

000 001 002 003 004 005 DIFFTESTER: ACCELERATING UNIT TEST GENERA- 006 TION FOR DIFFUSION LLMs VIA REPETITIVE PATTERN 007 008 009

010 **Anonymous authors**
011 Paper under double-blind review
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
0100

ABSTRACT

Software development relies heavily on extensive unit testing, which makes the efficiency of automated Unit Test Generation (UTG) particularly important. However, most existing LLMs generate test cases one token at a time in each forward pass, which leads to inefficient UTG. Recently, diffusion LLMs (dLLMs) have emerged, offering promising parallel generation capabilities and showing strong potential for efficient UTG. Despite this advantage, their application to UTG is still constrained by a clear trade-off between efficiency and test quality, since increasing the number of tokens generated in each step often causes a sharp decline in the quality of test cases. To overcome this limitation, we present DIFFTESTER, an acceleration framework specifically tailored for dLLMs in UTG. The key idea of DIFFTESTER is that unit tests targeting the same focal method often share repetitive structural patterns. By dynamically identifying these common patterns through abstract syntax tree analysis during generation, DIFFTESTER adaptively increases the number of tokens produced at each step without compromising the quality of the output. To enable comprehensive evaluation, we extend the original TestEval benchmark, which was limited to Python, by introducing additional programming languages including Java and C++. Extensive experiments on three benchmarks with two representative models show that DIFFTESTER delivers significant acceleration while preserving test coverage. Moreover, DIFFTESTER generalizes well across different dLLMs and programming languages, providing a practical and scalable solution for efficient UTG in software development. Code and data are publicly available at <https://anonymous.4open.science/r/DLM4UTG>.

1 INTRODUCTION

Unit testing plays a vital role in software development, ensuring that a functionally discrete program unit (e.g., a method) behaves correctly and meets the intended design expectations (Olan, 2003; Gren & Antinyan, 2017). However, manually writing high-quality Unit Tests (UTs) is often extremely time-consuming and labor-intensive (Runeson, 2006), especially in large-scale software development scenarios (Shang et al., 2025). To reduce the manual burden, recent research has increasingly sought many automated approaches to generate UTs (Chipounov et al., 2011; Tufano et al., 2020; Fraser & Arcuri, 2011). Among these, advanced Large Language Models (LLMs) have rapidly become the mainstream solution for automated Unit Test Generation (UTG), due to their strong code understanding and code generation abilities (Wang et al., 2024; Bhatia et al., 2024).

In large-scale software development projects, it is often necessary to generate a substantial number of UTs, sometimes reaching hundreds or thousands (Robinson et al., 2011; Li et al., 2006). However, most existing LLMs (Hui et al., 2024; Achiam et al., 2023) generate UTs one token at a time during each forward pass, which substantially increases both time consumption and computational cost, leading to inefficient UTG (Yang et al., 2024). Fortunately, emerging Diffusion Large Language Models (dLLMs) (Nie et al., 2025b; Ye et al., 2025) exhibit strong potential in UTG and other code-related tasks (Li et al., 2025a; Khanna et al., 2025), which adopt a unique generation paradigm that naturally enables *multi-token prediction* and *flexible generation order*. Specifically, at each inference step, dLLMs predict a candidate token for every [MASK] position and then remask those with relatively low confidence according to a remasking strategy.

Although dLLMs are theoretically capable of generating multiple tokens in each forward pass, existing studies (Zeng et al., 2025; Barr et al., 2014) typically set the number of tokens generated per

054 step to a very small value (e.g., one or two). As a result, their inference speed is often comparable
 055 to that of non-diffusion LLMs, which fail to fully exploit the efficiency advantages of dLLMs in
 056 theory (Li et al., 2025a). Our preliminary experiments further reveal that when the number of tokens
 057 generated per step is increased, the quality of the generated UTs degrades sharply, and in many
 058 cases, even the syntactic correctness of the test cases cannot be guaranteed (for more details, see
 059 Appendix C.2.3). This limitation greatly hinders the efficiency of dLLMs in UTG, highlighting the
 060 need for an acceleration framework specifically tailored to dLLMs for UTG.

061 To accelerate dLLMs in UTG, we conduct an in-depth analysis of the characteristics of this task. We
 062 find that for the same focal method, the generated UTs often share repetitive patterns, frequently
 063 exhibiting substantial structural and syntactic repetition. For instance, two generated unit tests often
 064 share similar patterns and differ only in specific details. From the perspective of their Abstract
 065 Syntax Trees (ASTs) (Peacock et al., 2021), these differences typically appear only in certain leaf
 066 nodes or low-level non-leaf nodes. Based on this insight, we propose DIFFTESTER to accelerate
 067 unit test generation for diffusion LLMs via repetitive pattern. Specifically, we first prompt dLLMs
 068 within a single batch to produce multiple UTs for a given focal method. At selected steps of the
 069 generation process, we parse the generated code into multiple ASTs and extract the common nodes
 070 across them, which we regard as indicative of patterns inherent to the test cases for the focal method.
 071 The tokens corresponding to these common nodes are then generated in a single step. In this way,
 072 DIFFTESTER dynamically and appropriately increases the number of tokens generated at each step,
 073 while preserving the quality of the resulting test cases.

074 We perform extensive experiments to validate the effectiveness of our proposed DIFFTESTER on
 075 the TestEval benchmark (Wang et al., 2025) (whose focal methods are all implemented in Python)
 076 with two representative dLLMs, including Dream (Ye et al., 2025) and DiffuCoder (Gong et al.,
 077 2025). To enable comprehensive evaluation and to avoid potential data contamination (Deng et al.,
 078 2023), we further extend the TestEval benchmark to multiple programming languages, resulting
 079 in TestEval-C++ and TestEval-Java. Experimental results demonstrate that, under the same
 080 runtime or computational budget, applying DIFFTESTER substantially improves coverage. From
 081 another perspective, to achieve the same level of coverage, DIFFTESTER can often reduce both time
 082 and computational cost by more than half. We believe that DIFFTESTER effectively accelerates
 083 dLLMs in UTG and can contribute to software quality assurance.

084 2 BACKGROUND AND MOTIVATION

085 2.1 INFERENCE PROCESS OF DLLMs

086 In this section, we introduce how mainstream dLLMs, such as Dream (Ye et al., 2025) and
 087 LLaDa (Nie et al., 2025b), perform inference. These models progressively refine a sequence
 088 consisting of L special [MASK] tokens into the final generated output (e.g., some test cases). For-
 089 mally, let $\mathcal{Y}^0 = (y_i^0)_{i=1}^L$, where $y_i^0 = \text{[MASK]}$, denote the initial fully masked sequence. Given a
 090 prompt p , the dLLM performs T steps, each consisting of a forward pass, and eventually produces
 091 the output $\mathcal{Y}^T = (y_i^T)_{i=1}^L$, which contains no remaining [MASK] tokens.

092 At each step t , the dLLM performs one forward pass to predict the probability distribution for every
 093 position that is filled with a [MASK] token in parallel. For each such position i , the model then
 094 samples a non-[MASK] token \hat{y}_i^t from its corresponding probability distribution, a process analogous
 095 to the sampling procedure used in autoregressive LLMs. After this step, the model proceeds with the
 096 remasking operation (Nie et al., 2025b; Ye et al., 2025), where a confidence score is assigned to each
 097 predicted token (e.g., based on entropy, maximum probability of the distribution, or by randomly
 098 specifying a value). Tokens with the highest confidence are retained, for instance, by selecting the
 099 top- k predictions or by keeping those whose confidence exceeds a predefined threshold (Wu et al.,
 100 2025a; Wei et al., 2025), while other tokens are reverted back to [MASK] for further refinement in
 101 subsequent steps. Many prior studies (Li et al., 2025a; Wu et al., 2025a) have shown that increasing
 102 the number of tokens generated at each step can significantly degrade the quality of the outputs.

103 2.2 DIVE INTO UNIT TESTS GENERATION

104 Given a specific focal method, unit test generation typically needs to produce multiple test cases,
 105 each consisting of a corresponding test prefix and a test assertion (Lemieux et al., 2023; Zamprogno

```
108 Structural Consistency :  
109  
110     public void test_shortestPath() {  
111         Solution solution = new Solution();  
112         int[][] grid = {{0,0,1},{1,1,0},  
113                         {0,0,0},{0,1,0}};  
114         assertEquals(solution.shortestPath  
115                         (grid, 1), 6);  
116     }  
117  
118     public void test_shortestPath() {  
119         Solution solution = new Solution();  
120         int[][] grid = {{0,0},{1,1},{0,0,0}};  
121         assertEquals(solution.shortestPath  
122                         (grid, 1), 4);  
123     }  
124  
125     Inline Literals and External Variable References :  
126  
127         assertEquals(solution.minCost(30, new int[][] {{0, 1, 1},  
128                         {1, 2, 3}, {2, 3, 10}}}, new int[] {0, 1, 2, 3}), 6);  
129  
130         assertEquals(solution.minCost(maxTime, edges,  
131                         passingFees), expectedOutput);  
132  
133     Contains Syntax Errors :  
134  
135         vector<vector<int>> testRoads = {{0, 1, 1}, {1, 2, 2},  
136                         {1, 3, 3}};  
137  
138         vector<vector<int>> testRoads = {{0, 1, 3}, {0, 2, 1},  
139                         {2, 4, 1}};
```

Figure 1: Repetitive structural and syntactic patterns frequently emerge in unit test cases generated at an intermediate step of DLLM inference before remasking.

et al., 2022). The test prefix is primarily used to construct the testing data and environment, whereas the test assertion serves to verify the correctness of the focal method (Yuan et al., 2024).

We observe that, for the same focal method, the generated test cases often share repetitive patterns, frequently exhibiting substantial structural and syntactic similarities. As illustrated in the left part of Figure 1, two test cases for one focal method may have almost identical syntactic structures, differing only in the values of variables and constants which determine diversity. We attribute these shared patterns to the strict constraints imposed on both inputs and outputs of the focal method. For example, when the input is a bipartite graph represented by a specific data structure and the output is a list of a given length, the test prefix is structurally constrained by the input, while the test assertion is structurally constrained by the output.

We further find that such structural repetition is widely distributed. Even when test cases employ different styles of construction, such as inline literals or external variable references, as shown in the upper-right part of Figure 1, obvious structural repetition can still be observed. More strikingly, as shown in the lower-right part of Figure 1, even test cases that contain syntax errors—which are common in the intermediate test cases generated at a dLLM inference step before remasking—still exhibit obvious shared patterns across different cases.

We argue that these shared patterns should ideally be generated together when a DLLM is used to produce multiple test cases for the same focal method. However, existing remasking strategies, whether based on selecting the top- k tokens or retaining those above a confidence threshold, fail to exploit the structural repetition intrinsic to unit test generation, ultimately resulting in suboptimal generation efficiency.

💡 **TAKEAWAY:** For the same focal method, the generated test cases often shared repetitive patterns, which we argue can be leveraged to accelerate dLLMs for UTG.

3 DIFFTESTER

We propose DIFFTESTER, an approach designed to accelerate dLLMs in unit test generation. The key idea is to mine shared code patterns observed in multiple unit test cases generated at intermediate inference steps and then leverage them to guide token generation. We first provide a brief overview of the overall acceleration procedure (Section 3.1). Then we provide an in-depth explanation of how repetitive patterns are exploited, which forms the core of our approach (Section 3.2). Finally, we introduce several additional techniques to further accelerate inference and ensure the quality of the generated test cases (Section 3.3). An overview of DIFFTESTER is presented in Figure 2.

