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Abstract

With the increasing use of neural networks in criti-
cal systems, runtime monitoring becomes essential
to reject unsafe predictions during inference. Vari-
ous techniques have emerged to establish rejection
scores that maximize the separability between the
distributions of safe and unsafe predictions. The
efficacy of these approaches is mostly evaluated
using threshold-agnostic metrics, such as the area
under the receiver operating characteristic curve.
However, in real-world applications, an effective
monitor also requires identifying a good threshold
to transform these scores into meaningful binary
decisions. Despite the pivotal importance of thresh-
old optimization, this problem has received little
attention. A few studies touch upon this question,
but they typically assume that the runtime data dis-
tribution mirrors the training distribution, which is
a strong assumption as monitors are supposed to
safeguard a system against potentially unforeseen
threats. In this work, we present rigorous exper-
iments on various image datasets to investigate:
1. The effectiveness of monitors in handling unfore-
seen threats, which are not available during thresh-
old adjustments. 2. Whether integrating generic
threats into the threshold optimization scheme can
enhance the robustness of monitors.

1 INTRODUCTION

Deep learning has gained traction in safety-critical domains
such as surgical robots [Haidegger, [2019]], autonomous vehi-
cles [Ferreira et al.| 2022], and drone landing [[Guerin et al.}
2022al]. As reliance on neural networks (NN) in these sec-
tors intensifies, the importance of ensuring their safety keeps
growing and demands continued research. NN runtime mon-
itoring is a promising direction, seeking to detect unsafe

predictions during inference. Numerous methods have been
developed for NN runtime monitoring [Hendrycks and Gim/{
pel, 2016, [Ferreira et al., [2023| [Wang et al.l 2022]]. They
consist of designing scoring functions indicating the level
of confidence for a prediction. These scores are then thresh-
olded to reject low-confidence predictions.

The performance of a monitor is assessed based on its ca-
pacity to build score distributions that effectively separate
safe and unsafe predictions. To evaluate this, commonly
used metrics in the literature are threshold-agnostic, rep-
resenting an average performance of binary classification
metrics across a range of threshold values (e.g., area un-
der the receiver operating characteristic curve (AUROC)).
High values of such metrics suggest the existence of a good
threshold, but they do not ensure that it can be found easily.
To deploy a monitor in a real-world application, a concrete
rejection threshold value must be set to determine accepted
and rejected predictions. This threshold is pivotal, as a good
monitor with a poor threshold can still result in an unsafe
system. Despite the crucial nature of threshold optimization,
it remains under-explored in runtime monitoring research.

Building upon the foundational work of |(Chow|[1970], the
field of “classification with rejection” has considered the
problem of rejection thresholds optimization [[Geifman and
El-Yaniv, 2017, Zhang et al.| 2023[]. However, a strong as-
sumption underlying most of these studies is that the data
distribution encountered during runtime closely mirrors the
training distribution. In practice, this means that the valida-
tion occurs on training and test datasets drawn from the same
distribution. This presents a notable challenge in the context
of neural network safety monitoring, where the primary ob-
jective is to safeguard critical systems against various types
of threats, such as novel classes, covariate shifts, or adversar-
ial attacks. In this paper, we aim to assess experimentally the
resilience of runtime monitoring thresholds under different
assumptions about our prior knowledge of runtime threats.
This includes investigating scenarios that depart from the
traditional assumption of distributional similarity, offering a
broader coverage of diverse real-world conditions.
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Figure 1: Conceptual Overview — This research compares four ways to construct threshold optimization sets for neural
network runtime monitors, each representing distinct assumptions about the data available for threshold tuning.

To address this pivotal question, we have designed a rig-
orous large-scale experiment on computer vision datasets.
We compare four different ways to construct a threshold
optimization dataset (see Figure[I]and Section[3), allowing
us to investigate two primary research questions. First, we
compare thresholds fitted with or without prior knowledge
of the evaluated threat, which is a more realistic setting
to determine whether NN monitors can effectively handle
unforeseen new threats. Second, we explore the potential
benefits of integrating generic threats into the threshold op-
timization dataset. Given the relative ease of generating or
acquiring generic threats, this approach could represent a
realistic straightforward method to enhance the robustness
of neural network monitors.

This paper is organized as follows: Section [2]reviews rele-
vant literature on NN monitoring and threshold optimization
for classification. Section 3] presents our methodology and
the associated research questions. Section [ outlines our
experimental design. Section [5] analyzes our findings. In
Section[6] we reflect on our findings and explore their prac-
tical implications. Finally, in Section[7, we conclude this
work and suggest future research directions.

2 BACKGROUND AND RELATED WORK

In this section, we present key definitions and relevant lit-
erature about NN runtime monitoring. This work focuses
on classification, but some of the methodologies discussed
here are transferable to other Machine Learning tasks.

