)]−DKL (qϕ,ψ(z|x) ∥ pψ(z)) . (4)

The proof is given in Appendix A. Here, (3) shows that the divergence in our representation space
Z is never more than that in Y , or equivalently that the implied ELBO on the space of Z is always
at least as tight as that on Y; (4) shows they are exactly equal if gψ is invertible. As the magnitude
of DKL (qϕ(y|x) ∥ N (y; 0, I)) in an InteL-VAE will remain comparable to the KL divergence in a
standard Gaussian prior VAE setup, this, in turn, ensures that DKL (qϕ,ψ(z|x) ∥ pψ(z)) does not be-
come overly large. This is in stark contrast to the conventional non-Gaussian prior setup, where it can
be difficult to avoid DKL (qϕ(z|x) ∥ pψ(z)) exploding without undermining reconstruction (Mathieu
et al., 2019b). The intuition here is that having the stochasticity in the encoder before it is passed
through gψ ensures that the form of the noise in the embedding is inherently appropriate for the space:
the same mapping is used to warp this noise as to define the generative model in the first place. For
example, when gψ is a sparse mapping, the Gaussian noise in qϕ(y|x) will be compressed to a sparse
subspace by gψ , leading to a sparse variational posterior qϕ,ψ(z|x) as shown in Fig. 3b. In particular,
qϕ(y|x) does not need to learn any complex spatial variations that result from properties of Z . In
turn, InteL-VAEs further alleviate issues of mismatch between pψ(z) and qϕ,ψ(z).

Further Benefits A key benefit of InteL-VAEs is that the extracted features are guaranteed to
have the desired structure. Take the spherical case for example, all extracted features gψ(µϕ(x)) lie
within a small neighborhood of the unit sphere. By comparison, methods based on training loss
modifications, e.g. Mathieu et al. (2019b), often fail to generate features with the targeted properties.

A more subtle advantage is that we do not need to explicitly specify pψ(z). This can be extremely
helpful when we want to specify complex inductive biases: designing a non-stochastic mapping is
typically much easier than a density function, particularly for complex spaces. Further, this can make
it much easier to parameterize and learn aspects of pψ(z) in a data-driven manner (see e.g. Sec. 6.3).

5 RELATED WORK

Inductive biases There is much prior work on introducing human knowledge to deep learning
models by structural design, such as CNNs (LeCun et al., 1989), RNNs (Hochreiter & Schmidhuber,
1997) and transformers (Vaswani et al., 2017). However, most of these designs are on the sample
level, utilizing low–level information such as transformation invariances or internal correlations in
each sample. By contrast, InteL-VAEs provide a convenient way to incorporate population level
knowledge—information about the global properties of data distributions can be effectively utilized.

Non-Gaussian priors There is an abundance of prior work utilizing non-Gaussian priors to improve
the fit and generation capabilities of VAEs, including MoG priors (Dilokthanakul et al., 2016; Shi
et al., 2020), sparse priors (Mathieu et al., 2019b; Tonolini et al., 2020; Barello et al., 2018), Gaussian-
process priors (Casale et al., 2018) and autoregressive priors (Razavi et al., 2019; van den Oord
et al., 2017). However, these methods often require specialized algorithms to train and are primarily
applicable only to specific kinds of data. Moreover, as we have explained, changing the prior alone
often provides insufficient pressure on its own to induce the desired characteristics. Others have
proposed non-Gaussian priors to reduce the prior-posterior gap, such as Vamp-VAE (Tomczak &
Welling, 2018) and LARS (Bauer & Mnih, 2019), but these are tangential to our inductive bias aims.
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Non-Euclidean latents A related line of work has focused on non-Euclidean latent spaces. For
instance Davidson et al. (2018a) leveraged a von Mises-Fisher distribution on a hyperspherical latent
space, Falorsi et al. (2018) endowed the latent space with a SO(3) group structure, and Mathieu et al.
(2019a); Ovinnikov (2019); Nagano et al. (2019) with hyperbolic geometry. Other spaces like product
of constant curvature spaces (Skopek et al., 2019) and embedded manifolds (Rey et al., 2019) have
also been considered. However, these works generally require careful design and training.

Normalizing flows Our use of a non-stochastic mapping shares some interesting links to normalizing
flows (NFs) (Rezende & Mohamed, 2015; Papamakarios et al., 2019; Grathwohl et al., 2018; Dinh
et al., 2017; Huang et al., 2018; Papamakarios et al., 2018). Indeed a NF would be a valid choice
for gψ, albeit an unlikely one due to their architectural constraints. However, unlike previous use of
NFs in VAEs, our gψ is crucially shared between the generative and representational models, rather
than just being used in the encoder, while the KL divergence in our framework is taken before, not
after, the mapping. Moreover, the underlying motivation, and type of mapping typically used, differs
substantially: our mapping is used to introduce inductive biases, not purely to improve inference.
Our mapping is also more general than a NF (e.g. it need not be invertible) and does not introduce
additional constraints or computational issues.

