InstructFlow: Adaptive Symbolic Constraint-Guided Code Generation for Long-Horizon Planning

Haotian Chi 1,3 Zeyu Feng 2 Yueming Lyu 2 Chengqi Zheng 2 Linbo Luo 5 Yew-Soon Ong 2,4 Ivor Tsang 2,4 Hechang Chen 1,3† Yi Chang 1,3† Haiyan Yin 2†

¹School of Artificial Intelligence, Jilin University, China

²CFAR and IHPC, Agency for Science, Technology and Research (A*STAR), Singapore

³Engineering Research Center of Knowledge-Driven Human-Machine Intelligence,

Ministry of Education, Jilin University, China

⁴Nanyang Technological University (NTU), Singapore, ⁵Xidian University, China

chiht21@mails.jlu.edu.cn {chenhc, yichang}@jlu.edu.cn
{feng_zeyu, lyu_yueming, ivor_tsang, yin_haiyan}@a-star.edu.sg
zhen0144@e.ntu.edu.sg asysong@ntu.edu.sg lbluo@xidian.edu.cn,

Abstract

Long-horizon planning in robotic manipulation requires translating under-specified, symbolic goals into executable control programs that satisfy spatial, temporal, and physical constraints. However, existing language model-based planners often struggle with decomposing long-horizon tasks, enforcing constraints robustly, and adapting effectively to execution failures. We introduce InstructFlow, a multi-agent framework that establishes a symbolic, feedback-driven flow for code generation in robotic manipulation. InstructFlow comprises three coordinated agents: a InstructFlow Planner that constructs and traverses a hierarchical instruction graph to decompose goals into semantically grounded subtasks; a Code **Generator** that synthesizes executable code snippets conditioned on this graph; and a Constraint Generator that analyzes execution feedback to induce symbolic constraints when execution failures occur. These constraints are propagated upstream to refine the instruction graph and guide localized code revision without full regeneration. This graph-guided, dynamic flow enables structured, interpretable, and failure-resilient planning, yielding substantial improvements in task success rate and robustness across diverse manipulation benchmarks, particularly in constraint-sensitive and long-horizon scenarios. The implementation is available at https://github.com/chiht21/InstructFlow.

1 Introduction

Large language models have emerged as a central paradigm for robotic code generation, translating natural language instructions into executable control programs [1, 14, 19, 27]. Despite their versatility, they struggle with long-horizon task decomposition, reliable constraint enforcement, and adaptive failure recovery. In a manipulation task such as placing an object into a bowl, an LLM-based planner may detect that a grasp fails due to a collision with stacked objects. However, it lacks the capacity to reason beyond the immediate failure and infer its structural cause. Existing approaches often resort to blind retries or ad-hoc replanning, generating similar trajectories that reproduce the same error. These behaviors reveal a critical gap: LLMs can recognize execution failures but lack the structured reasoning required to interpret and repair them.

[†]Corresponding authors.

This limitation arises from the representational nature of language itself. Natural language instructions are inherently under-specified, ambiguous, and difficult to ground in the physical world. When tasked with generating full execution plans directly, LLMs frequently produce syntactically correct but physically infeasible code, and they rarely recover once execution errors occur. Recent methods have sought to bridge this gap by generating grounded skill sequences with continuous parameters [30] or synthesizing end-to-end executable programs [14]. Yet these approaches remain flat and reactive, lacking the hierarchical structure and feedback integration required for consistent reasoning under dynamic, constraint-rich conditions.

Recent works have begun exploring feedback-driven planning, where language models incorporate environmental signals to improve execution reliability. This is exemplified by PRoC3S [3], which introduces a two-phase pipeline that separates plan generation from constraint checking, enabling failure-triggered replanning when constraint violations occur. While PRoC3S strengthens robustness through feedback, it still treats failures at the surface level, reacting to violations without interpreting their deeper structural causes. This limitation stems from language-based plans being under-specified and unstructured, thereby limiting causal reasoning and systematic plan refinement. Addressing this gap demands a framework that can induce symbolic knowledge from failure and use it to guide targeted, compositional repair rather than wholesale regeneration.

To address these challenges, we introduce **InstructFlow**, a modular, multi-agent framework that establishes a symbolic, feedback-driven information flow for adaptive task planning and code generation. InstructFlow operates beyond surface-level feedback: it interprets execution failures, induces symbolic constraints that capture their causal structure, and propagates this knowledge through a hierarchical instruction graph that organizes task goals into composable subplans. Its constraint induction mechanism abstracts execution traces into human-interpretable predicates that encode spatial, relational, and physical dependencies across tasks. By feeding these symbolic constraints back into the planning hierarchy, InstructFlow performs targeted repair instead of full regeneration, transforming reactive trial-and-error into deliberate, compositional reasoning and achieving interpretable, failure-resilient planning in long-horizon, constraint-sensitive robotic environments.

We highlight three key contributions of this work: (i) a modular multi-agent framework that establishes a symbolic, feedback-driven flow of reasoning for adaptive and interpretable code generation in robotic planning; (ii) a symbolic constraint induction mechanism that abstracts execution failures into causal, reusable predicates, enabling targeted repair rather than full regeneration; and (iii) extensive empirical validation across drawing, block stacking, and YCB packing benchmarks, demonstrating substantial gains in success rate, robustness, and recovery efficiency over strong LLM-based baselines.

2 Related Works

LLM-Based Code Generation for Robotic Manipulation Recent advances highlight the potential of LLMs as general-purpose planners for robotic manipulation through code generation. CaP [14] pioneers the use of LLMs to synthesize Python-based reactive controllers, integrating perception modules and control primitives. RoboScript [1] proposes a unified interface for deploying such code across simulation and real robots, focusing on deployability and modularity. LLM³ [30] integrates task and motion planning with LLM-driven failure reasoning for robust code generation in dynamic environments. Instruct2Act [9] and VoxPoser [10] combine LLMs with VLMs, grounding language instructions into actionable code conditioned on perceptual inputs. RoboCodeX [19] introduces a tree-structured multimodal reasoning framework, decomposing language commands into object-centric manipulation code. Recent systems like OctoPack [20] and RobotCode [13] further enhance generalization and reliability by combining LLM-generated programs with skill libraries. While these approaches demonstrate the promise of LLMs when equipped with structured APIs, affordance models, and perceptual grounding, they continue to struggle with handling execution failures and adapting plans in constraint-sensitive or long-horizon tasks.

Symbolic Abstraction Planning Symbolic representations remain crucial for long-horizon and constraint-sensitive manipulation. Classical TAMP systems [11, 2, 4, 7, 26] integrate symbolic task planning with motion controllers but depend on domain-specific predicates. Traditional robotics planning relies on hard-coded symbolic world models [7, 12]. Hybrid methods bridge language and symbolic planning, such as LLM+P [16], which translates instructions into PDDL for optimal symbolic planning. VisualPredicator [15] learns neuro-symbolic predicates from visual inputs, while

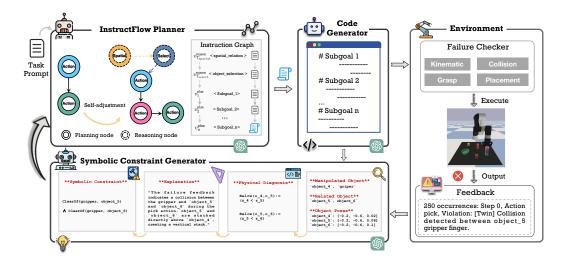


Figure 1: Overview of the **InstructFlow** framework for multi-agent, symbolic, and feedback-driven code generation in robotic manipulation. The system comprises three coordinated agents: (a) **InstructFlow Planner**: parses the task prompt and constructs a multi-level instruction graph that organizes goals into *spatial* and *reasoning* subgoals; (b) **Code Generator**: synthesizes executable code segments and samples parameter domains to instantiate the plan; (c) **Constraint Generator**: analyzes execution feedback and induces symbolic constraints that refine the instruction graph for targeted code correction.

ViLaIn [23] extracts scene-level symbolic representations from vision-language models. Other works like PlanBench [28] create symbolic abstractions for plan feasibility analysis; P3IV [32] and RLang [21] focus on domain-agnostic symbolic representations aligned with LLM reasoning. Despite their use of symbolic abstractions, these approaches lack mechanisms for dynamic symbolic reasoning to abstract task-relevant information or diagnose failures for plan recovery, which is a gap our method explicitly addresses by integrating symbolic reasoning into the code generation and planning loop.

Feedback-Driven Failure Recovery Recovering from execution failures remains a central challenge for LLM-driven robotics. Most approaches treat LLMs or VLMs as success detectors [5, 18, 29], while recent works explore feedback-driven plan repair. REFLECT [17] and AHA [6] leverage LLMs and VLMs for multi-modal failure explanation, enabling language-guided correction. RoboRepair [22] and DoReMi [8] integrate LLMs and VLMs for execution misalignment detection and proactive repair. However, these methods primarily rely on fine-tuning models for failure understanding. To avoid fine-tuning, LLM³ [30], ProgPrompt [24], and CLAIRify [25] propose failure-aware prompting and runtime verification to guide iterative plan repair. PRoC3S [3] further introduces a hybrid approach that combines LLM-generated partial programs with post-hoc constraint optimization. Building on this foundation, our approach integrates symbolic constraint induction and graph-guided plan repair directly into the code-generation loop, achieving interpretable and adaptive failure recovery that generalizes across tasks.

3 Methodology

We begin by formalizing the LLM-based code generation paradigm for robotic manipulation. We then introduce **InstructFlow**, a modular multi-agent framework built around a *hierarchical instruction graph* and a *symbolic constraint induction* mechanism. An overview of the system architecture is provided in Figure 1.

3.1 Overview

The problem of code generation for robotic manipulation involves translating natural language instructions into executable programs that operate reliably in robotic environments. Given task descriptions and the initial state of the environment, an LLM is instructed to generate parameterized

action plans that invoke low-level control routines to solve the task. Following a general paradigm [3], the LLM produces two functions per task:

- get_plan: a sequence of high-level actions conditioned on free parameters and environment state.
- get_domain: the feasible ranges for those parameters (e.g., spatial offsets), defining the search space for plan instantiation.

At the task level, the goal is to generate code that completes the instructed objective without violating physical constraints. Execution feasibility is assessed by a continuous constraint satisfaction program (CCSP) module, which enforces four environment-level checks: *kinematic reachability*, *collision avoidance*, *grasp stability*, and *placement validity*. The LLM must reason not only over a series of *discrete action choices*, but also over *continuous numerical parameters*, which is a nontrivial requirement. Beyond sequencing skills, it must produce long-horizon code grounded in geometry, dynamics, and task-specific semantics. The core challenge lies in the lack of grounding from language prompts to low-level control logic that adheres to physical and dynamic constraints. When execution fails, LLMs often repeat or compound errors, exhibiting limited ability to adaptively repair code.

Our work aims to improve the failure recovery ability of LLM-based planners through structured planning and symbolic constraint-driven code repair.

