InstructFlow: Adaptive Symbolic Constraint-Guided
Code Generation for Long-Horizon Planning

Haotian Chi'® Zeyu Feng’? Yueming Lyu?> Chenggqi Zheng? Linbo Luo®
Yew-Soon Ong>* Ivor Tsang>* Hechang Chen'3" Yi Chang'*' Haiyan Yin?'

'School of Artificial Intelligence, Jilin University, China
2CFAR and IHPC, Agency for Science, Technology and Research (A*STAR), Singapore
3Engineering Research Center of Knowledge-Driven Human-Machine Intelligence,
Ministry of Education, Jilin University, China
“Nanyang Technological University (NTU), Singapore, >Xidian University, China
chiht21@mails. jlu.edu.cn {chenhc, yichang}@jlu.edu.cn
{feng_zeyu, lyu_yueming, ivor_tsang, yin_haiyan}@a-star.edu.sg
zhen0144Qe.ntu.edu.sg asysong@ntu.edu.sg 1bluo@xidian.edu.cn,

Abstract

Long-horizon planning in robotic manipulation requires translating under-specified,
symbolic goals into executable control programs that satisfy spatial, temporal,
and physical constraints. However, existing language model-based planners of-
ten struggle with decomposing long-horizon tasks, enforcing constraints robustly,
and adapting effectively to execution failures. We introduce InstructFlow, a
multi-agent framework that establishes a symbolic, feedback-driven flow for code
generation in robotic manipulation. InstructFlow comprises three coordinated
agents: a InstructFlow Planner that constructs and traverses a hierarchical in-
struction graph to decompose goals into semantically grounded subtasks; a Code
Generator that synthesizes executable code snippets conditioned on this graph;
and a Constraint Generator that analyzes execution feedback to induce symbolic
constraints when execution failures occur. These constraints are propagated up-
stream to refine the instruction graph and guide localized code revision without
full regeneration. This graph-guided, dynamic flow enables structured, inter-
pretable, and failure-resilient planning, yielding substantial improvements in task
success rate and robustness across diverse manipulation benchmarks, particularly
in constraint-sensitive and long-horizon scenarios. The implementation is available
at https://github.com/chiht2 1/InstructFlow.

1 Introduction

Large language models have emerged as a central paradigm for robotic code generation, translating
natural language instructions into executable control programs [1}|141119,127]. Despite their versatility,
they struggle with long-horizon task decomposition, reliable constraint enforcement, and adaptive
failure recovery. In a manipulation task such as placing an object into a bowl, an LLM-based planner
may detect that a grasp fails due to a collision with stacked objects. However, it lacks the capacity to
reason beyond the immediate failure and infer its structural cause. Existing approaches often resort
to blind retries or ad-hoc replanning, generating similar trajectories that reproduce the same error.
These behaviors reveal a critical gap: LLMs can recognize execution failures but lack the structured
reasoning required to interpret and repair them.

Corresponding authors.

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

https://github.com/chiht21/InstructFlow

This limitation arises from the representational nature of language itself. Natural language instructions
are inherently under-specified, ambiguous, and difficult to ground in the physical world. When tasked
with generating full execution plans directly, LLMs frequently produce syntactically correct but
physically infeasible code, and they rarely recover once execution errors occur. Recent methods have
sought to bridge this gap by generating grounded skill sequences with continuous parameters [30] or
synthesizing end-to-end executable programs [[14]. Yet these approaches remain flat and reactive,
lacking the hierarchical structure and feedback integration required for consistent reasoning under
dynamic, constraint-rich conditions.

Recent works have begun exploring feedback-driven planning, where language models incorporate
environmental signals to improve execution reliability. This is exemplified by PRoC3S [3]], which
introduces a two-phase pipeline that separates plan generation from constraint checking, enabling
failure-triggered replanning when constraint violations occur. While PRoC3S strengthens robustness
through feedback, it still treats failures at the surface level, reacting to violations without interpreting
their deeper structural causes. This limitation stems from language-based plans being under-specified
and unstructured, thereby limiting causal reasoning and systematic plan refinement. Addressing
this gap demands a framework that can induce symbolic knowledge from failure and use it to guide
targeted, compositional repair rather than wholesale regeneration.

To address these challenges, we introduce InstructFlow, a modular, multi-agent framework that
establishes a symbolic, feedback-driven information flow for adaptive task planning and code genera-
tion. InstructFlow operates beyond surface-level feedback: it interprets execution failures, induces
symbolic constraints that capture their causal structure, and propagates this knowledge through a
hierarchical instruction graph that organizes task goals into composable subplans. Its constraint
induction mechanism abstracts execution traces into human-interpretable predicates that encode
spatial, relational, and physical dependencies across tasks. By feeding these symbolic constraints
back into the planning hierarchy, InstructFlow performs targeted repair instead of full regenera-
tion, transforming reactive trial-and-error into deliberate, compositional reasoning and achieving
interpretable, failure-resilient planning in long-horizon, constraint-sensitive robotic environments.

We highlight three key contributions of this work: (i) a modular multi-agent framework that establishes
a symbolic, feedback-driven flow of reasoning for adaptive and interpretable code generation in
robotic planning; (ii) a symbolic constraint induction mechanism that abstracts execution failures into
causal, reusable predicates, enabling targeted repair rather than full regeneration; and (iii) extensive
empirical validation across drawing, block stacking, and YCB packing benchmarks, demonstrating
substantial gains in success rate, robustness, and recovery efficiency over strong LLM-based baselines.

2 Related Works

LLM-Based Code Generation for Robotic Manipulation Recent advances highlight the potential
of LLMs as general-purpose planners for robotic manipulation through code generation. CaP [[14]
pioneers the use of LLMs to synthesize Python-based reactive controllers, integrating perception
modules and control primitives. RoboScript [1]] proposes a unified interface for deploying such code
across simulation and real robots, focusing on deployability and modularity. LLM? [30] integrates
task and motion planning with LLM-driven failure reasoning for robust code generation in dynamic
environments. Instruct2Act [9]] and VoxPoser [10] combine LLMs with VLMs, grounding language
instructions into actionable code conditioned on perceptual inputs. RoboCodeX [19] introduces
a tree-structured multimodal reasoning framework, decomposing language commands into object-
centric manipulation code. Recent systems like OctoPack [20] and RobotCode [13] further enhance
generalization and reliability by combining LLM-generated programs with skill libraries. While
these approaches demonstrate the promise of LLMs when equipped with structured APIs, affordance
models, and perceptual grounding, they continue to struggle with handling execution failures and
adapting plans in constraint-sensitive or long-horizon tasks.

Symbolic Abstraction Planning Symbolic representations remain crucial for long-horizon and
constraint-sensitive manipulation. Classical TAMP systems [[11} 2} 4} 7] 126]] integrate symbolic task
planning with motion controllers but depend on domain-specific predicates. Traditional robotics
planning relies on hard-coded symbolic world models [7} [12]. Hybrid methods bridge language
and symbolic planning, such as LLM+P [[16], which translates instructions into PDDL for optimal
symbolic planning. VisualPredicator [15]] learns neuro-symbolic predicates from visual inputs, while

Cod ® .
@= InstructFlow Planner =ﬁ —~ ~ G en:x :t or—) "'\g Environment

Instruction Graph Failure Checker

Subgoal 1

Task
Prompt

500 < object_selection >

M <sungoal 1>

JL Execute

o <Subgoal n>

© Plamningnode (3} Reasoning node

B
B
B
s o
g
—

- $p—F)

Symbolic Constraint G tor @
&

g Q)
V e P JL Output
*+Symbolic Constraint** **Explanation** **Physical Diagnosist* **Manipulated Object** 0 ﬂ
“object_4°, ‘griper’ -
[——
“The failure feadback —
x Betow(o_d,0_5):= ++Related Objectss Feedback
< 25) object_5', object_6

Sremsesmzrer, et 280 occurrences: Step 0, Action
<::l pick, Violation: [Twin] Collision
detected between object_5
gripper finger.

A Clearof (gripper, cbject_6)

a 0.2,
: ! o Zol2, 06, 0.
;5@2 J/

Figure 1: Overview of the InstructFlow framework for multi-agent, symbolic, and feedback-driven
code generation in robotic manipulation. The system comprises three coordinated agents: (a)
InstructFlow Planner: parses the task prompt and constructs a multi-level instruction graph that
organizes goals into spatial and reasoning subgoals; (b) Code Generator: synthesizes executable
code segments and samples parameter domains to instantiate the plan; (c) Constraint Generator:
analyzes execution feedback and induces symbolic constraints that refine the instruction graph for
targeted code correction.

ViLaln [23]] extracts scene-level symbolic representations from vision-language models. Other works
like PlanBench [28]] create symbolic abstractions for plan feasibility analysis; P3IV [32] and RLang
[21] focus on domain-agnostic symbolic representations aligned with LLM reasoning. Despite their
use of symbolic abstractions, these approaches lack mechanisms for dynamic symbolic reasoning to
abstract task-relevant information or diagnose failures for plan recovery, which is a gap our method
explicitly addresses by integrating symbolic reasoning into the code generation and planning loop.

Feedback-Driven Failure Recovery Recovering from execution failures remains a central chal-
lenge for LLM-driven robotics. Most approaches treat LLMs or VLMs as success detectors [3}[18}29],
while recent works explore feedback-driven plan repair. REFLECT [[17] and AHA [6] leverage LLMs
and VLMs for multi-modal failure explanation, enabling language-guided correction. RoboRe-
pair [22]] and DoReMi [8] integrate LLMs and VLMs for execution misalignment detection and
proactive repair. However, these methods primarily rely on fine-tuning models for failure understand-
ing. To avoid fine-tuning, LLM? [30], ProgPrompt [24]], and CLAIRify [25]] propose failure-aware
prompting and runtime verification to guide iterative plan repair. PRoC3S [3] further introduces
a hybrid approach that combines LLM-generated partial programs with post-hoc constraint opti-
mization. Building on this foundation, our approach integrates symbolic constraint induction and
graph-guided plan repair directly into the code-generation loop, achieving interpretable and adaptive
failure recovery that generalizes across tasks.