3.1 OVERVIEW OF DIFETESTER

We detail the overview of DIFFTESTER in this section. For a given focal method, we set the batch size to n (e.g., $n = 3, 5, 7$) and prompt the DLLM to generate one unit test case in each instance, resulting in n unit test cases simultaneously.

At one step t , for the k -th instance in the batch, the model first predicts tokens for all [MASK] positions, producing an intermediate response $\mathcal{Y}_{i,k}^{t,k} = (\hat{u}_{i,k}^{t,k})_1^L$. We then follow the standard

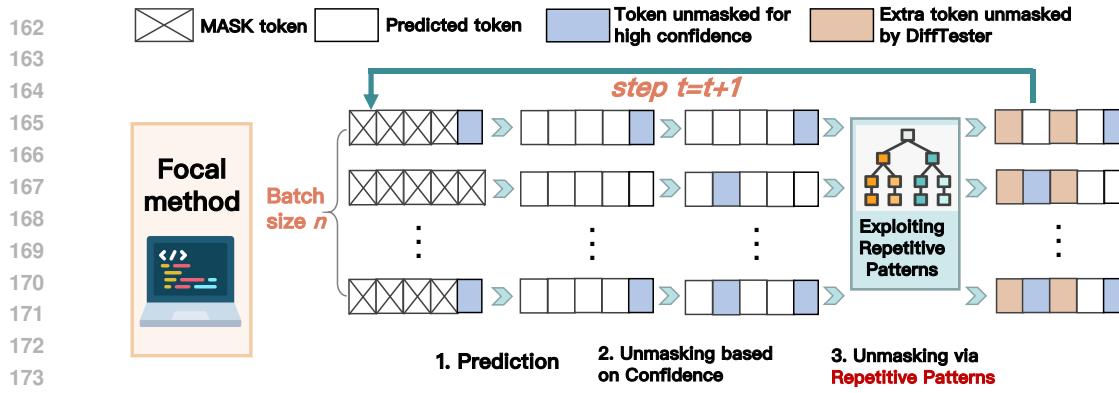


Figure 2: Overview of our proposed DIFFTESTER.

remasking strategy defined in existing DLLMs (*e.g.*, selecting the top- k tokens according to their confidence scores) to determine which tokens will be retained (Ye et al., 2025; Xie et al., 2025; Gong et al., 2025). Subsequently and most importantly, we extract shared patterns across the generated unit test cases and leverage them to further retain additional tokens, with the detailed procedure presented in Section 3.2. After completing the procedure described above, we retain all selected tokens, while the remaining tokens at [MASK] positions are reverted back to [MASK], and the process proceeds to the next step.

3.2 EXPLOITING REPETITIVE PATTERNS TO ACCELERATE UTG

In this section, we detail how to exploit repetitive patterns across multiple test cases to accelerate unit test generation for DLLMs.

We begin by analyzing the key challenges involved in leveraging such repetitive patterns, which lie in two main aspects. ① The first challenge is **how to effectively extract shared patterns across multiple test cases**. As illustrated in Figure 1, repetitive structural and syntactic patterns can be easily observed among different test cases for the same focal method. However, transforming these intuitive and abstract notions of repetitive patterns into a concrete representation—that is, determining which tokens are structurally repeated—remains a non-trivial problem. ② The second challenge is **how to ensure sufficient diversity in the generated test cases**. Achieving high test coverage relies heavily on diversity (Peacock et al., 2021; Yang, 2023), yet the process of extracting shared patterns may risk reducing it. For instance, the model might generate identical input data across multiple test cases. Designing a method that can exploit shared patterns while preserving the diversity of test data is therefore another important challenge.

⚠ CHALLENGES: ① How to effectively extract repetitive patterns across multiple test cases? ② How to ensure sufficient diversity in the generated test cases?

We next provide a detailed description of how our approach addresses these challenges and ultimately enables the effective utilization of repetitive patterns for acceleration.

Extract Repetitive Patterns. We noticed Abstract Syntax Trees (ASTs) provide an objective representation of the syntactic structure of code (Sun et al., 2023; Suttichaya et al., 2022), and each node in an AST can be accurately mapped to a specific set of tokens. Based on this property, our approach compares the ASTs of different test cases’ code and attempts to merge them as much as possible, which means identifying the nodes that are shared across different ASTs. When two or more ASTs can be merged into a non-empty tree, this indicates the existence of a repetitive pattern. We then locate the tokens in the intermediate test cases that correspond to the merged AST.

In practice, we find that unit test cases generated at early steps often contain many syntax errors. Such errors propagate through the parsing process, meaning that the same error can have a much greater negative impact when it occurs in a high-level AST (*e.g.*, with the root node being a program) than when it appears in a low-level AST (*e.g.*, with the root node being a statement). As a result, parsing an entire unit test case frequently produces ASTs that fail to accurately reflect the intended code structure and therefore offer little guidance. To address this issue, we construct ASTs at the granularity of individual code lines rather than entire test cases, as illustrated in Figure 3.

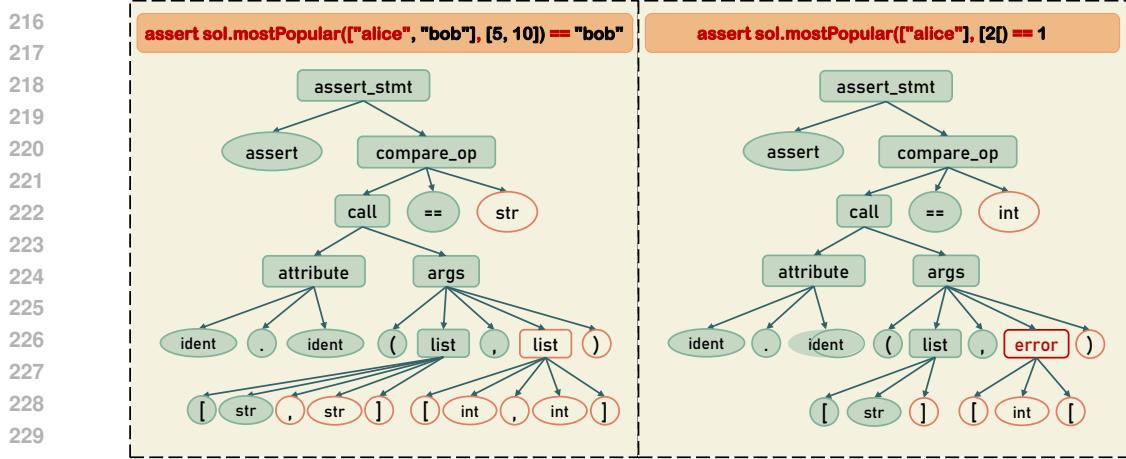


Figure 3: Extract shared nodes between two ASTs and locate their corresponding tokens in the generated code. Square boxes represent non-leaf nodes, while ellipses indicate leaf nodes. The **colored tokens** in the code at the top of the figure highlight the tokens that can be additionally retained according to the merged AST.

Ensure Sufficient Diversity. The diversity of unit test cases largely depends on the variability of the input data constructed for the focal method, which in turn is primarily determined by literal values such as integers or floats (Yang, 2023). To preserve this variability, we exclude the AST nodes corresponding to such literal values from the merging process. This design ensures that even if two test cases construct similar data at an intermediate step, the corresponding tokens are not retained in a single step but are instead remasked for subsequent refinement, allowing higher diversity.

After identifying the tokens that belong to the merged AST, we retain them in a single step, while the remaining tokens are remasked for refinement in the subsequent step. The details of the entire process are provided in Algorithm 1 and Algorithm 2 in the Appendix.

3.3 ADDITIONAL TECHNIQUES OF DIFFTESTER

We additionally introduce two techniques to improve the quality of the generated test cases and to further accelerate the generation process.

① Our preliminary experiments show that directly decoding all tokens belonging to the merged AST can slightly reduce the syntactic correctness of the generated unit test cases. We hypothesize that this is mainly because tokens with very low confidence may occasionally be retained, while in practice, we observe that such cases are extremely rare. To address this issue, we retain only those tokens whose confidence exceeds a predefined threshold τ when guided by the merged AST, thereby ensuring that the retained tokens are more reliable for generation.

② Although parsing code to construct ASTs is computationally inexpensive, invoking the process at every step still introduces noticeable overhead. Fortunately, we observe that the ASTs of code generated in consecutive steps change very little. Based on this observation, we choose not to apply DIFFTESTER at every step, but instead to use it intermittently after several steps, which leads to faster acceleration.

4 EXPERIMENT

In this section, we systematically evaluate the performance of DIFFTESTER in accelerating unit test generation. Additional experimental results including ablation studies are provided in Appendix C.2.

4.1 EXPERIMENT SETUP

Models. We evaluate our approach using two representative dLLMs, namely DIFFUCODER-7B-CPGRPO (Gong et al., 2025) and DREAM-V0-INSTRUCT-7B (Ye et al., 2025). For brevity, we refer to them as DiffuCoder and Dream in the remainder of this paper.

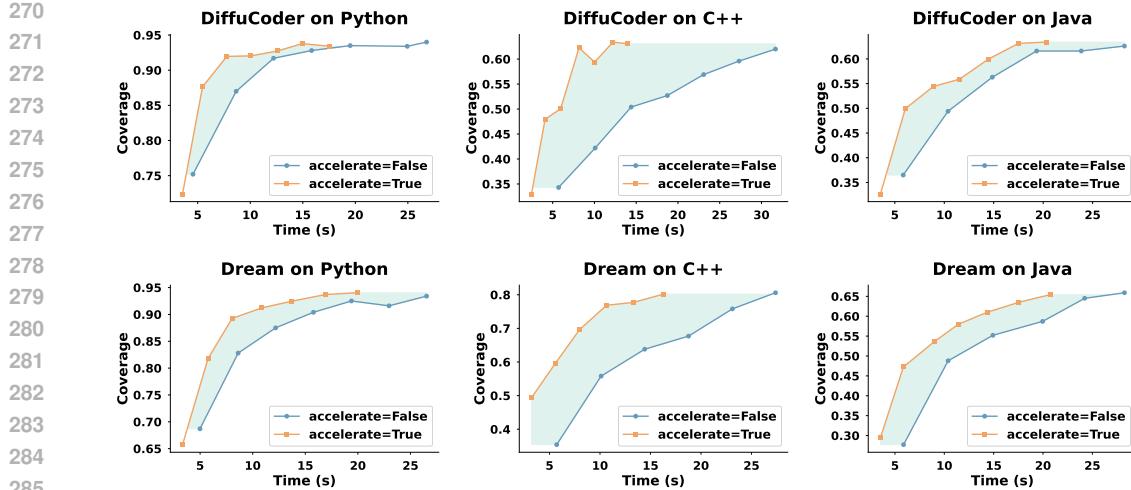


Figure 4: Comparison of line coverage with and without DIFFTESTER at equal decoding time.

Benchmarks. To evaluate the performance of DIFFTESTER, we conduct experiments on the TestEval benchmark (Wang et al., 2025). TestEval is specifically designed to assess the capability of models in unit test generation, and it comprises 210 Python programs collected from LeetCode. We denote this benchmark as TestEval-Python. To further validate the generalization ability of DIFFTESTER across different programming languages and to avoid potential data contamination, we extend the TestEval-Python benchmark by incorporating two additional programming languages: C++ and Java. Following the construction methodology of TestEval-Python, we systematically gather corresponding C++ and Java implementations of the same set of 210 programs. We denote these benchmarks as TestEval-C++ and TestEval-Java, respectively.