2.1 NEURAL NETWORKS RUNTIME MONITORS

Let us denote a classification task by 7', its feature space by
X, and its label space by ). The oracle function for 7' is
denoted 2, signifying that the ground truth for any z € X is
Q(x). Let Dy represent a training dataset for 7', and let f
be a classifier for 7', trained using Dyy,. A runtime monitor
for f, denoted as my, is a binary classifier designed to filter
out unsafe predictions of f. Here, we adopt a convention
where the positive class for my denotes unsafe samples,
though the reverse convention also exists in the literature.

Most of the literature on NN monitoring does not focus on
constructing binary classifiers, but rather on models that
output continuous scores representing the confidence in a
prediction. In practice, training a monitor, i.e., adjusting the
parameters of the monitoring function to generate meaning-
ful scores, commonly involves the use of the same labeled
training dataset, Dy, although this is not a strict require-
ment. Converting these scores into binary classification out-
puts requires applying a thresholding operation.

The fitting method typically relies on features extracted from
one or more layers of f.Hendrycks and Gimpel| [2016] pro-
posed to detect abnormal examples using the maximum
softmax probability (MSP) as their score. |Lee et al.|[2018]
fitted class-conditional Gaussian distributions to the features
and defined their confidence score as the minimum Maha-
lanobis distance to class-wise centroids. |Henzinger et al.
[2020] compared runtime features to the smallest bounding
boxes containing features from Dy,. [Liu et al.|[2020] pro-



posed the energy score (logsumexp of the logits) and |Sun
et al.| [2021]] suggested computing rectified logits by clip-
ping the activations. Recently,[Wang et al.|[2022] developed
a virtual logits score, generated from the norm of feature
residuals against the principal subspace defined by Di,in-

2.2 EVALUATION OF NN RUNTIME MONITORS
2.2.1 Out-of-Distribution vs. Out-of-Model-Scope

The concept of safety is central in defining runtime monitors
expected outcomes. Two perspectives coexist to define what
constitutes an unsafe sample [Guerin et al.| [2023]]:

1. Out-of-Distribution (OOD): This perspective targets
the detection of data points that fall beyond the training
distribution of the classifier, represented by Diyip.

2. Out-of-Model-Scope (OMS): This perspective focuses
on identifying data points that lead to incorrect predic-
tions by the classifier.

In this study, we adopt the OMS approach, where the moni-
tor’s objective is to reject misclassified samples, indicated
as my = 0 when f(z) = Q(z) (correct prediction) and
my = 1 when f(z) # Q(z) (misclassification). As ex-
plained by |Guerin et al.|[2023]], the OMS setting circum-
vents the potentially ambiguous definition of what is OOD
and avoids any misconceptions about OOD detection per-
formance. It’s important to note that the training dataset
Dirain, traditionally considered in-distribution in the OOD
setting, often contains OMS (misclassified) samples since
classifiers are rarely perfect. In summary, our study defines a
good monitor as one that rejects incorrect predictions and ac-
cepts correct ones, regardless of whether the corresponding
samples are considered in or out-of-distribution.

2.2.2 Evaluation Dataset Construction

Even in the OMS setting, it’s crucial to evaluate a monitor’s
performance outside the training distribution, where mis-
classifications are more likely. Hence, in typical evaluations
of monitors, in-distribution (ID) data and out-of-distribution
(OOD) threat data are used jointly to assess performance.
For ID test data, we usually use the test split associated with
Dirain. Threat data primarily fall into three categories: 1. Nov-
elty: The labels do not belong to the label space (Q2(z) ¢ )),
2. Covariate Shift: The inputs are not drawn from the same
distribution as Dyyin, 3. Adversarial Attacks: The inputs
are maliciously modified to cause misclassifications. In the
OMS setting, we use labeled datasets to identify errors of f
to serve as ground truth for the monitor evaluation. Both the
test and threat sets may contain misclassifications. Addition-
ally, except for novelty, the threat sets can contain correct
predictions, depending on the degree of perturbations.

2.2.3 Threshold Agnostic Evaluation Metrics

A monitor is evaluated based on its ability to distinguish
correctly classified data from misclassifications. Related
works frequently use threshold-agnostic metrics to assess
this skill across a range of thresholds. Examples of such
metrics include AUROC, AUPR (Area under the Precision-
Recall curve), and FNR@95TNR (False Negative Rate at
95% True Negative Rate). However, to deploy a runtime
monitor in a real-world scenario, one must select a fixed
threshold value to decide which predictions to reject. As
of today, no studies have addressed the generic problem of
threshold selection for neural network monitoring. Thresh-
old selection is typically addressed in a somewhat nebulous
manner, suggesting that the “threshold should be chosen
such that a high proportion of ID data instances are accu-
rately processed by the monitor” [Liu et al.l {2020, Sun et al.}
2021, Wang et al., [2022].

