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Abstract
Neural networks are naturally prone to the001
effects of catastrophic forgetting during fine-002
tuning. Despite the extensive adoption of trans-003
formers, little research has been done to in-004
vestigate the effects of catastrophic forgetting005
on attention-based architectures. In this work,006
we used elastic weight consolidation (EWC)007
to mitigate catastrophic forgetting caused by008
fine-tuning in one of the foundation models,009
GPT-2. We show that by using EWC, we can010
significantly slow down the forgetting process011
without major penalty for the performance of012
the task model is fine-tuned for. We also deter-013
mine that the majority of important weights is014
located in self-attention layers, and the parame-015
ters most sensitive to change are located in the016
normalization layers. Finally, we explore the in-017
stability of the EWC and potential performance018
issues.019

1 Introduction020

The neural network training process is usually split021

into two parts (Yosinski et al., 2014): pre-training022

on data representing some broad domain, and fine-023

tuning using a more specific data set. For NLP024

tasks, a model used for fine-tuning is usually a lan-025

guage model trained on some kind of a large data026

set. In this paper, we examine how such language027

model tends to forget prior broad knowledge when028

it is fine-tuned for a new, more specific task. The029

issue of catastrophic forgetting(McCloskey and Co-030

hen, 1989). is caused by the changes of the pre-031

trained model’s weights during a fine-tuning phase032

when the model is forced to learn a completely033

new set of data (Goodfellow et al., 2015). Sur-034

prisingly, little research was carried out regarding035

catastrophic forgetting effects on transformers’ per-036

formance, especially regarding foundation mod-037

els (Bommasani et al., 2021).038

This work investigates the practical implemen-039

tation and effects of Elastic Weight Consolidation040

(EWC) applied to a large-scale transformer GPT-2041

that was pre-trained on large text corpora and fine- 042

tuned using conversational data. We chose EWC as 043

a method due to the fact how much interpretability 044

and analysis options it provides. 045

2 Elastic weight consolidation for 046

transformers 047

The change in model parameters caused by fine- 048

tuning can be highly disruptive as neural networks’ 049

performance is quite sensitive to small perturba- 050

tions in model parameters (Shu and Zhu, 2019). 051

It is important to note that for models with a 052

smaller set of parameters, the problem of catas- 053

trophic forgetting can be attributed to the model’s 054

limited capacity. Bhattamishra (Bhattamishra et al., 055

2020) proposes that modern architectures such as 056

transformers that contain millions or even billions 057

of parameters will probably retain unused capacity. 058

If we think about catastrophic forgetting in terms 059

of the model’s weights deviation from its original 060

values, we can use weight regularization to combat 061

this issue. Regularization relies on keeping fore- 062

most weights as close as possible to original values 063

while providing some range of motion for parame- 064

ters that are not considered important for keeping 065

prior knowledge intact (Hastie et al., 2009). The 066

way importance is assigned to weights varies be- 067

tween methods. For example, in L2 regularization, 068

all weights are equally important. EWC allows 069

us to assign different importance values to model 070

parameters based upon their contribution to prior 071

task performance. 072

The original EWC method was proposed in the 073

paper "Overcoming catastrophic forgetting in neu- 074

ral networks" (Kirkpatrick et al., 2017). As we plan 075

to use EWC during fine-tuning, the training pro- 076

cess shall be divided into two steps—a language 077

modeling task and a conversational task. These 078

tasks are semantically close to each other. There- 079

fore during fine-tuning, the model can use relevant 080

information from parameters important for the lan- 081
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guage modeling without significant alteration and082