3 Methodology

We begin by formalizing the LLM-based code generation paradigm for robotic manipulation. We then
introduce InstructFlow, a modular multi-agent framework built around a hierarchical instruction
graph and a symbolic constraint induction mechanism. An overview of the system architecture is
provided in FigureT]

3.1 Overview

The problem of code generation for robotic manipulation involves translating natural language
instructions into executable programs that operate reliably in robotic environments. Given task
descriptions and the initial state of the environment, an LLM is instructed to generate parameterized

action plans that invoke low-level control routines to solve the task. Following a general paradigm
[3]], the LLM produces two functions per task:

 get_plan: a sequence of high-level actions conditioned on free parameters and environment state.

* get_domain: the feasible ranges for those parameters (e.g., spatial offsets), defining the search
space for plan instantiation.

At the task level, the goal is to generate code that completes the instructed objective without violating
physical constraints. Execution feasibility is assessed by a continuous constraint satisfaction program
(CCSP) module, which enforces four environment-level checks: kinematic reachability, collision
avoidance, grasp stability, and placement validity. The LLM must reason not only over a series
of discrete action choices, but also over continuous numerical parameters, which is a nontrivial
requirement. Beyond sequencing skills, it must produce long-horizon code grounded in geometry,
dynamics, and task-specific semantics. The core challenge lies in the lack of grounding from language
prompts to low-level control logic that adheres to physical and dynamic constraints. When execution
fails, LLMs often repeat or compound errors, exhibiting limited ability to adaptively repair code.

Our work aims to improve the failure recovery ability of LLM-based planners through structured
planning and symbolic constraint-driven code repair.

We propose InstructFlow, a modular multi-agent framework for symbolic, feedback-driven code
generation in robotic manipulation. The core idea is to introduce an instruction graph that hierar-
chically decomposes high-level task prompts into semantically structured subgoals, and couple this
representation with a symbolic constraint induction mechanism for effective plan repair. Instruct-
Flow modularizes the code-generation pipeline into three cooperative agents, each with a specialized
role and local reasoning context (see Appendix [A]for the prompts used in our three Agents):

¢ InstructFlow Planner: Parses the task prompt and constructs a hierarchical instruction graph
capturing semantic and spatial dependencies. Each node encodes a typed subgoal grounded in the
robot’s skill space.

* Code Generator: Translates each subgoal into executable Python code, producing symbolic
control routines along with parameter domains for sampling feasible continuous values;

* Constraint Generator: Monitors execution failures and induces symbolic constraints that explain
the cause. These constraints guide context-specific graph and prompt revisions, enabling targeted
subgoal repair without full plan regeneration.

3.2 Instruction Graph Construction and Update

Instruction Graph Semantics A central architectural contribution of InstructFlow is a hierarchical
instruction graph that enables structured task decomposition and adaptive symbolic reasoning. At
each interaction round ¢, the InstructFlow Planner constructs an instruction graph G; = (V;, &),
conditioned on the task goal, initial state, and symbolic feedback. This graph acts as a typed,
declarative scaffold for both task decomposition and constraint-aware refinement. The node set is
partitioned as:

Vi = Vplan U Vieasons Vplan N Vieason = (D; ()

with edges £ C V, x V; capturing symbolic or temporal dependencies. Each edge (v;, v;) denotes a
directed flow of information, allowing parent nodes to influence the semantic context of their children.

(1) Planning nodes vP'®* ¢ Vplan define grounded subgoals directly translatable into robot-executable
code. Each is instantiated as a symbolic prompt:

pPlan . (goal, state) — subgoal 4, A € {pick,place,...}.

These nodes form the plan’s executable backbone and anchor structural code generation.

(2) Reasoning nodes v%?‘”“ € Vieason perform typed symbolic transformations that enrich planning

with task-level abstraction and constraint resolution. These typed modules abstract reusable domain
knowledge, enabling modular plan revision: v : Z7- — Or;, where Z7;, O7; denote structured
symbolic fields. Outputs are propagated to downstream planning nodes, injecting symbolic knowledge

such as spatial adjacency or parameter tuning. We instantiate five core reasoning modules:

Tspatial = S — Rel(Objects, Adjacency) (spatial relation inference)
Taensity : S — Rel(Objects, Density) (local clutter estimation)
Teeleet : (G, S, ®) — Select(Objects) (target object selection)

Toian : (G, S, ®) — Order(Actions) (task logic inference)
Tparam : (G, @) — Refine(ParamDomain) (parameter range refinement)

Here, G denotes the high-level task goal, S represents the initial state, and ® captures symbolic
constraints induced from prior failures. These inputs are used by reasoning nodes to extract task-
relevant abstractions for plan refinement.

Feedback-Driven Graph Update A core capability of InstructFlow is its ability to revise the
instruction graph G; based on symbolic constraint feedback and failure diagnostics. At initialization
(constraint = (), the graph contains only planning nodes. Upon failure (e.g., collisions, instabil-
ity), the planner inserts reasoning nodes upstream of affected subgoals, dynamically composing a
symbolic stack tailored to the error mode:

G: = Plannerym(goal, state;, constraint, 1). 2)

This mechanism supports coarse-to-fine symbolic planning by injecting only the reasoning needed to
refine or repair the faulty part of the task.

InstructFlow-Guided Code Generation InstructFlow translates symbolic plans into executable

code by composing structured prompts along the instruction graph G;. Each planning node vfla“ €
Vplan generates a prompt:
preason(t) an .
instr®® = Encode ({v%’s""}ljzl l, P!), code! = LLM (1nstr(t)) 3)

Task Prompt Generated Code

where Encode(-) integrates the subgoal with symbolic refinements from reasoning nodes, such
as spatial relations, parameter ranges, or action dependencies. |vreas"“(t)| denotes the number of
reasoning nodes providing contextual information to v*"#", including types such as spatial reasoning,
object selection, and other reasoning nodes as defined above.

This symbolic conditioning guides the LLM to produce context-aware and physically valid code.
When failures occur, InstructFlow selectively updates the relevant subgoals and reasoning nodes
impacted by the constraint violations, avoiding unnecessary recomputation of unrelated parts of the
plan. By structuring prompt construction around the symbolic instruction graph, InstructFlow achieves
interpretable, constraint-compliant code generation, significantly enhancing sample efficiency and
robustness in long-horizon, constraint-sensitive tasks.

The Role of "Flow' While InstructFlow introduces multiple agents and a hierarchical instruction
graph, the key distinguishing feature lies in the flow of symbolic information and feedback throughout
the entire code generation loop. Unlike static prompting approaches, InstructFlow treats the prompt
construction itself as a dynamic, graph-guided flow, where high-level goals, reasoning outputs, and
failure-induced constraints are progressively injected into task-specific prompts at each planning
node. This flow-centric prompt composition ensures that each code snippet is generated in a context-
aware, failure-resilient, and constraint-compliant manner, enabling efficient plan repair without full
regeneration. The flow mechanism thus operates at two intertwined levels: Graph-level symbolic flow:
From reasoning nodes to planning nodes. Prompt-level information flow: From task goal, through
symbolic reasoning and feedback, into structured, adaptive prompts.

3.3 Symbolic Constraint Induction from Execution Failures

LLM-based robotic planners often lack structured mechanisms for failure recovery, relying instead
on naive re-prompts or implicit retries. We introduce a Constraint Generator that diagnoses
execution failures, and abstracts them into logical constraints. These constraints serve as symbolic
corrections that guide graph restructuring and prompt refinement, enabling interpretable, efficient,
and generalizable plan repair.

Failure Diagnosis Workflow. The symbolic constraint induction follows a four-stage reasoning
workflow: (i) Failure-relevant entities retrieval, which identifies failure-relevant entities from
the failure trace F; and executed code P;; (ii) Code-level reasoning, which instantiates involved
variables and reasoning symbolic predicates that reflect the physical feasibility; (iii) Diagnostic
reasoning, which compute geometric or geometric diagnostics based on predicates, such as collision
proximity, path clearance, and placement stability; and (iv) Symbolic constraint induction, which
abstracts diagnostic findings into declarative symbolic constraints that encapsulate the feasibility
conditions violated by the current plan. This structured workflow transforms grounded execution
failures into symbolic rules that guide prompt regeneration and enable interpretable, plan repair.

Physical Predicate as an Induction Basis. To enable interpretable
failure diagnosis and structured symbolic constraint induction, we
ground physical feasibility reasoning on a set of declarative physical
predicates. These predicates abstract task-specific physical interac-

>

tions into reusable logical representations, serving as the foundation
for symbolic reasoning across diverse manipulation scenarios. We
categorize predicates along four functional components:

. F Failure-relevant retrieval

‘cbject_4': [-0.2, -0.5, 0.02
object_4 —» green block 3%ttt 1

“object_5°: [-0.2, -0.6, 0.06]
object_5 —» teal block

(i) Entities (£): Rather than pre-defining entities rigidly, Instruct-
Flow dynamically abstracts task-relevant entities into functional
roles based on the evolving task context and feedback, such
as 7target (manipulated object), ?neighbor (potential obsta-
cles), ?surface (supporting structures), and ?gripper (robot end- Rl b=
effector); (ii) Relations (7R): Symbolic relations are flexibly instan-
tiated to capture emergent spatial and semantic interactions during
task execution and diagnosis, such as On(7a, 7b) for support/- IL
contact, or Clear0f (7a, ?7b) for proximity constraints, enabling T \
contextual adaptation rather than relying on static domain rules; (iii)
Physical Functions (F): InstructFlow leverages a set of physical |
diagnostics as interpretable abstractions, such as Dist(7a, 7b), k
SupportArea(?obj), and COMDeviation(7obj), which are dy-
namically evaluated in response to execution feedback, guiding
the symbolic reasoning process without hard-coded thresholds; (iv)
Thresholds (5): Task-specific feasibility bounds, such as dg,g for
clearance margins, and 7y, for support stability ratios, , which can be tuned or inferred based on
the environment state and failure modes, allowing InstructFlow to generalize beyond fixed rule
specifications.

object_6': [-0.2, ~0.6, 0.1]
object_6 —» yellow_block

F Code-level reasoning

3

Below(o_5,0_6) :=
(z_5 < z_6)

Diagnostic reasoning

ClearOf (gripper, object_5)
A

ClearOf (gripper, object_6)
Symbolic constraint induction

Figure 2: Failure Diagnosis
Workflow of Symbolic constraint
generator.

