Composable Part-Based Manipulation

Weiyu Liu!, Jiayuan Mao?, Joy Hsu', Tucker Hermans®#, Animesh Garg>>, Jiajun Wu'
IStanford 2MIT 3NVIDIA “University of Utah >Georgia Tech

Abstract: In this paper, we propose composable part-based manipulation (CPM),
a novel approach that leverages object-part decomposition and part-part correspon-
dences to improve learning and generalization of robotic manipulation skills. By
considering the functional correspondences between object parts, we conceptualize
functional actions, such as pouring and constrained placing, as combinations of
different correspondence constraints. CPM comprises a collection of composable
diffusion models, where each model captures a different inter-object correspon-
dence. These diffusion models can generate parameters for manipulation skills
based on the specific object parts. Leveraging part-based correspondences coupled
with the task decomposition into distinct constraints enables strong generalization
to novel objects and object categories. We validate our approach in both simulated
and real-world scenarios, demonstrating its effectiveness in achieving robust and
generalized manipulation capabilities. For videos and additional results, see our
website: https://cpmcorl2023.github.io/.
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Figure 1: CPM composes part-based diffusion models to predict target object poses directly from point clouds.
In this example, we show that the “pouring” action is decomposed into three part-based correspondences, which
generalize manipulation across object categories, and from simulation to the real world

1 Introduction

Compositionality provides appealing benefits in robotic manipulation, as it enables efficient learning,
reasoning, and planning. Prior works have extensively studied the decomposition of scenes into
objects and their relationships [1, 2, 3], as well as the division of long-horizon plans into primitive
skills [3, 4], in order to navigate complex environments and devise long-horizon plans. In this paper,
we present a different view of compositionality by considering object-part decomposition based on
functionality (e.g., rim, handle, body), and leverage such decomposition to improve the learning of
geometric and physical relationships for robot manipulation.

In the context of language descriptions of objects, part names not only describe the geometric shapes
of the parts but also capture their functional affordances. For instance, as depicted in Figure 1, for the
action of “pouring”, the rims define the boundary for alignment between the objects, the body of the
pouring vessel should be tilted for the action, and its handle provides a constraint on the direction
the object should face when pouring. Leveraging this knowledge of part affordances, we posit that
a family of functional actions, such as pouring and constrained placing, can be conceptualized as
a combination of functional correspondences between object parts. Modeling actions using such a
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decomposition yields two important generalizations. First, it enables action generalization to novel
instances from the same object category. Second and more importantly, it facilitates generalization
to unseen object categories. For example, after learning part affordances for the “pouring” action,
our robot trained on “pour from bowls” and “...pans” can generalize to “pour from mugs”, with no
additional training necessary for manipulation with the new object category.

Motivated by these insights, we present the composable part-based manipulation (CPM). CPM
comprises a collection of diffusion models, where each model captures the correspondence between
parts of different objects. These conditional diffusion models take the geometry of the object parts
as input and generate parameters for manipulation skills, such as the starting and ending poses of a
bowl during the pouring action. Specifically, each model outputs a distribution of feasible trajectories
that satisfy a particular correspondence. After learning a collection of composable diffusion models,
we represent actions as combinations of part-part correspondences. During inference, we leverage
the composition of primitive diffusion models to sample trajectories that adhere to all the part
correspondences. This approach improves generalization to novel object categories over models that
do not reason about both parts and composable correspondence constraints.

In summary, this paper makes two key contributions. First, we propose composable part-based manip-
ulation, which models manipulation actions as a composition of part-part correspondences between
objects. Second, we develop diffusion models trained to capture primitive functional correspondences
that can be flexibly recombined during inference. CPM achieves strong generalization across various
dimensions, including novel object instances and object categories. We validate the efficacy of CPM
on both PyBullet-based simulations and real-robot experiments.