6 SPECIFIC REALIZATIONS OF THE INTEL-VAE FRAMEWORK

We now present several novel example InteL-VAEs, introducing various inductive biases through
different choices of gψ. We will start with artificial, but surprisingly challenging, examples where
some precise topological properties of the target distributions are known, incorporating them directly
through a fixed gψ. We will then move onto experiments where we impose a fixed clustering
inductive bias when training on image data, allowing us to learn InteL-VAEs that account effectively
for multi-modality in the data distribution. Finally, we consider the example of learning sparse
representations of high–dimensional data. Here we will see that it is imperative to exploit the ability
of InteL-VAEs to learn aspects of gψ during training, providing a flexible inductive bias framework,
rather than a pre-fixed mapping. By comparing InteL-VAEs with strong baselines, we show that
InteL-VAEs are effective in introducing these desired inductive biases, and consequently both improve
generation quality and learn better data representations for downstream tasks. One note of particular
importance is that we find that InteL-VAEs provide state-of-the-art performance for learning sparse
VAE representations. A further example of using InteL-VAEs to learn hierarchical representations is
presented in Appendix B, while full details on the various examples are given in Appendix C.

6.1 MULTIPLE–CONNECTIVITY

(a) Data (b) VAE (c) InteL-VAE

Figure 4: Training data and samples from
learned generative models of vanilla-VAE
and InteL-VAE for multiply-connected and
clustered distributions. InteL-VAE uses
[Rows 1,2] circular prior with one hole, [Row
3] multiply-connected prior with two holes,
and [Row 4] clustered prior. Vamp-VAE be-
haves similarly to a vanilla VAE; its results
are presented in Fig. 4.

Data is often most naturally described on non-
Euclidean spaces such as circles, e.g. wind direc-
tions (Mardia & Jupp, 2000), and other multiply-
connected shapes, e.g. holes in disease databases (Liu
et al., 1997). For reasons previously explained in
Sec. 2, standard VAEs cannot practically model such
topologies, which prevents them from learning gen-
erative models which match even the simplest data
distributions with non-trivial topological structures,
as shown in Fig. 4b.

Luckily, by designing gψ to map the Gaussian prior
to a simple representative distribution in a topolog-
ical class, we can easily equip InteL-VAEs with
the knowledge to approximate any data distribu-
tions with similar topological properties. Specifically,
by defining gψ as the orthogonal projection to S1,
gψ(z) = z/(||z||2 + ϵ), we map the Gaussian prior
approximately to a uniform distribution to S1, where
ϵ is a small positive constant to ensure the continuity
of gψ near the origin. From Rows 1 and 2 of Fig. 4,
we find that this inductive bias gives InteL-VAEs the ability to learn various distributions with a hole.
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We can add further holes by simply ‘gluing’ point pairs. For example, for two holes we can use

g2(y) = Concat
(
g1(y)[:,1], g1(y)[:,2]

√
(4/3− (1− |g1(y)[:,1]|)2)− 1/

√
3
)
, (5)

which first map y to approximately S1, and then glues (0, 1) and (0,−1) together to create new holes
(see Fig. C.1 for an illustration). Furthermore, we can continue to glue points together to achieve a
higher number of holes h, and thus more complex connectivity. Row 3 of Fig. 4 gives an example of
learning an infinity sign by introducing a ‘two-hole’ inductive bias.

Compared with vanilla-VAE and Vamp-VAE, which try to find a convex hull for real data distributions,
InteL-VAEs can deal with distributions with highly non-convex and very non-smooth supports (see
Fig. 4 and Appendix C.1). We emphasize here that our inductive bias does not contain the information
about the precise shape of the data, only the number of holes. We thus see that InteL-VAEs can
provide substantial improvements in performance by incorporating only basic prior information about
the topological properties of the data, which point out a way to approximate distributions on more
complex structures, such as linear groups (Gupta & Mishra, 2018).

6.2 MULTI–MODALITY

Many real-world datasets exhibit multi-modality. For example, data with distinct classes are often
naturally clustered into (nearly) disconnected components representing each class. However, vanilla
VAEs generally fail to fit multi-modal data due to the topological issues explained in Sec. 2. Previous
work (Johnson et al., 2017; Mathieu et al., 2019b) has thus proposed the use of a multi-modal
prior, such as a mixture of Gaussian (MoG) distribution, so as to capture all components of the
data. Nonetheless, VAEs with such priors often still struggle to model multi-modal data because of
mismatch between qϕ(z) and p(z) or training instability issues.

(a) (b) (c)

Figure 5: Illustration of clustered mapping where
K = 3. The circle represents a density isoline of
a Gaussian. Note that not all points in the sector
are moved equally: points close to the boundaries
between sectors are moved less, with points on the
boundary themselves not moved at all.

We tackle this problem by using a mapping gψ which
contains a clustering inductive bias. The high-level
idea is to design a mapping gψ with a localized high
Lipschitz constant that ‘splits’ the continuous Gaus-
sian distribution into K disconnected parts and then
pushes them away from each other. In particular, we
split Y it into K equally sized sectors using its first
two dimensions (noting it is not needed to split on
all dimensions to form clusters), as shown in Fig. 5.
For any point y, we can easily get the center direction
r(y) of the sector that y belongs to and the distance
dis(y) between y and the sector boundary. Then we
define gψ(y) as:

gψ(y) = y + c1dis(y)c2 r(y), (6)
where c1 and c2 are empirical constants. We can see that although gψ has very different function
on different sectors, it is still continuous on the whole plane with gψ(y) = y on sector boundaries,
which is desirable for gradient-based training. See Appendix C.2 for more details.

To assess the performance of our approach, we first consider a simple 2-component MoG synthetic
dataset in the last row of Fig. 4. We see that the vanilla VAE fails to learn a clustered distribution that
fits the data, while the InteL-VAE sorts this issue and fits the data well.

Method FID Score (↓)

VAE 42.0± 1.1
GM-VAE 41.0± 4.7
MoG-VAE 41.2± 3.3
Vamp-VAE 38.8± 2.4
VAE with Sylvester NF 35.0± 0.9
InteL-VAE 32.2± 1.5

Table 1: Generation quality on MNIST.
Shown is mean FID score (lower better) ±
standard deviation over 10 runs.