Evaluation Metrics. We adopt four widely used metrics, three for measuring efficiency and one for assessing test coverage. ① *Computational Cost (tflops)*: the average computation per batch. ② *Decoding Time (seconds, s)*: the average inference time per batch. ③ *Throughput (tokens/s, tps)*: the average number of tokens generated per second per batch, excluding special tokens such as [PAD] and [EOS]. ④ *Line Coverage*: the average ratio of the number of code lines covered by the generated test cases to the total number of code lines.

Baseline. Since there is currently no acceleration approach specifically tailored to dLLMs for UTG, we take dLLMs without applying DIFFTESTER as the baseline.

Implementation Details. We set the predefined generation length L to 128 and the confidence threshold τ to 0.02. In addition, we apply DIFFTESTER once every two steps. Further implementation details are provided in Appendix C.1.3.

4.2 MAIN RESULTS

We conduct evaluations on the three benchmarks and two representative models described in Section 4.1. We use different batch sizes n , where n ranges from 1 to 7, corresponding to the number of test cases generated per focal method. Figure 4 presents the average test coverage achieved under varying time budgets, while Table 1 reports the efficiency comparison between DIFFTESTER and the baseline when generating the same number of test cases.

Under the same time budget, DIFFTESTER achieves higher test coverage. In pipeline of most software development, the time available for unit testing is often limited, which makes maximizing test coverage within a fixed time budget highly desirable. As shown in Figure 4, when the same amount of time is spent generating test cases, DIFFTESTER consistently achieves substantially higher line coverage than the baseline. This demonstrates that the proposed DIFFTESTER is highly competitive and enables dLLMs to achieve higher test coverage more quickly in UTG.

DIFFTESTER does not compromise the maximum achievable test coverage. The highest test coverage attainable without time constraints is another important optimization target, particularly for scenarios such as vehicle control systems (Conrad & Fey, 2017; Zhang et al., 2024). We find that DIFFTESTER has little to no negative impact on the maximum test coverage and in some cases

324 Table 1: Efficiency comparison with and without DIFFTESTER across different batch sizes n on
 325 TestEval-Python, TestEval-C++, and TestEval-Java, with Dream and DiffuCoder.

Method	$n = 3$			$n = 5$			$n = 7$		
	Computational Cost (tflops)	Decoding Time (s)	Throughput (tps)	Computational Cost (tflops)	Decoding Time (s)	Throughput (tps)	Computational Cost (tflops)	Decoding Time (s)	Throughput (tps)
TestEval-Python									
DiffuCoder	1015.59	12.22	16.97	1692.65	19.51	17.69	2369.72	26.78	18.09
+ DIFFTESTER	580.36	7.77	26.86	997.16	12.59	27.45	1432.00	17.57	27.42
speedup	$\times 1.75$	$\times 1.57$	$\times 1.58$	$\times 1.70$	$\times 1.55$	$\times 1.55$	$\times 1.65$	$\times 1.52$	$\times 1.52$
Dream	1015.59	12.18	15.61	1692.66	19.39	15.96	2369.72	26.53	16.68
+ DIFFTESTER	605.05	8.04	23.59	1093.38	13.68	23.09	1644.05	19.95	22.45
speedup	$\times 1.68$	$\times 1.51$	$\times 1.51$	$\times 1.55$	$\times 1.42$	$\times 1.45$	$\times 1.44$	$\times 1.33$	$\times 1.35$
TestEval-C++									
DiffuCoder	1216.98	14.40	9.73	2098.93	23.08	9.62	2924.4	31.68	9.58
+ DIFFTESTER	429.82	5.95	23.81	777.32	10.02	23.60	1121.37	14.00	23.20
speedup	$\times 2.83$	$\times 2.42$	$\times 2.45$	$\times 2.70$	$\times 2.30$	$\times 2.45$	$\times 2.61$	$\times 2.26$	$\times 2.42$
Dream	1216.98	14.43	13.11	2028.30	23.11	13.45	2839.62	31.60	13.88
+ DIFFTESTER	588.17	7.96	25.93	1041.20	13.33	25.45	1614.85	19.97	24.82
speedup	$\times 2.07$	$\times 1.81$	$\times 1.98$	$\times 1.95$	$\times 1.73$	$\times 1.89$	$\times 1.76$	$\times 1.58$	$\times 1.79$
TestEval-Java									
DiffuCoder	1259.36	14.86	16.10	2098.93	23.85	16.69	2924.41	32.59	16.71
+ DIFFTESTER	667.65	8.88	29.17	1143.00	14.46	28.58	1649.17	20.33	28.20
speedup	$\times 1.89$	$\times 1.67$	$\times 1.81$	$\times 1.84$	$\times 1.65$	$\times 1.71$	$\times 1.77$	$\times 1.60$	$\times 1.69$
Dream	1259.36	14.92	15.75	2098.93	24.22	15.79	2938.51	32.64	13.58
+ DIFFTESTER	673.40	8.97	27.76	1130.74	14.34	28.12	1678.98	20.72	27.35
speedup	$\times 1.87$	$\times 1.66$	$\times 1.76$	$\times 1.86$	$\times 1.69$	$\times 1.78$	$\times 1.75$	$\times 1.58$	$\times 2.01$

346 even improves it. For example, as shown in Figure 4, on the TestEval-Python benchmark with the
 347 Dream model, applying DIFFTESTER leads to a slight increase in max test coverage.
 348

349 **DIFFTESTER can effectively improve the efficiency of dLLMs for UTG.** Across nearly all settings,
 350 dLLMs achieve more than a 1.5 \times improvement in efficiency when equipped with DIFFTESTER. For
 351 example, with a batch size $n = 3$ on TestEval-C++ using DiffuCoder, DIFFTESTER reduces
 352 the computational cost and decoding time from 1217 TFLOPs and 14.4s to 430 TFLOPs and 6.0s,
 353 respectively, while increasing throughput from 9.7 TPS to 23.8 TPS. These results demonstrate that
 354 DIFFTESTER can substantially accelerate dLLMs in unit test generation.

355 **DIFFTESTER generalizes well across different models and programming languages.** Across
 356 various models and programming languages, DIFFTESTER exhibits consistent acceleration trends
 357 and similar effects on coverage. Notably, the acceleration effect of DIFFTESTER is more pro-
 358 nounced on TestEval-C++ compared to the other two benchmarks. For example, with a batch
 359 size of 5 using DiffuCoder, throughput improves by 1.55 \times on TestEval-Python and 1.71 \times on
 360 TestEval-Java, whereas on TestEval-C++ it increases by 2.45 \times . We attribute this to the fact that
 361 commonly used syntactic structures in C++ exhibit greater structural repetition than those in Python
 362 and Java, which makes it easier to exploit repetitive patterns for acceleration.
 363

364 5 DISCUSSION

365 5.1 COMPARISON WITH DLLM ACCELERATION FOR GENERAL TASK

366 We observe that several contemporary works have also explored training-free approaches to accelerate
 367 dLLMs (Wei et al., 2025; Ben-Hamu et al., 2025; Israel et al., 2025). However, these approaches
 368 typically focus on general-purpose tasks, whereas DIFFTESTER is designed specifically for unit test
 369 generation (UTG), a domain where efficiency is particularly critical. To highlight the difference,
 370 we compare DIFFTESTER with a representative approach, EB-SAMPLER (Ben-Hamu et al., 2025).
 371 EB-SAMPLER accelerates dLLM inference through an Entropy-Bounded unmasking procedure,
 372 which dynamically unmasks multiple tokens under a predefined approximate error tolerance.
 373

374 We conduct experiments on the TestEval-Python, testing batch sizes of $n = 3, 5, 7$, and report both
 375 average decoding time and line coverage in Table 2. ① Compared with EB-SAMPLER, DIFFTESTER
 376 achieves more effective acceleration in generating unit tests. For example, when $n = 7$, DIFFTESTER
 377 reduces the average decoding time to 17.6%, whereas EB-SAMPLER reduces it only to 19.8%. ②
 In addition, the quality of the test cases generated by DIFFTESTER is substantially higher. With

Table 2: Decoding time and line coverage on TestEval-Python with batch sizes $n = 3, 5, 7$, comparing the baseline DiffuCoder, EB-SAMPLER, and DIFFTESTER.

Method	Decoding Time (s)			Line Coverage (%)		
	$n = 3$	$n = 5$	$n = 7$	$n = 3$	$n = 5$	$n = 7$
DiffuCoder	12.2	19.5	26.8	91	94	94
+ EB-SAMPLER	8.9	14.3	19.8	86	88	88
+ DIFFTESTER	7.8	12.6	17.6	92	93	94

Figure 5: Case study on Dream illustrating the decoding process with and without DIFFTESTER.

DIFFTESTER, the line coverage remains almost identical to the baseline without any acceleration, while EB-SAMPLER leads to a significant drop in coverage. We attribute the superior performance of DIFFTESTER in terms of both efficiency and quality to its ability to exploit repetitive structural patterns that are inherent to the UTG task. This task-specific insight allows DIFFTESTER to accelerate generation without compromising the quality of the resulting test cases.

5.2 CASE STUDY

We present a concrete case in Figure 5 to further illustrate the impact of DIFFTESTER. For the same focal method, we compare the decoding process of Dream with and without DIFFTESTER. The case clearly shows that DIFFTESTER substantially accelerates UTG: within 21 decoding steps, the version with DIFFTESTER has already generated nearly complete and valid test cases, whereas the version without DIFFTESTER still fails to produce a proper test case and contains numerous syntax errors.

5.3 DISTRIBUTION OF INFERENCE STEPS WITH DIFFTESTER

In this section, we analyze the distribution of the number of inference steps after applying DIFFTESTER. The experiments are conducted on DiffuCoder across three benchmarks, with the predefined generation length set to 128. Under the default remasking strategy, the model decodes two tokens at each step, which results in 64 inference steps without DIFFTESTER. The distribution of inference steps after applying DIFFTESTER is shown in Figure 6. We observe that the number of steps follows an approximately normal distribution, with most cases concentrated at values significantly smaller than 64. Moreover, the number of inference steps adapts to the characteristics of each focal method, making the approach well-suited for diverse testing scenarios.



Figure 6: Distribution of the number of inference steps after applying DIFFTESTER on DiffuCoder. The red dashed line indicates the original fixed step number without acceleration.

6 RELATED WORK

6.1 UNIT TEST GENERATION

Unit tests (Olan, 2003; Runeson, 2006) are essential for verifying the behavior of program units and serve as a foundational mechanism for early fault detection and prevention in software development. However, writing unit tests manually is highly labor-intensive, which has motivated extensive research on automated unit test generation (Dakhel et al., 2024; Aniche, 2022). Traditional techniques primarily rely on search-based (Delgado-Pérez et al., 2022; McMinn, 2004), random-based (Pacheco et al., 2007), constraint-based (Csallner et al., 2008), and symbolic execution-based approaches (Baldoni et al., 2016), with widely used tools such as EvoSuite (Fraser & Arcuri, 2011), Pynguin (Lukasczyk & Fraser, 2022), and KLEE (Cadar et al., 2008). Nevertheless, these traditional approaches often suffer from limitations such as low coverage (Barr et al., 2014).