We propose **InstructFlow**, a modular multi-agent framework for symbolic, feedback-driven code generation in robotic manipulation. The core idea is to introduce an **instruction graph** that hierarchically decomposes high-level task prompts into semantically structured subgoals, and couple this representation with a **symbolic constraint induction mechanism** for effective plan repair. Instruct-Flow modularizes the code-generation pipeline into three cooperative agents, each with a specialized role and local reasoning context (see Appendix A for the prompts used in our three Agents):

- InstructFlow Planner: Parses the task prompt and constructs a hierarchical instruction graph capturing semantic and spatial dependencies. Each node encodes a typed subgoal grounded in the robot's skill space.
- Code Generator: Translates each subgoal into executable Python code, producing symbolic control routines along with parameter domains for sampling feasible continuous values;
- Constraint Generator: Monitors execution failures and induces symbolic constraints that explain
 the cause. These constraints guide context-specific graph and prompt revisions, enabling targeted
 subgoal repair without full plan regeneration.

3.2 Instruction Graph Construction and Update

Instruction Graph Semantics A central architectural contribution of InstructFlow is a hierarchical instruction graph that enables structured task decomposition and adaptive symbolic reasoning. At each interaction round t, the InstructFlow Planner constructs an instruction graph $\mathcal{G}_t = (\mathcal{V}_t, \mathcal{E}_t)$, conditioned on the task goal, initial state, and symbolic feedback. This graph acts as a typed, declarative scaffold for both task decomposition and constraint-aware refinement. The node set is partitioned as:

$$V_t = V_{\text{plan}} \cup V_{\text{reason}}, \quad V_{\text{plan}} \cap V_{\text{reason}} = \emptyset,$$
 (1)

with edges $\mathcal{E}_t \subseteq \mathcal{V}_t \times \mathcal{V}_t$ capturing symbolic or temporal dependencies. Each edge (v_i, v_j) denotes a directed flow of information, allowing parent nodes to influence the semantic context of their children.

(1) Planning nodes $v^{\text{plan}} \in \mathcal{V}_{\text{plan}}$ define grounded subgoals directly translatable into robot-executable code. Each is instantiated as a symbolic prompt:

$$v^{\mathrm{plan}}: (\mathtt{goal}, \mathtt{state}) \to \mathtt{subgoal}_{\mathcal{A}}, \quad \mathcal{A} \in \{\mathtt{pick}, \mathtt{place}, \ldots\}.$$

These nodes form the plan's executable backbone and anchor structural code generation.

(2) Reasoning nodes $v_{\mathcal{T}_j}^{\text{reason}} \in \mathcal{V}_{\text{reason}}$ perform typed symbolic transformations that enrich planning with task-level abstraction and constraint resolution. These typed modules abstract reusable domain knowledge, enabling modular plan revision: $v_{\mathcal{T}_{select}}^{\text{reason}}: \mathcal{I}_{\mathcal{T}_j} \to \mathcal{O}_{\mathcal{T}_j}$, where $\mathcal{I}_{\mathcal{T}_j}, \mathcal{O}_{\mathcal{T}_j}$ denote structured symbolic fields. Outputs are propagated to downstream planning nodes, injecting symbolic knowledge

such as spatial adjacency or parameter tuning. We instantiate five core reasoning modules:

Here, G denotes the high-level task goal, S represents the initial state, and Φ captures symbolic constraints induced from prior failures. These inputs are used by reasoning nodes to extract task-relevant abstractions for plan refinement.

Feedback-Driven Graph Update A core capability of **InstructFlow** is its ability to revise the instruction graph \mathcal{G}_t based on symbolic constraint feedback and failure diagnostics. At initialization (constraint₀ = \emptyset), the graph contains only planning nodes. Upon failure (e.g., collisions, instability), the planner inserts reasoning nodes upstream of affected subgoals, dynamically composing a symbolic stack tailored to the error mode:

$$G_t = Planner_{LLM}(goal, state_t, constraint_{t-1}).$$
 (2)

This mechanism supports coarse-to-fine symbolic planning by injecting only the reasoning needed to refine or repair the faulty part of the task.

InstructFlow-Guided Code Generation InstructFlow translates symbolic plans into executable code by composing structured prompts along the instruction graph \mathcal{G}_t . Each planning node $v_i^{\text{plan}} \in \mathcal{V}_{\text{plan}}$ generates a prompt:

$$\underbrace{\mathtt{instr}^{(t)}}_{\mathsf{Task}\,\mathsf{Prompt}} = \mathsf{Encode}\left(\left\{v_{\mathcal{T}_j}^{\mathsf{reason}}\right\}_{j=1}^{|v^{\mathsf{reason}(t)}|}, \ v^{\mathsf{plan}}\right), \quad \underbrace{\mathsf{code}^{(t)}}_{\mathsf{Generated}\,\mathsf{Code}} = \mathsf{LLM}\left(\mathsf{instr}^{(t)}\right) \quad (3)$$

where $\text{Encode}(\cdot)$ integrates the subgoal with symbolic refinements from reasoning nodes, such as spatial relations, parameter ranges, or action dependencies. $|v^{\text{reason}(t)}|$ denotes the number of reasoning nodes providing contextual information to v^{plan} , including types such as spatial reasoning, object selection, and other reasoning nodes as defined above.

This symbolic conditioning guides the LLM to produce context-aware and physically valid code. When failures occur, **InstructFlow selectively updates the relevant subgoals and reasoning nodes impacted by the constraint violations**, avoiding unnecessary recomputation of unrelated parts of the plan. By structuring prompt construction around the symbolic instruction graph, InstructFlow achieves interpretable, constraint-compliant code generation, significantly enhancing sample efficiency and robustness in long-horizon, constraint-sensitive tasks.

The Role of "Flow" While InstructFlow introduces multiple agents and a hierarchical instruction graph, the key distinguishing feature lies in the flow of symbolic information and feedback throughout the entire code generation loop. Unlike static prompting approaches, InstructFlow treats the prompt construction itself as a dynamic, graph-guided flow, where high-level goals, reasoning outputs, and failure-induced constraints are progressively injected into task-specific prompts at each planning node. This flow-centric prompt composition ensures that each code snippet is generated in a context-aware, failure-resilient, and constraint-compliant manner, enabling efficient plan repair without full regeneration. The flow mechanism thus operates at two intertwined levels: *Graph-level symbolic flow*: From reasoning nodes to planning nodes. *Prompt-level information flow*: From task goal, through symbolic reasoning and feedback, into structured, adaptive prompts.

3.3 Symbolic Constraint Induction from Execution Failures

LLM-based robotic planners often lack structured mechanisms for failure recovery, relying instead on naïve re-prompts or implicit retries. We introduce a **Constraint Generator** that diagnoses execution failures, and abstracts them into logical constraints. These constraints serve as *symbolic corrections that guide graph restructuring and prompt refinement*, enabling interpretable, efficient, and generalizable plan repair.

Failure Diagnosis Workflow. The symbolic constraint induction follows a four-stage reasoning workflow: (i) Failure-relevant entities retrieval, which identifies failure-relevant entities from the failure trace \mathcal{F}_t and executed code \mathcal{P}_t ; (ii) Code-level reasoning, which instantiates involved variables and reasoning symbolic predicates that reflect the physical feasibility; (iii) Diagnostic reasoning, which compute geometric or geometric diagnostics based on predicates, such as collision proximity, path clearance, and placement stability; and (iv) Symbolic constraint induction, which abstracts diagnostic findings into declarative symbolic constraints that encapsulate the feasibility conditions violated by the current plan. This structured workflow transforms grounded execution failures into symbolic rules that guide prompt regeneration and enable interpretable, plan repair.

Physical Predicate as an Induction Basis. To enable interpretable failure diagnosis and structured symbolic constraint induction, we ground physical feasibility reasoning on a set of declarative physical predicates. These predicates abstract task-specific physical interactions into reusable logical representations, serving as the foundation for symbolic reasoning across diverse manipulation scenarios. We categorize predicates along four functional components:

(i) **Entities** (\mathcal{E}): Rather than pre-defining entities rigidly, Instruct-Flow dynamically abstracts task-relevant entities into functional roles based on the evolving task context and feedback, such as ?target (manipulated object), ?neighbor (potential obstacles), ?surface (supporting structures), and ?gripper (robot endeffector); (ii) **Relations** (\mathcal{R}): Symbolic relations are flexibly instantiated to capture emergent spatial and semantic interactions during task execution and diagnosis, such as On(?a, ?b) for support/contact, or ClearOf (?a, ?b) for proximity constraints, enabling contextual adaptation rather than relying on static domain rules; (iii) **Physical Functions** (\mathcal{F}): InstructFlow leverages a set of physical diagnostics as interpretable abstractions, such as Dist(?a, ?b), SupportArea(?obj), and COMDeviation(?obj), which are dynamically evaluated in response to execution feedback, guiding the symbolic reasoning process without hard-coded thresholds; (iv) **Thresholds** (\mathcal{B}): Task-specific feasibility bounds, such as δ_{safe} for

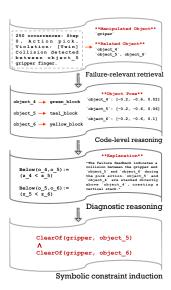


Figure 2: Failure Diagnosis Workflow of Symbolic constraint generator.

clearance margins, and η_{min} for support stability ratios, , which can be tuned or inferred based on the environment state and failure modes, allowing InstructFlow to generalize beyond fixed rule specifications.

These symbolic forms are grounded by diagnostics over physical basis, but are interpreted and manipulated as logical components of the instruction graph, which isolate the physical root causes of failure and ground them in explicit task parameters, forming the basis for symbolic abstraction.

Symbolic Constraint Induction. We formalize the symbolic constraint ϕ as a conjunction over two complementary modalities of failure correction: relational structure and physical feasibility:

$$\phi := \bigwedge_{c \in \mathcal{C}(\mathcal{E}, \mathcal{R}, \mathcal{F}, \mathcal{B})} c, \quad \text{where} \quad \mathcal{C}(\mathcal{E}, \mathcal{R}, \mathcal{F}, \mathcal{B}) = \underbrace{\{R_i(e_{a_i}, e_{b_i})\}}_{\text{Relational Constraints}} \cup \underbrace{\{f_j(\Theta_j) \oplus \tau_j\}}_{\text{Physical Constraints}}. \tag{4}$$

Here, for each relational constraint $R_i(e_{a_i}, e_{b_i})$, e_{a_i} and e_{b_i} are entity instances (e.g., block, bowl) participating in the relation R_i . For physical constraints, each term $f_j(\Theta_j) \oplus \tau_j$ represents a feasibility condition, where: Θ_j denotes the variables involved (e.g., poses, offsets), \oplus is a comparison operator (e.g., \leq , \geq , or =), $\tau_j \in \mathcal{B}$ is a task-specific threshold (e.g., maximum allowable clearance).

This formulation allows each constraint ϕ to capture both high-level task semantics and low-level physical requirements within a unified logical form, which the **Constraint Generator** can compose into logical constraints ϕ for plan repair. For instance:

$$\begin{split} \phi_{\mathsf{pick}} &:= \mathsf{ProximitySafe}(?object,?neighbor) \land \mathsf{PathClear}(?gripper,?object), \\ \phi_{\mathsf{place}} &:= \mathsf{Dist}(?pose,?neighbor) \geq \delta_{\mathsf{safe}} \land \mathsf{StableOn}(?object,?surface). \end{split}$$

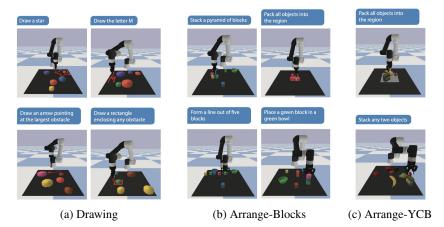


Figure 3: Illustration of tasks in our simulated environments, along with corresponding goals.