2.3 THRESHOLD OPTIMIZATION FOR
CLASSIFICATION

Despite the absence of work addressing threshold fitting
for NN runtime monitoring, some research has tackled this
problem in the broader context of classification. Arampatzis
and van Hameran| [2001]] explained the steps involved in the
exhaustive search method for threshold optimization on a
finite test dataset: 1. Calculate the classification scores for
all samples of the test dataset, 2. Sort the list of predicted
scores, 3. Select a metric to represent threshold performance,
called effectiveness measure, 4. Calculate the effectiveness
measure at every position of the sorted list, 5. Find the
position where the effectiveness measure is optimal, 6. Set
the threshold slightly above this optimal position.

In the literature, the most common variations of this stan-
dard optimization pipeline involve alternative choices for the
effectiveness measure: F-score [Zou et al.,2016], geometric
mean of Recall and Specificity [Johnson and Khoshgoftaar,
2021]], Matthews correlation coefficient [[Chicco and Jur{
man), 2023]], or Cohen’s kappa [Freeman and Moisen, 2008]].
Another research direction involves developing optimized
search strategies to identify the threshold more efficiently
[Arampatzis and van Hameran| 2001} [Esposito et al.,[2021]].

In this study, we compare four ways to construct the valida-
tion set used to optimize the threshold for runtime monitors.

3 METHODOLOGY

Let us consider a monitor, that has been trained to produce
scores reflecting the confidence of a NN. Our goal is to
compare different ways to build a validation dataset on
which we can find an optimal threshold for these scores, to
determine the predictions to reject. Although the process of



finding a suitable threshold has received little attention in
the literature, it is a crucial factor to consider. In practice,
a monitor may generate scores that accurately distinguish
incorrect predictions, but its safety could be compromised
if the rejection threshold is not properly calibrated.

To evaluate the effectiveness of a given threshold, we employ
conventional binary classification metrics, such as Recall
and Precision, on a carefully designed test dataset, which
we call Threshold Evaluation Set. To have a balanced eval-
uation, we construct the Threshold Evaluation Set to en-
compass regular in-distribution data as well as one specific
target threat. The inclusion of in-distribution data enables
us to identify monitors that may overly reject, and focusing
on a single threat allows us to characterize distinct mon-
itor failures. This focus is more realistic, as it is unlikely
for a NN to encounter multiple threats concurrently. We
emphasize that our experiments address multiple threats in
practice, but they are assessed separately to evaluate monitor
performance across different threat scenarios.

To tune the threshold, we use a separate Threshold Optimiza-
tion Set. Fitting the threshold essentially involves identifying
the value that optimizes a specific effectiveness measure on
the Optimization Set (see Section[2.3)). The chosen effective-
ness measure should reflect the delicate balance between
system safety and availability, i.e., it should encapsulate the
monitor’s capacity to reject incorrect predictions and to ac-
cept correct ones [Guerin et al.,2022b]. In our experiments,
we try F1 and g-mean (see Section[d). Both the Threshold
Optimization and Evaluation sets are composed of inputs to
the NN (images), corresponding monitor scores, and labels
that indicate the correctness of the predictions.

Our experiments compare four ways to construct the Opti-
mization Set (Figure[I). They reflect alternative real-world
deployment scenarios for monitors, representing assump-
tions about our ability to anticipate forthcoming threats:

1. The first assumption, denoted ID, involves construct-
ing an optimization set composed exclusively of In-
Distribution (ID) data samples. This presumes that no
threat data is accessible for threshold optimization. In
the remaining approaches, ID samples are still present,
along with other samples corresponding to threats.

2. The second approach, denoted ID+T, involves enrich-
ing the optimization set with data samples associated
with the Target threat (T), i.e., the threat under evalu-
ation. This scenario corresponds to situations where
threats pertinent to the system have been previously
identified, such as through a system safety analysis.

3. The third approach, denoted ID+O, designs an opti-
mization set without the target threat, but including
samples corresponding to Other generic threats (O).
This scenario examines if awareness of generic threats
can aid in determining a more effective threshold for
unanticipated, new threats.

4. The fourth approach, denoted ID+T+O, employs an
optimization set containing data samples for both the
Target and Other generic threats. It aims to assess the
performance of a monitoring threshold when multiple
threats are used and one of them is the target threat.

A summary of how the Optimization and Evaluation sets
are constructed for the different approaches can be found in
Table[T] It shows that the Evaluation Set is always the same
and never overlaps with the Optimization set.