With the rise of large language models (LLMs) (Achiam et al., 2023), recent advances have increasingly explored their application to automated test case generation. Representative approaches include ChatTester (Yuan et al., 2024), TestPilot (Schäfer et al., 2023), and ChatUnitTest (Chen et al., 2024). Although LLMs have significantly improved test coverage, existing LLMs used for unit test generation almost exclusively adopt a token-by-token generation paradigm (Li et al., 2025a), which constrains the efficiency of the unit test generation.

6.2 DIFFUSION LARGE LANGUAGE MODEL

Diffusion language models have recently become a focal point in AI research (Sahoo et al., 2024; Liang et al., 2025) and can be categorized into continuous and discrete formulations (Li et al., 2025c). Empirical evidence (Zhao et al., 2025) suggests that discrete diffusion language models scale more effectively to larger model sizes, which has led to the development of diffusion large language models such as LLaDA (Nie et al., 2025b) and Gemini Diffusion (DeepMind, 2025). Within this line of work, MMaDa (Yang et al., 2025) and LLaDA-V (You et al., 2025) extend dLLMs to the multimodal domain; TreeDiff (Zeng et al., 2025) explores integrating dLLMs with the structural characteristics of code; DLLM-Cache (Liu et al., 2025b) and Sparse-dLLM (Song et al., 2025a) propose inference acceleration strategies based on KV-cache mechanisms; DiffuCoder (Gong et al., 2025) and LLaDA-1.5 (Zhu et al., 2025) investigate reinforcement learning tailored to dLLMs.

7 CONCLUSION

In this paper, we present an in-depth analysis of the pervasive repetitive patterns in unit test generation and the characteristics of dLLMs’ inference. Building on this analysis, we propose DIFFTESTER, the first acceleration framework specifically designed for dLLMs in unit test generation. The central idea of DIFFTESTER is to extract repetitive patterns in intermediate unit test cases and leverage them to decode a larger number of tokens per inference step. Extensive experimental results demonstrate that DIFFTESTER can substantially accelerate dLLMs in unit test generation while preserving test coverage, and that it generalizes effectively across different dLLMs and programming languages. We believe that this work provides a practical and scalable solution for improving the efficiency of unit test generation in software development.

486 8 REPRODUCIBILITY STATEMENT
487488 To ensure the reproducibility of our results, we have made all relevant code and datasets publicly
489 available at <https://anonymous.4open.science/r/DLM4UTG>. The repository includes
490 detailed instructions for setting up the environment, running experiments, and reproducing all results
491 presented in the paper. We encourage the community to use these resources to verify our findings and
492 to facilitate further research in this area.493
494 REFERENCES
495496 Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
497 Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical report.
498 *arXiv preprint arXiv:2303.08774*, 2023.499 Maurício Aniche. *Effective Software Testing: A developer's guide*. Simon and Schuster, 2022.
500501 Marianne Arriola, Subham Sekhar Sahoo, Aaron Gokaslan, Zhihan Yang, Zhixuan Qi, Jiaqi Han,
502 Justin T Chiu, and Volodymyr Kuleshov. Block diffusion: Interpolating between autoregres-
503 sive and diffusion language models. In *The Thirteenth International Conference on Learning
504 Representations*, 2025. URL <https://openreview.net/forum?id=tyEyYT267x>.505 Roberto Baldoni, Emilio Coppa, Daniele Cono D'Elia, Camil Demetrescu, and Irene Finocchi. A
506 survey of symbolic execution techniques, 10 2016.
507508 Earl Barr, Mark Harman, Phil McMinn, Muzammil Shahbaz, and Shin Yoo. The oracle problem in
509 software testing: A survey. *IEEE Transactions on Software Engineering*, 41:1–1, 01 2014. doi:
510 10.1109/TSE.2014.2372785.511 Heli Ben-Hamu, Itai Gat, Daniel Severo, Niklas Nolte, and Brian Karrer. Accelerated sampling from
512 masked diffusion models via entropy bounded unmasking. *arXiv preprint arXiv:2505.24857*, 2025.
513514 Yoshua Bengio and Yann LeCun. Scaling learning algorithms towards AI. In *Large Scale Kernel
515 Machines*. MIT Press, 2007.516 Shreya Bhatia, Tarushi Gandhi, Dhruv Kumar, and Pankaj Jalote. Unit test generation using generative
517 ai: A comparative performance analysis of autogeneration tools. In *Proceedings of the 1st
518 International Workshop on Large Language Models for Code*, pp. 54–61, 2024.519 520 Arianna Blasi, Alessandra Gorla, Michael Ernst, and Mauro Pezzè. Call me maybe: Using nlp to
521 automatically generate unit test cases respecting temporal constraints. pp. 1–11, 01 2023. doi:
522 10.1145/3551349.3556961.523 Cristian Cadar, Daniel Dunbar, and Dawson Engler. Klee: Unassisted and automatic generation of
524 high-coverage tests for complex systems programs. volume 8, pp. 209–224, 01 2008.
525526 Mouxiang Chen, Zhongxin Liu, He Tao, Yusu Hong, David Lo, Xin Xia, and Jianling Sun. B4: To-
527 wards optimal assessment of plausible code solutions with plausible tests. ASE '24, pp. 1693–1705,
528 New York, NY, USA, 2024. Association for Computing Machinery. ISBN 9798400712487. doi:
529 10.1145/3691620.3695536. URL <https://doi.org/10.1145/3691620.3695536>.530 Vitaly Chipounov, Volodymyr Kuznetsov, and George Canea. S2e: A platform for in-vivo multi-path
531 analysis of software systems. *Acm Sigplan Notices*, 46(3):265–278, 2011.532 Mirko Conrad and Ines Fey. Testing automotive control software. In *Automotive Embedded Systems
533 Handbook*, pp. 11–1. CRC Press, 2017.534 Christoph Csallner, Nikolai Tillmann, and Yannis Smaragdakis. Dysy: dynamic symbolic execution
535 for invariant inference. pp. 281–290, 01 2008.
537538 Ermira Daka and Gordon Fraser. A survey on unit testing practices and problems. In *2014 IEEE
539 25th International Symposium on Software Reliability Engineering*, pp. 201–211, 2014. doi:
10.1109/ISSRE.2014.11.

540 Arghavan Moradi Dakhel, Amin Nikanjam, Vahid Majdinasab, Foutse Khomh, and Michel C
 541 Desmarais. Effective test generation using pre-trained large language models and mutation testing.
 542 *Information and Software Technology*, 171:107468, 2024.

543

544 Google DeepMind. Gemini diffusion, 2025. URL <https://deepmind.google/models/gemini-diffusion/>.

545

546 Pedro Delgado-Pérez, Aurora Ramírez, Kevin Valle-Gómez, Inmaculada Medina-Bulo, and José Raúl
 547 Romero. Interrevo-tr: Interactive evolutionary test generation with readability assessment. *IEEE*
 548 *Transactions on Software Engineering*, PP:1–17, 01 2022. doi: 10.1109/TSE.2022.3227418.

549

550 Chunyuan Deng, Yilun Zhao, Xiangru Tang, Mark Gerstein, and Arman Cohan. Investigating data
 551 contamination in modern benchmarks for large language models. *arXiv preprint arXiv:2311.09783*,
 552 2023.

553 Gordon Fraser and Andrea Arcuri. Evosuite: Automatic test suite generation for object-oriented
 554 software. pp. 416–419, 09 2011. doi: 10.1145/2025113.2025179.

555

556 Shansan Gong, Ruixiang Zhang, Huangjie Zheng, Jiatao Gu, Navdeep Jaitly, Lingpeng Kong, and
 557 Yizhe Zhang. Diffucoder: Understanding and improving masked diffusion models for code
 558 generation. *arXiv preprint arXiv:2506.20639*, 2025.

559

560 Ian Goodfellow, Yoshua Bengio, Aaron Courville, and Yoshua Bengio. *Deep learning*, volume 1.
 561 MIT Press, 2016.

562

563 Lucas Gren and Vard Antinyan. On the relation between unit testing and code quality. In *2017 43rd*
 564 *Euromicro Conference on Software Engineering and Advanced Applications (SEAA)*, pp. 52–56.
 IEEE, 2017.

565

566 Marton Havasi, Brian Karrer, Itai Gat, and Ricky Chen. Edit flows: Flow matching with edit
 567 operations, 06 2025.

568

569 Geoffrey E. Hinton, Simon Osindero, and Yee Whye Teh. A fast learning algorithm for deep belief
 570 nets. *Neural Computation*, 18:1527–1554, 2006.

571

572 Binyuan Hui, Jian Yang, Zeyu Cui, Jiaxi Yang, Dayiheng Liu, Lei Zhang, Tianyu Liu, Jiajun Zhang,
 573 Bowen Yu, Keming Lu, et al. Qwen2. 5-coder technical report. *arXiv preprint arXiv:2409.12186*,
 574 2024.

575

576 Daniel Israel, Guy Van den Broeck, and Aditya Grover. Accelerating diffusion llms via adaptive
 577 parallel decoding. *arXiv preprint arXiv:2506.00413*, 2025.

578

579 Kush Jain, Gabriel Synnaeve, and Baptiste Rozière. Testgeneval: A real world unit test generation
 580 and test completion benchmark, 2025. URL <https://arxiv.org/abs/2410.00752>.

581

582 Samar Khanna, Siddhant Kharbanda, Shufan Li, Harshit Varma, Eric Wang, Sawyer Birnbaum,
 583 Ziyang Luo, Yanis Miraoui, Akash Palrecha, Stefano Ermon, et al. Mercury: Ultra-fast language
 584 models based on diffusion. *arXiv preprint arXiv:2506.17298*, 2025.

585

586 Jaeyeon Kim, Lee Cheuk-Kit, Carles Domingo-Enrich, Yilun Du, Sham Kakade, Timothy Ngotiaoco,
 587 Sitan Chen, and Michael Albergo. Any-order flexible length masked diffusion, 08 2025a.

588

589 Jaeyeon Kim, Kulin Shah, Vasilis Kontonis, Sham M. Kakade, and Sitan Chen. Train for the worst,
 590 plan for the best: Understanding token ordering in masked diffusions. In *Forty-second International*
 591 *Conference on Machine Learning*, 2025b. URL <https://openreview.net/forum?id=DjJmre5IkP>.

592

593 Caroline Lemieux, Jeevana Priya Inala, Shuvendu K Lahiri, and Siddhartha Sen. Codamosa: Escaping
 594 coverage plateaus in test generation with pre-trained large language models. In *2023 IEEE/ACM*
 595 *45th International Conference on Software Engineering (ICSE)*, pp. 919–931. IEEE, 2023.

596

597 Chengze Li, Yitong Zhang, Jia Li, Liyi Cai, Ge Li, et al. Beyond autoregression: An empirical study
 598 of diffusion large language models for code generation. *arXiv preprint arXiv:2509.11252*, 2025a.