Notably, these symbolic constraints act as structured priors for graph refinement and generalize across task instances and environments, enabling not just plan repair but modular, interpretable priors that can be reused across planning episodes. By treating failure correction as symbolic program refinement, this representation integrates seamlessly into our instruction graph and enables feedback-driven, structurally grounded prompt generation (see Appendix B.2.2 for the symbolic constraints we summarized from the experimental results).

4 Experiments

4.1 Experimental Setup

We adopt the same environments, evaluation metrics, and protocol as PRoC3S [3] to ensure fair comparison, while extending its core planning pipeline with symbolic reasoning and constraint-guided repair. All experiments are conducted in the Ravens [31] simulation environment, using a 6-DoF UR5 arm with a Robotiq 2F-85 gripper in a tabletop workspace. Physics-based execution and constraint checking are handled via PyBullet. Simulations run on CPUs with 32GB RAM, with all baseline implementations integrated into a unified evaluation framework.

Domains and Tasks. We evaluate our approach on three simulated domains, each designed to test different aspects of long-horizon planning with parameterized skills and physical constraints:

- (1) **Drawing**: The robot is equipped with a draw_line primitive that generates 2D trajectories to render geometric and symbolic shapes on a surface, while avoiding randomly placed objects. These tasks require precise parameter coordination under tight spatial constraints.
- (2) Arrange-Blocks: The robot stacks and arranges colored blocks and bowls to form pyramids, lines, or centered clusters. This domain tests stability, spatial accuracy, and planning under clutter and occlusions.
- (3) **Arrange-YCB**: The robot manipulates complex objects from the YCB dataset (e.g., banana, meat can) to perform packing and stacking. Irregular geometries introduce challenges in grasping, placement feasibility, and collision avoidance.

Constraints. Across all domains, generated plans are evaluated against a set of physical and geometric constraints that reflect real-world robotic limitations: (1) **Kinematic constraints** ensure that the robot's inverse kinematics solver produces a reachable end-effector pose, rejecting infeasible motions; (2) **Collision constraints** eliminate plans that lead to unintended contact between the robot, environment, or other objects, allowing only expected contact such as during grasps; (3) **Grasp constraints** verify that the gripper properly encloses the object and maintains stability during lifting, rejecting grasps that cause slippage or collision; (4) **Placement constraints** require that, upon release, the object remains upright and stationary, i.e., any post-placement drift or instability signals a failure of physical feasibility.

Baselines. We compare our approach against three baselines:

- (1) **PRoC3S** [3]: The original two-phase LLM-based planner that separates plan generation and constraint satisfaction using a sampling-based solver with feedback.
- (2) LLM³ [30]: A recent method in which the LLM directly outputs grounded skill sequences with continuous parameters.
- (3) **Code-as-Policies** (**CaP**) [14]: A program synthesis-based strategy that uses an LLM to produce complete Python programs encoding the action sequence and continuous parameters for execution.

Execution Details. Each approach is evaluated over 10 randomized seeds per simulated task. We use a maximum budget of 1000 samples per trial (10000 for drawing tasks). We limit the number of feedback iterations to 5. All methods are queried via OpenAI's GPT-40 unless otherwise stated. A task is considered successful if the final robot state satisfies the goal condition without violating any constraints (see Appendix B.1 for more details on experiment settings).

4.2 Benchmark Experiments

We benchmark InstructFlow against PRoC3S, LLM³, and CaP across three domains. As shown in Table 1, across drawing, block arrangement, and YCB manipulation tasks, InstructFlow outperforms prior methods by 20–40% in task success rate.

		Dr	awing			Arrang	Arrange YCB			
	Star	Arrow	Letters	Enclosed	Pyramid	Line	Packing	Unstack	Packing	Stacking
LLM ³	40%	40%	80%	50%	0%	40%	30%	0%	0%	10%
CaP	10%	0%	40%	30%	20%	20%	20%	10%	30%	10%
PRoC3S	90%	80%	80%	90%	60%	70%	50%	60%	30%	40%
InstructFlow (Ours)	100%	80%	100%	100%	90%	100%	90%	90%	60%	70%

Table 1: Task success rates (%) across drawing, block arrangement, and YCB manipulation domains. Bold indicates top-performing results.

This improvement arises from InstructFlow's ability to perform structured symbolic reasoning over task-specific failures, enabling targeted plan corrections at multiple levels: (i) refining parameter domains to satisfy geometric constraints, (ii) inducing symbolic relations (e.g., adjacency, clearance) to prevent repeated failure modes, and (iii) revising subgoal sequences based on environment feedback. For instance, in the *Pyramid* and *Line* tasks, baseline methods (e.g., PRoC3S) frequently fail due to improper block spacing, leading to unstable stacks. InstructFlow detects these failures and augments the instruction graph with symbolic adjacency constraints (e.g., Adjacent(?block_i, ?block_j)), which guide the adjustment of offset ranges and enforce tighter placements, improving stability without exhaustive re-planning.

Similarly, in *Packing* tasks involving YCB objects with irregular geometries, InstructFlow leverages symbolic constraints over object proximity to guide precise placement corrections. When initial plans result in collision-prone configurations, the system identifies violated ClearOf constraints and refines placement parameter ranges to balance object clearances and workspace boundaries. This targeted adjustment enables feasible, collision-free placements without exhaustive resampling, a capability that flat prompt-based methods notably lack due to their absence of structured, feedback-driven repair mechanisms. (See Appendix B.2.1 for more experiment results on VLM)

		Dr	awing		Arrange Blocks				Arrange YCB	
	Star	Arrow	Letters	Enclosed	Pyramid	Line	Packing	Unstack	Packing	Stacking
InstructFlow	100%	80%	100%	100%	90%	100%	90%	90%	60%	70%
InstructFlow w/o Planner Agent	90%	80%	80%	100%	50%	90%	50%	40%	40%	40%
InstructFlow w/o Constraint Agent	100%	80%	100%	80%	40%	100%	60%	60%	30%	40%

Table 2: Ablation study results (% task success) highlighting the contributions of the InstructFlow Planner and Symbolic Constraint Generator.

Ablation results in Table 2 highlight the distinct roles of symbolic planning and constraint induction in InstructFlow's performance. Without the Planner, the system loses its ability to structure tasks

hierarchically, resulting in brittle plans and severe failures in multi-step spatial tasks (e.g., *Pyramid*, *Packing*, with up to 50% drops). Removing Constraint Induction disables feedback-driven repair, forcing the model into blind retries that struggle with physical feasibility, leading to 30–40% degradation in cluttered and precision-sensitive tasks. These results confirm that InstructFlow's robustness stems from the synergy of symbolic task decomposition and failure-informed constraint refinement.

4.3 Robustness to Real-World Uncertainties

While our study is based on simulation, we explicitly model two key real-world uncertainties, sensor noise and feedback ambiguity, to assess the robustness of InstructFlow under imperfect information, a common challenge in physical robotic systems.

Perceptual Noise. To simulate sensor inaccuracies, we inject zero-mean Gaussian noise into object poses. As shown in Table 3, InstructFlow maintains high performance even under severe noise ($\sigma = 0.02$, roughly 50% of object size). For instance, success rates remain above 70% across most tasks, demonstrating strong perceptual robustness.

	Pyramid	Line	Packing	Unstack	YCB-Packing	YCB-Stacking	Avg. Drop
No noise	90%	100%	90%	90%	60%	70%	-
$\sigma = 0.005$	90%	100%	90%	90%	60%	70%	0%
$\sigma = 0.01$	80%	100%	80%	80%	50%	60%	8.3%
$\sigma = 0.02$	70%	90%	70%	70%	40%	50%	18.3%

Table 3: Performance under varying levels of perceptual noise.

Feedback-Layer Noise. We further evaluate the system's resilience to feedback ambiguity by simulating imperfect feedback, including (1) incorrect object references and (2) incomplete traces with missing object IDs or causal descriptions. As summarized in Table 4, InstructFlow sustains near-baseline performance across tasks, despite corrupted or partial feedback, with average success rate drops limited to 11–16%.

	Pyramid	Line	Packing	Unstack	YCB-Pack	YCB-Stack	Avg. Drop
Ideal Feedback	90%	100%	90%	90%	60%	70%	-
Incorrect Feedback	60%	80%	70%	60%	30%	40%	16%
Incomplete Feedback	70%	90%	70%	70%	40%	50%	11%

Table 4: Performance under incorrect and incomplete feedback traces.

These results demonstrate that InstructFlow remains effective without perfect state estimation, key characteristics for real-world deployment. While real-robot experiments are an important direction for future work, these robustness evaluations offer strong empirical evidence of the system's readiness for real-world uncertainty.

4.4 Case Study

We take the **Unstack** task as a case study to illustrate the effectiveness of InstructFlow. The goal is to **place the green block into the green bowl**, but the task poses hidden challenges: the green block is often buried beneath a stack, making direct access infeasible. Naive pick attempts cause collisions with blocks above, violating the constraints and leading to failure.

Existing methods, such as PRoC3S, can detect execution failures and make localized repairs, like inserting obstacle removal steps. However, they struggle with multi-layered occlusions. When the green block is buried under multiple stacked objects, PRoC3S lacks a structured mechanism to reason about the correct removal order. As a result, it often generates plans with invalid sequences or actions that reintroduce collisions, ultimately failing to complete the task.

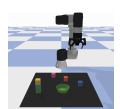


Figure 4: Illustrative image of the environment for the Unstack.

Symbolic Constraints In the first round of code generation, InstructFlow receives the goal: place the green block into the green bowl. It constructs an initial instruction graph with two planning nodes:

pick object_4 and place object_7. Correspondingly, the code attempts to pick object_4 at its current pose and place it at the target location.

Execution feedback, however, reveals repeated collisions during the pick action:

```
[Error Message]: "250 occurences: Step 0, Action pick, Violation: [Twin] Collision detected between object_5 object gripper finger" and "250 occurences: Step 0, Action pick, Violation: [Twin] Collision detected between object_6 object gripper finger"
```

Given the **failure feedback** and **generated code**, the **Constraint Generator** localizes the root cause to the pick action on object_4, identifying the involved variables: the *manipulated object*, *its pose*, and *the interfering objects* (object_5, object_6). By analyzing the spatial configuration, InstructFlow infers that the gripper's approach vector intersects with the stacked obstacles, violating collision constraints. This reasoning leads to the generation of explicit **symbolic constraints**:

```
\phi_{unstack} := \texttt{ClearOf}(\texttt{gripper}, \texttt{object\_5}) \land \texttt{ClearOf}(\texttt{gripper}, \texttt{object\_6})
```

These constraints distill raw collision feedback into symbolic predicates that express the essential condition: the gripper must reach the target without obstruction. This abstraction transforms a low-level failure into a reusable, structured signal for graph updates and targeted code repair.