These symbolic forms are grounded by diagnostics over physical basis, but are interpreted and
manipulated as logical components of the instruction graph, which isolate the physical root causes of
failure and ground them in explicit task parameters, forming the basis for symbolic abstraction.

Symbolic Constraint Induction. We formalize the symbolic constraint ¢ as a conjunction over
two complementary modalities of failure correction: relational structure and physical feasibility:

A

cE€C(E,R,F,B)

¢ = where C(E,R,F,B) = {Ri(eq;,en;)} U{f;(0;) & 75}.

Relational Constraints

“

Physical Constraints

Here, for each relational constraint R;(e,,, €p,), €q, and ey, are entity instances (e.g., block, bowl)
participating in the relation R;. For physical constraints, each term f;(©;) @®7; represents a feasibility
condition, where: ©; denotes the variables involved (e.g., poses, offsets), @ is a comparison operator
(e.g., <, >, or =), 7; € Bis a task-specific threshold (e.g., maximum allowable clearance).

This formulation allows each constraint ¢ to capture both high-level task semantics and low-level
physical requirements within a unified logical form, which the Constraint Generator can compose
into logical constraints ¢ for plan repair. For instance:

Gpick := ProximitySafe(?object, neighbor) A PathClear(?gripper, ?object),
Pplace = Dist(?pose, Tneighbor) > dguse A StablelOn(?object, ?sur face).

Pack all objects into Pack all objects into
Draw the letter M Stack a pyramid of blocks the region the region

An A4

Draw an arrow pointing Draw a rectangle Form a line out of five Place a green blockin a
atthe largest obstacle enclosing any obstacle blocks green bow! Stack any two objects

& f sk

(a) Drawing (b) Arrange-Blocks (c) Arrange-YCB

P Bl

Figure 3: Illustration of tasks in our simulated environments, along with corresponding goals.

Notably, these symbolic constraints act as structured priors for graph refinement and generalize
across task instances and environments, enabling not just plan repair but modular, interpretable priors
that can be reused across planning episodes. By treating failure correction as symbolic program
refinement, this representation integrates seamlessly into our instruction graph and enables feedback-
driven, structurally grounded prompt generation (see Appendix for the symbolic constraints we
summarized from the experimental results).

4 Experiments

4.1 Experimental Setup

We adopt the same environments, evaluation metrics, and protocol as PRoC3S [3] to ensure fair
comparison, while extending its core planning pipeline with symbolic reasoning and constraint-guided
repair. All experiments are conducted in the Ravens [31]] simulation environment, using a 6-DoF URS
arm with a Robotiq 2F-85 gripper in a tabletop workspace. Physics-based execution and constraint
checking are handled via PyBullet. Simulations run on CPUs with 32GB RAM, with all baseline
implementations integrated into a unified evaluation framework.

Domains and Tasks. We evaluate our approach on three simulated domains, each designed to test
different aspects of long-horizon planning with parameterized skills and physical constraints:

(1) Drawing: The robot is equipped with a draw_line primitive that generates 2D trajectories to
render geometric and symbolic shapes on a surface, while avoiding randomly placed objects.
These tasks require precise parameter coordination under tight spatial constraints.

(2) Arrange-Blocks: The robot stacks and arranges colored blocks and bowls to form pyramids,
lines, or centered clusters. This domain tests stability, spatial accuracy, and planning under
clutter and occlusions.

(3) Arrange-YCB: The robot manipulates complex objects from the YCB dataset (e.g., banana, meat
can) to perform packing and stacking. Irregular geometries introduce challenges in grasping,
placement feasibility, and collision avoidance.

Constraints. Across all domains, generated plans are evaluated against a set of physical and
geometric constraints that reflect real-world robotic limitations: (1) Kinematic constraints ensure
that the robot’s inverse kinematics solver produces a reachable end-effector pose, rejecting infeasible
motions; (2) Collision constraints eliminate plans that lead to unintended contact between the robot,
environment, or other objects, allowing only expected contact such as during grasps; (3) Grasp
constraints verify that the gripper properly encloses the object and maintains stability during lifting,
rejecting grasps that cause slippage or collision; (4) Placement constraints require that, upon release,
the object remains upright and stationary, i.e., any post-placement drift or instability signals a failure
of physical feasibility.

Baselines. We compare our approach against three baselines:

(1) PRoC3S [3]: The original two-phase LLM-based planner that separates plan generation and
constraint satisfaction using a sampling-based solver with feedback.

(2) LLM? [30]: A recent method in which the LLM directly outputs grounded skill sequences with
continuous parameters.

(3) Code-as-Policies (CaP) [14]]: A program synthesis-based strategy that uses an LLM to pro-
duce complete Python programs encoding the action sequence and continuous parameters for
execution.

Execution Details. Each approach is evaluated over 10 randomized seeds per simulated task. We
use a maximum budget of 1000 samples per trial (10000 for drawing tasks). We limit the number of
feedback iterations to 5. All methods are queried via OpenAI’s GPT-40 unless otherwise stated. A
task is considered successful if the final robot state satisfies the goal condition without violating any
constraints (see Appendix for more details on experiment settings).

4.2 Benchmark Experiments

We benchmark InstructFlow against PRoC3S, LLM?, and CaP across three domains. As shown in
Table[T} across drawing, block arrangement, and YCB manipulation tasks, InstructFlow outperforms
prior methods by 20-40% in task success rate.

Drawing Arrange Blocks Arrange YCB

Star Arrow Letters Enclosed | Pyramid Line Packing Unstack | Packing Stacking
LLM3 40% 40% 80% 50% 0% 40% 30% 0% 0% 10%
CaP 10% 0% 40% 30% 20% 20% 20% 10% 30% 10%
PRoC3S 90% 80% 80% 90% 60% 70% 50% 60% 30% 40%
InstructFlow (Ours) | 100% 80% 100% 100% 90% 100% 90% 90% 60% 70%

Table 1: Task success rates (%) across drawing, block arrangement, and YCB manipulation domains.
Bold indicates top-performing results.

This improvement arises from InstructFlow’s ability to perform structured symbolic reasoning over
task-specific failures, enabling targeted plan corrections at multiple levels: (i) refining parameter
domains to satisfy geometric constraints, (ii) inducing symbolic relations (e.g., adjacency, clearance)
to prevent repeated failure modes, and (iii) revising subgoal sequences based on environment feedback.
For instance, in the Pyramid and Line tasks, baseline methods (e.g., PROC3S) frequently fail due
to improper block spacing, leading to unstable stacks. InstructFlow detects these failures and
augments the instruction graph with symbolic adjacency constraints (e.g., Adjacent (?block_i,
?block_j)), which guide the adjustment of offset ranges and enforce tighter placements, improving
stability without exhaustive re-planning.

Similarly, in Packing tasks involving YCB objects with irregular geometries, InstructFlow leverages
symbolic constraints over object proximity to guide precise placement corrections. When initial plans
result in collision-prone configurations, the system identifies violated Clear0f constraints and refines
placement parameter ranges to balance object clearances and workspace boundaries. This targeted
adjustment enables feasible, collision-free placements without exhaustive resampling, a capability
that flat prompt-based methods notably lack due to their absence of structured, feedback-driven repair
mechanisms. (See Appendix for more experiment results on VLM)

Drawing Arrange Blocks Arrange YCB
Star Arrow Letters Enclosed | Pyramid Line Packing Unstack | Packing Stacking
InstructFlow 100% 80% 100% 100 % 90 % 100% 90 % 90 % 60 % 70%
InstructFlow
w/o Planner Agent 90% 80% 80% 100% 50% 90% 50% 40% 40% 40%
InstructFlow
w/o Constraint Agent | 100% 80% 100% 80% 40% 100% 60% 60% 30% 40%

Table 2: Ablation study results (% task success) highlighting the contributions of the InstructFlow
Planner and Symbolic Constraint Generator.

Ablation results in Table 2] highlight the distinct roles of symbolic planning and constraint induction
in InstructFlow’s performance. Without the Planner, the system loses its ability to structure tasks

hierarchically, resulting in brittle plans and severe failures in multi-step spatial tasks (e.g., Pyramid,
Packing, with up to 50% drops). Removing Constraint Induction disables feedback-driven repair,
forcing the model into blind retries that struggle with physical feasibility, leading to 30-40% degrada-
tion in cluttered and precision-sensitive tasks. These results confirm that InstructFlow’s robustness
stems from the synergy of symbolic task decomposition and failure-informed constraint refinement.

4.3 Robustness to Real-World Uncertainties

While our study is based on simulation, we explicitly model two key real-world uncertainties, sensor
noise and feedback ambiguity, to assess the robustness of InstructFlow under imperfect information,
a common challenge in physical robotic systems.

Perceptual Noise. To simulate sensor inaccuracies, we inject zero-mean Gaussian noise into object
poses. As shown in Table [3] InstructFlow maintains high performance even under severe noise
(o = 0.02, roughly 50% of object size). For instance, success rates remain above 70% across most
tasks, demonstrating strong perceptual robustness.

\Pyramid Line Packing Unstack YCB-Packing YCB-Stacking \ Avg. Drop

No noise 90% 100% 90% 90% 60% 70% -

o = 0.005 90% 100% 90% 90% 60% 70% 0%
o =0.01 80% 100% 80% 80% 50% 60% 8.3%
o =0.02 70% 90% 70% 70% 40% 50% 18.3%

Table 3: Performance under varying levels of perceptual noise.

Feedback-Layer Noise. We further evaluate the system’s resilience to feedback ambiguity by
simulating imperfect feedback, including (1) incorrect object references and (2) incomplete traces
with missing object IDs or causal descriptions. As summarized in Table] InstructFlow sustains
near-baseline performance across tasks, despite corrupted or partial feedback, with average success
rate drops limited to 11-16%.

| Pyramid Line Packing Unstack YCB-Pack YCB-Stack | Avg. Drop

Ideal Feedback 90% 100% 90% 90% 60% 70% -
Incorrect Feedback 60% 80% 70% 60% 30% 40% 16%
Incomplete Feedback 70% 90% 70% 70% 40% 50% 11%

Table 4: Performance under incorrect and incomplete feedback traces.