The objective of comparing these four approaches is two-
fold. First, we aim to assess the effectiveness of monitors
when the target threat T is unknown, which reflects a more
realistic scenario. This evaluation helps us understand if
monitors, as evaluated in previous literature using threshold-
agnostic metrics or optimization sets mirroring the train-
ing distribution, can be relied upon in real-world situations
to protect systems from unknown threats. Our comparison
aims to determine whether experiments from previous works
are sufficient to draw conclusions about a monitor’s real-
world performance or if additional tests are needed before
deployment. As a result, we formulate our first research
question as: RQI — Can we obtain similar monitoring per-
formance without assuming prior knowledge of runtime
threats during threshold tuning?

To answer RQ1, we compare ID against ID+T, and ID+O
against ID+T+O. If our findings reveal that prior awareness
about the evaluated threat is crucial, it could significantly
limit the applicability of runtime monitors. Indeed, the main
objective of monitoring is to address unforeseen hazards.
If knowledge about the actual threats that an NN will en-
counter is readily available, such examples would typically
be incorporated during training. It is worth noting that sev-
eral studies have used this strategy for tuning monitor hy-
perparameters by simply dividing the evaluation set into
validation and test subsets [Hsu et al., 2020]].

The second objective is to evaluate whether the strategy of
adding a pool of generic threat data to tune the threshold
can be viable to increase the robustness of the monitor to
unforeseen threats. Such generic threats are easy to obtain
by collecting additional image data from the internet or
adding perturbations to ID data. On the one hand, adding
such generic threat data can help generalization by adding
difficult examples to better delineate the boundaries of what
the NN knows. On the other, it could also be detrimental if
the selected generic threats are too diverse. Hence, our sec-
ond objective is to answer the following research question:
RQ2 — How helpful is the inclusion of generic threats data?

For RQ2, we compare strategy ID against ID+O, as well as
ID+T against ID+T+O. A positive answer would be promis-
ing, given the relative ease of constructing a generic dataset
of threats, which could be utilized to enhance monitoring
system performance and subsequently facilitate the adoption
of neural networks in safety-critical systems.



Table 1: Threshold Optimization and Evaluation sets — Methodology to construct the threshold optimization and evaluation
sets for the different strategies considered in this study. Set 1 and Set 2 always denote non-overlapping splits of a dataset.

In-Distribution Target Threat Other Generic
Set 1 Set 2 Set 1 Set 2 Threats
ID v
Threshold ID+T v v
Optimization ID+O v V4
ID+T+O v v v
Threshold Evaluation v

4 EXPERIMENTAL DESIGN

4.1 DATASETS, MODELS AND MONITORS

To answer the aforementioned research questions, we
conducted extensive experiments. To encapsulate varying
ID scenarios, we use three image classification datasets:
CIFAR10, CIFAR100 [Krizhevsky et al., 2009] and
SVHN [Netzer et al., 2011]]. For each ID dataset, we use
2 distinct neural network architectures — DenseNet and
ResNet — with weights taken from [Lee et al.| [2018]]. For
Densenet, the test accuracies are: CIFAR10 (0.93), CI-
FAR100 (0.73), SVHN (0.88), and for ResNet: CIFAR10
(0.92), CIFAR100 (0.73), SVHN (0.89).

For each ID dataset and architecture pair, we implement four
distinct monitoring techniques. Mahalanobis (Maha) [[Lee
et al., 2018]] and Outside-the-Box (OtB) [Henzinger et al.,
2020] are feature-based approaches. We derive the feature
representation from the final layer preceding classification
and do not apply input pre-processing. On the other hand,
Max Softmax Probability (MSP) [Hendrycks and Gimpel,
2016] and Energy (Ene) [Liu et al., [2020] are logit-based
methods. Regarding hyperparameters, we use num_box=3
for OtB and T=1 for Ene. These settings resulted in a total of
24 monitors evaluated (3 ID datasets x 2 NNs x 4 monitors).

Each ID set is paired with nine unique threat sets to assess
the monitors under varied circumstances:

* 3 novelty sets (datasets with classes distinct from the
ID set). For CIFAR 10, the corresponding novelty sets
are CIFAR100, SVHN, and LSUN [Yu et al.| |2015]].
CIFAR100 incorporates CIFAR10, SVHN, and LSUN
while SVHN involves CIFAR10, LSUN, and TinyIma-
geNet (a subset of ImageNet [Deng et al., 2009]).

* 3 covariate shifts (transformations from AugLy [Pa;
pakipos and Bitton, 2022])), including Brightness (fac-
tor=3), Pixelization (ratio=0.5) and Blur (radius=2).

* 3 adversarial attacks (generated with Torchattacks
[Kim, [2020]) - FGSM, PGD, and DeepFool using the
default settings.