Dynamic InstructFlow Graph Update. Given the symbolic constraints, **InstructFlow Planner** dynamically updates the instruction graph with reasoning nodes, which model the spatial and logical dependencies in the scene.

Specifically, the updated graph includes a spatial reasoning node $v_{Tspatial}^{\mathrm{reason}}$ that analyzes vertical stacking relations between objects, inferring that object_5 and object_6 are stacked above object_4 via symbolic below relations. Based on this output, an object selection reasoning node $v_{Tselection}^{\mathrm{reason}}$

Figure 5: A code snippet illustrating how InstructFlow repairs the Unstack plan by intuitively injecting a targeted object removal routine automatically derived from InstructFlow's structural reasoning.

identifies object_5 and object_6 as obstacles to be removed according to the induced ClearOf constraints. A logic reasoning node $v_{Tlogic}^{\rm reason}$ then determines the action sequence that satisfies these constraints, ensuring the objects are unstacked top-down. These reasoning nodes collectively refine the instruction graph by introducing new planning nodes to first move object_6 (yellow), then object_5 (teal), and finally pick object_4 (green), reflecting the inferred symbolic dependencies.

Code Repair. Based on the updated instruction graph, Code Generator regenerates the executable code to satisfy the induced symbolic constraints. Unlike black-box retries, the code repair process is explicitly guided by InstructFlow's graph structure, ensuring that prerequisite actions (e.g., obstacle removal) are correctly sequenced before the primary task. As shown in Fig. 5, the repaired code respects both spatial constraints (via clear placement of obstacles) and temporal dependencies (via correct unstacking order), demonstrating InstructFlow's ability to produce interpretable, constraint-compliant programmatic policies. We provide more case studies across different tasks in Appendix B.2.3.

5 Conclusions

We presented InstructFlow, a symbolic and feedback-driven framework for robotic code generation that introduces an instruction graph to decompose tasks and enable interpretable, constraint-aware planning. By integrating structured symbolic reasoning and a reusable constraint vocabulary, InstructFlow supports targeted plan repair, avoids full-plan regeneration, and significantly enhances robustness in manipulation tasks. Empirical results across challenging benchmarks validate the system's ability to handle long-horizon, constraint-sensitive scenarios with improved success rates and sample efficiency. Looking ahead, we plan to extend InstructFlow to incorporate visual grounding and multi-modal constraint induction, enabling even richer symbolic reasoning from unstructured feedback in the physical world.

Acknowledgments

This research is supported by the National Research Foundation, Singapore and Infocomm Media Development Authority under its Trust Tech Funding Initiative, Career Development Fund (CDF) of the Agency for Science, Technology and Research (A*STAR) (No: C233312007, No: C243512014), and the National Research Foundation, Singapore under its AI Singapore Programme (AISG Award No: AISG-NMLP-2024-003), and, in part by the National Natural Science Foundation of China (No. U2341229, No. 62476110); the National Key R&D Program of China (No. 2023YFF0905400, No. 2021ZD0112500); the Key R&D Project of Jilin Province (No. 20240304200SF); the Key R&D Program of Shanxi Province, China (2025GH-YBXM-020). Any opinions, findings and conclusions or recommendations expressed in this material are those of the authors and do not reflect the views of the National Research Foundation, Singapore, and Infocomm Media Development Authority.

References

- [1] Junting Chen, Yao Mu, Qiaojun Yu, Tianming Wei, Silang Wu, Zhecheng Yuan, Zhixuan Liang, Chao Yang, Kaipeng Zhang, Wenqi Shao, Yu Qiao, Huazhe Xu, Mingyu Ding, and Ping Luo. Roboscript: Code generation for free-form manipulation tasks across real and simulation. *CoRR*, abs/2402.14623, 2024.
- [2] Aidan Curtis, Xiaolin Fang, Leslie Pack Kaelbling, Tomás Lozano-Pérez, and Caelan Reed Garrett. Long-horizon manipulation of unknown objects via task and motion planning with estimated affordances. In 2022 International Conference on Robotics and Automation, ICRA, pages 1940–1946, 2022.
- [3] Aidan Curtis, Nishanth Kumar, Jing Cao, Tomás Lozano-Pérez, and Leslie Pack Kaelbling. Trust the proc3s: Solving long-horizon robotics problems with llms and constraint satisfaction. In *Conference on Robot Learning*, volume 270, pages 1362–1383, 2024.
- [4] Neil T. Dantam, Zachary K. Kingston, Swarat Chaudhuri, and Lydia E. Kavraki. Incremental task and motion planning: A constraint-based approach. 2016.
- [5] Yuqing Du, Ksenia Konyushkova, Misha Denil, Akhil Raju, Jessica Landon, Felix Hill, Nando de Freitas, and Serkan Cabi. Vision-language models as success detectors. In *Conference on Lifelong Learning Agents*, 22-25 August 2023, volume 232 of *Proceedings of Machine Learning Research*, pages 120–136, 2023.
- [6] Jiafei Duan, Wilbert Pumacay, Nishanth Kumar, Yi Ru Wang, Shulin Tian, Wentao Yuan, Ranjay Krishna, Dieter Fox, Ajay Mandlekar, and Yijie Guo. AHA: A vision-language-model for detecting and reasoning over failures in robotic manipulation. In *The Thirteenth International Conference on Learning Representations, ICLR*, 2025.
- [7] Caelan Reed Garrett, Rohan Chitnis, Rachel M. Holladay, Beomjoon Kim, Tom Silver, Leslie Pack Kaelbling, and Tomás Lozano-Pérez. Integrated task and motion planning. *Annu. Rev. Control. Robotics Auton. Syst.*, 4:265–293, 2021.
- [8] Yanjiang Guo, Yen-Jen Wang, Lihan Zha, and Jianyu Chen. Doremi: Grounding language model by detecting and recovering from plan-execution misalignment. In *IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS*, 2024.
- [9] Siyuan Huang, Zhengkai Jiang, Hao Dong, Yu Qiao, Peng Gao, and Hongsheng Li. Instruct2act: Mapping multi-modality instructions to robotic actions with large language model. *CoRR*, abs/2305.11176, 2023.
- [10] Wenlong Huang, Chen Wang, Ruohan Zhang, Yunzhu Li, Jiajun Wu, and Li Fei-Fei. Voxposer: Composable 3d value maps for robotic manipulation with language models. In *Conference on Robot Learning, CoRL 2023*, volume 229 of *Proceedings of Machine Learning Research*, pages 540–562, 2023.
- [11] Leslie Pack Kaelbling and Tomás Lozano-Pérez. Hierarchical task and motion planning in the now. In *IEEE International Conference on Robotics and Automation, ICRA*, pages 1470–1477, 2011.

- [12] George Konidaris. On the necessity of abstraction. *Current opinion in behavioral sciences*, 29:1–7, 2019.
- [13] Jingyao Li, Pengguang Chen, Sitong Wu, Chuanyang Zheng, Hong Xu, and Jiaya Jia. Robocoder: Robotic learning from basic skills to general tasks with large language models. *CoRR*, abs/2406.03757, 2024.
- [14] Jacky Liang, Wenlong Huang, Fei Xia, Peng Xu, Karol Hausman, Brian Ichter, Pete Florence, and Andy Zeng. Code as policies: Language model programs for embodied control. In *IEEE International Conference on Robotics and Automation, ICRA*, pages 9493–9500, 2023.
- [15] Yichao Liang, Nishanth Kumar, Hao Tang, Adrian Weller, Joshua B. Tenenbaum, Tom Silver, João F. Henriques, and Kevin Ellis. Visualpredicator: Learning abstract world models with neuro-symbolic predicates for robot planning. In *The Thirteenth International Conference on Learning Representations, ICLR*, 2025.
- [16] Bo Liu, Yuqian Jiang, Xiaohan Zhang, Qiang Liu, Shiqi Zhang, Joydeep Biswas, and Peter Stone. LLM+P: empowering large language models with optimal planning proficiency. *CoRR*, abs/2304.11477, 2023.
- [17] Zeyi Liu, Arpit Bahety, and Shuran Song. REFLECT: summarizing robot experiences for failure explanation and correction. In *Conference on Robot Learning*, CoRL 2023, volume 229, pages 3468–3484, 2023.
- [18] Yecheng Jason Ma, Shagun Sodhani, Dinesh Jayaraman, Osbert Bastani, Vikash Kumar, and Amy Zhang. VIP: towards universal visual reward and representation via value-implicit pretraining. In *The Eleventh International Conference on Learning Representations, ICLR 2023*.
- [19] Yao Mu, Junting Chen, Qinglong Zhang, Shoufa Chen, Qiaojun Yu, Chongjian Ge, Runjian Chen, Zhixuan Liang, Mengkang Hu, Chaofan Tao, Peize Sun, Haibao Yu, Chao Yang, Wenqi Shao, Wenhai Wang, Jifeng Dai, Yu Qiao, Mingyu Ding, and Ping Luo. Robocodex: Multimodal code generation for robotic behavior synthesis. In *Forty-first International Conference on Machine Learning, ICML*, 2024.
- [20] Niklas Muennighoff, Qian Liu, Armel Randy Zebaze, Qinkai Zheng, Binyuan Hui, Terry Yue Zhuo, Swayam Singh, Xiangru Tang, Leandro von Werra, and Shayne Longpre. Octopack: Instruction tuning code large language models. In *The Twelfth International Conference on Learning Representations, ICLR*, 2024.
- [21] Rafael Rodríguez-Sánchez, Benjamin Adin Spiegel, Jennifer Wang, Roma Patel, Stefanie Tellex, and George Konidaris. Rlang: A declarative language for describing partial world knowledge to reinforcement learning agents. In *International Conference on Machine Learning, ICML*, 2023.
- [22] Claire Schlesinger, Arjun Guha, and Joydeep Biswas. Creating and repairing robot programs in open-world domains. *CoRR*, abs/2410.18893, 2024.
- [23] Keisuke Shirai, Cristian C. Beltran-Hernandez, Masashi Hamaya, Atsushi Hashimoto, Shohei Tanaka, Kento Kawaharazuka, Kazutoshi Tanaka, Yoshitaka Ushiku, and Shinsuke Mori. Visionlanguage interpreter for robot task planning. In *IEEE International Conference on Robotics and Automation, ICRA*, pages 2051–2058, 2024.
- [24] Ishika Singh, Valts Blukis, Arsalan Mousavian, Ankit Goyal, Danfei Xu, Jonathan Tremblay, Dieter Fox, Jesse Thomason, and Animesh Garg. Progprompt: Generating situated robot task plans using large language models. In *IEEE International Conference on Robotics and Automation*, *ICRA*, pages 11523–11530, 2023.
- [25] Marta Skreta, Naruki Yoshikawa, Sebastian Arellano-Rubach, Zhi Ji, Lasse Bjørn Kristensen, Kourosh Darvish, Alán Aspuru-Guzik, Florian Shkurti, and Animesh Garg. Errors are useful prompts: Instruction guided task programming with verifier-assisted iterative prompting. *CoRR*, abs/2303.14100, 2023.