perform most of the necessary parameter fitting on083

unnecessary weights. The constraint mechanism084

used to protect vital parameters for initial knowl-085

edge is implemented as a quadratic function using086

the Fisher information matrix (or FIM), hence the087

term elastic. During fine-tuning, we added an addi-088

tional penalty to the loss function to enforce EWC.089

3 Continual learning methods090

There are several approaches to tackle the chal-091

lenge of catastrophic forgetting, and they usually092

represent some form of parameter regularization093

(Parisi et al., 2019). We chose EWC because it al-094

lows us to store, use and analyze regularization data095

separately from the model. Moreover, the Fisher096

information matrix used in EWC offers a straight-097

forward and meaningful way to analyze how mem-098

orized knowledge works and what relation it has to099

a type of parameters.100

The Side-tuning method focuses on adding a101

side model to a pretrained base model to use102

present knowledge and added capacity for learn-103

ing new skills. Usually, the same architecture or a104

lighter, distilled version is used as the side model105

(Zhang et al., 2020). Learning without forgetting106

(LWF) (Li and Hoiem, 2018) and Incremental mo-107

ment matching (IMM) (Lee et al., 2017) are other108

efficient methods. For instance, the LWF method109

extends the base model by adding a small set of110

new parameters and a new output layer while the111

old output layer is preserved for regularization.112

A more comprehensive review of strategies to113

combat catastrophic forgetting can be found in114

(Biesialska et al., 2020).115

4 Datasets116

We opted to test our approach on the GPT-2 trans-117

former created by OpenAI (Radford et al., 2019).118

For the GPT-2 training, the original paper’s authors119

used the WebText corpus comprised of 40GB of120

text collected from 8 million web pages. As the121

original WebText corpus has not been released yet122

and probably will not be released at all, community123

reconstruction called OpenWebText (Gokaslan and124

Cohen, 2019) (OWT) was used in our experiments.125

Different subsets of the OpenWebText were used126

during research: a general population with the size127

of 32GB, a sample of the general population for128

EWC calculation with the size of 1GB (randomly129

sampled), and a data set randomly sampled from130

the 1GB dataset with the size of 50MB that was 131

used for perplexity calculation. Cascading subsets 132

of OWT were chosen to keep computation within 133

feasible limits. 134

To fine-tune the GPT-2 for the conversational 135

task, we used the data set from Conversational 136

Intelligence Challenge 2 (ConvAI2), the same 137

one, Hugging Face team used for building the 138

persona-oriented model (Persona-chat). The Con- 139

vAI2 PERSONA-CHAT data set (initially pre- 140

sented in (Zhang et al., 2018)) consists of around 141

ten thousand dialogues crowdsourced using person- 142

ality descriptions provided to participants as part 143

of their character. The test sample covers around 144

6% of the PERSONA-CHAT data set. 145

5 Model Architecture and Training 146

The GPT-2 model was used as a baseline model to 147

start. Fine-tuning was performed using pre-trained 148

weights from the language modeling step, task A. 149

For task B, the conversational fine-tuning task, we 150

chose a persona-based conversational architecture 151

by Hugging Face, identical to GPT-2 except for 152

the next sentence prediction head. The sentence 153

prediction head determines the correct sentence 154

among distractors when the end-of-sequence token 155

is passed using the cross-entropy loss function. 156

Perplexity on the OpenWebText test sample 157

was chosen as the primary metric for catastrophic 158

forgetting detection during and after GPT-2 fine- 159

tuning. Accuracy and perplexity were also used 160

to measure the quality of fine-tuning on the Con- 161

vAI2 test sample. To implement EWC during fine- 162

tuning, we computed importance matrices on the 163

1GB of OWT data. The pre-trained model’s param- 164

eters were used to measure the fine-tuned weights’ 165

deviation from original values. 166

Using calculated deviations and importance met- 167

rics, the EWC penalty can be added to the model’s 168

loss function with some coefficient. We used the 169

coefficient of 1 as it showed a good balance be- 170

tween weights restraining and fine-tuning perfor- 171

mance. 172

During the fine-tuning step, we used the AdamW 173

optimizer with a Cosine Annealing Scheduler with 174

a learning rate of 6.25e-6. We used NVIDIA DGX 175

for fine-tuning and EWC calculations. We fine- 176

tuned two models—with EWC and without—for 177

10 epochs. 178
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Epoch Accuracy, PC test sample Perplexity, PC test sample Perplexity, OWT test sample

without EWC EWC without EWC EWC without EWC EWC

1 0.54 0.56 4.27 4.32 23.4 14.1
2 0.61 0.63 3.61 3.56 23.4 14.9
3 0.61 0.60 3.61 3.63 28.7 15.6
4 0.63 0.63 3.41 3.39 50.8 24.9
5 0.65 0.66 3.20 3.22 57.2 18.6
6 0.64 0.64 3.23 3.24 676.5 20.9
7 0.66 0.66 3.12 3.16 2203.8 21.1
8 0.66 0.67 3.07 3.09 4491.2 38.2
9 0.66 0.67 3.08 3.11 1737.3 32.1
10 0.67 0.67 3.03 3.06 14598.4 38.8