These results demonstrate that InstructFlow remains effective without perfect state estimation, key
characteristics for real-world deployment. While real-robot experiments are an important direction
for future work, these robustness evaluations offer strong empirical evidence of the system’s readiness
for real-world uncertainty.

4.4 Case Study

We take the Unstack task as a case study to illustrate the effectiveness of
InstructFlow. The goal is to place the green block into the green bowl, but
the task poses hidden challenges: the green block is often buried beneath a
stack, making direct access infeasible. Naive pick attempts cause collisions
with blocks above, violating the constraints and leading to failure.

Existing methods, such as PRoC3S, can detect execution failures and make
localized repairs, like inserting obstacle removal steps. However, they struggle
with multi-layered occlusions. When the green block is buried under multiple
stacked objects, PRoC3S lacks a structured mechanism to reason about the cor- Figure 4: Tllustrative
rect removal order. As a result, it often generates plans with invalid sequences image of the environ-

or actions that reintroduce collisions, ultimately failing to complete the task. ~ ment for the Unstack.

Symbolic Constraints In the first round of code generation, InstructFlow receives the goal: place
the green block into the green bowl. It constructs an initial instruction graph with two planning nodes:

pick object_4 and place object_7. Correspondingly, the code attempts to pick object_4 at
its current pose and place it at the target location.

Execution feedback, however, reveals repeated collisions during the pick action:

[Error Message]: "250 occurences: Step 0, Action pick, Violation: [Twin] Collision detected between
object_5 object gripper finger" and "250 occurences: Step O, Action pick, Violation: [Twin] Collision
detected between object_6 object gripper finger"

Given the failure feedback and generated code, the Constraint Generator localizes the root cause
to the pick action on object_4, identifying the involved variables: the manipulated object, its
pose, and the interfering objects (object_5, object_6). By analyzing the spatial configuration,
InstructFlow infers that the gripper’s approach vector intersects with the stacked obstacles, violating
collision constraints. This reasoning leads to the generation of explicit symbolic constraints:

@unstack := Clear0f (gripper, object_5) A ClearOf(gripper, object_6)

These constraints distill raw collision feedback
into symbolic predicates that express the essen-
tial condition: the gripper must reach the target §
without obstruction. This abstraction transforms o
a low-level failure into a reusable, structured sig- §
nal for graph updates and targeted code repair. 10

11 # subgoal 2: Place
12 plan.append (Action ("pl.

Dynamic InstructFlow Graph Update. Given 3
the symbolic constraints, InstructFlow Planner i ¢
dynamically updates the instruction graph with =
reasoning nodes, which model the spatial and % ,
logical dependencies in the scene. 3 plan

t_6 (the yellow block)
ts["ob

object_6"
ick", block6.pose.point))

al

Pick object !
ial.ob:

» block5.pose.point[2]1))

block)

nitial.objects["object 4"
pend (Action ("pick”, blockd.pose.point))

al 6: Place object 4 into object 7 (the green bowl)

Specifically, the updated graph includes a 2 o7 - initieion o

spatial reasoning node vF7,, , that ana- %5 sian sepenhin e ettaen, y yoottass =)
lyzes vertical stacking relations between objects,
inferring that object_5 and object_6 are Figure 5: A code snippet illustrating how InstructFlow
stacked above object_4 via symbolic below repairs the Unstack plan by intuitively injecting a tar-

relations. Based on this output, an object geted object removal routine aut_omatically derived from
selection reasoning node prgson InstructFlow’s structural reasoning.

identifies object_5 and object_6 as obstacles to be removed according to the induced ClearOf
constraints. A logic reasoning node v%‘izl‘;"g“ic then determines the action sequence that satisfies
these constraints, ensuring the objects are unstacked top-down. These reasoning nodes collectively
refine the instruction graph by introducing new planning nodes to first move object_6 (yellow), then

object_5 (teal), and finally pick object_4 (green), reflecting the inferred symbolic dependencies.

Code Repair. Based on the updated instruction graph, Code Generator regenerates the executable
code to satisfy the induced symbolic constraints. Unlike black-box retries, the code repair process is
explicitly guided by InstructFlow’s graph structure, ensuring that prerequisite actions (e.g., obstacle re-
moval) are correctly sequenced before the primary task. As shown in Fig.[5] the repaired code respects
both spatial constraints (via clear placement of obstacles) and temporal dependencies (via correct
unstacking order), demonstrating InstructFlow’s ability to produce interpretable, constraint-compliant
programmatic policies. We provide more case studies across different tasks in Appendix

5 Conclusions

We presented InstructFlow, a symbolic and feedback-driven framework for robotic code generation
that introduces an instruction graph to decompose tasks and enable interpretable, constraint-aware
planning. By integrating structured symbolic reasoning and a reusable constraint vocabulary, In-
structFlow supports targeted plan repair, avoids full-plan regeneration, and significantly enhances
robustness in manipulation tasks. Empirical results across challenging benchmarks validate the
system’s ability to handle long-horizon, constraint-sensitive scenarios with improved success rates
and sample efficiency. Looking ahead, we plan to extend InstructFlow to incorporate visual grounding
and multi-modal constraint induction, enabling even richer symbolic reasoning from unstructured
feedback in the physical world.

10

Acknowledgments

This research is supported by the National Research Foundation, Singapore and Infocomm Media
Development Authority under its Trust Tech Funding Initiative, Career Development Fund (CDF) of
the Agency for Science, Technology and Research (A*STAR) (No: C233312007, No: C243512014),
and the National Research Foundation, Singapore under its Al Singapore Programme (AISG Award
No: AISG-NMLP-2024-003), and, in part by the National Natural Science Foundation of China (No.
U2341229, No. 62476110); the National Key R&D Program of China (No. 2023 YFF0905400, No.
2021ZD0112500); the Key R&D Project of Jilin Province (No. 20240304200SF); the Key R&D
Program of Shanxi Province, China (2025GH-YBXM-020). Any opinions, findings and conclusions
or recommendations expressed in this material are those of the authors and do not reflect the views of
the National Research Foundation, Singapore, and Infocomm Media Development Authority.

References

[1] Junting Chen, Yao Mu, Qiaojun Yu, Tianming Wei, Silang Wu, Zhecheng Yuan, Zhixuan Liang,
Chao Yang, Kaipeng Zhang, Wenqi Shao, Yu Qiao, Huazhe Xu, Mingyu Ding, and Ping Luo.
Roboscript: Code generation for free-form manipulation tasks across real and simulation. CoRR,
abs/2402.14623, 2024.

[2] Aidan Curtis, Xiaolin Fang, Leslie Pack Kaelbling, Tomds Lozano-Pérez, and Caelan Reed
Garrett. Long-horizon manipulation of unknown objects via task and motion planning with
estimated affordances. In 2022 International Conference on Robotics and Automation, ICRA,
pages 1940-1946, 2022.

[3] Aidan Curtis, Nishanth Kumar, Jing Cao, Tomas Lozano-Pérez, and Leslie Pack Kaelbling.
Trust the proc3s: Solving long-horizon robotics problems with llms and constraint satisfaction.
In Conference on Robot Learning, volume 270, pages 1362—-1383, 2024.

[4] Neil T. Dantam, Zachary K. Kingston, Swarat Chaudhuri, and Lydia E. Kavraki. Incremental
task and motion planning: A constraint-based approach. 2016.

[5] Yuqing Du, Ksenia Konyushkova, Misha Denil, Akhil Raju, Jessica Landon, Felix Hill, Nando
de Freitas, and Serkan Cabi. Vision-language models as success detectors. In Conference on
Lifelong Learning Agents, 22-25 August 2023, volume 232 of Proceedings of Machine Learning
Research, pages 120136, 2023.

[6] Jiafei Duan, Wilbert Pumacay, Nishanth Kumar, Yi Ru Wang, Shulin Tian, Wentao Yuan, Ranjay
Krishna, Dieter Fox, Ajay Mandlekar, and Yijie Guo. AHA: A vision-language-model for
detecting and reasoning over failures in robotic manipulation. In The Thirteenth International
Conference on Learning Representations, ICLR, 2025.

[7] Caelan Reed Garrett, Rohan Chitnis, Rachel M. Holladay, Beomjoon Kim, Tom Silver,
Leslie Pack Kaelbling, and Toméas Lozano-Pérez. Integrated task and motion planning. Annu.
Rev. Control. Robotics Auton. Syst., 4:265-293, 2021.

[8] Yanjiang Guo, Yen-Jen Wang, Lihan Zha, and Jianyu Chen. Doremi: Grounding language model
by detecting and recovering from plan-execution misalignment. In IEEE/RSJ International
Conference on Intelligent Robots and Systems, IROS, 2024.

[9] Siyuan Huang, Zhengkai Jiang, Hao Dong, Yu Qiao, Peng Gao, and Hongsheng Li. Instruct2act:
Mapping multi-modality instructions to robotic actions with large language model. CoRR,
abs/2305.11176, 2023.

[10] Wenlong Huang, Chen Wang, Ruohan Zhang, Yunzhu Li, Jiajun Wu, and Li Fei-Fei. Voxposer:
Composable 3d value maps for robotic manipulation with language models. In Conference on
Robot Learning, CoRL 2023, volume 229 of Proceedings of Machine Learning Research, pages
540-562, 2023.

[11] Leslie Pack Kaelbling and Tomds Lozano-Pérez. Hierarchical task and motion planning in the
now. In IEEE International Conference on Robotics and Automation, ICRA, pages 1470-1477,
2011.

11

[12] George Konidaris. On the necessity of abstraction. Current opinion in behavioral sciences,
29:1-7, 2019.

[13] Jingyao Li, Pengguang Chen, Sitong Wu, Chuanyang Zheng, Hong Xu, and Jiaya Jia.
Robocoder: Robotic learning from basic skills to general tasks with large language models.
CoRR, abs/2406.03757, 2024.

[14] Jacky Liang, Wenlong Huang, Fei Xia, Peng Xu, Karol Hausman, Brian Ichter, Pete Florence,
and Andy Zeng. Code as policies: Language model programs for embodied control. In IEEE
International Conference on Robotics and Automation, ICRA, pages 9493-9500, 2023.