- [26] Siddharth Srivastava, Eugene Fang, Lorenzo Riano, Rohan Chitnis, Stuart Russell, and Pieter Abbeel. Combined task and motion planning through an extensible planner-independent interface layer. In 2014 IEEE International Conference on Robotics and Automation, ICRA, pages 639–646, 2014.
- [27] Hao Tang, Darren Key, and Kevin Ellis. Worldcoder, a model-based LLM agent: Building world models by writing code and interacting with the environment. In Advances in Neural Information Processing Systems 38: Annual Conference on Neural Information Processing Systems 2024, NeurIPS, 2024.
- [28] Karthik Valmeekam, Matthew Marquez, Alberto Olmo Hernandez, Sarath Sreedharan, and Subbarao Kambhampati. Planbench: An extensible benchmark for evaluating large language models on planning and reasoning about change. In *Advances in Neural Information Processing Systems 36: Annual Conference on Neural Information Processing Systems 2023, NeurIPS 2023*, 2023.
- [29] Lirui Wang, Yiyang Ling, Zhecheng Yuan, Mohit Shridhar, Chen Bao, Yuzhe Qin, Bailin Wang, Huazhe Xu, and Xiaolong Wang. Gensim: Generating robotic simulation tasks via large language models. In *The Twelfth International Conference on Learning Representations, ICLR* 2024.
- [30] Shu Wang, Muzhi Han, Ziyuan Jiao, Zeyu Zhang, Ying Nian Wu, Song-Chun Zhu, and Hangxin Liu. Llm³: Large language model-based task and motion planning with motion failure reasoning. In *IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS*, pages 12086–12092, 2024.
- [31] Andy Zeng, Pete Florence, Jonathan Tompson, Stefan Welker, Jonathan Chien, Maria Attarian, Travis Armstrong, Ivan Krasin, Dan Duong, Vikas Sindhwani, and Johnny Lee. Transporter networks: Rearranging the visual world for robotic manipulation. In 4th Conference on Robot Learning, CoRL 2020, volume 155 of Proceedings of Machine Learning Research, pages 726–747, 2020.
- [32] He Zhao, Isma Hadji, Nikita Dvornik, Konstantinos G. Derpanis, Richard P. Wildes, and Allan D. Jepson. P³iv: Probabilistic procedure planning from instructional videos with weak supervision. In *IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022*, pages 2928–2938. IEEE, 2022.

NeurIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the paper's contributions and scope?

Answer: [Yes]

Justification: The abstract and introduction accurately describe the main contributions of the paper, including the proposed method and experimental results, which are consistent with the content in the main body.

Guidelines:

- The answer NA means that the abstract and introduction do not include the claims made in the paper.
- The abstract and/or introduction should clearly state the claims made, including the
 contributions made in the paper and important assumptions and limitations. A No or
 NA answer to this question will not be perceived well by the reviewers.
- The claims made should match theoretical and experimental results, and reflect how much the results can be expected to generalize to other settings.
- It is fine to include aspirational goals as motivation as long as it is clear that these goals are not attained by the paper.

2. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: The limitations of the method, are discussed in Section 4.

Guidelines:

- The answer NA means that the paper has no limitation while the answer No means that the paper has limitations, but those are not discussed in the paper.
- The authors are encouraged to create a separate "Limitations" section in their paper.
- The paper should point out any strong assumptions and how robust the results are to violations of these assumptions (e.g., independence assumptions, noiseless settings, model well-specification, asymptotic approximations only holding locally). The authors should reflect on how these assumptions might be violated in practice and what the implications would be.
- The authors should reflect on the scope of the claims made, e.g., if the approach was only tested on a few datasets or with a few runs. In general, empirical results often depend on implicit assumptions, which should be articulated.
- The authors should reflect on the factors that influence the performance of the approach. For example, a facial recognition algorithm may perform poorly when image resolution is low or images are taken in low lighting. Or a speech-to-text system might not be used reliably to provide closed captions for online lectures because it fails to handle technical jargon.
- The authors should discuss the computational efficiency of the proposed algorithms and how they scale with dataset size.
- If applicable, the authors should discuss possible limitations of their approach to address problems of privacy and fairness.
- While the authors might fear that complete honesty about limitations might be used by reviewers as grounds for rejection, a worse outcome might be that reviewers discover limitations that aren't acknowledged in the paper. The authors should use their best judgment and recognize that individual actions in favor of transparency play an important role in developing norms that preserve the integrity of the community. Reviewers will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and a complete (and correct) proof?

Answer: [NA]

Justification: We don't have assumptions and proof in this work. a complete (and correct) proof?

Guidelines:

- The answer NA means that the paper does not include theoretical results.
- All the theorems, formulas, and proofs in the paper should be numbered and crossreferenced.
- All assumptions should be clearly stated or referenced in the statement of any theorems.
- The proofs can either appear in the main paper or the supplemental material, but if they appear in the supplemental material, the authors are encouraged to provide a short proof sketch to provide intuition.
- Inversely, any informal proof provided in the core of the paper should be complemented by formal proofs provided in appendix or supplemental material.
- Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main experimental results of the paper to the extent that it affects the main claims and/or conclusions of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: Experimental setups and details are fully documented in Section 4, ensuring reproducibility.

Guidelines:

- The answer NA means that the paper does not include experiments.
- If the paper includes experiments, a No answer to this question will not be perceived well by the reviewers: Making the paper reproducible is important, regardless of whether the code and data are provided or not.
- If the contribution is a dataset and/or model, the authors should describe the steps taken to make their results reproducible or verifiable.
- Depending on the contribution, reproducibility can be accomplished in various ways. For example, if the contribution is a novel architecture, describing the architecture fully might suffice, or if the contribution is a specific model and empirical evaluation, it may be necessary to either make it possible for others to replicate the model with the same dataset, or provide access to the model. In general, releasing code and data is often one good way to accomplish this, but reproducibility can also be provided via detailed instructions for how to replicate the results, access to a hosted model (e.g., in the case of a large language model), releasing of a model checkpoint, or other means that are appropriate to the research performed.
- While NeurIPS does not require releasing code, the conference does require all submissions to provide some reasonable avenue for reproducibility, which may depend on the nature of the contribution. For example
 - (a) If the contribution is primarily a new algorithm, the paper should make it clear how to reproduce that algorithm.
- (b) If the contribution is primarily a new model architecture, the paper should describe the architecture clearly and fully.
- (c) If the contribution is a new model (e.g., a large language model), then there should either be a way to access this model for reproducing the results or a way to reproduce the model (e.g., with an open-source dataset or instructions for how to construct the dataset).
- (d) We recognize that reproducibility may be tricky in some cases, in which case authors are welcome to describe the particular way they provide for reproducibility. In the case of closed-source models, it may be that access to the model is limited in some way (e.g., to registered users), but it should be possible for other researchers to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instructions to faithfully reproduce the main experimental results, as described in supplemental material?

Answer: [Yes]

Justification: We provide anonymous version of full runnable prompts and code.

Guidelines:

- The answer NA means that paper does not include experiments requiring code.
- Please see the NeurIPS code and data submission guidelines (https://nips.cc/public/guides/CodeSubmissionPolicy) for more details.
- While we encourage the release of code and data, we understand that this might not be possible, so "No" is an acceptable answer. Papers cannot be rejected simply for not including code, unless this is central to the contribution (e.g., for a new open-source benchmark).
- The instructions should contain the exact command and environment needed to run to reproduce the results. See the NeurIPS code and data submission guidelines (https://nips.cc/public/guides/CodeSubmissionPolicy) for more details.
- The authors should provide instructions on data access and preparation, including how to access the raw data, preprocessed data, intermediate data, and generated data, etc.
- The authors should provide scripts to reproduce all experimental results for the new proposed method and baselines. If only a subset of experiments are reproducible, they should state which ones are omitted from the script and why.
- At submission time, to preserve anonymity, the authors should release anonymized versions (if applicable).
- Providing as much information as possible in supplemental material (appended to the paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyperparameters, how they were chosen, type of optimizer, etc.) necessary to understand the results?

Answer: [Yes]

Justification: Detailed descriptions are included in Section 4 and Appendix B.

Guidelines:

- The answer NA means that the paper does not include experiments.
- The experimental setting should be presented in the core of the paper to a level of detail that is necessary to appreciate the results and make sense of them.
- The full details can be provided either with the code, in appendix, or as supplemental
 material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate information about the statistical significance of the experiments?

Answer: [Yes]

Justification: Detailed descriptions are included in Section 4.

- The answer NA means that the paper does not include experiments.
- The authors should answer "Yes" if the results are accompanied by error bars, confidence intervals, or statistical significance tests, at least for the experiments that support the main claims of the paper.
- The factors of variability that the error bars are capturing should be clearly stated (for example, train/test split, initialization, random drawing of some parameter, or overall run with given experimental conditions).
- The method for calculating the error bars should be explained (closed form formula, call to a library function, bootstrap, etc.)

- The assumptions made should be given (e.g., Normally distributed errors).
- It should be clear whether the error bar is the standard deviation or the standard error
 of the mean.
- It is OK to report 1-sigma error bars, but one should state it. The authors should preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of Normality of errors is not verified.
- For asymmetric distributions, the authors should be careful not to show in tables or figures symmetric error bars that would yield results that are out of range (e.g. negative error rates).
- If error bars are reported in tables or plots, The authors should explain in the text how they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the computer resources (type of compute workers, memory, time of execution) needed to reproduce the experiments?

Answer: [Yes]

Justification: Detailed descriptions are included in Section 4.

Guidelines:

- The answer NA means that the paper does not include experiments.
- The paper should indicate the type of compute workers CPU or GPU, internal cluster, or cloud provider, including relevant memory and storage.
- The paper should provide the amount of compute required for each of the individual experimental runs as well as estimate the total compute.
- The paper should disclose whether the full research project required more compute than the experiments reported in the paper (e.g., preliminary or failed experiments that didn't make it into the paper).

9. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research fully complies with the NeurIPS Code of Ethics.

Guidelines:

- The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
- If the authors answer No, they should explain the special circumstances that require a
 deviation from the Code of Ethics.
- The authors should make sure to preserve anonymity (e.g., if there is a special consideration due to laws or regulations in their jurisdiction).

10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative societal impacts of the work performed?

Answer: [Yes]

Justification: The proposed method aims to improve the robustness and interpretability of robotic manipulation systems, which may have positive societal impacts in terms of safer and more reliable automation. Potential risks, such as misuse of autonomous repair systems in critical applications without proper safety verification, are acknowledged as future considerations.

- The answer NA means that there is no societal impact of the work performed.
- If the authors answer NA or No, they should explain why their work has no societal impact or why the paper does not address societal impact.

- Examples of negative societal impacts include potential malicious or unintended uses (e.g., disinformation, generating fake profiles, surveillance), fairness considerations (e.g., deployment of technologies that could make decisions that unfairly impact specific groups), privacy considerations, and security considerations.
- The conference expects that many papers will be foundational research and not tied to particular applications, let alone deployments. However, if there is a direct path to any negative applications, the authors should point it out. For example, it is legitimate to point out that an improvement in the quality of generative models could be used to generate deepfakes for disinformation. On the other hand, it is not needed to point out that a generic algorithm for optimizing neural networks could enable people to train models that generate Deepfakes faster.
- The authors should consider possible harms that could arise when the technology is being used as intended and functioning correctly, harms that could arise when the technology is being used as intended but gives incorrect results, and harms following from (intentional or unintentional) misuse of the technology.
- If there are negative societal impacts, the authors could also discuss possible mitigation strategies (e.g., gated release of models, providing defenses in addition to attacks, mechanisms for monitoring misuse, mechanisms to monitor how a system learns from feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible release of data or models that have a high risk for misuse (e.g., pretrained language models, image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper poses no such risks.