594 Jinsong Li, Xiaoyi Dong, Yuhang Zang, Yuhang Cao, Jiaqi Wang, and Dahua Lin. Beyond fixed:
 595 Training-free variable-length denoising for diffusion large language models, 2025b. URL <https://arxiv.org/abs/2508.00819>.
 596

597 Tianyi Li, Mingda Chen, Bowei Guo, and Zhiqiang Shen. A survey on diffusion language models.
 598 *arXiv preprint arXiv:2508.10875*, 2025c.
 599

600 Yaohang Li, Tao Dong, Xinyu Zhang, Yong-duan Song, and Xiaohong Yuan. Large-scale software
 601 unit testing on the grid. In *GrC*, pp. 596–599, 2006.
 602

603 Zhixuan Liang, Yizhuo Li, Tianshuo Yang, Chengyue Wu, Sitong Mao, Liuao Pei, Xiaokang Yang,
 604 Jiangmiao Pang, Yao Mu, and Ping Luo. Discrete diffusion vla: Bringing discrete diffusion to
 605 action decoding in vision-language-action policies. *arXiv preprint arXiv:2508.20072*, 2025.
 606

607 Xiaoran Liu, Zhigeng Liu, Zengfeng Huang, Qipeng Guo, Ziwei He, and Xipeng Qiu. Longllada:
 608 Unlocking long context capabilities in diffusion llms, 2025a. URL <https://arxiv.org/abs/2506.14429>.
 609

610 Zhiyuan Liu, Yicun Yang, Yaojie Zhang, Junjie Chen, Chang Zou, Qingyan Wei, Shaobo Wang, and
 611 Linfeng Zhang. dllm-cache: Accelerating diffusion large language models with adaptive caching,
 612 05 2025b.
 613

614 Stephan Lukasczyk and Gordon Fraser. Pynguin: Automated unit test generation for python, 02 2022.
 615

616 Phil McMinn. Search-based software test data generation: a survey: Research articles. *Softw. Test.,
 Verif. Reliab.*, 14:105–156, 06 2004. doi: 10.1002/stvr.294.
 617

618 Niels Mündler, Jasper Dekoninck, and Martin Vechev. Constrained decoding of diffusion llms with
 619 context-free grammars. *arXiv preprint arXiv:2508.10111*, 2025.
 620

621 Shen Nie, Fengqi Zhu, Chao Du, Tianyu Pang, Qian Liu, Guangtao Zeng, Min Lin, and Chongxuan
 622 Li. Scaling up masked diffusion models on text, 2025a. URL <https://arxiv.org/abs/2410.18514>.
 623

624 Shen Nie, Fengqi Zhu, Zebin You, Xiaolu Zhang, Jingyang Ou, Jun Hu, Jun Zhou, Yankai Lin, Ji-
 625 Rong Wen, and Chongxuan Li. Large language diffusion models. *arXiv preprint arXiv:2502.09992*,
 626 2025b.
 627

628 Michael Olan. Unit testing: Test early, test often. *Journal of Computing Sciences in Colleges - JCSC*,
 19, 01 2003.
 629

630 Carlos Pacheco, Shuvendu Lahiri, Michael Ernst, and Thomas Ball. Feedback-directed random test
 631 generation. pp. 75–84, 06 2007. ISBN 0-7695-2828-7. doi: 10.1109/ICSE.2007.37.
 632

633 Samuel Peacock, Lin Deng, Josh Dehlinger, and Suranjan Chakraborty. Automatic equivalent mutants
 634 classification using abstract syntax tree neural networks. In *2021 IEEE International Conference
 635 on Software Testing, Verification and Validation Workshops (ICSTW)*, pp. 13–18. IEEE, 2021.
 636

637 Mihir Prabhudesai, Mengning Wu, Amir Zadeh, Katerina Fragkiadaki, and Deepak Pathak. Diffusion
 638 beats autoregressive in data-constrained settings, 2025. URL <https://arxiv.org/abs/2507.15857>.
 639

640 Brian Robinson, Michael D Ernst, Jeff H Perkins, Vinay Augustine, and Nuo Li. Scaling up automated
 641 test generation: Automatically generating maintainable regression unit tests for programs. In *2011
 642 26th IEEE/ACM International Conference on Automated Software Engineering (ASE 2011)*, pp.
 643 23–32. IEEE, 2011.
 644

645 Per Runeson. A survey of unit testing practices. *IEEE Software*, 23, 07 2006. doi: 10.1109/MS.2006.
 646 91.
 647 Subham Sahoo, Marianne Arriola, Yair Schiff, Aaron Gokaslan, Edgar Marroquin, Justin Chiu,
 648 Alexander Rush, and Volodymyr Kuleshov. Simple and effective masked diffusion language
 649 models. *Advances in Neural Information Processing Systems*, 37:130136–130184, 2024.

648 Max Schäfer, Sarah Nadi, Aryaz Eghbali, and Frank Tip. An empirical evaluation of using large
 649 language models for automated unit test generation. *IEEE Transactions on Software Engineering*,
 650 PP:1–21, 01 2023. doi: 10.1109/TSE.2023.3334955.

651

652 Ye Shang, Quanjun Zhang, Chunrong Fang, Siqi Gu, Jianyi Zhou, and Zhenyu Chen. A large-scale
 653 empirical study on fine-tuning large language models for unit testing. *Proceedings of the ACM on*
 654 *Software Engineering*, 2(ISSTA):1678–1700, 2025.

655

656 Yuerong Song, Xiaoran Liu, Ruixiao Li, Zhigeng Liu, Zengfeng Huang, Qipeng Guo, Ziwei He, and
 657 Xipeng Qiu. Sparse-dllm: Accelerating diffusion llms with dynamic cache eviction. *arXiv preprint*
 658 *arXiv:2508.02558*, 2025a.

659

660 Yuxuan Song, Zheng Zhang, Cheng Luo, Pengyang Gao, Fan Xia, Hao Luo, Zheng Li, Yuehang
 661 Yang, Hongli Yu, Xingwei Qu, Yuwei Fu, Jing Su, Ge Zhang, Wenhao Huang, Mingxuan Wang,
 662 Lin Yan, Xiaoying Jia, Jingjing Liu, Wei-Ying Ma, Ya-Qin Zhang, Yonghui Wu, and Hao Zhou.
 663 Seed diffusion: A large-scale diffusion language model with high-speed inference, 2025b. URL
 664 <https://arxiv.org/abs/2508.02193>.

665

666 Weisong Sun, Chunrong Fang, Yun Miao, Yudu You, Mengzhe Yuan, Yuchen Chen, Quanjun
 667 Zhang, An Guo, Xiang Chen, Yang Liu, et al. Abstract syntax tree for programming language
 668 understanding and representation: How far are we? *arXiv preprint arXiv:2312.00413*, 2023.

669

670 Vasin Suttichaya, Niracha Eakvorachai, and Tunchanok Lurkraisit. Source code plagiarism detection
 671 based on abstract syntax tree fingerprints. In *2022 17th International Joint Symposium on*
 672 *Artificial Intelligence and Natural Language Processing (iSAI-NLP)*, pp. 1–6. IEEE, 2022.

673

674 Michele Tufano, Dawn Drain, Alexey Svyatkovskiy, Shao Kun Deng, and Neel Sundaresan. Unit test
 675 case generation with transformers and focal context. *arXiv preprint arXiv:2009.05617*, 2020.

676

677 Junjie Wang, Yuchao Huang, Chunyang Chen, Zhe Liu, Song Wang, and Qing Wang. Software
 678 testing with large language models: Survey, landscape, and vision. *IEEE Transactions on Software*
 679 *Engineering*, 50(4):911–936, 2024.

680

681 Wenhuan Wang, Chenyuan Yang, Zhijie Wang, Yuheng Huang, Zhaoyang Chu, Da Song, Lingming
 682 Zhang, An Ran Chen, and Lei Ma. Testeval: Benchmarking large language models for test case
 683 generation, 2025. URL <https://arxiv.org/abs/2406.04531>.

684

685 Qingyan Wei, Yaojie Zhang, Zhiyuan Liu, Dongrui Liu, and Linfeng Zhang. Accelerating diffusion
 686 large language models with slowfast: The three golden principles. *arXiv preprint arXiv:2506.10848*,
 687 2025.

688

689 Chengyue Wu, Hao Zhang, Shuchen Xue, Zhijian Liu, Shizhe Diao, Ligeng Zhu, Ping Luo, Song
 690 Han, and Enze Xie. Fast-dllm: Training-free acceleration of diffusion llm by enabling kv cache
 691 and parallel decoding, 05 2025a.

692

693 Zirui Wu, Lin Zheng, Zhihui Xie, Jiacheng Ye, Jiahui Gao, Yansong Feng, Zhenguo Li, Victoria W.,
 694 Guorui Zhou, and Lingpeng Kong. Dreamon: Diffusion language models for code infilling beyond
 695 fixed-size canvas, 2025b. URL <https://hkunlp.github.io/blog/2025/dreamon>.

696

697 Zhihui Xie, Jiacheng Ye, Lin Zheng, Jiahui Gao, Jingwei Dong, Zirui Wu, Xueliang Zhao, Shansan
 698 Gong, Xin Jiang, Zhenguo Li, and Lingpeng Kong. Dream-coder 7b, 2025. URL <https://hkunlp.github.io/blog/2025/dream-coder>.

699

700 Lin Yang, Chen Yang, Shutao Gao, Weijing Wang, Bo Wang, Qihao Zhu, Xiao Chu, Jianyi Zhou,
 701 Guangtai Liang, Qianxiang Wang, et al. On the evaluation of large language models in unit
 702 test generation. In *Proceedings of the 39th IEEE/ACM International Conference on Automated*
 703 *Software Engineering*, pp. 1607–1619, 2024.

704

705 Ling Yang, Ye Tian, Bowen Li, Xinchen Zhang, Ke Shen, Yunhai Tong, and Mengdi Wang. Mmada:
 706 Multimodal large diffusion language models. *arXiv preprint arXiv:2505.15809*, 2025.

707

708 Yixiao Yang. Improve model testing by integrating bounded model checking and coverage guided
 709 fuzzing. *Electronics*, 12(7):1573, 2023.

702 Jiacheng Ye, Zhihui Xie, Lin Zheng, Jiahui Gao, Zirui Wu, Xin Jiang, Zhenguo Li, and Lingpeng
 703 Kong. Dream 7b: Diffusion large language models. *arXiv preprint arXiv:2508.15487*, 2025.
 704

705 Zebin You, Shen Nie, Xiaolu Zhang, Jun Hu, Jun Zhou, Zhiwu Lu, Ji-Rong Wen, and Chongxuan
 706 Li. Llada-v: Large language diffusion models with visual instruction tuning. *arXiv preprint*
 707 *arXiv:2505.16933*, 2025.

708 Zhiqiang Yuan, Mingwei Liu, Shiji Ding, Kaixin Wang, Yixuan Chen, Xin Peng, and Yiling Lou.
 709 Evaluating and improving chatgpt for unit test generation. *Proceedings of the ACM on Software
 710 Engineering*, 1:1703–1726, 07 2024. doi: 10.1145/3660783.

711 Lucas Zamprogno, Braxton Hall, Reid Holmes, and Joanne M Atlee. Dynamic human-in-the-loop
 712 assertion generation. *IEEE Transactions on Software Engineering*, 49(4):2337–2351, 2022.

713 Yiming Zeng, Jinghan Cao, Zexin Li, Yiming Chen, Tao Ren, Dawei Xiang, Xidong Wu, Shangqian
 714 Gao, and Tingting Yu. Treediff: Ast-guided code generation with diffusion llms. *arXiv preprint*
 715 *arXiv:2508.01473*, 2025.

716 Tianyuan Zhang, Lu Wang, Xinwei Zhang, Yitong Zhang, Boyi Jia, Siyuan Liang, Shengshan Hu,
 717 Qiang Fu, Aishan Liu, and Xianglong Liu. Visual adversarial attack on vision-language models
 718 for autonomous driving. *arXiv preprint arXiv:2411.18275*, 2024.

719 Siyan Zhao, Devaansh Gupta, Qinqing Zheng, and Aditya Grover. d1: Scaling reasoning in dif-
 720 fusion large language models via reinforcement learning. In *ES-FoMo III: 3rd Workshop on*
 721 *Efficient Systems for Foundation Models*, 2025. URL <https://openreview.net/forum?id=t8oYNHAvM9>.