Table 1: Accuracy and perplexity dynamics during 20 epochs of training models with and without EWC

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

ln_1.weight
ln_1.bias

attn.c_attn.weight
attn.c_attn.bias

attn.c_proj.weight
attn.c_proj.bias

ln_2.weight
ln_2.bias

mlp.c_fc.weight
mlp.c_fc.bias

mlp.c_proj.weight
mlp.c_proj.bias

3.2 1.4 1.3 1.3 1.3 1.7 2.5 1.3 2.6 2.6 9.4 1.3 2.4 2.3 0.67 0.34 0.19 0.32 0.23 1.2 0.1 0.53 0.097 0.036

4.5 0.72 1 1.4 1 1.4 2.1 1.9 1.9 1.6 1.4 0.88 0.45 0.38 0.25 0.22 0.22 0.15 0.14 0.092 0.03 0.04

0.93 0.043 0.033 0.054 0.061 0.082 0.11 0.097 0.091 0.07 0.064 0.038 0.021 0.014 0.01

0.87 0.012 0.023 0.027 0.028 0.026 0.024 0.021 0.016 0.011

0.42 13 6.5 0.8 0.81 3.2 0.9 2.8 4.9 0.89 2.5 1.1 0.21 0.32 0.093 0.13 0.11 0.13 0.2 0.77 0.098 0.026 0.063

0.24 1.4 1.3 0.67 0.59 1.1 0.73 0.79 1.5 0.59 0.77 0.36 0.21 0.2 0.11 0.095 0.073 0.069 0.074 0.11 0.034 0.012 0.01

0.029 0.023 0.014 0.013 0.023 0.017 0.02 0.029 0.014 0.019

0.015 0.016 0.025 0.028 0.031 0.038 0.03 0.028 0.029 0.019 0.013
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Figure 1: Mean metric of importance by layer and decoder level. Model outputs are the most sensitive to change in
normalization layer parameters.

6 Results and Analysis179

When looking into perplexity and accuracy metrics180

on Table 1 measured on the PERSONA-CHAT test181

sample, we can observe no big difference between182

the model with EWC and the model without EWC.183

The model with EWC shows a slightly bigger per-184

plexity, which is expected, as a model capacity that185

was available for the model without EWC utiliza-186

tion is now restrained by an "elastic" penalty.187

The model with EWC shows significantly lower188

perplexity on the OWT test sample (Table 1). Prior189

to the fifth epoch, both models show perplexity190

lower than 100. However, starting from the sixth191

epoch, magnitudes for models started to differ sig-192

nificantly: the model with EWC will never reach193

500, while the model without EWC can achieve194

perplexity values up to 14598 (exact values can195

be found in Table 1). Though the absolute differ-196

ence between perplexity values of the two models197

can look staggering, we have to account for the198

instability of the method and perplexity metric.199

The perplexity metrics for models differ on the200

order of a few magnitudes—the model with the201

EWC shows significantly lower values for perplex-202

ity during all epochs. After the fifth epoch, perplex- 203

ity for the model without the EWC penalty goes in 204

the range of thousands. Penalized model perplexity 205

values also grow, but this rate is moderate. 206

The model with the EWC penalty is on par with 207

the plain model when considering metrics on the 208

PERSONA-CHAT test set. However, this model 209

is far better at remembering information from the 210

OWT set. 211

6.1 Investigation of the matrix of 212

importances 213

If we take a closer look at each decoder block’s im- 214

portance (values from FIM) for each weight matrix, 215

we can see that most vital parameters are located 216

on normalization layers of the decoder block and 217

not on self-attention layers. 218

Normalization layers in figure 1 have massive 219

gradient values because the slightest change in 220

layer normalization will significantly change a 221

model’s output. Another reason for such a result 222

is the difference in shapes—normalization layers 223

have the smallest shape among other decoder layers. 224

For example, attn.c_attn.weight has shape 225
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Threshold 0.01 0.05 0.1 0.5 1.0 5.0 10 50 100 500 1000