4.2 THRESHOLD OPTIMIZATION
METHODOLOGY

For each ID dataset—monitor pair, we cycle through the
9 threats, with each serving once as the Target threat (T),
resulting in 9 unique outcomes for each optimization set
construction approach. While assessing a target threat T, the
remaining 8 threats serve as Other Generic Threats (O). The
test split of the classifier’s training dataset serves as the In-
Distribution (ID) dataset. Then, both the ID set and the T set
are randomly split in half, so that the threshold evaluation set
and the four threshold optimization sets can be constructed,
following the methodology presented in Section [3] (Table|[T).

To optimize the threshold on the optimization set, we follow
the methodology described in Section For the effec-
tiveness measure, we initially used F1, the harmonic mean
between Precision and Recall, as it is a prevalent choice
in the literature. Yet, early experiments revealed that F1
frequently resulted in the unfavorable action of setting ex-
ceedingly low thresholds, thereby rejecting all samples in
the evaluation set. Of the 864 experiments conducted (24
monitors x 9 threats x 4 optimization sets), this outcome
happened 116 times. Such behavior can be attributed to the
significant class imbalance often observed in our optimiza-
tion sets. Indeed, since classifiers typically commit fewer
errors with ID data, the ID strategy predominantly contains
negative examples (designated for acceptance), and other
strategies, notably ID+O and ID+T+O, contain much more
positive examples (designated for rejection).

We tested two distinct solutions to address this challenge:

1. over-sampling (OS) the minority class in the threshold
optimization set to achieve a positive-to-negative ratio
between 0.4 and 0.6,

2. using another effectiveness measure: g-mean, the geo-
metric mean between Recall and Specificity. As Speci-
ficity solely considers samples with negative ground
truth, g-mean is unaffected by class imbalance. A very
low threshold results in a recall of 1 and a specificity
of 0, and will not be favored by g-mean optimization.

Both OS+F1 and g-mean approaches are compared in our
experiments.



4.3 EVALUATION METRICS AND STATISTICAL
SYNTHESIS

Once a threshold is chosen, we evaluate its performance on
the threshold evaluation set. For each experiment, we com-
pute five evaluation metrics (F1, g-mean, Recall, Precision,
Specificity) representing different aspects of the monitor’s
performance. Computing these diverse metrics allows us
to analyze the impact of different threshold optimization
approaches more finely.

Given the comprehensive scope of our experiments, we are
left with 1728 recorded outcomes for each of these five met-
rics. Drawing definitive conclusions from such an expansive
set of raw results is challenging. Even when we fix the ef-
fectiveness measure, we are still tasked with comparing the
four threshold optimization approaches across 216 cases.
Consequently, we resort to statistical testing to discern the
distinctions between approaches across multiple results. Ad-
hering to the methodology outlined by |Demsar|[2006], we
employ the non-parametric Wilcoxon signed-rank tests for
comparing two strategies over multiple scenarios (“no differ-
ence" null hypothesis, p-value<0.05 for significance). The
Friedman test and its associated Nemenyi post-hoc test are
utilized for comparing multiple strategies across multiple
scenarios.

S RESULTS

The data from our 1728 experiments is complex and not
immediately interpretable in its raw form. In this section,
we present the outcomes of our statistical analysis and draw
associated conclusions. For transparency and reproducibil-
ity, the raw results, as well as the code to replicate our
experiments have been made available[']

5.1 COMPARING EFFECTIVENESS MEASURES

First, we compare the two proposed effectiveness measures
for threshold tuning on the Optimization set: over-sampling
with F1 (OS+F1) and g-mean. For each of the 4 strategies
and each of the 5 evaluation metrics, we compare these ef-
fectiveness measures using the Wilcoxon signed-rank tests
across the 216 experiments. The Wilcoxon test is a non-
parametric statistical test, used to compare the performance
of two classifiers over multiple datasets [Demsar},[2006]. The
results obtained are shown in Table 2l We find that OS+F1
generally yields better Recall and F1 scores, whereas g-
mean optimization produces better Precision, Specificity,
and g-mean scores. These findings indicate that the choice
of the effectiveness measure should be based on the partic-
ular metric one seeks to optimize, and this choice should

1https ://github.com/jorisguerin/
neural-network-monitoring-benchmark

Table 2: Effectiveness measures comparison (OS+F1 vs. g-
mean) — Metrics were computed across the 216 experiments,
followed by statistical comparison using the Wilcoxon test.
The displayed numbers represent p-values, underlined or-
ange text indicates OS+F1 is worse than g-mean, regular
blue text indicates OS+F1 is better than g-mean, and itali-
cized black text indicates no significant difference.