[15] Yichao Liang, Nishanth Kumar, Hao Tang, Adrian Weller, Joshua B. Tenenbaum, Tom Silver,
Jodo F. Henriques, and Kevin Ellis. Visualpredicator: Learning abstract world models with
neuro-symbolic predicates for robot planning. In The Thirteenth International Conference on
Learning Representations, ICLR, 2025.

[16] Bo Liu, Yuqgian Jiang, Xiaohan Zhang, Qiang Liu, Shiqi Zhang, Joydeep Biswas, and Peter
Stone. LLM+P: empowering large language models with optimal planning proficiency. CoRR,
abs/2304.11477, 2023.

[17] Zeyi Liu, Arpit Bahety, and Shuran Song. REFLECT: summarizing robot experiences for failure
explanation and correction. In Conference on Robot Learning, CoRL 2023, volume 229, pages
3468-3484, 2023.

[18] Yecheng Jason Ma, Shagun Sodhani, Dinesh Jayaraman, Osbert Bastani, Vikash Kumar, and
Amy Zhang. VIP: towards universal visual reward and representation via value-implicit pre-
training. In The Eleventh International Conference on Learning Representations, ICLR 2023.

[19] Yao Mu, Junting Chen, Qinglong Zhang, Shoufa Chen, Qiaojun Yu, Chongjian Ge, Runjian
Chen, Zhixuan Liang, Mengkang Hu, Chaofan Tao, Peize Sun, Haibao Yu, Chao Yang, Wenqi
Shao, Wenhai Wang, Jifeng Dai, Yu Qiao, Mingyu Ding, and Ping Luo. Robocodex: Multimodal
code generation for robotic behavior synthesis. In Forty-first International Conference on
Machine Learning, ICML, 2024.

[20] Niklas Muennighoff, Qian Liu, Armel Randy Zebaze, Qinkai Zheng, Binyuan Hui, Terry Yue
Zhuo, Swayam Singh, Xiangru Tang, Leandro von Werra, and Shayne Longpre. Octopack:
Instruction tuning code large language models. In The Twelfth International Conference on
Learning Representations,ICLR, 2024.

[21] Rafael Rodriguez-Sanchez, Benjamin Adin Spiegel, Jennifer Wang, Roma Patel, Stefanie Tellex,
and George Konidaris. Rlang: A declarative language for describing partial world knowledge to
reinforcement learning agents. In International Conference on Machine Learning, ICML, 2023.

[22] Claire Schlesinger, Arjun Guha, and Joydeep Biswas. Creating and repairing robot programs in
open-world domains. CoRR, abs/2410.18893, 2024.

[23] Keisuke Shirai, Cristian C. Beltran-Hernandez, Masashi Hamaya, Atsushi Hashimoto, Shohei
Tanaka, Kento Kawaharazuka, Kazutoshi Tanaka, Yoshitaka Ushiku, and Shinsuke Mori. Vision-
language interpreter for robot task planning. In IEEE International Conference on Robotics and
Automation, ICRA, pages 2051-2058, 2024.

[24] Tshika Singh, Valts Blukis, Arsalan Mousavian, Ankit Goyal, Danfei Xu, Jonathan Tremblay,
Dieter Fox, Jesse Thomason, and Animesh Garg. Progprompt: Generating situated robot
task plans using large language models. In IEEE International Conference on Robotics and
Automation, ICRA, pages 11523-11530, 2023.

[25] Marta Skreta, Naruki Yoshikawa, Sebastian Arellano-Rubach, Zhi Ji, Lasse Bjgrn Kristensen,
Kourosh Darvish, Aldn Aspuru-Guzik, Florian Shkurti, and Animesh Garg. Errors are useful
prompts: Instruction guided task programming with verifier-assisted iterative prompting. CoRR,
abs/2303.14100, 2023.

12

[26]

[27]

(28]

[29]

[30]

[31]

[32]

Siddharth Srivastava, Eugene Fang, Lorenzo Riano, Rohan Chitnis, Stuart Russell, and Pieter
Abbeel. Combined task and motion planning through an extensible planner-independent
interface layer. In 2014 IEEE International Conference on Robotics and Automation, ICRA,
pages 639-646, 2014.

Hao Tang, Darren Key, and Kevin Ellis. Worldcoder, a model-based LLM agent: Building
world models by writing code and interacting with the environment. In Advances in Neural
Information Processing Systems 38: Annual Conference on Neural Information Processing
Systems 2024, NeurIPS, 2024.

Karthik Valmeekam, Matthew Marquez, Alberto Olmo Hernandez, Sarath Sreedharan, and
Subbarao Kambhampati. Planbench: An extensible benchmark for evaluating large language
models on planning and reasoning about change. In Advances in Neural Information Processing
Systems 36: Annual Conference on Neural Information Processing Systems 2023, NeurlPS
2023, 2023.

Lirui Wang, Yiyang Ling, Zhecheng Yuan, Mohit Shridhar, Chen Bao, Yuzhe Qin, Bailin
Wang, Huazhe Xu, and Xiaolong Wang. Gensim: Generating robotic simulation tasks via large
language models. In The Twelfth International Conference on Learning Representations, ICLR
2024.

Shu Wang, Muzhi Han, Ziyuan Jiao, Zeyu Zhang, Ying Nian Wu, Song-Chun Zhu, and

Hangxin Liu. Lim3: Large language model-based task and motion planning with motion failure
reasoning. In IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS,
pages 1208612092, 2024.

Andy Zeng, Pete Florence, Jonathan Tompson, Stefan Welker, Jonathan Chien, Maria Attarian,
Travis Armstrong, Ivan Krasin, Dan Duong, Vikas Sindhwani, and Johnny Lee. Transporter
networks: Rearranging the visual world for robotic manipulation. In 4th Conference on Robot
Learning, CoRL 2020, volume 155 of Proceedings of Machine Learning Research, pages
726747, 2020.

He Zhao, Isma Hadji, Nikita Dvornik, Konstantinos G. Derpanis, Richard P. Wildes, and Allan D.

Jepson. P3iv: Probabilistic procedure planning from instructional videos with weak supervision.
In IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022, pages
2928-2938. IEEE, 2022.

13

NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The abstract and introduction accurately describe the main contributions of the
paper, including the proposed method and experimental results, which are consistent with
the content in the main body.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: The limitations of the method, are discussed in Section 4.
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

 The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

14

Answer: [NA]

Justification: We don’t have assumptions and proof in this work. a complete (and correct)
proof?

Guidelines:

» The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

¢ Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: Experimental setups and details are fully documented in Section 4, ensuring
reproducibility.

Guidelines:

» The answer NA means that the paper does not include experiments.
* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

15

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]
Justification: We provide anonymous version of full runnable prompts and code.
Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: Detailed descriptions are included in Section 4 and Appendix B.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]
Justification: Detailed descriptions are included in Section 4.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

16

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

8.

10.

* The assumptions made should be given (e.g., Normally distributed errors).

e It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: Detailed descriptions are included in Section 4.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]
Justification: The research fully complies with the NeurIPS Code of Ethics.
Guidelines:

e The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).
Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: The proposed method aims to improve the robustness and interpretability
of robotic manipulation systems, which may have positive societal impacts in terms of
safer and more reliable automation. Potential risks, such as misuse of autonomous repair
systems in critical applications without proper safety verification, are acknowledged as
future considerations.

Guidelines:

» The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

17

https://neurips.cc/public/EthicsGuidelines

11.

12.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: The paper poses no such risks.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: All datasets and code libraries used are properly cited with version numbers
and licenses indicated (see Section 4 and References).

Guidelines:

* The answer NA means that the paper does not use existing assets.
 The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

18

13.

14.

15.

* If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer:
Justification: The paper does not release new assets.
Guidelines:

» The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: the paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

19

paperswithcode.com/datasets

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [Yes]

Justification: The paper describes the usage of LLMs as an important and original component
of the proposed method. Specifically, LLMs are integrated into the core code generation
process, where they are conditioned by the dynamically updated instruction graph and
symbolic reasoning modules to produce context-aware and constraint-compliant robotic
manipulation code. The LLM is not used for writing, editing, or formatting purposes,
but serves as a central component of the proposed feedback-driven planning and repair
framework, contributing directly to the scientific methodology and originality of the work.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

20

https://neurips.cc/Conferences/2025/LLM

Appendix

This appendix provides detailed information about our method and experimental setup. It is organized
as follows:

* In section[A] we first describe the prompting scheme used by different agents in InstructFlow,
including both the shared initialization prompt and agent-specific templates for the planner,
code generator, and symbolic constraint generator.

* In section [B.I] we provide additional details on our experimental setup, including how
programs are instantiated and executed within the simulation pipeline. We also identify
critical limitations in the original PRoC3S evaluation protocol and introduce a VLM-based
semantic check to address them.

* In section[B.2.1], we present an extended experiment exploring the effect of visual inputs
on planning, followed by a summary of symbolic constraints induced across different

manipulation tasks in section[B.2.2]

* In section [B.2.3] we include several representative case studies that illustrate how In-
structFlow recovers from planning failures through symbolic reasoning and instruction
graph-guided code repair.

21

A InstructFlow Prompting Details

Here we provide details on the prompting scheme used for each agent in InstructFlow. The prompting
template consists of two parts: a shared initialization template and agent-specific prompts. The
complete structure is illustrated as follows:

Shared Prompt Templates:

{{{system_prompt}}}
{{{domain_setup_codel}}}

s {{{skill_prefacel}}}

)

{{{domain_skills}}}

Agent-Specific Prompt Templates:

{{{planner_role}}}
{{{code_generator_role}}}

3 {{{constraint_generator_rolel}}}

A.1 Shared Prompt Templates

All agents share a common initial prompt structure, consisting of: (a) system_prompt, (b)
domain_setup_code, (c) skill_preface, (d) domain_skills. This shared context is constructed
following the initial prompt setup introduced in PRoC3S [3], where detailed environment and skill
specifications are defined. We adopt the same structure without modification, and refer readers to the
original paper for full specification details.

A.2 Agent-Specific Prompt Templates

As outlined in Section[3| we have three primary agents: the InstructFlow Planner, which decom-
poses the high-level goal into structured subgoals through instruction graph construction; the Code
Generator, which translates the instruct graph into executable code snippets; and the Constraint
Generator, which analyzes execution feedback to induce symbolic constraints for graph-guided code
repair.