722 Fengqi Zhu, Rongzhen Wang, Shen Nie, Xiaolu Zhang, Chunwei Wu, Jun Hu, Jun Zhou, Jianfei Chen,
 723 Yankai Lin, Ji-Rong Wen, and Chongxuan Li. Llada 1.5: Variance-reduced preference optimization
 724 for large language diffusion models, 2025. URL <https://arxiv.org/abs/2505.19223>.

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

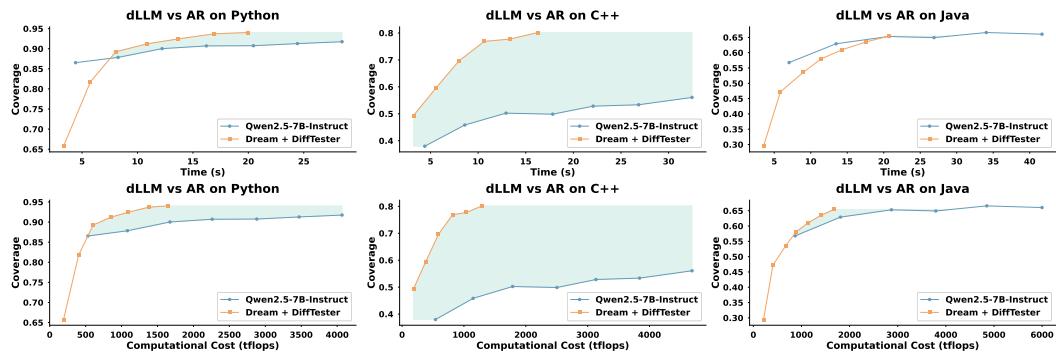
754

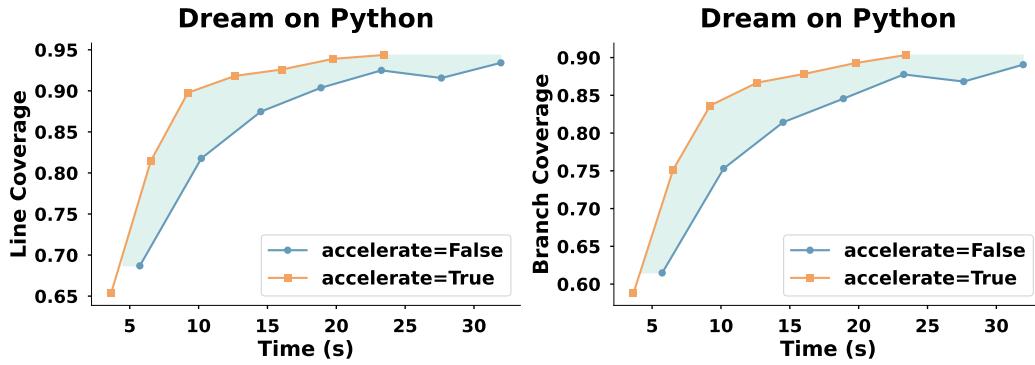
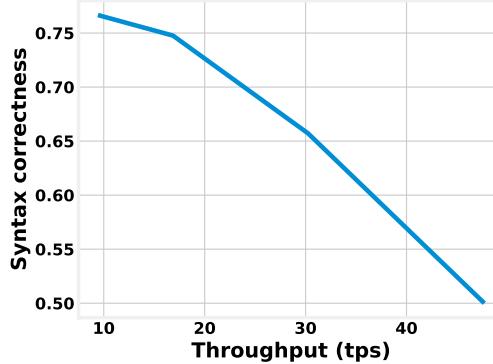
755

756 A LLM USAGE STATEMENT
757758 We used Large Language Models solely as a tool to assist with the linguistic aspects of our manuscript.
759 Specifically, the model was employed to help with translation, refine grammar, enhance clarity,
760 improve conciseness, and optimize word choice. At no point did the model contribute any new ideas,
761 original content, or substantive changes to the manuscript. Its function was limited strictly to editing
762 and language optimization, ensuring that the scientific integrity and originality of our work remained
763 entirely unaffected by the use of the model.
764765 B ETHICS STATEMENT
766768 Our work focuses on improving software quality assurance and does not involve any foreseeable
769 ethical risks. The benchmark used in our experiments is constructed entirely from publicly available
770 sources, without the use of private or otherwise sensitive information. No human subjects, personally
771 identifiable data, or sensitive content are involved in this research.
772773 C ADDITIONAL DISCUSSION
774775 C.1 DETAILED SETUP
776777 C.1.1 MODELS
778779 We primarily conducted experiments using the dLLMs DiffuCoder-7B-cpGRPO (Gong et al.,
780 2025) (DiffuCoder in this paper for short) and Dream-v0-Instruct-7B (Ye et al., 2025)
781 (Dream in this paper for short).782 **DiffuCoder-7B-cpGRPO** is a code generation dLLM developed by Apple. It is a refined variant of
783 DiffuCoder-Instruct, further improved using Coupled-GRPO reinforcement learning. The model is
784 initialized from DiffuCoder-7B-Instruct and post-trained on 21,000 code samples for one epoch.
785786 **Dream-v0-Instruct-7B** is a variant of the Dream 7B model developed by the HKU NLP Group with
787 7 billion parameters. It is an instruction-tuned (SFT) large diffusion language model. It is trained on
788 a mixture of text, math, and code data, leveraging weight initialization from auto-regressive models
789 for more efficient learning, and it demonstrates strong performance on general, coding, and reasoning
790 tasks.791 C.1.2 METRICS
792793 The following provides a detailed description of the metrics measured in our main experiments.
794795 **Coverage.** A software testing metric indicating the percentage of source code lines (or branches)
796 exercised by the generated test cases. Higher coverage generally means that the generated tests
797 explore more of the code base, leading to better test quality. In our experiments, we use line coverage,
798 calculated as the number of code lines covered by the test cases divided by the total number of code
799 lines.800 **Computational Cost (tflops).** The overall amount of computation required by the model during
801 inference reflects the hardware resources needed to complete the task. In our experiments, we measure
802 the average computational cost to generate a certain number of test cases consumed per problem
803 across the entire benchmark.804 **Time (s).** Time needed during inference to generate a certain number of test cases. In our experiments,
805 we measure the average inference time consumed per problem across the entire benchmark.806 **Throughput (tps).** The number of tokens generated per second (tokens per second, tps). It reflects
807 how many outputs can be produced in parallel and is critical for large-scale deployment. In our
808 experiments, throughput is calculated as the total number of tokens generated across the entire
809 benchmark (excluding special tokens such as [EOS] and [PAD]) divided by the total GPU time
810 used.

810
811 C.1.3 HYPERPARAMETERS812 Hyperparameters we used in the main experiments are listed in Table 3:
813814 Table 3: Hyperparameters used in the main experiments.
815

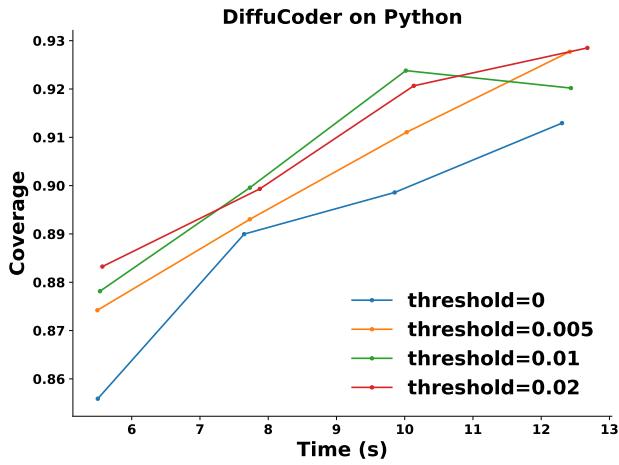
816 Model	817 Language	818 Steps	819 Temperature	820 Max length	821 Alg. temp. ¹	822 Threshold ²	823 Step size ³
818 DiffuCoder	819 Python	820 64	821 1.5	822 128	823 0.2	824 0.02	825 2
	819 C++	820 64	821 1.5	822 192	823 0.2	824 0.02	825 2
	819 Java	820 64	821 1.5	822 192	823 0.2	824 0.02	825 2
820 Dream	821 Python	822 64	823 1.0	824 128	825 0.2	826 0.02	827 2
	821 C++	822 64	823 1.0	824 192	825 0.2	826 0.02	827 2
	821 Java	822 64	823 1.0	824 192	825 0.2	826 0.02	827 2

824 In our experiments with the EB-SAMPLER method, we adopted the parameters recommended in the
825 original paper (Ben-Hamu et al., 2025). We used confidence as the *error proxy function*. And we
826 used $\gamma = 0.1$.
827828 C.1.4 BENCHMARK
829830 To evaluate the performance of our method, we experiment on the TestEval benchmark (Wang et al.,
831 2025). TestEval is a benchmark for test case generation with LLMs. It includes 210 Python programs
832 from an online programming platform, LeetCode. It has three metrics: overall coverage, targeted
833 line/branch coverage, and targeted path coverage.834 To further assess the generalizability of our method across multiple programming languages, we
835 extend the TestEval benchmark by collecting corresponding C++ and Java implementations for the
836 same set of 210 problems. These additional solutions are obtained from a publicly available GitHub
837 repository licensed under the MIT license (see <https://github.com/walkccc/LeetCode> for details).838 Building on TestEval, we also adapted the evaluation code for line coverage and branch coverage in
839 Java and C++. For coverage measurement, we used pytest for Python, Maven for Java, and gcov for
840 C++.
841842 C.2 MORE EXPERIMENTS
843844 C.2.1 COMPARISON WITH AR MODEL
845846 In this section, we present a comparison between our method and an AR baseline model.
847859 Figure 7: Dream + DIFFTESTER vs Qwen-2.5-7B-Instruct
860
861862 From Figure 7, we can see that with our method, dLLMs require substantially less time and compu-
863 tational cost to achieve the same coverage in most cases compared to auto-regressive models of similar
864 scale.

864 C.2.2 MORE COVERAGE METRICS
865866 In this section, we present some experiment results using branch coverage.
867880 Figure 8: Comparison of line/branch coverage with and without DIFFTESTER at equal decoding time.
881882 From Figure 8, we can see that using branch coverage as a metric yields results that are highly
883 consistent with those of line coverage. That is the reason why we only reported line coverage in the
884 main results.
885886 C.2.3 QUALITY VS SPEED
887888 In this section, we demonstrate the syntactic correctness of the code generated with different dLLM
889 generation speeds. Different speeds are caused by varying the number of tokens unmasked per step.
890 The experiment is conducted on DiffuCoder model on Python language.
891905 Figure 9: Syntactic correctness of the code generated with different generation speed.
906907 From Figure 9, we can see that unmasking more tokens at each step can obviously improve speed, but
908 it also degrades generation quality. The results highlight a clear trade-off between generation speed
909 and syntactic correctness. As the number of tokens unmasked per step increases, the model is able to
910 generate outputs at a substantially higher throughput. However, this acceleration comes at the cost of
911 syntactic quality, as evidenced by the marked decline in syntax correctness.
912913 C.2.4 ABLATION STUDY ON THRESHOLD
914915 During the dLLM denoising process, each unmasked token is assigned a confidence score, which
916 reflects how certain the model is about its prediction. This confidence can be measured in two common
917 ways: (1) as the probability of the selected token according to the model's output distribution, or (2)
as the negative entropy of the token distribution, which captures the overall uncertainty across all

918 possible tokens. In all of our experiments, we simply use the first method, i.e., the probability of the
 919 selected token, to represent confidence.
 920

921 In our method, only tokens whose confidence is greater than the specified threshold are unmasked. In
 922 this section, we show the influence of this threshold.