Number of parameters 1764004 394843 225955 71615 37128 3070 1137 267 156 41 22

Table 2: Number of significant parameters by threshold. Number of important parameters falls as importance
threshold rises.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

ln_1.weight
ln_1.bias

attn.c_attn.weight
attn.c_attn.bias

attn.c_proj.weight
attn.c_proj.bias

ln_2.weight
ln_2.bias

mlp.c_fc.weight
mlp.c_fc.bias

mlp.c_proj.weight
mlp.c_proj.bias

599 51 35 28 18 24 45 28 24 25 39 28 11 12 11 11 10 11 11 10 6 12 7 7

1024 764 997 1023 1019 1022 1024 1024 1024 1024 1016 778 307 223 82 77 72 23 23 7 1

23 372 4150 6233 3344 2645 4923 3771 2706 3078 3214 1883 1230 577 187 155 89 60 40 21 18

1017 42 11 30 6 29 98 65 55 34 33 12 1

4 6 19 1 2

968

69 42 25 15 15 33 19 20 73 20 32 15 10 11 10 10 9 10 10 18 7 5 4 2

31 1016 1024 937 737 1024 932 935 1024 608 663 154 18 36 1 1 17

13 389 166 191 153 735 525 598 1170 588 624 214 48 34 6 1 2 2 152 1

2 37 9 2 14 8 16 16 9 16 9 3 5 1 1

126 12 191 449 1 3 156 49 36 1 1
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Figure 2: Number of parameters that has exceeded importance metric of 0.5 by layer and decoder level. Self-attention
layers are also the most important in terms of number of parameters that surpass threshold 0.5.

of [1024, 3072] and ln_1.weight has a shape226

of [1024]. Suppose the normalization layer has 800227

significant parameters and the self-attention layer228

has 80000. In that case, normalization layers will229

show a higher mean value than the self-attention230

layers. However, it is worth mentioning that self-231

attention layers have the largest number of impor-232

tant weights due to the sheer number of parameters233

in these layers.234

Figure 2 shows how many parameters surpass235

the arbitrarily chosen importance threshold of 0.5.236

This image shows the most significant weights237

are primarily located in the main attention block238

attn.c_attn.weight. This value of 0.5 was239

chosen for representative purposes, and it does not240

affect the final result—self-attention layers always241

contain the most amount of important weights.242

The number of important weights will decline243

if we increase the threshold. When the threshold244

reaches the values of hundreds, the number of im-245

portant weights is almost non-existent if we keep246

in mind that the model contains several billions247

of parameters. Table 2 shows this dynamic using248

several thresholds.249

7 Conclusion250

During the analysis of EWC importance matrices,251

we found out that the most important weights are252

located in self-attention layers. We also determined253

that the most sensitive to change parameters are254

located in the normalization set of weights. Using 255

EWC allows the GPT-2 to retain its knowledge 256

acquired during pre-training and use it for continual 257

learning. The nature of the EWC method enables 258

in-depth analysis of important layers, sensitivity 259

analysis. The fact that EWC matrices can be stored 260

separately adds flexibility to the method. 261

7.1 EWC Limitations And Future Work 262

Despite all positives, EWC slows down training 263

time and significantly increases memory consump- 264

tion. The problem of extensive memory consump- 265

tion can be critical regarding training large-scale 266

transformers. Models that once fit on a single GPU 267

will no longer do so when EWC is utilized. 268

Though we tried to produce comprehensive re- 269

search, we can identify some areas for improve- 270

ment. The first major improvement would be to in- 271

crease the amount and quality of data used for fine- 272

tuning and EWC calculation. Other transformer 273

architectures in conjunction with EWC can be in- 274

vestigated, such as BERT, T5, or GPT-3. 275
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