ID ID+T ID+O ID+T+O
F1 3e-08 3e-04 2e-04 8e-06
G-mean le-26 4e-29 2e-02 S5e-02
Recall 4e-31 2e-32 4e-37 4e-37
Precision le-31 le-32 9e-36 2e-35
Specificity le-31 2e-32 3e-37 3e-37

be aligned with the objectives of the system under test. A
higher Recall corresponds to a more conservative system,
i.e., fewer false acceptances from the monitor. Conversely,
higher Precision and Specificity indicate an improved sys-
tem availability, i.e., fewer false rejections from the monitor.
More results comparing effectiveness measures can be found
in Appendix [A]

5.2  COMPARING THRESHOLD OPTIMIZATION
SET CONSTRUCTION APPROACHES

Next, we compare the monitoring performance obtained
with the different approaches to construct the Threshold
Optimization set. To compare several approaches across
experiments, we use the Friedman test and its corresponding
Nemenyi post-hoc test, as recommended by |DemsSar| [2006].
The Friedman test is a non-parametric test comparing the
average ranks of different models, with the null hypothesis
assuming no significant difference between them. If the null
hypothesis is refuted, the Nemenyi post-hoc test is then
applied to identify which model has greater performance.

More precisely, we compare the values obtained for the F1
and g-mean scores on the Threshold Evaluation sets. We fo-
cus on these metrics because they are both intended to repre-
sent a balance between over-rejection and over-acceptance.
At the significance level of a = 0.05, the Friedman test
shows a significant difference in performance between the
four threshold optimization approaches. The results of the
Nemenyi test, with both OS+F1 and g-mean as effectiveness
measures, are presented in Figure 2] These results allow us
to formulate explicit responses to our research questions.
We note that results for other evaluation metrics (Recall,
Precision, Specificity) are given in Appendix [B]

RQ1 - Can we obtain similar monitoring performance
without assuming prior knowledge of runtime threats
during threshold tuning? As anticipated, the best strat-
egy is ID+T, where the Optimization set closely mirrors
the Evaluation set. Interestingly, the ID+T+O and ID+O
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strategies consistently demonstrate statistically equivalent
performance. This suggests that if one opts to utilize a large
set of generic threats for threshold tuning, the inclusion of
target threat data becomes useless. This is due to the fact
that target threat data samples in the Threshold Optimization
set are diluted among the other threats, diminishing their
influence on the threshold selected.

RQ2 - How helpful is the inclusion of generic threat
data? With OS+F1 as the effectiveness measure, the
ID+O strategy outperforms ID. Conversely, with g-mean as
the effectiveness measure, ID outperforms ID+0. Hence, to
know precisely the benefits of incorporating other generic
threats, we perform a Wilcoxon test to compare the ID
strategy optimized with g-mean to ID+O optimized with
OS+F1. Our results reveal that the ID strategy is superior
to ID+O when evaluating g-mean scores on the Evaluation
sets (p-value=3e-10) and that there is no statistical differ-
ence between the two strategies for the F1 evaluation metric
(p-value=0.2). In other words, without knowledge about the
expected threats a system might face, it is preferable to rely
solely on in-distribution data to determine the monitoring
threshold and to use g-mean for optimization.

Figure [2] also indicates that ID+T is better than ID+T+O.
This suggests that supplementing the Threshold Optimiza-
tion set with an arbitrary pool of threat data is not beneficial.
If the target threat has been identified, it is advisable to use a
combination of ID and specific threat data. Introducing data
related to other random threats simply penalizes the monitor.
However, it is worth noting that incorporating threats from
more narrowly defined categories, closely aligned with the
expected system threat, might offer improved generalization
and could be explored in future research.

6 QUALITATIVE DISCUSSION

As anticipated, superior results were obtained for ID+T, i.e.,
tuning the threshold with data closely mirroring the evalua-
tion dataset yielded the best results. However, the decreased
performance observed when adding generic threats to the
Optimization set is less intuitive. In this section, we propose
to try to understand this behavior through an example.

To ensure that the chosen example offers meaningful in-
sights, we select a case where the performance differences
across strategies align with the conclusions presented above.
For clear visualization, we require a monitor that exhibits
good separability (AUROC > 0.8 on the Evaluation set),
and we select the scenario that shows the maximum perfor-
mance variability among strategies. Details about the chosen
example can be found in Appendix [C] Figure 3| shows the
distributions of monitoring scores of the Threshold Opti-
mization sets for the ID, ID+O, and ID+T strategies, as well
as for the Threshold Evaluation set. The thresholds derived
from both effectiveness measures are also displayed.
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I-(0.77'3) ID+T
L (0.672) ID+T+0

ID (0.462)J

(a) F1 (effectiveness measure: OS+F1)
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Figure 2: Optimization sets comparison — Critical distance
diagram (Nemenyi test). The horizontal axis represents the
average rank of the strategies. A black bar connecting two
or more strategies indicates no significant difference.