Guidelines:

- The answer NA means that the paper poses no such risks.
- Released models that have a high risk for misuse or dual-use should be released with
 necessary safeguards to allow for controlled use of the model, for example by requiring
 that users adhere to usage guidelines or restrictions to access the model or implementing
 safety filters.
- Datasets that have been scraped from the Internet could pose safety risks. The authors should describe how they avoided releasing unsafe images.
- We recognize that providing effective safeguards is challenging, and many papers do
 not require this, but we encourage authors to take this into account and make a best
 faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in the paper, properly credited and are the license and terms of use explicitly mentioned and properly respected?

Answer: [Yes]

Justification: All datasets and code libraries used are properly cited with version numbers and licenses indicated (see Section 4 and References).

- The answer NA means that the paper does not use existing assets.
- The authors should cite the original paper that produced the code package or dataset.
- The authors should state which version of the asset is used and, if possible, include a URL.
- The name of the license (e.g., CC-BY 4.0) should be included for each asset.
- For scraped data from a particular source (e.g., website), the copyright and terms of service of that source should be provided.

- If assets are released, the license, copyright information, and terms of use in the package should be provided. For popular datasets, paperswithcode.com/datasets has curated licenses for some datasets. Their licensing guide can help determine the license of a dataset.
- For existing datasets that are re-packaged, both the original license and the license of the derived asset (if it has changed) should be provided.
- If this information is not available online, the authors are encouraged to reach out to the asset's creators.

13. New assets

Question: Are new assets introduced in the paper well documented and is the documentation provided alongside the assets?

Answer: [No]

Justification: The paper does not release new assets.

Guidelines:

- The answer NA means that the paper does not release new assets.
- Researchers should communicate the details of the dataset/code/model as part of their submissions via structured templates. This includes details about training, license, limitations, etc.
- The paper should discuss whether and how consent was obtained from people whose asset is used.
- At submission time, remember to anonymize your assets (if applicable). You can either create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper include the full text of instructions given to participants and screenshots, if applicable, as well as details about compensation (if any)?

Answer: [NA]

Justification: the paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

- The answer NA means that the paper does not involve crowdsourcing nor research with human subjects.
- Including this information in the supplemental material is fine, but if the main contribution of the paper involves human subjects, then as much detail as possible should be included in the main paper.
- According to the NeurIPS Code of Ethics, workers involved in data collection, curation, or other labor should be paid at least the minimum wage in the country of the data collector.

15. Institutional review board (IRB) approvals or equivalent for research with human subjects

Question: Does the paper describe potential risks incurred by study participants, whether such risks were disclosed to the subjects, and whether Institutional Review Board (IRB) approvals (or an equivalent approval/review based on the requirements of your country or institution) were obtained?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects. Guidelines:

- The answer NA means that the paper does not involve crowdsourcing nor research with human subjects.
- Depending on the country in which research is conducted, IRB approval (or equivalent) may be required for any human subjects research. If you obtained IRB approval, you should clearly state this in the paper.

- We recognize that the procedures for this may vary significantly between institutions and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the guidelines for their institution.
- For initial submissions, do not include any information that would break anonymity (if applicable), such as the institution conducting the review.

16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or non-standard component of the core methods in this research? Note that if the LLM is used only for writing, editing, or formatting purposes and does not impact the core methodology, scientific rigorousness, or originality of the research, declaration is not required.

Answer: [Yes]

Justification: The paper describes the usage of LLMs as an important and original component of the proposed method. Specifically, LLMs are integrated into the core code generation process, where they are conditioned by the dynamically updated instruction graph and symbolic reasoning modules to produce context-aware and constraint-compliant robotic manipulation code. The LLM is not used for writing, editing, or formatting purposes, but serves as a central component of the proposed feedback-driven planning and repair framework, contributing directly to the scientific methodology and originality of the work.

- The answer NA means that the core method development in this research does not involve LLMs as any important, original, or non-standard components.
- Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM) for what should or should not be described.

Appendix

This appendix provides detailed information about our method and experimental setup. It is organized as follows:

- In section A, we first describe the prompting scheme used by different agents in InstructFlow, including both the shared initialization prompt and agent-specific templates for the planner, code generator, and symbolic constraint generator.
- In section B.1, we provide additional details on our experimental setup, including how programs are instantiated and executed within the simulation pipeline. We also identify critical limitations in the original PRoC3S evaluation protocol and introduce a VLM-based semantic check to address them.
- In section B.2.1, we present an extended experiment exploring the effect of visual inputs on planning, followed by a summary of symbolic constraints induced across different manipulation tasks in section B.2.2.
- In section B.2.3, we include several representative case studies that illustrate how InstructFlow recovers from planning failures through symbolic reasoning and instruction graph-guided code repair.

A InstructFlow Prompting Details

Here we provide details on the prompting scheme used for each agent in InstructFlow. The prompting template consists of two parts: a shared initialization template and agent-specific prompts. The complete structure is illustrated as follows:

```
Shared Prompt Templates:

{{system_prompt}}

{{domain_setup_code}}

{{skill_preface}}

{{domain_skills}}

Agent-Specific Prompt Templates:

{{planner_role}}

{{code_generator_role}}

{{constraint_generator_role}}}
```

A.1 Shared Prompt Templates

All agents share a common initial prompt structure, consisting of: (a) system_prompt, (b) domain_setup_code, (c) skill_preface, (d) domain_skills. This shared context is constructed following the initial prompt setup introduced in PRoC3S [3], where detailed environment and skill specifications are defined. We adopt the same structure without modification, and refer readers to the original paper for full specification details.

A.2 Agent-Specific Prompt Templates

As outlined in Section 3, we have three primary agents: the **InstructFlow Planner**, which decomposes the high-level goal into structured subgoals through instruction graph construction; the **Code Generator**, which translates the instruct graph into executable code snippets; and the **Constraint Generator**, which analyzes execution feedback to induce symbolic constraints for graph-guided code repair.

A.2.1 InstructFlow Planner

```
Instruction Graph Construction Prompt
   {task_goal}
   {initial_state}
You are responsible for constructing an adaptive instruction graph that serves as an intermediate reasoning structure for robotic task
planning. Your task is to generate a sequence of base planning nodes that decompose the task into subgoals. These nodes form the
initial executable backbone of the plan. Do not include any reasoning nodes at this stage. Each node should include a semantic
description of the subgoal, which can represent either:
- a concrete manipulation action (e.g., pick, place), or
- a prerequisite operation (e.g., selecting a target object, removing an obstacle).
Ensure subgoals are:
- logically ordered,
- collectively sufficient to achieve the goal.
# Node Type: Planning Node
{ "id": "n1",
"type": "action",
"inputs": ["goal", "initial_state"],
"output": <"natural language subgoal">}
```

Instruction Graph Revision Prompt

```
<inputs>
   {task_goal}
   {initial_state}
   {last_instruction_graph}
   {symbolic_constraint}
</inputs>
```

Your task is to revise the instruction graph in response to symbolic constraints inferred from execution failures. This process involves constructing a reasoning flow that incrementally generates a refined instruction to update downstream planning nodes. You need to follow these steps:

Step 1: Reasoning Node Selection

You need to insert one or more reasoning nodes upstream of affected planning nodes guiding by symbolic constraints. Each reasoning node should perform a symbolic transformation relevant to the failure, and output an intermediate instruction fragment.

Step 2: Instruction Flow Construction

Sequentially process each reasoning node, using its output as an instruction fragment that incrementally updates the evolving task description. These fragments form a directed information flow. At the end of the reasoning node, concatenate all instruction fragments to form a single composite instruction that encodes the full reasoning chain and can be used to update downstream planning nodes.

Step 3: Instruction Graph Update

Use the composite instruction to update the planning nodes. Replace the original subgoal with this revised version, which incorporates both the task intent and refinements. The updated subgoals of instruction graph should then be passed as the final instruction to the code generator.

We define five types of reasoning nodes, each with its specific functionality and structure as described below:

-The spatial relation reasoning node analyzes pairwise spatial relationships between all visible objects to generate a spatial relation graph:

```
#Node Type: Spatial Relation Reasoning Node
{ "id": "n2",
  "type": "spatial_relation_reasoning_node",
  "input": ["initial_state"],
  "output": <"spatial_relation_graph">}
```

-The object density reasoning node estimate the local spatial density around each object to reflect how crowded its surroundings are. # Node Type: Object Density Reasoning Node

```
{ "id": "n3",
  "type": "object_density_analysis_node",
  "input": ["initial_state"],
  "output": <"object_density_map">}
```

-The object selection reasoning node combines the goal, the output of the spatial perception node, the output of the object density analysis node as the inputs to infer which correct manipulated object(s) should be selected to accomplish the goal.

```
# Node Type: Object Selection Reasoning Node
```

```
{ "id": "n4",
  "type": "object_selection_reasoning_node",
  "input": ["goal", "spatial_relations_graph", "object_density_map", "symbolic_constraint"],
  "output": <"manipulated_objects">}
```

-The plan logic Reasoning Node combines the goal, the output of object selection reasoning node, and the symbolic predicate as the inputs to infer the correct execution order among the manipulated targets.

```
# Node Type: Plan Logic Reasoning Node
{ "id": "n5",
  "type": "plan_logic_reasoning_node",
  "input": ["goal", "manipulated_objects", "symbolic_constraint"],
  "output": <"execution_order">}
```

-The parameter range reasoning node combines the goal and the symbolic predicate to adjusts the ranges of action plan parameters based on explicit rules defined in symbolic predicates, and outputs instructions indicating whether to expand or shrink the ranges to meet task requirements.

```
# Node Type: Parameter Range Reasoning Node { "id": "n6",
  "type": "parameter_range_adjustment_node",
  "inputs": ["goal", "symbolic_constraint"],
  "output": <"range_adjustment_instruction">}
```

A.2.2 Code Generator

Code Generator Prompt

```
<inputs>
   {task_goal}
   {initial_state}
   {subgoals_instruction}
</inputs>
```

You are a code generation agent in a robotic planning system. Your goal is to generate two things:

First, generate a python function named 'gen_plan' that can take any discrete or continuous inputs. No list inputs are allowed and return the entire plan with all steps included where the parameters to the plan depend on the inputs. The plan should be generated based on the initial high-level computation graph, which is composed of a sequence of subgoals. Each subgoal corresponds to either a manipulation action or a prerequisite operation.

Second, generate a python function 'gen_domain' that returns a set of bounds for the continuous or discrete input parameters. The number of bounds in the generated domain should exactly match the number of inputs to the function excluding the state input.

The function you give should always achieve the goal regardless of what parameters from the domain are passed as input. The 'gen_plan' function therefore defines a family of solutions to the problem. Explain why the function will always satisfy the goal regardless of the input parameters. Make sure your function inputs allow for as much variability in output plan as possible while still achieving the goal. Your function should be as general as possible such that any correct answer corresponds to some input parameters to the function.