To provide a more real-world example, we train an
InteL-VAE and a variety of baselines on the MNIST
dataset, comparing the generation quality of the
learned models using the FID score (Heusel et al.,
2017) in Table 1. We find that the GM-VAE (Dilok-
thanakul et al., 2016) and MoG-VAE (VAE with a
fixed MoG prior) achieve performance gains by using
non-Gaussian priors. The Vamp-VAE (Tomczak &
Welling, 2018) and a VAE with a Sylvester Normal-
izing Flow (Berg et al., 2018) encoder provide further
gains by making the prior and encoder distributions
more flexible respectively. However, the InteL-VAE comfortably outperforms all of them.
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Method Data VAE GM-VAE MoG-VAE Vamp-VAE Flow InteL-VAE

Uncertainty(%) 0.2 ± 0.1 2.5 ± 0.4 3.5 ± 1.8 4.5 ± 0.8 2.4 ± 0.3 16.2 ± 2.1 0.9 ± 0.8
‘1’ proportion(%) 50.0 ± 0.2 48.8 ± 0.2 48.1 ± 0.3 47.7 ± 0.4 48.8 ± 0.1 42.5 ± 1.0 49.5 ± 0.4

Table 2: Quantitative results on MNIST-01. Uncertainty is the proportion of images whose labels
are ‘indistinguishable’ by the pre-trained classifier, defined as having prediction confidence < 80%.
‘1’ proportion is the proportion of images classified as ‘1’.

(a) VAE (b) MoG-VAE (c) InteL-VAE
Figure 6: Generated samples for MNIST-01.

To gain insight into how InteL-VAEs achieve superior
generation quality, we perform analysis on a simpli-
fied setting where we select only the ‘0’ and ‘1’ digits
from the MNIST dataset to form a strongly clustered
dataset, MNIST-01. We further decrease the latent
dimension to 1 to make the problem more challeng-
ing. Fig. 6 shows that here the vanilla VAE generates
some samples which look like interpolations between ’0’ and ’1’, meaning that it still tries to learn a
connected distribution containing ’0’ and ’1’. Further, the general generation quality is poor, with
blurred images and a lack of diversity in generated samples (e.g. all the ‘1’s have the same slant).
Despite using a clustered prior, the MoG-VAE still produces unwanted interpolations between the
classes. By contrast, InteL-VAE generates digits that are unambiguous and crisper.

True Prop. Learned Prop.

0.5 0.47 ± 0.01
0.4 0.36 ± 0.10
0.25 0.25 ± 0.08
0.2 0.16 ± 0.11
0 0.02 ± 0.01

Table 3: Learned proportions of ‘0’s on
MNIST-01 for different ground truths.
Error bars are std. dev. from 10 runs.

To quantify these results, we further train a logistic classi-
fier on MNIST-01 and use it to classify images generated
by each method. For each method, we calculate the pro-
portion of samples produced by the generative model that
are assigned to each class by this pre-trained classifier,
as well as the proportion of samples for which the clas-
sifier is uncertain. From Table 2 we see that InteL-VAE
significantly outperforms its competitors in the ability to
generate balanced and unambiguous digits. To extend this
example further, and show the ability of InteL-VAEs to
learn aspects of gψ during training, we further consider parameterizing and then learning the relative
size of the clusters. Table 3 shows that this can be successfully learned by InteL-VAEs on MNIST-01.

6.3 SPARSITY

Sparse features are often well-suited to data efficiency on downstream tasks (Huang & Aviyente,
2006), in addition to being naturally easier to visualize and manipulate than dense features (Ng et al.,
2011). However, existing VAE models for sparse representations trade off generation quality to
achieve this sparsity (Mathieu et al., 2019b; Tonolini et al., 2020; Barello et al., 2018). Here, we
show that InteL-VAEs can instead simultaneously increase feature sparsity and generation quality.
Moreover, they are able to achieve state-of-the-art scores on sparsity metrics.

Compared with our previous examples, the gψ here needs to be more flexible so that it can learn to
map points in a data-specific way and induce sparsity without unduly harming reconstruction. To
achieve this, we use the simple form for the mapping: gψ(y) = y ⊙ DSψ(y), where ⊙ is pointwise
multiplication, and DS is a ‘dimension selector’ network that selects dimensions to deactivate given
y. DS outputs values between [0, 1] for each dimension, with 0 being fully deactivated and 1 fully
activated; the more dimensions we deactivate, the sparser the representation. By learning DS during
training, this setup allows us to learn a sparse representation in a data-driven manner. To control
the degree of sparsity, we add a sparsity regularizer, Lsp, to the ELBO with weighting parameter γ
(higher γ corresponds to more sparsity). Namely, we optimize LY(θ, ϕ, ψ) + γ Lsp(ϕ, ψ), where

Lsp(ϕ, ψ) := E

[
1

M

M∑
i=1

(H (DS(yi)))−H

(
1

M

M∑
i=1

DS(yi)

)]
, (7)