A.2.1 InstructFlow Planner

Instruction Graph Construction Prompt

<inputs>
{task_goall}
{initial_state}

</inputs>

You are responsible for constructing an adaptive instruction graph that serves as an intermediate reasoning structure for robotic task
planning. Your task is to generate a sequence of base planning nodes that decompose the task into subgoals. These nodes form the
initial executable backbone of the plan. Do not include any reasoning nodes at this stage. Each node should include a semantic
description of the subgoal, which can represent either:

- a concrete manipulation action (e.g., pick, place), or
- a prerequisite operation (e.g., selecting a target object, removing an obstacle).

Ensure subgoals are:
- logically ordered,
- collectively sufficient to achieve the goal.

Node Type: Planning Node

{ "id": "nl",

"type": "action",

"inputs": ["goal", "initial_state"],
"output": <"natural language subgoal">}

22

<inputs>
{task_goall}
{initial_state}
{last_instruction_graph}
{symbolic_constraint}
</inputs>

Your task is to revise the instruction graph in response to symbolic constraints inferred from execution failures.This process involves
constructing a reasoning flow that incrementally generates a refined instruction to update downstream planning nodes. You need to
follow these steps:

Step 1: Reasoning Node Selection
You need to insert one or more reasoning nodes upstream of affected planning nodes guiding by symbolic constraints. Each reasoning
node should perform a symbolic transformation relevant to the failure, and output an intermediate instruction fragment.

Step 2: Instruction Flow Construction

Sequentially process each reasoning node, using its output as an instruction fragment that incrementally updates the evolving
task description. These fragments form a directed information flow. At the end of the reasoning node, concatenate all instruction
fragments to form a single composite instruction that encodes the full reasoning chain and can be used to update downstream
planning nodes.

Step 3: Instruction Graph Update
Use the composite instruction to update the planning nodes. Replace the original subgoal with this revised version, which
incorporates both the task intent and refinements. The updated subgoals of instruction graph should then be passed as the final
instruction to the code generator.

We define five types of reasoning nodes, each with its specific functionality and structure as described below:

-The spatial relation reasoning node analyzes pairwise spatial relationships between all visible objects to generate a spatial relation

graph:
Node Type: Spatial Relation Reasoning Node
{ "id": "2,

woon

"type": "spatial_relation_reasoning_node",
"input": ["initial_state"],
"output": <"spatial_relation_graph">}

-The object density reasoning node estimate the local spatial density around each object to reflect how crowded its surroundings are.
Node Type: Object Density Reasoning Node

{ "id": "n3",

"type": "object_density_analysis_node",

"input": ["initial_state"],

"output": <"object_density_map">}

-The object selection reasoning node combines the goal, the output of the spatial perception node, the output of the object density
analysis node as the inputs to infer which correct manipulated object(s) should be selected to accomplish the goal.
Node Type: Object Selection Reasoning Node
{ "id": "n4",
"type": "object_selection_reasoning_node",
"input": ["goal", "spatial_relations_graph", "object_density_map", "symbolic_constraint"],
"output": <"manipulated_objects">}

-The plan logic Reasoning Node combines the goal, the output of object selection reasoning node, and the symbolic predicate as the
inputs to infer the correct execution order among the manipulated targets.
Node Type: Plan Logic Reasoning Node
{ "id": "n5",
"type": "plan_logic_reasoning_node",
"input": ["goal", "manipulated_objects", "symbolic_constraint"],
"output": <"execution_order">}

-The parameter range reasoning node combines the goal and the symbolic predicate to adjusts the ranges of action plan parameters
based on explicit rules defined in symbolic predicates, and outputs instructions indicating whether to expand or shrink the ranges to
meet task requirements.
Node Type: Parameter Range Reasoning Node
{ "id": "n6",
"type": "parameter_range_adjustment_node",
"inputs": ["goal", "symbolic_constraint"],
"output": <"range_adjustment_instruction">}

23

A.2.2 Code Generator

Code Generator Pr

<inputs>
{task_goal}
{initial_state}
{subgoals_instruction}
</inputs>

You are a code generation agent in a robotic planning system. Your goal is to generate two things:

First, generate a python function named ‘gen_plan‘ that can take any discrete or continuous inputs. No list inputs are allowed and
return the entire plan with all steps included where the parameters to the plan depend on the inputs. The plan should be generated
based on the initial high-level computation graph, which is composed of a sequence of subgoals. Each subgoal corresponds to either
a manipulation action or a prerequisite operation.

Second, generate a python function ‘gen_domain* that returns a set of bounds for the continuous or discrete input parameters. The
number of bounds in the generated domain should exactly match the number of inputs to the function excluding the state input.

The function you give should always achieve the goal regardless of what parameters from the domain are passed as input. The
‘gen_plan‘ function therefore defines a family of solutions to the problem. Explain why the function will always satisfy the goal
regardless of the input parameters. Make sure your function inputs allow for as much variability in output plan as possible while still
achieving the goal. Your function should be as general as possible such that any correct answer corresponds to some input parameters
to the function.

The main function should be named EXACTLY ‘gen_plan‘ and the domain of the main function should be named EXACTLY
‘gen_domain‘. Do not change the names. Do not create any additional classes or overwrite any existing ones. Aside from the inital
state all inputs to the ‘gen_plan® function MUST NOT be of type List or Dict. List and Dict inputs to ‘gen_plan‘ are not allowed.
Additionally, the input to ‘gen_domain‘ must be exactly the ‘initial:RavenBelief* argument, even if this isn’t explicitly used within
the function!

A.2.3 Symbolic Constraint Generator

onstraint Generator P

<inputs>
{task_goal}
{initial_state}
{failure_feedback}
{generated_code}
</inputs>

You are a symbolic reasoning agent tasked with diagnosing execution failures in robotic manipulation tasks. Your goal is to induce
generalizable symbolic constraints that explain the failure and can guide future plan correction. You task is to perform the following
reasoning steps to generate symbolic constraint(s) for plan repair:

Step 1. Failure-relevant retrieval:

Identify the exact code segment responsible for triggering the failure. In a failure feedback, “Step N” refers to the N-th action
generated by the code (zero-based index).Specifically, it corresponds to the N-th plan.append(Action(...)) call in the code. For
example: “Step 1, Action: place” refers to the second action in the plan (index = 1).

Step 2. Code-level reasoning:
Extract all variables relevant to this failure, including:

-Manipulated objects.

-Object poses and spatial relations.
-Action parameters (e.g., offsets).
-Domain ranges for parameters.

Step 3. Diagnostic reasoning:
Based on the environment state and extracted variables, analyze the geometric or physical cause of failure. You must consider
multiple possible causes, including but not limited to:

- Geometric violations (e.g., collisions, unstable placement, path obstruction).
- Temporal inconsistencies (e.g., incorrect subgoal ordering, premature actions).
- Symbolic logical errors (e.g., wrong object selection, missing prerequisite conditions).

For physical causes, compute diagnostic metrics, including but not limited to:
- Proximity distances between relevant entities.

- Existence of collision-free paths.

- Stability metrics (e.g., center of mass projection).

For symbolic or logical causes, analyze:
- Whether the current action respects task-specific symbolic constraints.

24

- Dependencies between subgoals as defined in the instruction graph.
- Whether preconditions for the current subgoal are satisfied.

Provide a concise diagnosis explaining why the failure occurred, explicitly stating:
- The type of cause (physical, temporal, symbolic).
- The reasoning process leading to this conclusion.

You are not allowed to assume the cause based solely on the failure description. All conclusions must be verified through concrete
reasoning over environment state,task semantics, or diagnostic metrics.

Step 4. Symbolic Constraint Induction:
Given the diagnosis and variables, formulate a symbolic constraint that abstracts the failure into a general, reusable rule. You must
express the constraint using standard symbolic predicates, including but not limited to:

-Spatial relations: On, ClearOf, Aligned, StableOn...

-Temporal/ordering: Before, Precondition, Order...

-Semantic affordances: Reachable, Occludes, Graspable, Affords...

-Physical feasibility: ProximitySafe, PathClear, PlacementFeasible, ForceStable...

The constraint must express logical conditions involving task entities, their relationships, or parameter ranges, and be parameterized
with thresholds or bounds when applicable.

B Experiment Details and Additional Results

B.1 Experimental Setup Details
B.1.1 Program Instantiation and Simulation Pipeline

Our framework follows the same two-stage code generation and execution process used in PRoC3S [3].
Specifically, after generating the code that defines a task plan via LLM, the resulting Python function
consists of two components: get_plan() and get_domain().

The get_plan() function encodes a sequence of symbolic actions with continuous or discrete
parameters, corresponding to the subgoals decomposed in the instruction graph. The get_domain ()
function specifies the sampling bounds for each parameter from a predefined sampler. These samplers
(e.g., ContinuousSampler, GraspSampler) generate candidate values for plan parameters without
awareness of environmental constraints such as collisions or instability.

To ground the abstract plan into an executable one, we adopt the same strategy as PRoC3S: sample
n parameter instantiations from the domains defined in get_domain (), and for each instantiation,
evaluate the resulting plan in a physics-based simulator. If the plan violates any constraints (e.g.,
Kinematic, collisions, grasp, placement constraints), the simulator reports detailed constraint violation
feedback. Once a constraint-free plan is found in simulation, it is deployed in the real environment.

B.1.2 Fixing Protocol Limitations in PRoC3S Evaluation

While our experimental setup builds directly on the original PRoC3S [3]] framework and reuses
its environment, skill library, and simulation interface, we identified structural limitations in its
evaluation protocol. Specifically, PRoC3S treats any execution that does not explicitly violate
simulator constraints as successful, regardless of whether the task goal has been semantically achieved.

Incorrect but constraint-free Plan Misclassified as Successful For example, a plan may place an
object in an incorrect position, fail to form the required structure (e.g., a pyramid), or manipulate
the wrong object altogether. As long as no collisions or instability are triggered in simulation, such
plans are incorrectly classified as successful. Figure[6]illustrate several cases where the task goal was
clearly unmet, yet no feedback was generated to initiate replanning.