The main function should be named EXACTLY 'gen_plan' and the domain of the main function should be named EXACTLY 'gen_domain'. Do not change the names. Do not create any additional classes or overwrite any existing ones. Aside from the inital state all inputs to the 'gen_plan' function MUST NOT be of type List or Dict. List and Dict inputs to 'gen_plan' are not allowed. Additionally, the input to 'gen_domain' must be exactly the 'initial:RavenBelief' argument, even if this isn't explicitly used within the function!

A.2.3 Symbolic Constraint Generator

Constraint Generator Prompt

```
<inputs>
    {task_goal}
    {initial_state}
    {failure_feedback}
    {generated_code}
</inputs>
```

You are a symbolic reasoning agent tasked with diagnosing execution failures in robotic manipulation tasks. Your goal is to induce generalizable symbolic constraints that explain the failure and can guide future plan correction. You task is to perform the following reasoning steps to generate symbolic constraint(s) for plan repair:

Step 1. Failure-relevant retrieval:

Identify the exact code segment responsible for triggering the failure. In a failure feedback, "Step N" refers to the N-th action generated by the code (zero-based index). Specifically, it corresponds to the N-th plan.append(Action(...)) call in the code. For example: "Step 1, Action: place" refers to the second action in the plan (index = 1).

Step 2. Code-level reasoning:

Extract all variables relevant to this failure, including:

- -Manipulated objects.
- -Object poses and spatial relations.
- -Action parameters (e.g., offsets).
- -Domain ranges for parameters.

Step 3. Diagnostic reasoning:

Based on the environment state and extracted variables, analyze the geometric or physical cause of failure. You must consider multiple possible causes, including but not limited to:

- $\hbox{-} \ Geometric \ violations \ (e.g., \ collisions, \ unstable \ placement, \ path \ obstruction).$
- Temporal inconsistencies (e.g., incorrect subgoal ordering, premature actions).
- Symbolic logical errors (e.g., wrong object selection, missing prerequisite conditions).

For physical causes, compute diagnostic metrics, including but not limited to:

- Proximity distances between relevant entities.
- Existence of collision-free paths.
- Stability metrics (e.g., center of mass projection).

For symbolic or logical causes, analyze:

- Whether the current action respects task-specific symbolic constraints.

- Dependencies between subgoals as defined in the instruction graph.
- Whether preconditions for the current subgoal are satisfied.

Provide a concise diagnosis explaining why the failure occurred, explicitly stating:

- The type of cause (physical, temporal, symbolic).
- The reasoning process leading to this conclusion.

You are not allowed to assume the cause based solely on the failure description. All conclusions must be verified through concrete reasoning over environment state, task semantics, or diagnostic metrics.

Step 4. Symbolic Constraint Induction:

Given the diagnosis and variables, formulate a symbolic constraint that abstracts the failure into a general, reusable rule. You must express the constraint using standard symbolic predicates, including but not limited to:

- -Spatial relations: On, ClearOf, Aligned, StableOn...
- -Temporal/ordering: Before, Precondition, Order..
- -Semantic affordances: Reachable, Occludes, Graspable, Affords...
- -Physical feasibility: ProximitySafe, PathClear, PlacementFeasible, ForceStable...

The constraint must express logical conditions involving task entities, their relationships, or parameter ranges, and be parameterized with thresholds or bounds when applicable.

B Experiment Details and Additional Results

B.1 Experimental Setup Details

B.1.1 Program Instantiation and Simulation Pipeline

Our framework follows the same two-stage code generation and execution process used in PRoC3S [3]. Specifically, after generating the code that defines a task plan via LLM, the resulting Python function consists of two components: get_plan() and get_domain().

The get_plan() function encodes a sequence of symbolic actions with continuous or discrete parameters, corresponding to the subgoals decomposed in the instruction graph. The get_domain() function specifies the sampling bounds for each parameter from a predefined sampler. These samplers (e.g., ContinuousSampler, GraspSampler) generate candidate values for plan parameters without awareness of environmental constraints such as collisions or instability.

To ground the abstract plan into an executable one, we adopt the same strategy as PRoC3S: sample n parameter instantiations from the domains defined in $\mathtt{get_domain}()$, and for each instantiation, evaluate the resulting plan in a physics-based simulator. If the plan violates any constraints (e.g., Kinematic, collisions, grasp, placement constraints), the simulator reports detailed constraint violation feedback. Once a constraint-free plan is found in simulation, it is deployed in the real environment.

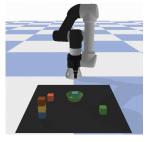
B.1.2 Fixing Protocol Limitations in PRoC3S Evaluation

While our experimental setup builds directly on the original PRoC3S [3] framework and reuses its environment, skill library, and simulation interface, we identified structural limitations in its evaluation protocol. Specifically, PRoC3S treats any execution that does not explicitly violate simulator constraints as successful, regardless of whether the task goal has been semantically achieved.

Incorrect but constraint-free Plan Misclassified as Successful For example, a plan may place an object in an incorrect position, fail to form the required structure (e.g., a pyramid), or manipulate the wrong object altogether. As long as no collisions or instability are triggered in simulation, such plans are incorrectly classified as successful. Figure 6 illustrate several cases where the task goal was clearly unmet, yet no feedback was generated to initiate replanning.

Fixing the Evaluation Protocol via VLM Check To address this fundamental evaluation gap, we introduce a semantic-level verification step using a vision-language model (GPT-40). After executing each plan, we render the final scene and prompt the VLM to assess whether the natural language goal has been achieved. If not, the failure is recorded and propagated, triggering a replanning cycle. Specifically, we explicitly instruct the VLM to evaluate structured visual conditions and provide clear success criteria along with positive and negative examples, enabling it to produce consistent and grounded success judgments.

(a) **Pyramid**: the top block does not make contact with the lower-left block to form a pyramid.



(b) **Unstack**: an incorrectly colored block was placed into the target bowl.

(c) **Packing**: there is a object left outside the designated container area.

Figure 6: Task failures caused by incorrect plans that are accepted as successful by PRoC3S, despite violating the task goal, because they do not trigger any constraint violations.

This fix does not modify the core PRoC3S planning mechanism, but augments the evaluation logic with a reliable, goal-aware success signal. It enables all baselines—including PRoC3S and InstructFlow—to be assessed under a consistent, semantically meaningful criterion. While this change may lower the reported success rates of prior methods, we consider it essential for fair and rigorous comparison, especially in tasks with under-specified goals or ambiguous execution semantics.

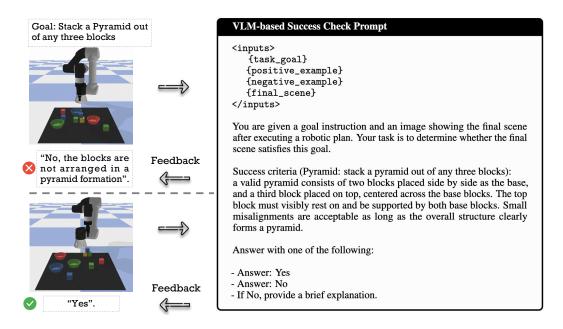


Figure 7: VLM-based success check on two execution plans for the Pyramid task. The upper plan produces a **non-standard pyramid** where the top block does not contact the left base block. The VLM detects this semantic error and returns "**No**" with reason. The lower plan yields a **correct pyramid** structure, and the VLM responds with "**Yes**". This demonstrates the importance of incorporating VLM check as a complementary layer to evaluation protocol.

B.2 Additional Experiment Results and Cases

B.2.1 Additional Experiment

To assess the potential of vision-language models (VLMs) for improving task planning, we conduct an additional experiment where our existing GPT-40-based reasoning agent receive both the goal and an image of the initial scene, enabling multimodal visual reasoning.

This vision-augmented setup improves the planner's ability to reason under partial observability or ambiguous symbolic states. As shown in Table 5, we observe performance gains in several visually grounded tasks, including *Packing (Blocks)*, *Unstack*, and *Packing (YCB)*, where early-stage visual cues help the system make better object selection or ordering decisions.

		Dr	awing		Arrange Blocks				Arrange YCB		
	Star	Arrow	Letters	Enclosed	Pyramid	Line	Packing	Unstack	Packing	Stacking	
LLM ³ (w/ vision)	40%	40%	80%	50%	0%	40%	30%	0%	0%	10%	
CaP (w/ vision)	10%	0%	40%	30%	20%	20%	20%	20%	40%	10%	
PRoC3S (w/ vision)	90%	80%	80%	90%	60%	70%	60%	80%	40%	40%	
InstructFlow (w/ vision)	100%	80%	100%	100%	90%	100%	90%	100%	60%	70%	

Table 5: Task success rates (%) across drawing, block arrangement, and YCB manipulation tasks using VLM-based visual reasoning. Bold indicates the best-performing results.

To further evaluate the planning efficiency of InstructFlow, we compare it with the baseline system PRoC3S in terms of (1) average number of feedback queries required per task and (2) end-to-end wall-clock latency.

Feedback Efficiency. As shown in Table 6, InstructFlow significantly reduces the number of feedback-driven repair cycles. Tasks that require 2–5 full regenerations in PROC3S are typically completed in 1-3 symbolic repair steps in InstructFlow, resulting in a reduction of feedback interactions by approximately 37% on average.

		Dra	wing			Arrange	Blocks		Arrang	ge YCB
	Star	Arrow	Letters	Enclosed	Pyramid	Line	Packing	Unstack	Packing	Stacking
PRoC3S	0.50±0.20	1.00±0.20	0.60±0.30	0.50±1.50	1.90±2.25	1.20±1.32	1.80±2.10	2.80±2.22	3.10±3.04	2.90±2.70
InstructFlow	0.00±0.00	1.00±0.20	0.10±0.20	0.00±0.00	1.30±0.82	0.20±0.30	1.50±1.22	1.90±1.82	2.30±2.12	2.00±2.10

Table 6: Average number of feedback queries per task (mean \pm std).

Wall-clock Latency. Despite employing a multi-agent planning architecture, InstructFlow does not incur higher computational cost. As shown in Table 7, it achieves an average end-to-end latency reduction of approximately 4.7%. This improvement is attributed to symbolic constraints that prune infeasible code paths and reduce retry cycles in LLM sampling.

		Dra	wing			Arran	Arrange YCB			
	Star	Arrow	Letters	Enclosed	Pyramid	Line	Packing	Unstack	Packing	Stacking
PRoC3S	22.39±3.65	24.18±3.77	31.16±5.90	39.23±53.62		52.64±40.97	197.14±210.38	142.82±142.34	988.23±940.72	61.36±19.78
InstructFlow	20.22±4.12	24.20±3.58	26.27±4.10	36.21±49.25	140.93±131.37	48.21±37.53	204.76±227.24	124.30±121.44	892.18±880.84	63.27±25.51

Table 7: Wall-clock latency (in seconds, mean \pm std) per task.

These results show that the modular design of InstructFlow not only improves feedback efficiency but also retains low computational latency, making it scalable for complex tasks involving multiple agents and symbolic constraints.

B.2.2 Table of Symbolic Constraints Discovered

Table 8 summarizes the symbolic constraints that were automatically induced based on failure feedback across different manipulation tasks. From a content perspective, we highlight the following key properties:

Structural Consistency. All induced constraints conform to the symbolic constraint formulation presented in Section 3.3. Each constraint instance can be expressed either as a relational predicate $R_i(e_a, e_b)$ or a physical threshold condition $f_j(\Theta) \oplus \tau$. This ensures that all constraints are logically composable, interpretable, and grounded in the formal symbolic space defined by ϕ .