H(v) = −
∑
i (vi/∥v∥1) log (vi/∥v∥1) is the normalized entropy of an positive vector v, and the

expectation is over drawing a minibatch of samples x1, . . . , xM and then sampling each corresponding
yi ∼ qϕ(·|x = xi). Lsp encourages DS to deactivate more dimensions, while also encouraging
diversity in which dimensions are activated for different data points, improving utilization of the
latent space. Please see Appendix C.3 for more details and intuitions. Initial qualitative results are
shown in Fig. 8, where we see that our InteL-VAE is able to learn sparse and intuitive representations.
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Figure 7: Results on Fashion-MNIST. The left figure shows FID and sparsity scores. Lower FID
scores (↓) represent better sample quality while higher sparse scores (→) indicate sparser features. The
right figure shows the performance of sparse features from InteL-VAE on downstream classification
tasks. See Appendix C.3 for details and results for MNIST.
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Figure 8: Qualitative evaluation of sparsity. [Top]
Average magnitude of each latent dimension for
three example classes in Fashion-MNIST; less
than 10% dimensions are activated for each class.
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tween classes: (a-c) show the results of separately
manipulating an activated dimension for each class.
(a) Trouser separation (Dim 18). (b) Coat length
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To quantitatively assess the ability of our ap-
proach to yield sparse representations and good
quality generations, we compare against vanilla
VAEs, the specially customized sparse-VAE
of Tonolini et al. (2020), and the sparse ver-
sion of Mathieu et al. (2019b) (DD) on Fashion-
MNIST (Xiao et al., 2017) and MNIST. As
shown in Fig. 7 (left), we find that InteL-
VAEs increase sparsity of the representations—
measured by the Hoyer metric (Hurley &
Rickard, 2009)—while increasing generative
sample quality at the same time. Indeed, the FID
score obtained by InteL-VAE outperforms the
vanilla VAE when γ < 3.0, while the sparsity
score substantially increases with γ, reaching ex-
tremely high levels. By comparison, DD signifi-
cantly degrades generation quality and only pro-
vides a more modest increase in sparsity, while
its sparsity also drops if the regularization co-
efficient is set too high. The level of sparsity
achieved by sparse-VAEs was substantially less
than both DD and InteL-VAEs.

To further evaluate the quality of the learned
features for downstream tasks, we trained a clas-
sifier to predict class labels from the latent representations. For this, we choose a random for-
est (Breiman, 2001) with maximum depth 4 as it is well-suited for sparse features. We vary the size
of training data given to the classifier to measure the data efficiency of each model. Fig. 7 (right)
shows that InteL-VAE typically outperforms other the models, especially in few-shot scenarios.

Method FID (↓) Sparsity (↑)

VAE 68.6±1.1 0.22±0.01
Vamp-VAE 67.5±1.1 0.22±0.01
VAE with Sylvester NF 66.3±0.4 0.22±0.01
Sparse-VAE (α = 0.01) 328±10.1 0.25±0.01
Sparse-VAE (α = 0.2) 337±8.1 0.28±0.01
InteL-VAE (γ = 30) 64.9±0.4 0.25±0.01
InteL-VAE (γ = 70) 68.0±0.6 0.46±0.02

Table 4: Generation results on CelebA.

Finally, to verify InteL-VAE’s effectiveness on
larger and higher-resolution datasets, we also
make comparisons on CelebA (Liu et al., 2015).
From Table 4, we can see that InteL-VAE in-
crease sparse scores to 0.46 without sacrific-
ing generation quality. By comparison, the
maximal sparse score that sparse-VAE gets is
0.30, with unacceptable sample quality. Inter-
estingly, InteL-VAEs with ly low regulation γ
achieved particularly good generative sample
quality, outperforming even the Vamp-VAE and a VAE with a Sylvester NF encoder.

Conclusions In this paper, we proposed InteL-VAEs, a general schema for incorporating inductive
biases into VAEs. Experiments show that InteL-VAEs can both provide representations with desired
properties and improve generation quality, outperforming a variety of baselines such as directly
changing the prior. This is achieved while maintaining the simplicity and stability of standard VAEs.
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ETHICS STATEMENT

We do not believe that there are direct ethical concerns regarding our paper: the datasets we consider
are all already well established and do not contain sensitive information, while the methods and ideas
we introduce have no clear direct potential negative societal impacts of their own. From a bigger
picture perspective, work like ours that looks to permit more effective incorporation of inductive
biases into models can be thought of as allowing more direct human control on how models will
behave after training. While this will typically be a force for good, for example by encouraging model
interpretability and providing mechanisms to try and induce positive characteristics like fairness,
in rare circumstances there may also be the potential for this to be used nefariously by deliberately
encouraging undesirable behavior. However, we do not believe that our work is any more prone to
such exploitation than existing methods or that the risk of it being used in such as a way is significant.

REPRODUCIBILITY STATEMENT

Full experimental details are given in Appendix C, while anonymized source code for reproducing all
our experiments directly is provided at https://github.com/djkdsjwkjerkjermf/InteL-VAE. Together
these should make it straightforward for others to reproduce our empirical results. We have been
careful to provide quantitative metrics of performance whenever possible, rather than just relying on
qualitative or anecdotal evidence. Repeat runs and error bars are provided whenever this is feasible,
with the level of variability always found to be sufficiently small to draw reliable and statistically
sound conclusions. In fact, the training stability and consistent performance of our general approach
under retraining provides a clear advantage in itself compared to many of the baseline methods. Full
formal proof for our only theoretical result is given in Appendix A, while the assumptions it makes
are clearly stated and easily verifiable.
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APPENDIX A PROOFS

Theorem 1. Let pψ(z) and qϕ,ψ(z|x) represent the respective pushforward distributions of N (0, I)
and qϕ(y|x) induced by the mapping gψ : Y 7→ Z . The following holds for all measurable gψ:

DKL (qϕ,ψ(z|x) ∥ pψ(z)) ≤ DKL (qϕ(y|x) ∥ N (y; 0, I)) . (3)
If gψ is also an invertible function then the above becomes an equality and LY equals the standard
ELBO on the space of Z as follows

LY(x, θ, ϕ, ψ) = Eqϕ,ψ(z|x)[log pθ(x|z)]−DKL (qϕ,ψ(z|x) ∥ pψ(z)) . (4)

Proof. We first prove the inequality from Eq. (3), then we show that Eq. (3) is actually an equality
when gψ is invertible, and finally we prove that the reconstruction term is unchanged by gψ .