Fixing the Evaluation Protocol via VLM Check To address this fundamental evaluation gap, we
introduce a semantic-level verification step using a vision-language model (GPT-40). After executing
each plan, we render the final scene and prompt the VLM to assess whether the natural language
goal has been achieved. If not, the failure is recorded and propagated, triggering a replanning
cycle. Specifically, we explicitly instruct the VLM to evaluate structured visual conditions and
provide clear success criteria along with positive and negative examples, enabling it to produce
consistent and grounded success judgments.

25

§- 4
AR AR

(a) Pyramid: the top block (b) Unstack: an incorrectly (c) Packing: there is a object

does not make contact with colored block was placed into left outside the designated
the lower-left block to form a the target bowl. container area.
pyramid.

Figure 6: Task failures caused by incorrect plans that are accepted as successful by PRoC3S, despite
violating the task goal, because they do not trigger any constraint violations.

This fix does not modify the core PRoC3S planning mechanism, but augments the evaluation
logic with a reliable, goal-aware success signal. It enables all baselines—including PRoC3S and
InstructFlow—to be assessed under a consistent, semantically meaningful criterion. While this change
may lower the reported success rates of prior methods, we consider it essential for fair and rigorous
comparison, especially in tasks with under-specified goals or ambiguous execution semantics.

Goal: Stack a Pyramid out VLM-based Success Check Prompt

of any three blocks
<inputs>
{task_goal}
{positive_example}
; {negative_example}
— {final_scene}
</inputs>

You are given a goal instruction and an image showing the final scene
after executing a robotic plan. Your task is to determine whether the final

scene satisfies this goal.

B

“No, the blocks are Feedback

not arranged in 2 Success criteria (Pyramid: stack a pyramid out of any three blocks):

pyramid formation”. == a valid pyramid consists of two blocks placed side by side as the base,
——————————————— and a third block placed on top, centered across the base blocks. The top
block must visibly rest on and be supported by both base blocks. Small
misalignments are acceptable as long as the overall structure clearly

= forms a pyramid.

Answer with one of the following:

- Answer: Yes

- Answer: No
Feedback - If No, provide a brief explanation.
° “Yes”. Q_—;

Figure 7: VLM-based success check on two execution plans for the Pyramid task. The upper plan
produces a non-standard pyramid where the top block does not contact the left base block. The VLM
detects this semantic error and returns “No”” with reason. The lower plan yields a correct pyramid
structure, and the VLM responds with ‘““Yes”. This demonstrates the importance of incorporating
VLM check as a complementary layer to evaluation protocol.

B.2 Additional Experiment Results and Cases

B.2.1 Additional Experiment
To assess the potential of vision-language models (VLMs) for improving task planning, we conduct

an additional experiment where our existing GPT-40-based reasoning agent receive both the goal and
an image of the initial scene, enabling multimodal visual reasoning.

26

This vision-augmented setup improves the planner’s ability to reason under partial observability or
ambiguous symbolic states. As shown in Table[5] we observe performance gains in several visually
grounded tasks, including Packing (Blocks), Unstack, and Packing (YCB), where early-stage visual
cues help the system make better object selection or ordering decisions.

Drawing Arrange Blocks Arrange YCB

Star Arrow Letters Enclosed | Pyramid Line Packing Unstack | Packing Stacking
LLM? (w/ vision) 40% 40% 80% 50% 0% 40% 30% 0% 0% 10%
CaP (w/ vision) 10% 0% 40% 30% 20% 20% 20% 20% 40% 10%
PRoC3S (w/ vision) 90% 80% 80% 90% 60% 70% 60% 80% 40% 40%
InstructFlow (w/ vision) | 100% 80% 100% 100% 90% 100% 90% 100% 60% 70%

Table 5: Task success rates (%) across drawing, block arrangement, and YCB manipulation tasks
using VLM-based visual reasoning. Bold indicates the best-performing results.

To further evaluate the planning efficiency of InstructFlow, we compare it with the baseline system
PROC3S in terms of (1) average number of feedback queries required per task and (2) end-to-end
wall-clock latency.

Feedback Efficiency. As shown in Table [6] InstructFlow significantly reduces the number of
feedback-driven repair cycles. Tasks that require 2-5 full regenerations in PROC3S are typically com-
pleted in 1-3 symbolic repair steps in InstructFlow, resulting in a reduction of feedback interactions
by approximately 37% on average.

Drawing Arrange Blocks Arrange YCB
Star Arrow Letters Enclosed | Pyramid Line Packing Unstack Packing Stacking
PRoC3S 0.50£0.20 1.00£0.20 0.60+0.30 0.50+1.50 | 1.90+2.25 1.20+1.32 1.80+2.10 2.80+2.22 | 3.10+£3.04 2.90+2.70
InstructFlow | 0.00£0.00 1.00+0.20 0.10£0.20 0.00+0.00 | 1.30+0.82 0.20+0.30 1.50+1.22 1.90+1.82 | 2.30+2.12 2.00+2.10

Table 6: Average number of feedback queries per task (mean = std).

Wall-clock Latency. Despite employing a multi-agent planning architecture, InstructFlow does
not incur higher computational cost. As shown in Table[7] it achieves an average end-to-end latency
reduction of approximately 4.7%. This improvement is attributed to symbolic constraints that prune
infeasible code paths and reduce retry cycles in LLM sampling.

Drawing Arrange Blocks Arrange YCB
Star Arrow Letters Enclosed Pyramid Line Packing Unstack Packing Stacking
PRoC3S 22.39+3.65 24.18+3.77 31.16£5.90 39.23%53.62 [152.79+124.54 52.64+40.97 197.14+210.38 142.82+142.34 | 988.23£940.72 61.36£19.78
InstructFlow | 20.22+4.12 24.20£3.58 26.27+4.10 36.21+49.25 | 140.93£131.37 48.21£37.53 204.76x227.24 124.30+121.44 | 892.18+880.84 63.27+25.51

Table 7: Wall-clock latency (in seconds, mean =+ std) per task.

These results show that the modular design of InstructFlow not only improves feedback efficiency
but also retains low computational latency, making it scalable for complex tasks involving multiple
agents and symbolic constraints.

B.2.2 Table of Symbolic Constraints Discovered

Table [§] summarizes the symbolic constraints that were automatically induced based on failure
feedback across different manipulation tasks. From a content perspective, we highlight the following
key properties:

Structural Consistency. All induced constraints conform to the symbolic constraint formulation
presented in Section [3.3] Each constraint instance can be expressed either as a relational predicate
R;(eq,ep) or a physical threshold condition f;(©) & 7. This ensures that all constraints are logically
composable, interpretable, and grounded in the formal symbolic space defined by ¢.

Diverse Coverage of Constraint Types. The constraint set spans a wide range of task-relevant
constraint categories, including:

» Spatial safety: ProximitySafe, Clear0Of, PathClear. ..

* Placement feasibility: PlacementFeasible, Aligned, StableOn. ..

¢ Geometric parameters: Distance, Offset, CenterOfMass. ..

» Temporal logic: Before, Order

27

These categories capture both physical feasibility and symbolic reasoning failure modes, supporting
a broad range of corrective strategies.

Notably, the table does not include constraints for the Drawing tasks. This is because the drawing
tasks are comparatively simpler in structure and were typically solved by the planner in a single
attempt without triggering any failure-driven refinement. As a result, no symbolic constraint induction
process was invoked for these tasks, and they are therefore excluded from this table.

Task Symbolic Constraints

StableOn(?block_top, ?block_bottom);
ProximitySafe(?block_bottom);

PathClear(?gripper, ?block);

Before(place(block_top), place(?block_bottom));

Pyramid Distance(?block_bottom) € [0, 0.04]

Aligned(?block_bottom) A On(block_top, ?block_bottom);
Order(Place(block_bottom1), Place(block_bottom2), Place(block_top));
Contact(block_top, ?block_bottom) A CloseTogether(?block_bottom);
CenterOfMass(block_top) € SupportArea(?block_bottom)

StableOn(?block, ?table);
Line Alignment(?block);
Alignment_tolerance € [—0.01,0.01]

ProximitySafe(?block, ?boundary);
PlacementFeasible(?block, square_region);

Packing (Blocks) | WithinBounds(?block, region_center, 2*blcok_size);
ProximitySafe(block, region_center) A
WithinDistance(?block, region_center, ?max_distance)

StableOn(?block, ?bowl);

ProximitySafe(?gripper, ?block);
Clearof(?gripper,?obstacle);

Unstack (Blocks) | PlacementFeasible(green_block, green_bowl);
Inside(green_block, green_bowl);
Aligned(block_center, bowl_center);
NotStacked(green_block, ?obstacle) A offset_z > 0.03

ProximitySafe(?gripper, object);

GraspFeasible(?grasp, ?object_pose);

ProximitySafe(object, table_center);

Packing (YCB) Distance(?object, table_center) < 0.06;
PlacementFeasible(?object, center, threshold) A threshold = 0.06;
Graspable(?grasp, ?object);

CollisionFree(?gripper, ?object)

OnTop(object_a, object_b);

ClearOf(object_a, surface);

ClearSurface(object_b);

Stacking (YCB) PlacementFeasible(object_a, object_b);
StableOn(object_a, object_b);
AlignedForStacking(object_a, object_b);
Graspable(?object, 7grasp) A CollisionFree(?object)

Table 8: Inducted constraints for each task across Arrange-Blocks and Arrange-YCB domains

B.2.3 Case study

In addition to the Unstack task discussed in section[4.4] we present several representative manip-
ulation tasks as case studies to further demonstrate the effectiveness and generality of our method.
For each task, we analyze the core planning difficulties, the symbolic constraints induced during
execution, and how InstructFlow dynamically updates the instruction graph to recover from failures.

Pyramid. The goal is to stack a Pyramid out of any three blocks, which means the robot need
to construct a pyramid-like structure by selecting any three available blocks: two as the base and
one stacked on top. The key challenge lies in both object selection and precise spatial configuration.
Specifically, the lateral distance between the two base blocks must be carefully chosen to ensure
that the top block can be stably placed across them. Furthermore, this task is especially sensitive to
execution noise: even if a plan passes all physical constraint checks in simulation, the same stack may
collapse in the real environment due to minor perturbations such as control inaccuracy or object pose

28

estimation errors. PRoC3S [3]] lacks a feedback mechanism to detect post-simulation failures. Once
a plan passes simulation, it is executed directly without verifying whether the real-world outcome
satisfies the goal. Our method addresses this by introducing a VLM-based validation step: the
executed scene is rendered and checked against the original goal, with replanning initiated if the
structure is incorrect.