Diverse Coverage of Constraint Types. The constraint set spans a wide range of task-relevant constraint categories, including:

- Spatial safety: ProximitySafe, ClearOf, PathClear...
- Placement feasibility: PlacementFeasible, Aligned, StableOn...
- Geometric parameters: Distance, Offset, CenterOfMass...
- Temporal logic: Before, Order

These categories capture both physical feasibility and symbolic reasoning failure modes, supporting a broad range of corrective strategies.

Notably, the table does not include constraints for the Drawing tasks. This is because the drawing tasks are comparatively simpler in structure and were typically solved by the planner in a single attempt without triggering any failure-driven refinement. As a result, no symbolic constraint induction process was invoked for these tasks, and they are therefore excluded from this table.

Task	Symbolic Constraints
Pyramid	$\begin{tabular}{ l l l l l l l l l l l l l l l l l l l$
Line	StableOn(?block, ?table); Alignment(?block); Alignment_tolerance ∈ [-0.01, 0.01]
Packing (Blocks)	ProximitySafe(?block, ?boundary); PlacementFeasible(?block, square_region); WithinBounds(?block, region_center, 2*block_size); ProximitySafe(block, region_center) \(\) WithinDistance(?block, region_center, ?max_distance)
Unstack (Blocks)	StableOn(?block, ?bowl); ProximitySafe(?gripper, ?block); Clearof(?gripper, ?obstacle); PlacementFeasible(green_block, green_bowl); Inside(green_block, green_bowl); Aligned(block_center, bowl_center); NotStacked(green_block, ?obstacle) \(\chioffset_z > 0.03 \)
Packing (YCB)	ProximitySafe(?gripper, ?object); GraspFeasible(?grasp, ?object_pose); ProximitySafe(object, table_center); Distance(?object, table_center) < 0.06; PlacementFeasible(?object, center, threshold) \wedge threshold = 0.06; Graspable(?grasp, ?object); CollisionFree(?gripper, ?object)
Stacking (YCB)	OnTop(object_a, object_b); ClearOf(object_a, surface); ClearSurface(object_b); PlacementFeasible(object_a, object_b); StableOn(object_a, object_b); AlignedForStacking(object_a, object_b); Graspable(?object, ?grasp) \times CollisionFree(?object)

Table 8: Inducted constraints for each task across Arrange-Blocks and Arrange-YCB domains

B.2.3 Case study

In addition to the Unstack task discussed in section 4.4, we present several representative manipulation tasks as case studies to further demonstrate the effectiveness and generality of our method. For each task, we analyze the core planning difficulties, the symbolic constraints induced during execution, and how InstructFlow dynamically updates the instruction graph to recover from failures.

Pyramid. The goal is to **stack a Pyramid out of any three blocks**, which means the robot need to construct a pyramid-like structure by selecting any three available blocks: two as the base and one stacked on top. The key challenge lies in both object selection and precise spatial configuration. Specifically, the lateral distance between the two base blocks must be carefully chosen to ensure that the top block can be stably placed across them. Furthermore, this task is especially sensitive to execution noise: even if a plan passes all physical constraint checks in simulation, the same stack may collapse in the real environment due to minor perturbations such as control inaccuracy or object pose

estimation errors. PRoC3S [3] lacks a feedback mechanism to detect post-simulation failures. Once a plan passes simulation, it is executed directly without verifying whether the real-world outcome satisfies the goal. Our method addresses this by introducing a VLM-based validation step: the executed scene is rendered and checked against the original goal, with replanning initiated if the structure is incorrect.

In the first round of code generation, InstructFlow receives the goal: "Stack a pyramid out of any three blocks." The InstructFlow Planner constructs an initial instruction graph consisting of seven planning nodes, each representing a subgoal in the pyramid assembly process. Guided by this graph, the code generator produces an executable plan. However, after executing the plan, VLM-based semantic validation reports a failure, indicating the following issue:

```
[Error Message]: "The blocks are not arranged in a pyramid formation"
```

Given the failure feedback and generated code, the **Constraint Generator** localizes the issue to the code block responsible for pyramid construction, specifically the subgoal corresponding to subgoal5 in get_plan() and the offset_x parameter defined in get_domain(). By examining the sampled parameter values, InstructFlow infers that the current range of offset_x is too wide, causing the base blocks to be placed too far apart. As a result, the top block either falls during execution or forms a configuration that is not recognized as a pyramid by the VLM. This reasoning leads to the generation of an explicit symbolic constraint:

```
\phi_{\rm dist} := \texttt{Distance}(\texttt{?block\_bottom}) \in [0, 0.04]
```

Here, 0.04 corresponds to the environment-defined block size, ensuring that the top block can span both base blocks without falling or misalignment.

Given the symbolic constraint, InstructFlow Planner dynamically updates the instruction graph by introducing reasoning nodes that refine the value range of offset_x. Specifically, the updated graph incorporates a parameter range refinement node $v_{\mathcal{T}param}^{\text{reason}}$, whose output is an instruction to narrow the sampling bounds of offset_x.

Based on the updated instruction graph, the **Code Generator** regenerates the executable code to satisfy the induced symbolic constraints. As shown in Figure 5, the regenerated code modifies the get_domain() function by narrowing the sampling range of offset_x from the original (BLOCK_SIZE, BLOCK_SIZE * 2) to (0, BLOCK_SIZE). This adjustment results in a tighter arrangement of the base blocks, enabling the top block to rest stably and form a recognizable pyramid structure. The final scene passes VLM validation, and the task is successfully completed.

Stacking (Arrange-YCB). This task requires the agent to stack one object on top of another, selected from a diverse set of YCB objects with varied shapes, sizes, and physical properties. The primary challenge lies in object selection: due to irregular geometries and asymmetric mass distributions, not all object pairs are feasible for stable stacking. Therefore, selecting an appropriate pair is critical to the success of the task. A second challenge arises from the lack of feedback handling in PRoC3S. Due to shape mismatch or small execution disturbances, the stacked configuration may fail in the real environment but without replanning.

In the first round of code generation, InstructFlow receives the goal: "Stack any object on any other object". The **InstructFlow Planner** constructs an initial instruction graph consisting of three planning nodes, corresponding to selecting two objects, picking the first object, and placing it on top of the second. Guided by this structure, the **Code Generator** generates an executable plan. However, after execution, VLM-based semantic validation reports a failure, indicating that the chosen object pair did not result in a valid or stable stacked configuration.

```
[Error Message]: "No objects are stacked on top of each other"
```

Given the failure feedback and generated code, the **Constraint Generator** localizes the issue to the code block responsible for selecting object pairs. Specifically, the analysis reveals that the object

```
def gen_plan(initial: RavenBelief,
                      base_x: float, base_y: float,
offset_x: float):
             plan = []
             # Subgoal 1: Select three blocks for the pyramid
blocks = [obj for obj in initial.objects.values() if obj.category == "block"]
             block1, block2, block3 = blocks[:3]
10
11
              # Subgoal 2: Pick the first block for the base of the pyramid
             plan.append(Action("pick", blockl.pose.point))
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
             # Subgoal 3: Place the first block at the base position
             plan.append(Action("place", [base_x, base_y, block1.pose.point[2]]))
             # Subgoal 4: Pick the second block for the base of the pyramid
             plan.append(Action("pick", block2.pose.point))
             # Subgoal 5: Place the second block next to the first block at the base position, ensuring alignment
             plan.append(Action("place", [base_x + offset_x, base_y, block2.pose.point[2]]))
             # Subgoal 6: Pick the third block for the top of the pyramid
             plan.append(Action("pick", block3.pose.point))
              # Subgoal 7: Place the third block on top of the first and second blocks to complete the pyramid
             plan.append(Action("place", [base_x + offset_x / 2, base_y, blockl.pose.point[2] + BLOCK_SIZE]))
        def gen_domain(initial: RavenBelief):
             return {
                 urn {
   "base_x": ContinuousSampler(TABLE_BOUNDS[0][0], TABLE_BOUNDS[0][1] - BLOCK_SIZE),
   "base_y": ContinuousSampler(TABLE_BOUNDS[1][0], TABLE_BOUNDS[1][1]),
   "offset_x": ContinuousSampler(BLOCK_SIZE, BLOCK_SIZE * 2),
32
33
34
                 "offset_x": ContinuousSampler(0, BLOCK_SIZE),
    34 +
```

Figure 8: A code snippet illustrating how InstructFlow repairs the **Pyramid** task plan: to correct the code, **InstructFlow** incorporates a **parameter range refinement node** into the instruction graph based on the induced symbolic constraint, which guides the regenerated code to reduce the sampling range of **offset_x** in the **get_domain** function. This adjustment reduces the spacing between base blocks, enabling a **stable top placement** and successful pyramid construction.

pair was selected via an environment-defined DiscreteSampler(), which randomly samples two objects without considering any factors that influence stackability. As a result, the constraint generator induces the following symbolic constraint to guide future selection:

```
\phi_{\text{stack}} := \texttt{AlignedForStacking}(\texttt{object\_a}, \texttt{object\_b}) \land \\ \texttt{PlacementFeasible}(\texttt{object\_a}, \texttt{object\_b})
```

Given the symbolic constraint, InstructFlow Planner dynamically updates the instruction graph by introducing reasoning nodes that guide the selection of a physically compatible object pair for stacking. Specifically, the updated graph includes a spatial_relation_reasoning_node $v_{\mathcal{T}spatial}^{\mathrm{reason}}$ to analyze relative object positions and an object_density_analysis_node $v_{\mathcal{T}density}^{\mathrm{reason}}$ to evaluate the local clutter surrounding each object. These outputs are fed into an object_selection_reasoning_node $v_{\mathcal{T}select}^{\mathrm{reason}}$, which selects object_2 and object_4 as a feasible stacking pair based on the symbolic constraint SelectStackablePair. A plan_logic_reasoning_node $v_{\mathcal{T}plan}^{\mathrm{reason}}$ then determines the appropriate execution order, generating a subgoal sequence: "Pick object_2" followed by "Place object_2 on top of object_4.".

Based on the updated instruction graph, the **Code Generator** regenerates the executable code to satisfy the induced symbolic constraints. As shown in Figure 6, the regenerated code eliminates the use of unconstrained object sampling in gen_domain(), replacing it with fixed object assignments (object_2 and object_4) determined through reasoning nodes. This ensures that the selected object pair adheres to the AlignedForStacking and PlacementFeasible constraints. The new plan simplifies the domain by sampling only the grasp for the manipulated object and directly encodes the stacking intent in the plan logic. With this targeted refinement, the resulting scene passes VLM-based check, and the stacking task is successfully completed.

Figure 9: A code snippet illustrating how InstructFlow repairs the **Stacking** task plan: to correct the code, **InstructFlow** updates the instruction graph based on the induced symbolic constraint. This update adjusts the subgoals from **randomly selecting stacking targets** to using a **specifically determined object pair**, guiding the regenerated code to modify the corresponding logic in **get_plan** and remove the random sampling from **get_domain**. This adjustment ensures the **physical feasibility** of the stacking operation.