Let us denote by F and G the sigma-algebras of respectively Y and Z , and we have by construction
a measurable map gψ : (Y,F) → (Z,G). We can actually define the measurable space (Z,G)
as the image of (Y,F) by gψ, then gψ is automatically both surjective and measurable.1 We also
assume that there exists a measure on Y , which we denote ξ, and denote with ν the corresponding
pushforward measure by gψ on Z . We further have ν(A) = ξ(g−1

ψ (A)) for any A ∈ G.2

We start by proving Eq. (3), where the Kullback-Leibler (KL) divergence between the two push-
forward measures3 qϕ,ψ ≜ qϕ ◦ g−1

ψ and pψ ≜ p ◦ g−1
ψ is upper bounded by DKL (qϕ(y|x) ∥ p(y)),

where here we have p(y) = N (y; 0, I) but we will use p as a convenient shorthand. At a high-level,
we essentially have that Eq. (3) follows directly the data processing inequality (Sason, 2019) with a
deterministic kernel z = gψ(y). Nonetheless, we develop in what follows a proof which addition-
ally gives sufficient conditions for when this inequality becomes non-strict. We can assume that
DKL (qϕ(y|x) ∥ N (y; 0, I)) is finite, as otherwise the result is trivially true, which in turn implies
qϕ ≪ p.4 For any A ∈ G, we have that if pψ(A) = p ◦ g−1

ψ (A) = p(g−1
ψ (A)) = 0 then this

implies qϕ(g−1
ψ (A)) = qϕ ◦ g−1

ψ (A) = qϕ,ψ(A) = 0. As such, we have that qϕ,ψ ≪ pψ and so the
DKL (qϕ,ψ(z|x) ∥ pψ(z)) is also defined.

Our next significant step is to show that

Ep(y)
[
qϕ
p

∣∣∣ σ(gψ)] = qϕ ◦ g−1
ψ

p ◦ g−1
ψ

◦ gψ, (A.1)

where σ(gψ) denotes the sigma-algebra generated by the function gψ. To do this, let h : (Z,G) →
(R+,B(R+)) be a measurable function s.t. Ep(y)

[
qϕ
p

∣∣∣ σ(gψ)] = h ◦ gψ. To show this, we will
demonstrate that they lead to equivalent measures when integrated over any arbitrary set A ∈ G:∫

Z
1A

qϕ ◦ g−1
ψ

p ◦ g−1
ψ

p ◦ g−1
ψ dν =

∫
Z
1A qϕ ◦ g−1

ψ dν =

∫
Z
1A d(qϕ ◦ g−1

ψ )

(a)
=

∫
Y
(1A ◦ gψ) dqϕ =

∫
Y
(1A ◦ gψ) qϕ dξ

(b)
=

∫
Y
(1A ◦ gψ)

qϕ
p
p dξ

(c)
=

∫
Y
(1A ◦ gψ) Ep(y)

[
qϕ
p

∣∣∣ σ(gψ)] p dξ
(d)
=

∫
Y
(1A ◦ gψ) (h ◦ gψ) p dξ =

∫
Y
(1A ◦ gψ) (h ◦ gψ) dp

(e)
=

∫
Z
1A h d(p ◦ g−1

ψ ) =

∫
Z
1A h (p ◦ g−1

ψ ) dν,

1We recall that gψ is said to be measurable if and only if for any A ∈ G, g−1
ψ (A) ∈ F .

2The notation g−1
ψ (A) does not imply that gψ is invertible, but denotes the preimage of A which is defined

as g−1
ψ (A) = {y ∈ Y | gψ(y) ∈ A}.
3We denote the pushforward of a probability measure χ along a map g by χ ◦ g−1.
4We denote the absolute continuity of measures with ≪, where µ is said to be absolutely continuous w.r.t. ν,

i.e. µ ≪ ν, if for any measurable set A, ν(A) = 0 implies µ(A) = 0.
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where we have leveraged the definition of pushforward measures in (a & e); the absolute continuity
of qϕ w.r.t. p in (b); the conditional expectation definition in (c); and the definition of h in (d). By
equating terms, we have that qϕ ◦ g−1

ψ /p ◦ g−1
ψ = h, almost-surely with respect to qϕ ◦ g−1

ψ and thus
that Eq. (A.1) is verified.