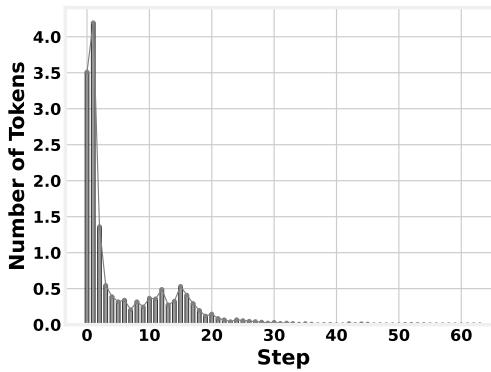


939 Figure 10: Coverage vs Time for different thresholds.
 940

941 From Figure 10, we can know that accelerating without a threshold (threshold = 0) leads to a decrease
 942 in the final coverage. That is because the method potentially results in syntactically incorrect code,
 943 since it attempts to match even when syntax errors are present. A proper threshold (like 0.02)
 944 alleviates it.

945 C.2.5 ABLATION STUDY ON STEP SIZE

946 We observed that applying the method at every denoising step is not necessary; using it only at certain
 947 steps has minimal impact on generation quality and the number of extra unmasked tokens, while
 948 significantly reducing the computational overhead introduced by the algorithm.



944 Figure 11: Number of Tokens Accelerated by Our Method for Every Step.
 945

946 We conducted experiments utilizing both fixed-interval and dynamically adjusted step size strategies
 947 for applying our method. In the dynamically adjusted approach, the method is applied with greater
 948 frequency during the initial steps, while the interval between successive applications increases linearly
 949 in later steps. This design is motivated by our observation that the method is able to unmask a greater
 950 number of additional tokens during earlier steps compared to later ones, as illustrated in Figure 11.
 951 Empirically, we find that while the dynamically adjusted step size yields competitive results, a
 952 constant step size of 2 ultimately achieves the best overall performance.

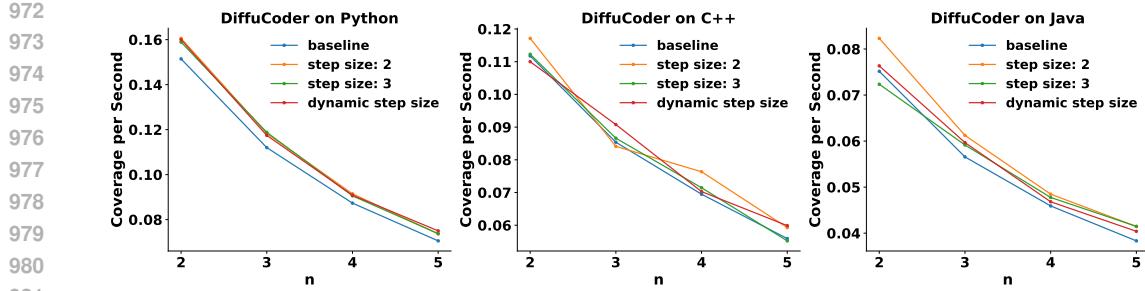


Figure 12: Results of different step sizes.

Figure 12 compares the results of different fixed step sizes and the dynamic step size strategy. The y-axis represents the average coverage divided by the average time, while the x-axis denotes the number of test cases generated simultaneously. The higher y-value means better performance. The curve labeled *baseline* is the case in which we apply our method every step. From the figure, we can know that not applying the method to every step produces better results. In general, a constant step size of 2 yields the best results.

C.2.6 ABLATION STUDY ON [PAD] TOKEN

In this section, we examine the impact of a straightforward yet effective technique for further accelerating the generation process. During training, [PAD] tokens are appended to the ends of sequences to ensure uniform length, resulting in [PAD] tokens exclusively appearing at sequence termini in standard text. Building on this observation, we propose the following strategy: once a [MASK] token is decoded as a [PAD] token during inference, all subsequent positions in the sequence are immediately assigned as [PAD] tokens. This approach leverages the inherent structure of the training data to bypass unnecessary computations for positions that are, by construction, expected to be padding, thereby yielding additional improvements in generation efficiency.

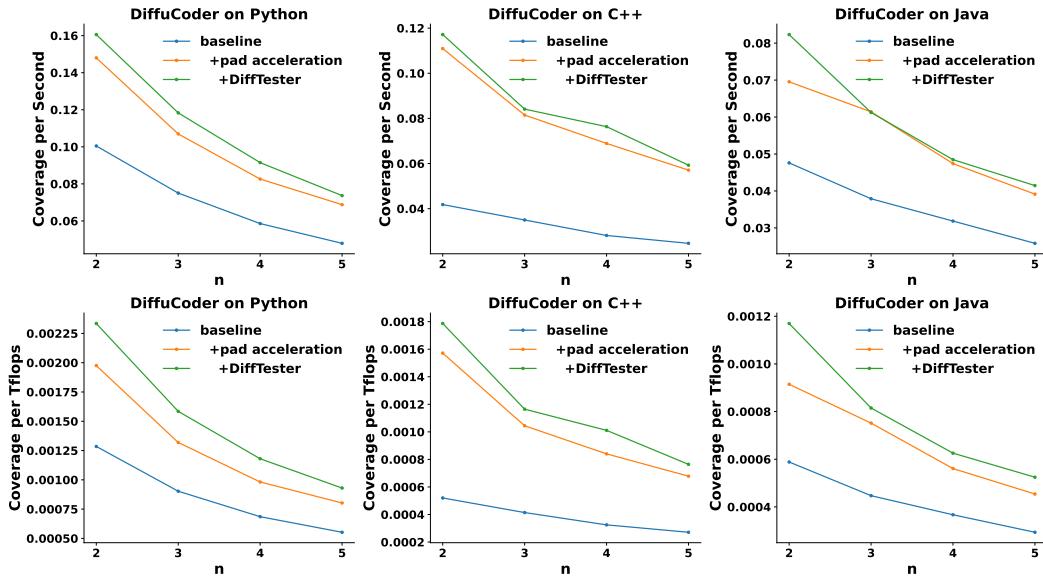


Figure 13: Acceleration result of pad acceleration and pattern acceleration.

Results are shown in Figure 13. The y-axis represents the average coverage divided by the average time or average computational cost, while the x-axis denotes the number of test cases generated simultaneously. The higher y-value means better performance. The curve labeled *baseline* means no

1026 acceleration method applied. The curve labeled *+pad acceleration* means applying this trick on the
 1027 baseline, while the curve labeled *+DIFFTESTER* means applying both this trick and our method.
 1028

1029 From the results, we can see that this simple trick can also accelerate the generation process, while
 1030 our AST-based pattern mining method further accelerates the process.
 1031

1032 C.3 PROMPTS

1033 The system prompt template we used is as follows:
 1034

1035 You are a professional who writes {language} testcases. You always
 1036 respond without any natural language descriptions. Especially,
 1037 your answer should contain only one testcase.
 1038

1039 The prompt template we used in different programming languages is as follows:
 1040

1041 **Python:**

1042 Please write a test method for the function '{func_name}' given
 1043 the following program under test and function description. Your
 1044 answer should only contain one test input.
 1045

1046 Program under test:
 1047 `'''python`
 1048 `{program}`
 1049 `'''`

1050 Function description for '{func_name}':
 1051 `'''txt`
 1052 `{description}`
 1053 `'''`

1055 Your testcase should begin with:
 1056 `'''python`
 1057 `def test_{func_name}():`
 1058 `solution = Solution()`
 1059 `'''`

1060 **Java:**
 1061

1062 Please write a test method for the function '{func_name}' given
 1063 the following program under test and function description. Your
 1064 answer should only contain one test input.
 1065

1066 Program under test:
 1067 `'''java`
 1068 `{program}`
 1069 `'''`

1070 Function description for '{func_name}':
 1071 `'''txt`
 1072 `{description}`
 1073 `'''`

1075 You can directly use 'assertEquals' function for assertion. Your
 1076 testcase should be formatted as:
 1077 `'''java`

1078 `public class SolutionTest {`
 1079 `@Test`
 `public void test_{func_name}() {`

```

1080
1081     }
1082 }
1083 /**
1084
1085 C++:
1086
1087 Please write a testcase for the function '{func_name}' given the
1088 following program under test and function description. Your answer
1089 should only contain one test input.
1090
1091 Program under test:
1092 ```cpp
1093 {program}
1094 ```
1095
1096 Function description for '{func_name}' :
1097 ```txt
1098 {description}
1099 ```
1100
1101 You can directly use 'assert' function for assertion. Your
1102 testcase should be formatted as:
1103 ```cpp
1104 int main() {
1105     Solution solution;
1106 }
1107
1108
1109 C.4 MORE CASES AND DATA VISUALIZATION
1110
1111
1112 Code is written on multiple lines :
1113
1114 public class SolutionTest {
1115     @Test
1116     public void test_longestCommonSubpath() {
1117         assert longestCommonSubpath(5, new int[][] {{1, 2, 3}, {1, 2, 3, 4}, {2, 3}})
1118             == 2;
1119     }
1120
1121     public class SolutionTest {
1122         @Test
1123         public void test_longestCommonSubpath() {
1124             int n = 3;
1125             int[][] paths = {{0,1,2}};
1126             int result = new Solution().longestCommonSubpath(n, paths);
1127             assertEquals(result, 2);
1128         }
1129     }
1130
1131
1132 Overly complex data structures :
1133
1134 def test_pacificAtlantic():
1135     solution = Solution()
1136     heights = [[1,2,2,3,5],[3,2,3,4,3,4,3,2],[4,3,4,1,1],[5,1,1,2,4]]
1137     assert solution.pacificAtlantic(heights) == [[0,4],[1,3],[1,4],[2,2],[3,0],[3,1],[3,2],[4,0],[5,0]]
1138
1139 def test_pacificAtlantic():
1140     solution = Solution()
1141     heights = [[1,2,2,3,5],[3,3,3,4,4],[2,4,5,3,1],[6,7,1,4,5],[5,1,1,2,4]]
1142     expected = [[0,4],[1,3],[1,4],[3,0],[4,0]]
1143     assert solution.pacificAtlantic(heights)==expected

```

Figure 14: Examples of insignificant acceleration.

1134
1135

C.4.1 ANALYSIS OF INSIGNIFICANT ACCELERATION

1136
1137
1138
1139
1140
1141

Figure 14 illustrates situations where the speedup effect is less pronounced. Pattern matching becomes challenging when code spans multiple lines. Furthermore, when the data structure is highly complex and contains a large number of variables that need to be decoded, the model still requires a large number of steps to complete the decoding process. These observations highlight the limitations of pattern-based speedup in scenarios involving multi-line code grammatical structures or complex data representations.