Examining Figures [3b and [3d] we observe that the ID+T
strategy yields score distributions most resembling those
in the Evaluation set, leading to near-optimal thresholds,
especially when using g-mean. In contrast, the ID strategy
(Figure[3a) shows error scores (in blue) that are too close to
the correct ones, resulting in smaller thresholds. However,
it is worth noting that the ID strategy performs particularly
well for this example, likely due to FGSM attacks generating
images closely resembling the originals.

Figure [3c|shows the limitations of ID+O. Interestingly, the
failures differ based on the effectiveness measure used. With
OS+F1, the threshold is too small because the error score
distribution stretches excessively to the left. As F1 tries to
minimize missed errors, i.e., maximize Recall, it pushes for
a smaller threshold. Conversely, with g-mean, the threshold
is excessively high because the correct score distribution
stretches excessively to the right. This is due to g-mean
optimization prioritizing reducing false rejections to main-
tain Specificity. The wide spread in ID+O scores can be
attributed to the large variety of threat data, containing both
correctly classified data deviating from the training distribu-
tion to imperceptible threats triggering errors.
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Figure 3: Visual example to explain our findings — Distributions of monitoring scores for the Optimization and Evaluation
sets. Selected example: ID data: CIFAR10, threat: FGSM, NN: Resnet, monitor: Mahalanobis. Vertical lines represent
thresholds obtained with different effectiveness measures. In (d), the dashed (resp. plain) lines represent thresholds obtained
with OS+F1 (resp. g-mean). The “Optimal” thresholds maximize the effectiveness measures on the Evaluation set.

7 CONCLUSION

In this study, we undertook a comprehensive experimental
exploration of different ways to build threshold optimization
datasets for NN runtime monitoring. Our findings yielded
valuable insights into the effectiveness of these approaches
and their implications for real-world applications.

Our research affirmed that the ID+T approach, which lever-
ages knowledge of the anticipated system threat to estab-
lish optimal thresholds for monitors, outperforms all other
approaches. However, it is crucial to acknowledge that as-
suming prior knowledge of the threat is impractical for
safety-critical applications, where monitors are typically
designed to safeguard systems against unforeseen threats.
Our findings demonstrate that we cannot expect comparable
monitoring results without such prior knowledge, potentially
casting doubt on the representativeness of prior evaluation
results, which employed either threshold-agnostic metrics or
similar data to the test set, assuming such prior knowledge.

We also investigated the inclusion of generic threat data
in the threshold optimization process. Surprisingly, our ex-
periments revealed this approach can actually compromise
monitor performance. The example discussed in Section []
suggests that incorporating data samples from unrelated
threats results in overly dispersed distributions of correct and
error scores, leading to suboptimal outcomes. This raises
a promising avenue for future research: exploring the inte-

gration of data samples from more narrowly defined threat
categories. This approach could facilitate the design of mon-
itors tailored to specific classes of anticipated threats, such
as adversarial attacks. However, its success requires the
rigorous safety analysis of the system to identify relevant
threats and customize optimization sets accordingly.

Furthermore, we examined the choice of effectiveness mea-
sures for selecting thresholds on the optimization set. Our
findings highlight that the appropriate effectiveness mea-
sure hinges on the specific objectives of the monitor. F1
with over-sampling yields conservative monitors reducing
missed errors, while using g-mean encourages higher sys-
tem availability by reducing false rejections.

Our study offers a versatile experimental methodology that
can be adapted to explore several other interesting questions.
First, as many studies split the evaluation dataset into valida-
tion and test sets for parameter optimization, which is equiv-
alent to employing the ID+T approach, our framework could
provide deeper insights into how much monitoring tech-
niques rely on target threat knowledge for hyperparameter-
tuning. We also aim to extend these results to other tasks,
such as object detection, to formulate more comprehensive
and universally applicable guidelines for crafting robust
neural network monitoring systems. Finally, it would be in-
teresting to investigate whether different families of threats
react differently to the proposed strategies.
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A  FURTHER COMPARISONS OF EFFECTIVENESS MEASURES

In section [5] we compared two effectiveness measures for threshold tuning: g-mean (geometric mean of Recall and
Specificity), and F1 (harmonic mean of Precision and Recall) complemented with over-sampling (OS+F1). Here, we extend
this analysis to include F1 without over-sampling, and a typical threshold used in the literature, chosen such that the True
Negative rate of the Threshold Optimization set is set to 0.95. We use the same protocol for comparison, employing the
Wilcoxon signed-rank test to determine what effectiveness measure yields better performance across five evaluation metrics.
We note that the performance is always evaluated on the appropriate Threshold Evaluation sets.

To confirm that the oversampling approach is beneficial, we compare using F1-score with and without oversampling as
effectiveness measures. Table [3] shows the results. In general, oversampling gives better F1 and g-mean scores on the
Threshold Evaluation set. We can conclude that this oversampling strategy works and reduces the bad behavior of rejecting
all inputs in imbalanced scenarios (see Section ).