Let us define f : x 7→ x log(x), which is strictly convex on [0,∞) (as it can be prolonged with
f(0) = 0). We have the following

DKL (qϕ,ψ(z|x) ∥ pψ(z))
(a)
=

∫
Z
log

(
qϕ,ψ
pψ

)
qϕ,ψ dν

(b)
=

∫
Z
log

(
qϕ,ψ
pψ

)
qϕ,ψ
pψ

pψ dν

(c)
=

∫
Z
f

(
qϕ,ψ
pψ

)
pψ dν =

∫
Z
f

(
qϕ,ψ
pψ

)
d(p ◦ g−1

ψ )

(d)
=

∫
Y
f

(
qϕ,ψ
pψ

◦ gψ
)
dp =

∫
Y
f

(
qϕ ◦ g−1

ψ

p ◦ g−1
ψ

◦ gψ

)
p dξ

(e)
=

∫
Y
f

(
Ep(y)

[
qϕ
p

∣∣∣ σ(gψ)]) p dξ
(f)

≤
∫
Y
Ep(y)

[
f

(
qϕ
p

) ∣∣∣ σ(gψ)] p dξ
(g)
=

∫
Y
f

(
qϕ
p

)
p dξ

(h)
=

∫
Y
log

(
qϕ
p

)
qϕ
p
p dξ

(i)
= Eqϕ(y|x)

[
log

(
qϕ(y|x)
p(y)

)]
(j)
= DKL (qϕ(y|x) ∥ p(y)) ,

where we leveraged the definition of the KL divergence in (a & j); the absolute continuity of qϕ w.r.t.
p in (b & i); the definition of f in (c & h); the definition of the pushforward measure in (d); Eq. (A.1)
in (e); the conditional Jensen inequality in (f) and the law of total expectation in (g). Note that this
proof not only holds for the KL divergence, but for any f-divergences as they are defined as in (b)
with f convex.

To prove Eq. (4), we now need to show that line (f) above becomes an equality when gψ is invertible.

As f is strictly convex, this happens if and only if qϕp = Ep(y)
[
qϕ
p

∣∣∣ σ(gψ)]. A sufficient condition

for this to be true is for qϕ
p to be measurable w.r.t. σ(gψ) which is satisfied when gψ : Y 7→ Z is

invertible as σ(gψ) ⊇ F , as required. We have thus shown that the KL divergences are equal when
using an invertible gψ .

For the reconstruction term, we instead have

Eqϕ(y|x)[log pθ(x|gψ(y))] =
∫
Y
log pθ(x|gψ(y))qϕ(y|x)dξ

=

∫
Z
log pθ(x|z)qϕ,ψ(z|x)dν

= Eqϕ,ψ(z|x)[log pθ(x|z)].

Eq. (4) now follows from the fact that both the reconstruction and KL terms are equal.
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APPENDIX B HIERARCHICAL REPRESENTATIONS

Figure B.1: Graphical model for hierar-
chical InteL-VAE

The isotropic Gaussian prior in standard VAEs as-
sumes that representations are independent across dimen-
sions (Kumar et al., 2018). However, this assumption is
often unrealistic (Belghazi et al., 2018; Mathieu et al.,
2019b). For example, in Fashion-MNIST, high-level fea-
tures such as object category, may affect low-level features
such as shape or height. Separately extracting such global
and local information can be beneficial for visualization
and data manipulation (Zhao et al., 2017). To try and cap-
ture this, we introduce an inductive bias that is tailored to
model and learn hierarchical features. We note here that
our aim is not to try and provide a state-of-the-art hierarchi-
cal VAE approach, as a wide variety of highly–customized
and powerful approaches are already well–established, but
to show how easily the InteL-VAE framework can be used
to induce hierarchical representations in a simple, lightweight, manner.

Mapping design Following existing ideas from hierarchical VAEs (Sønderby et al., 2016; Zhao
et al., 2017), we propose a hierarchical mapping gψ . As shown in Fig. B.1, the intermediary Gaussian
variable y is first split into a set of N layers [y0, y1, ..., yN ]. The mapping z = gψ(y) is then
recursively defined as zi = NNi(zi−1, yi), where NNi is a neural network combining information
from higher-level feature zi−1 and new information from yi. As a result, we get a hierarchical
encoding z = [z0, z1, ..., zN ], where high-level features influence low-level ones but not vice-versa.
This gψ thus endows InteL-VAEs with hierarchical representations.

(a)

(b)

(c)

(d)

(e)

Figure B.2: Manipulating representations of
a hierarchical InteL-VAE. The features are
split into 5 levels, with each of (a) [highest]
to (e) [lowest] corresponding to an example
feature from each. We see that high-level
features control more complex properties,
such as class label or topological structure,
while low-level features control simpler de-
tails, (e.g. (d) controls collar shape).

Experiments While conventional hierarchical
VAEs, e.g. (Sønderby et al., 2016; Zhao et al.,
2017; Vahdat & Kautz, 2020), use hierarchies to
try and improve generation quality, our usage is
explicitly from the representation perspective, with
our experiments set up accordingly. Fig. B.2 shows
some hierarchical features learned by InteL-VAE
on Fashion-MNIST. We observe that high-level
information such as categories have indeed been
learned in the top-level features, while low-level
features control more detailed aspects.

To provide more quantitative investigation, we also
consider the CelebA dataset (Liu et al., 2015) and
investigate performance on downstream tasks, com-
paring to vanilla-VAEs with different latent dimen-
sions. For this, we train a linear classifier to predict
all 40 binary labels from the learned features for each
method. In order to eliminate the effect of latent di-
mensions, we compare InteL-VAE (with fixed latent
dimension 128) and vanilla VAE with different latent
dimensions (1, 2, 4, 8, 16, 32, 64, 128). We show ex-
periment results on some labels as well as the average
accuracy on all labels in Table B.1 and Fig. B.3. We
first find that the optimal latent dimension increases
with the number of data points for the vanilla-VAEs, but is always worse than the InteL-VAE. Notably,
the accuracy with InteL-VAE is quite robust, even as the number of data points gets dramatically low,
indicating high data efficiency. To the best of our knowledge, this is the first result showing that a
hierarchical inductive bias in VAE is beneficial to feature quality.