1142
1143

C.4.2 MORE EXAMPLES OF STEP-BY-STEP COMPARISON GENERATION

1144

```
Without acceleration:
Step 5:
def test_boxDelivering():
    solution = Solution()
    assert [] == []
    test test test test
    2box[1,2, 1],[212], 3 25 3 26
    as check: example cases the test test test
def test_test_boxDelivering():
    solution = []
    []
    []
    assert.assertEqual solution.box
    solution.boxDelivering[2,][0], 22], [2 3 31, 3), 6, 4)
    # printrunning the test cases passes ()
    output the check
    test test the test test test
Step 15:
def test_boxDelivering():
    solution = Solution()
    assert solution.boxDelivering([[1,1222,1], 1, 2, 3, 3) 2
def test_boxDelivering():
    solution = Solution()
    assert solution.boxDelivering[1,22,233] assert assert(solution.boxDel, 2, 2,
3, 3, #3)
Step 25:
def test_boxDelivering():
    solution = Solution()
    assert solution.boxDelivering([[1, 1],[22 1], 3, 1, 2, 32 2 214``` test check
    the function
    def test_boxDelivering():
        solution = Solution()
        print solution.boxDelivering([[9232],[2, 3, 2, Del]],21, 2, 3, 3, # Running
        Running the test test
        pass()
```

```
With acceleration:
Step 5:
def test_boxDelivering():
    solution = Solution()
    boxes = solution.boxDelivering([[1, 1222, 2], 1,
    # Here is the code to solve this problem:
def test_boxDelivering():
    solution = Solution()
    assert solution.boxDelivering([[1,1122,3],333,1], 3, 3, 3, 4) == 6#
Step 15:
def test_boxDelivering():
    solution = Solution()
    assert solution.boxDelivering([[1,1],[2,3],[1,1],[2,1]], 2, 3, 6) == 6
def test_boxDelivering():
    solution = Solution()
    assert solution.boxDelivering([[1,1],[2,,,2],1,[3,3],[2,2]], 2, 3, 6) == 6
Step 25:
def test_boxDelivering():
    solution = Solution()
    assert solution.boxDelivering([[1, 2], [2, 3], [1, 1], [2, 1]], 2, 3, 3) == 4
def test_boxDelivering():
    solution = Solution()
    assert solution.boxDelivering([[1, 2], [2, 3], [1, 1], [2, 1]], 2, 3, 6) == 4
```

1164

Figure 15: Another step-by-step comparison example of acceleration and non-acceleration.

1165
1166
1167
1168
1169
1170
1171
1172
1173
1174

Figure 15 is another step-by-step comparison example of acceleration and non-acceleration. We clearly observe that, given the same number of decoding steps, our acceleration method produces a significantly greater number of decoded tokens compared to the unaccelerated baseline. This pronounced difference demonstrates that our method enables the generation of a more complete and diverse set of test cases within a shorter time frame, which directly contributes to higher test coverage. Therefore, this example also demonstrates that our method exhibits clear advantages in the domain of automated test case generation, providing robust technical support for improving both test coverage and software quality.

1175

DiffuCoder on Python :

1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

```
def test_groupStrings():
    solution = Solution()
    assert solution.groupStrings(["a", "b", "ab", ""]) == [2, 2]

def test_groupStrings():
    solution = Solution()
    words1 = ["abc", "ac", "abcd", "cde", "ab"]
    assert solution.groupStrings(words1) == [2, 3]
```

1188

Figure 16: Example of DiffuCoder on Python.

```

1188 DiffuCoder on Java :
1189
1190 public class SolutionTest {
1191     @Test
1192     public void test_countCompleteComponents() {
1193         int n = 6;
1194         int[][] edges = {{0, 1}, {1,2}, {3,4}};
1195         assertEquals(1, new Solution().countCompleteComponents(n, edges));
1196     }
1197 }
1198 public class SolutionTest {
1199     @Test
1200     public void test_countCompleteComponents() {
1201         int n = 6;
1202         int[][] edges = {{0, 1}, {1, 2}, {3, 4}, {4, 5}};
1203         assertEquals(2, Solution().countCompleteComponents(n, edges));
1204     }
1205 }
1206
1207
1208
1209 DiffuCoder on C++ :
1210
1211 int main() {
1212     Solution solution;
1213     vector<vector<int>> heights = {{1},{2}};
1214     assert(solution.minimumEffortPath(heights) == 0);
1215     return 0;
1216 }
1217
1218 int main() {
1219     Solution solution;
1220     vector<vector<int>> heights{{1,2,2},{3,8,2},{5,3,5}};
1221     assert (solution.minimumEffortPath(heights) == 2);
1222     return 0;
1223 }
1224
1225
1226 Dream on Python :
1227
1228 def test_longestCommonPrefix():
1229     solution = Solution()
1230     arr1 = [1234 , 123456]
1231     arr2 = [12345, 123456]
1232     assert solution.longestCommonPrefix(arr1, arr2) == 4
1233
1234 def test_longestCommonPrefix():
1235     solution = Solution()
1236     arr1 = [123, 456]
1237     arr2 = [1234, 45678]
1238     assert solution.longestCommonPrefix(arr1, arr2) == 3
1239
1240
1241

```

Figure 17: Example of DiffuCoder on Java.

```

1208
1209 DiffuCoder on C++ :
1210
1211 int main() {
1212     Solution solution;
1213     vector<vector<int>> heights = {{1},{2}};
1214     assert(solution.minimumEffortPath(heights) == 0);
1215     return 0;
1216 }
1217
1218 int main() {
1219     Solution solution;
1220     vector<vector<int>> heights{{1,2,2},{3,8,2},{5,3,5}};
1221     assert (solution.minimumEffortPath(heights) == 2);
1222     return 0;
1223 }
1224
1225
1226 Dream on Python :
1227
1228 def test_longestCommonPrefix():
1229     solution = Solution()
1230     arr1 = [1234 , 123456]
1231     arr2 = [12345, 123456]
1232     assert solution.longestCommonPrefix(arr1, arr2) == 4
1233
1234 def test_longestCommonPrefix():
1235     solution = Solution()
1236     arr1 = [123, 456]
1237     arr2 = [1234, 45678]
1238     assert solution.longestCommonPrefix(arr1, arr2) == 3
1239
1240
1241

```

Figure 18: Example of DiffuCoder on C++.

```

1226 Dream on Python :
1227
1228 def test_longestCommonPrefix():
1229     solution = Solution()
1230     arr1 = [1234 , 123456]
1231     arr2 = [12345, 123456]
1232     assert solution.longestCommonPrefix(arr1, arr2) == 4
1233
1234 def test_longestCommonPrefix():
1235     solution = Solution()
1236     arr1 = [123, 456]
1237     arr2 = [1234, 45678]
1238     assert solution.longestCommonPrefix(arr1, arr2) == 3
1239
1240
1241

```

Figure 19: Example of Dream on Python.

```
1242
1243 Dream on Java :
1244
1245 public class SolutionTest {
1246     @Test
1247     public void test_maxStrength() {
1248         int[] nums = {1, -2, -3, 0};
1249         assertEquals(6, new Solution().maxStrength(nums));
1250     }
1251
1252     public class SolutionTest {
1253         @Test
1254         public void test_maxStrength() {
1255             var nums = new int[] { 3, -1, -5, 2, 4 };
1256             assertEquals(20, new Solution().maxStrength(nums));
1257         }
1258     }
1259 }
```

Figure 20: Example of Dream on Java.

```
1261
1262 Dream on C++:
1263
1264     int main() {
1265         Solution solution;
1266         vector<vector<int>> board1 = {{1, 0}, {0, 1}};
1267         assert(solution.movesToChessboard(board1) == 0);
1268     }
1269
1270     int main() {
1271         Solution solution;
1272         vector<vector<int>> board = {{1, 0, 1, 0}, {0, 1, 0, 1}, {1, 0, 1, 0}};
1273         assert(solution.movesToChessboard(board) == 1);
1274     }

```

Figure 21: Example of Dream on C++.

C.4.3 GENERATED EXAMPLES OF DIFFERENT MODELS ON DIFFERENT LANGUAGE TASKS

Figure 16,17,18,19,20,21 are the generated examples of two models, DiffuCoder and Dream, on three language tasks—Python, Java and C++. The code segments highlighted in blue represent the repetitive patterns identified within the unit test cases. Notably, these repetitive patterns are consistently observed in each language, indicating their universality across diverse coding environments. This observation suggests that different DLLMs can effectively leverage these repetitive patterns to accelerate the decoding process. By exploiting the presence of such patterns, the models are able to generate test cases more efficiently. These more motivating examples underscore the potential for repetitive pattern utilization as a general mechanism for boosting decoding efficiency in unit test generation scenarios.

C.5 LIMITATION

A principal limitation of DIFFTESTER is the absence of empirical investigations into the acceleration of UTG on repository-level codebases, which would be of greater practical significance. This omission is primarily attributable to the constrained maximum context lengths supported by existing dLLM architectures. In contrast, repository-scale UTG tasks, such as those exemplified by TestGenEval (Jain et al., 2025), inherently demand the modeling of substantially longer contexts that exceed these architectural limits.

1296 Another limitation arises from the inherent characteristics of certain contemporary code generation
 1297 models, such as DreamCoder (Xie et al., 2025). Our method was not applied to these models primarily
 1298 because their generative behavior tends to produce substantial amounts of natural language output,
 1299 even when explicitly prompted to focus on code generation. This results in a low proportion of code
 1300 segments, thereby constraining the potential acceleration benefits achievable by our method.
 1301

1302 C.6 ALGORITHM

1304 Algorithm 1: Algorithm to merge two ASTs

1305 **Input:** Root nodes of two ASTs: $node_1$ and $node_2$
 1306 **Output:** Merged AST root node
 1307 1 $merged_node \leftarrow$ empty node;
 1308 2 **if** $node_1.type = node_2.type$ and $node_1$ is not error node **then**
 1309 3 $merged_node.type \leftarrow node_1.type$;
 1310 4 **foreach** $child_1$ and $child_2$ from $node_1.children$ and $node_2.children$ **do**
 1311 5 $merged \leftarrow$ recursively merged root node of $child_1$ and $child_2$;
 1312 6 **if** $merged$ is not empty node **then**
 1313 7 $merged \leftarrow$ add $merged$ to $merged_node.children$;
 1314 8 **return** $merged_node$;

1317 Algorithm 2: Unmasking extra tokens via repetitive pattern

1318 **Input:** $codelines \leftarrow$ all lines of code
 1319 /* merged_list represents list of merged node and its source
 1320 code lines */
 1321 1 $merged_list \leftarrow$ empty list of (node, list) tuple;
 1322 2 **for** $i = 0$ to $len(codelines)$ **do**
 1323 3 $current_node \leftarrow$ root node of AST of this code line;
 1324 /* The variable found indicates whether a node has already
 1325 been successfully merged with the AST root node of the
 1326 corresponding line of code, with the merge result being
 1327 non-empty. */
 1328 4 $found \leftarrow False$;
 1329 5 **foreach** $(node, lines) \in merged_list$ **do**
 1330 6 $merged_node \leftarrow$ merged node of $node$ and $current_node$;
 1331 7 **if** $merged_node$ is not empty node **then**
 1332 8 change $node$ into $merged_node$;
 1333 9 add i to $lines$;
 1334 10 $found \leftarrow True$;
 1335 11 break the loop;
 1336 12 **if** $found$ is $False$ **then**
 1337 13 $merged_list.append((current_node, [i]))$;
 1338 14 **foreach** $(merged_ast, lines) \in merged_list$ **do**
 1339 /* Only those greater than 1 indicate the presence of a
 1340 repetitive pattern. */
 1341 15 **if** $len(lines) > 1$ **then**
 1342 16 **foreach** $i \in lines$ **do**
 1343 17 unmask tokens in $codelines[i]$ that match the $merged_ast$;

1344
 1345
 1346
 1347
 1348
 1349