In the first round of code generation, InstructFlow receives the goal: “Stack a pyramid out of any
three blocks.” The InstructFlow Planner constructs an initial instruction graph consisting of seven
planning nodes, each representing a subgoal in the pyramid assembly process. Guided by this graph,
the code generator produces an executable plan. However, after executing the plan, VLM-based
semantic validation reports a failure, indicating the following issue:

[Error Message]: "The blocks are not arranged in a pyramid formation"

Given the failure feedback and generated code, the Constraint Generator localizes the issue to the
code block responsible for pyramid construction, specifically the subgoal corresponding to subgoalb
in get_plan() and the of fset_x parameter defined in get_domain (). By examining the sampled
parameter values, InstructFlow infers that the current range of offset_x is too wide, causing the
base blocks to be placed too far apart. As a result, the top block either falls during execution or
forms a configuration that is not recognized as a pyramid by the VLM. This reasoning leads to the
generation of an explicit symbolic constraint:

@dist := Distance(?block_bottom) € [0,0.04]

Here, 0.04 corresponds to the environment-defined block size, ensuring that the top block can span
both base blocks without falling or misalignment.

Given the symbolic constraint, InstructFlow Planner dynamically updates the instruction graph by
introducing reasoning nodes that refine the value range of offset_x. Specifically, the updated graph
incorporates a parameter range refinement node v o, whose output is an instruction to
narrow the sampling bounds of offset_x.

Based on the updated instruction graph, the Code Generator regenerates the executable code
to satisfy the induced symbolic constraints. As shown in Figure 5, the regenerated code modi-
fies the get_domain() function by narrowing the sampling range of offset_x from the original
(BLOCK_SIZE, BLOCK_SIZE * 2) to (0, BLOCK_SIZE). This adjustment results in a tighter ar-
rangement of the base blocks, enabling the top block to rest stably and form a recognizable pyramid
structure. The final scene passes VLM validation, and the task is successfully completed.

Stacking (Arrange-YCB). This task requires the agent to stack one object on top of another,
selected from a diverse set of YCB objects with varied shapes, sizes, and physical properties.
The primary challenge lies in object selection: due to irregular geometries and asymmetric mass
distributions, not all object pairs are feasible for stable stacking. Therefore, selecting an appropriate
pair is critical to the success of the task. A second challenge arises from the lack of feedback handling
in PRoC3S. Due to shape mismatch or small execution disturbances, the stacked configuration may
fail in the real environment but without replanning.

In the first round of code generation, InstructFlow receives the goal: "Stack any object on any
other object". The InstructFlow Planner constructs an initial instruction graph consisting of
three planning nodes, corresponding to selecting two objects, picking the first object, and placing it
on top of the second. Guided by this structure, the Code Generator generates an executable plan.
However, after execution, VLM-based semantic validation reports a failure, indicating that the chosen
object pair did not result in a valid or stable stacked configuration.

[Error Message]: "No objects are stacked on top of each other"

Given the failure feedback and generated code, the Constraint Generator localizes the issue to the
code block responsible for selecting object pairs. Specifically, the analysis reveals that the object

29

def gen_plan(initial: RavenBelief,
base_x: float, base_y: float,
offset_x: float):
plan = []

Subgoal 1: Select three blocks for the pyramid
blocks = [obj for obj in initial.objects.values() if obj.category == "block"]
blockl, block2, block3 = blocks[:3]

L N e

Swo

Subgoal 2: Pick the first block for the base of the pyramid
plan.append (Action ("pick", blockl.pose.point)

S o2

Subgoal 3: Place the first block at the base position
plan.append (Action("place", [base_x, base_y, blockl.pose.point[2]]))

PV

Subgoal 4: Pick the second block for the base of the pyramid
plan.append (Action ("pick", block2.pose.point)

© o 2

Subgoal 5: Place the second block next to the first block at the base position, ensuring alignment

20 plan.append (Action("place", [base_x + offset_x, base_y, block2.pose.point[2]]))

2

22 # Subgoal 6: Pick the third block for the top of the pyramid

23 plan.append (Action ("pick", block3.pose.point)

24

25 # Subgoal 7: Place the third block on top of the first and second blocks to complete the pyramid
26 plan.append (Action ("place", [base x + offset_x / 2, base_y, blockl.pose.point[2] + BLOCK_SIZE]))
27

28 return plan

29

30 def gen domain(initial: RavenBelief):

31 return {

32 "base_ x": ContinuousSampler (TABLE BOUNDS[0] [0], TABLE BOUNDS[0][1] - BLOCK SIZE),

w
<@

"base_y": ContinuousSampler (TABLE BOUNDS[1][0], TABLE BOUNDS[1][1]),
- "offset_x": ContinuousSampler (BLOCK_SIZE, BLOCK SIZE * 2),
34 4+ "offset x": ContinuousSampler (0, BLOCK SIZE),

©w
S

w
@

Figure 8: A code snippet illustrating how InstructFlow repairs the Pyramid task plan: to correct the
code, InstructFlow incorporates a parameter range refinement node into the instruction graph
based on the induced symbolic constraint, which guides the regenerated code to reduce the sampling
range of offset_x in the get_domain function. This adjustment reduces the spacing between base
blocks, enabling a stable top placement and successful pyramid construction.

pair was selected via an environment-defined DiscreteSampler (), which randomly samples two
objects without considering any factors that influence stackability. As a result, the constraint generator
induces the following symbolic constraint to guide future selection:

Ostack := AlignedForStacking(object_a,object_b) A
PlacementFeasible(object_a,object_b)

Given the symbolic constraint, InstructFlow Planner dynamically updates the instruction graph
by introducing reasoning nodes that guide the selection of a physically compatible object pair
for stacking. Specifically, the updated graph includes a spatial_relation_reasoning_node
U spatiaqr t0 analyze relative object positions and an object_density_analysis_node
VT density t0 evaluate the local clutter surrounding each object. These outputs are fed into
an object_selection_reasoning node vy, ., which selects object_2 and object_4
as a feasible stacking pair based on the symbolic constraint SelectStackablePair. A
plan_logic_reasoning_node v, then determines the appropriate execution order, generating
a subgoal sequence: “Pick object_2” followed by “Place object_2 on top of object_4.".

Based on the updated instruction graph, the Code Generator regenerates the executable code to
satisfy the induced symbolic constraints. As shown in Figure 6, the regenerated code eliminates the
use of unconstrained object sampling in gen_domain (), replacing it with fixed object assignments
(object_2 and object_4) determined through reasoning nodes. This ensures that the selected
object pair adheres to the AlignedForStacking and PlacementFeasible constraints. The new
plan simplifies the domain by sampling only the grasp for the manipulated object and directly
encodes the stacking intent in the plan logic. With this targeted refinement, the resulting scene passes
VLM-based check, and the stacking task is successfully completed.

30

1 def gen_plan(initial: RavenBelief, object namel: str, graspl: RavenGrasp,
o) - object_name2: str, grasp2: RavenGrasp):
1 + def gen plan(initial: RavenBelief, grasp: RavenGrasp) :

3
4 plan = []
5
6 #Subogoa 1: Pick the first selected object
7 plan.append (Action ("pick", [object namel, graspl]))
8
9 #Subogoa 2: Get the pose of the second object to stack on top
10 o second_object_pose = initial.objects[object_name2].pose
11
12 #Subogoa 3: Place the first object on top of the second object
13 plan.append (Action ("place", [object namel, graspl, RavenPose (x=second object_pose.x,
14 y=second_object_pose.y, z=second object pose.z + BLOCK_SIZE)]))
15
) #Subogoa 1: Define the objects to be used in the plan
3 object_namel = "object_2" # apple
4 object_name2 = "object 4" # power drill
S
6 " #Subogoa 2: Pick the first selected object (apple)
7 plan.append (Action ("pick”, [object namel, grasp]))
8
9 #Subogoa 3: Get the pose of the second object (power drill) to stack on top
10 second_object_pose = initial.objects[object_name2].pose
11
12 #Subogoa 4: Place the first object (apple) on top of the second object (power_drill)
13 plan.append (Action("place", [object namel, grasp, RavenPose (x=second_object pose.x,
14 y=second_object pose.y, z=second object pose.z + BLOCK SIZE)]))
16 return plan - - B - B
17
18 def gen_domain(initial: RavenBelief):
19 object ids = list(initial.objects.keys())
20 return {
21 - "object namel": DiscreteSampler (object ids),
22 "graspl": GraspSampler(),
23 "object name2": DiscreteSampler (object_ids),
24 "grasp2": GraspSampler (),
25 i3]
5l -+ return {
16 "grasp": GraspSampler (),
17 }

Figure 9: A code snippet illustrating how InstructFlow repairs the Stacking task plan: to correct
the code, InstructFlow updates the instruction graph based on the induced symbolic constraint.
This update adjusts the subgoals from randomly selecting stacking targets to using a specifically
determined object pair, guiding the regenerated code to modify the corresponding logic in get_plan
and remove the random sampling from get_domain. This adjustment ensures the physical feasibility
of the stacking operation.

31

	Introduction
	Related Works
	Methodology
	Overview
	Instruction Graph Construction and Update
	Symbolic Constraint Induction from Execution Failures

	Experiments
	Experimental Setup
	Benchmark Experiments
	Robustness to Real-World Uncertainties
	Case Study

	Conclusions
	InstructFlow Prompting Details
	Shared Prompt Templates
	Agent-Specific Prompt Templates
	InstructFlow Planner
	Code Generator
	Symbolic Constraint Generator

	Experiment Details and Additional Results
	Experimental Setup Details
	Program Instantiation and Simulation Pipeline
	Fixing Protocol Limitations in PRoC3S Evaluation

	Additional Experiment Results and Cases
	Additional Experiment
	Table of Symbolic Constraints Discovered
	Case study