Related work Hierarchical VAEs (Vahdat & Kautz, 2020; Ranganath et al., 2016; Sønderby et al.,
2016; Klushyn et al.; Zhao et al., 2017) seek to improve the fit and generation quality of VAEs by
recursively correcting the generative distributions. However, they require careful design of neural
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Model Latent dim Data size

50 100 500 1000 5000 10000

VAE 8 0.791 0.799 0.814 0.815 0.819 0.819
16 0.788 0.801 0.820 0.824 0.829 0.831
32 0.769 0.795 0.825 0.832 0.842 0.846
64 0.767 0.794 0.826 0.832 0.849 0.855
128 0.722 0.765 0.817 0.825 0.830 0.852

InteL-VAE 64 0.817 0.824 0.841 0.846 0.854 0.857

Table B.1: Average accuracy in predicting all 40 binary labels of CelebA. Overall best accuracy is
shown in bold and best results of vanilla-VAEs are underlined for comparison. Each experiment is
repeated 10 times and differences are significant at the 5% level for data size ≤ 1000.

layers, and the hierarchical KL divergence makes training deep hierarchical VAEs unstable (Vahdat &
Kautz, 2020). In comparison, InteL-VAE with hierarchical mappings is extremely easy to implement
without causing any computational instabilities, while its aims also differ noticeably: our approach
successfully learns hierarchical representations—something that is rarely mentioned in prior works.
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Figure B.3: InteL-VAE’s performance of attribute prediction on CelebA dataset. Each column shows
results on the same feature with different data sizes and each column shows results on different
features. In each graph, test accuracy of vanilla-VAE with different latent dimensions are shown
in blue line. And results of InteL-VAE with hierarchical prior are shown in red. We find that our
method (red line) achieves comparable or even better results compared with vanilla-VAE with all
latent dimensions.
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APPENDIX C FULL METHOD AND EXPERIMENT DETAILS

In this section, we first provide complete details of the mapping designs used for our different InteL-
VAE realizations along with some additional experiments. We then provide other general information
about datasets, network structures, and experiment settings to facilitate results reproduction.

C.1 MULTIPLE-CONNECTIVITY

Mapping design Full details for this mapping were given in the main paper. Fig. C.1 provides a
further illustration of the gluing process. Additional resulting including the Vamp-VAE are given
in Fig. 4.

1 0 1
1

0

1

(a) Circular prior with h = 1

1 0 1
1

0

1

(b) Glue point pair
1 0 1

1

0

1

(c) Implied prior with h = 2

Figure C.1: An illustration of the glue function in multiply-connected mappings.

C.2 MULTI-MODALITY

Mapping design In Sec. 6.2, we see the general idea of designing clustered mappings. In this
part, we delve into the details of mapping design as well as extending it to 1 dimensional and high-
dimensional cases. For simplicity’s sake let us temporarily assume that the dimension of Y is 2. Our
approach is based on splitting the original space into K equally sized sectors, where K is the number
of clusters we wish to create, as shown in Fig. 5b. For any point y, we can get its component (sector)
index ci(y) as well as its distance from the sector boundary dis(y). By further defining the radius
direction for the k-th sector (cf Fig. 5c) as

∆(k) =

(
cos

(
2π

K

(
k +

1

2

))
, sin

(
2π

K

(
k +

1

2

)))
∀k ∈ {1, . . . ,K},

we can in turn define g(y) as:

r(y) = ∆(ci(y)), (C.1)
g(y) = y + c1dis(y)c2 r(y), (C.2)

where c1 and c2 are constants, which are set to 5 and 0.2 in our experiments. we make sure g still
continuous by keeping g(y) = y on boundaries.

When dimension of Y is greater than 2, we have more diverse choice for g. When K is decomposable,
i.e., K =

∏
iKi, we can separately cut the plane expanded by Y2i and Y2i+1 into Ki sectors by the

Eq. (C.1). As a result, Y is split into K =
∏
i ki clusters. When K = 2, we find that g only changes

the 1-st dimension of Y , so it can be applied to cases where latent dimension is 1.

Learnable proportions We can also make the mapping more flexible by learning rather than
assigning the cluster proportions. To do so, we keep a learnable value ui for each cluster and set the
angle of the i-th sector as 2πSoftmax(u)i. Things are simpler for the 1-dimensional case where we
can uniformly translate y by a learnable bias b before splitting the space from the origin.

C.3 SPARSITY

Relationship to soft attention We note that our setup for the sparsity mapping shares some
similarities with a soft attention layer (Bahdanau et al., 2014). However, there are also some
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(a) Real distribution (b) VAE (c) Vamp-VAE (d) InteL-VAE

Figure C.2: Extension of Fig. 4 showing Vamp-VAE baseline and additional circular target distribution
(top row, uses the same single hole gψ as the second and third rows).

important points of difference. Firstly, soft attention aims to find the weights to blend features from
different time steps (for sequential data) or different positions (for image data). In contrast, the
dimension selector (DS) selects which dimensions to activate or deactivate for the same latent vector.
Secondly, the weights of features are usually calculated by inner products of features for soft attention,
while DS relies on a network to directly output the logits.

Sparsity regularizer Our sparsity regularizer term, Lsp, is used to encourage our dimensionality
selector network (DS) to produce sparse mappings. It is defined using a mini-batch of samples
{yi}Mi=1 drawn during training as per (7). During training, the first term of Lsp decreases the number
of activated dimensions for each sample, while the second term prevents the samples from all using
the same set of activated dimensions, which would cause the model to degenerate to a vanilla VAE
with a lower latent dimensionality.