Table 3: Effectiveness measures comparison (F1 with oversampling vs. F1 without oversampling) — Metrics were
computed across the 216 experiments, followed by statistical comparison using the Wilcoxon test. The displayed numbers
represent p-values, underlined orange text indicates F1 with oversampling is worse than F1 without oversampling, regular
blue text indicates F1 with oversampling is better than F1 without oversampling, and italicized black text indicates no
significant difference.

ID ID+T ID+O ID+T+O
F1 9e-01 2e-24 3e-12 3e-13
G-mean 6e-02 8e-08 3e-23 6e-26
Recall le-35 4e-06 Te-18 3e-26
Precision 4e-35 1e-08 2e-20 3e-26
Specificity le-35 2e-03 3e-22 4e-26

In the literature, it is common to use FNR@95TNR (False Negative Rate at 95% True Negative Rate) [Liu et al.|[2020], Sun
et al.| [2021]],[Wang et al.|[2022] as a monitoring evaluation metric. This means that the threshold is set such that 95% of
correct predictions are actually accepted by the monitor. Here, we evaluate this standard literature threshold against the
threshold obtained from proper optimization with g-mean as the effectiveness measure. Table [ clearly shows that threshold
optimization is better than 95% TNR for balanced metrics (F1 and g-mean). Precision and Specificity are better for 95%
TNR by construction. We also note that similar results were obtained when comparing 95% TNR against OS+F1.



Table 4: Effectiveness measures comparison (@95TNR vs. g-mean) — Metrics were computed across the 216 experiments,
followed by statistical comparison using the Wilcoxon test. The displayed numbers represent p-values, underlined orange
text indicates that the metric score with threshold chosen @95TNR is worse than optimized with g-mean, regular blue text
indicates that the metric score with threshold chosen @95TNR is better than optimized with g-mean, and italicized black
text indicates no significant difference.

1D ID+T ID+O ID+T+O
G-mean 3e-21 3e-37 3e-37 3e-37
Recall 3e-37 3e-37 3e-37 3e-37
Precision 7e-35 le-26 le-25 le-22
Specificity 3e-37 3e-37 3e-37 3e-37

B FURTHER COMPARISONS OF OPTIMIZATION SET CONSTRUCTION APPROACHES

In this section, we present more performance comparisons of the four approaches for constructing the Threshold Optimization
set, using other evaluation metrics (Recall, Precision, and Specificity). The results obtained with OS+F1 as the effectiveness
measure are given in Figure[dand the results obtained with g-mean as the effectiveness measure are given in Figure 5]
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Figure 4: Threshold Optimization sets comparison, with OS+F1 as the effectiveness measure — Critical distance diagram
showing the results of the Nemenyi test. The horizontal axis represents the average rank of the approaches. A black bar
connecting two or more approaches indicates no significant difference.
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Figure 5: Threshold Optimization sets comparison, with g-mean as the effectiveness measure — Critical distance diagram
showing the results of the Nemenyi test. The horizontal axis represents the average rank of the approaches. A black bar
connecting two or more approaches indicates no significant difference.



C ADDITIONAL INFORMATION ON THE EXAMPLE DISCUSSED IN SECTION @

Section[6]aims to discuss a qualitative example to illustrate and better understand the results obtained from our experimental
analysis. For clear visualization, we selected a scenario that exhibits good separability (AUROC > 0.8 on the Evaluation
set), and that shows the maximum performance variability among different approaches. Consequently, the selected scenario
is composed of the Mahalanobis monitor, used with the Resnet NN on the CIFAR10 ID dataset, and with the FGSM attack
as the threat.

Tables [5]and [6] show additional information about this example. More specifically, we present the values taken by the five
evaluation metrics on the Threshold Evaluation set, as well as the AUROC score for each threshold optimization approach
(ID, ID+T, ID+0), and each effectiveness measure.

Table 5: Monitoring performances for the selected qualitative example, with OF+F1 as the effectiveness measure
— Measured metrics scores on the Threshold Evaluation set with different approaches, with OS+F1 as the effectiveness
measure.

Approach F1 g-mean recall precision specificity AUROC

ID 0.587 0.730 0971 0.421 0.549 0.848
ID+T 0.636  0.787 0.909 0.490 0.681 0.848
ID+O 0.629 0.780 0.937 0.473 0.649 0.848

Table 6: Monitoring performances for the selected qualitative example, with OF+F1 as the effectiveness measure
— Measured metrics scores on the Threshold Evaluation set with different approaches, with g-mean as the effectiveness
measure.

Approach Fl1 g-mean recall precision specificity AUROC
ID 0.636 0.787 0.909 0.490 0.681 0.848
ID+T 0.643 0.791 0.879  0.507 0.713 0.848
ID+O 0.589 0.719 0.613 0.568 0.843 0.848
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