We note that Lsp alone is not expected to induce sparsity without also using the carefully constructed
gψ of the suggested InteL-VAE. We confirm this empirically by performing an ablation study on
MNIST where we apply this regularization directly to a vanilla VAE. We find that even when using
very large values of γ > 30.0 we can only slightly increase the sparsity score (0.230 → 0.235).
Moreover, unlikely for the InteL-VAE, this substantially deteriorates generation quality, with the FID
score raising to more than 80.0 at the same time.

Sparse metric We use the Hoyer extrinsic metric (Hurley & Rickard, 2009) to measure the sparsity
of representations. For a representation z ∈ RD,

Hoyer(z) =

√
D − ||ẑ||1/||ẑ||2√

D − 1
. (C.3)

Here, following Mathieu et al. (2019b), we crucially first normalized each dimension d of z to have
standard deviation 1, ẑd = zd/σd, to ensure that we only measure sparsity that varies between data
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Figure C.3: Results on MNIST. The left figure shows FID and sparsity scores. Lower FID scores (↓)
represent better sample quality while higher sparse scores (→) indicate sparser features. The right
figure shows the performance of sparse features from InteL-VAE on downstream classification tasks.
See Sec. 6.3 for details and results for MNIST.

Parameters Synthetic MNIST Fashion-MNIST MNIST-01 CelebA

Dataset sizes Unlimited 55k/5k/10k 55k/5k/10k 10k/1k/2k 163k/20k/20k
Input space R2 Binary 28x28 Binary 28x28 Binary 28x28 RGB 64x64x3
Encoder net MLP CNN CNN CNN CNN
Decoder net MLP CNN CNN CNN CNN
Latent dimension 2-10 50 50 1-10 1-128
Batch size 10-500 100 100 100 100
Optimizer Adam Adam Adam Adam Adam
Learning rate 1e-3 1e-3 1e-3 1e-3 1e-3

Table C.1: Hyperparameters used for different experiments.

points (as is desired), rather than any tendency to uniformly ‘switch off’ certain latent dimensions
(which is tangential to our aims). In other words, this normalization is necessary to avoid giving
high scores to representations whose length scales vary between dimensions, but which are not really
sparse.

By averaging Hoyer(z) over all representations, we can get the sparse score of a method. For the
sparsest case, where each representation has a single activated dimension, the sparse score is 1. And
when the representations get denser, ||ẑ||2 get smaller compared with ||ẑ||1, leading to smaller sparse
scores.

Reproduction of Sparse-VAE We tried two different code bases for Sparse-VAE (Tonolini et al.,
2020). The official code base5 gives higher sparse scores for MNIST and FashionMNIST (though
still lower than InteL-VAE), but is very unstable during training, with runs regularly failing after
diverging and producing NaNs. This issue gets even more severe on CelebA which occurs after only
a few training steps, undermining our ability to train anything meaningful at all. To account for this,
we switched to the codebase6 from De la Fuente & Aduviri (2019) that looked to replicate the results
of the original paper. We report the results from this code base because it solves the instability issue
and achieves reasonable results on CelebA. Interestingly, though its generation quality is good on
MNIST and Fashion-MNIST, it fails to achieve a sparse score significantly higher than vanilla-VAE.
As the original paper does not provide any quantitative evaluation of the achieved sparsity, it is
difficult to know if this behavior is expected. We note though that the qualitative results shown in the
paper appear to be substantially less sparse than those we show for the InteL-VAE, cf their Figure 5
compared to the top row of our Fig. 8. In particular, their representation seems to mostly ‘switch off’
some latents entirely, rather than having diversity between datapoints that is needed to score well
under the Hoyer metric.

5https://github.com/ftonolini45/Variational_Sparse_Coding
6https://github.com/Alfo5123/Variational-Sparse-Coding
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Encoder

Input 64 x 64 x 3
4x4 conv. 64 stride 2 & BN & LReLU
4x4 conv. 128 stride 2 & BN & LReLU
4x4 conv. 256 stride 2 & BN & LReLU
Dense (dim)

Decoder

Input dim
Dense (8x8x256) & BN & ReLU
4x4 upconv. 256 stride 2 & BN & ReLU
4x4 upconv. 128 stride 2 & BN & ReLU
4x4 upconv. 3 stride 2

Table C.2: Encoder and Decoder structures for CelebA, where dim is the latent dimension.

C.4 ADDITIONAL EXPERIMENT DETAILS

Datasets Both synthetic and real datasets are used in this paper. All synthetic datasets (sphere,
square, star, and mixture of Gaussian) are generated by generators provided in our codes. For real
datasets, We load MNIST, Fashion-MNIST, and CelebA directly from Tensorflow (Abadi et al., 2015),
and we resize images from CelebA to 64x64 following Hou et al. (2017). For experiments with a
specified number of training samples, we randomly select a subset of the training data. We use the
same random seed for each model in the same experiment and different random seeds when repeating
experiments.

Model structure For low-dimensional data, the encoder and decoder are both simple multilayer
perceptrons with 3 hidden layers (10-10-10) and ReLU (Glorot et al., 2011) activation. For MNIST
and Fashion-MNIST, we use the same encoder and decoder as Mathieu et al. (2019b). For CelebA,
the structure of convolutional networks are shown in Table C.2.

Experiment settings Other hyperparameters are shown in Table C.1. All experiments are run on a
GTX-1080-Ti GPU.
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