2 Related Work

Object representations for manipulation. Prior works use segmentations of common object
parts (e.g., blades, lids, and handles) for manipulating articulated objects [5, 6, 7, 8] as well as for
transfer to novel objects [9, 10]. A common approach that has been shown effective across different
manipulation domains [11, 12, 13] first predicts which part of an object the robot should focus on
(e.g., the handle), and then predicts an action relative to the part. Closely related is visual affordance
detection [14, 15, 16], which segments objects into different functional regions, such as graspable
parts and support surfaces of objects. These functional regions can be shared by more distinct
objects, and can be useful for generalizing task-oriented grasping between object categories [17, 18].
Keypoints are another representation that shows robustness to large intra-category shape variation
and topology changes [19]. Each keypoint set can provide essential pose information, that lacks in
previous segmentation approaches, to support tasks such as hanging mugs on pegs by their handles.
The initial supervised approach [19] has been extended to methods that discover keypoints from
interactions [20, 21] and from unlabeled videos [22]. Recently, implicit object representations have
been used to provide correspondence between any point within the same object category generalizing
across 6-DoF pose changes [23, 24, 25]. Large pretrained vision models also support the development
of object representations; recent works leverage these models to significantly reduce domain-specific
training data, showing strong results for open-vocabulary part segmentation [26], few-shot affordance
segmentation [27], and one-shot pose estimation on any novel object from the same category [28].
Despite this huge progress, we still lack object representations that support strong generalization of
manipulation to new object categories. We focus on tackling this problem.

Learning interactions of objects. Works in robotics have established the importance of modeling
interactions of objects. Recent approaches directly work on 3D observations, without relying on
known object models. Learning spatial relations between objects enables the picking and placing
of objects at specific locations [1, 29, 30, 2, 31], such as placing an object in the middle drawer,
stacking objects, and setting the table. These relations can be extended to represent the logical state
of the world to support planning for long-horizon tasks [3, 32, 33]. Other works focus on learning
lower-level interactions between objects, such as placing an object stably on a messy tabletop and
pushing an object using a tool [34, 35]. For example, O20-afford [34] correlates feature maps
extracted from two objects using a point convolution and outputs a point-wise interaction heatmap.
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Figure 2: (a) Given a task, the partial point clouds of the anchor and function objects, and their parts extracted
from a learned segmentation model g4, we sample a sequence of transformations from a learned distribution pg
to parameterize the function object’s trajectory. (b) CPM can be generalized to novel object categories because
it decomposes each action to a collection of functional correspondences between object parts. To sample the
target transformations that satisfy all functional correspondences, CPM combines the noise predictions from a
collection of primitive diffusion models at inference time. (c) Each primitive diffusion model learns a target pose
distribution that satisfies a particular part-part correspondence, based on the point clouds of the object parts.

Functionals defined on top of object-wise signed distance functions can also represent constraints on
interactions between objects such as contact and containment [36]. Flow-based methods can also
learn static relations between objects [37] as well as tool use [38], directly from point clouds. A main
difference between our work and these methods is that we bridge the modeling of interactions and
object representations through object-part decomposition and learned part-part correspondences, and
enjoy empirically validated improvement in generalization.

Composable diffusion models. A set of recent works have investigated the potential of diffusion
models in robotics [39, 40, 41, 42, 43, 44, 45, 46, 2, 47]. Research demonstrates that diffusion
models can generate multimodal distributions over actions [4 1] and can handle spatial ambiguities in
symmetric objects [2]. In image domains, prior work has shown a connection between conditional
diffusion models and energy-based models, and proposed techniques to generate images by combining
diffusion noises for different language conditions [48]. Recent work provides a more principled way
to sample from individually trained models using MCMC [49]. Another approach combines diffusion
models by using additional trained adapters for generating faces [50]. CPM combines both lines of
work to propose composable diffusion models for robotic manipulation. In doing so we must address
two challenges of adapting diffusion models to (1) output poses instead of pixels and (2) combine
actions in different part frames, while retaining generalization to different distributions.

3 Composable Part-Based Manipulation

In this work, our goal is to model functional actions involving an anchor object A that remains static
and a function object F’ that is being actively manipulated. Shown in Fig. 2 (a), given a task M and
the partial point clouds of two objects X 4 and X in the world frame { W'}, we want to predict a
sequence of SE(3) transformations, i.e., Tww = {Tw 1, .., Tw . which parameterized a trajectory
of the function object F' in the world frame in order to achieve the desired interaction with the anchor
object A (e.g., pouring). Throughout the paper, we choose N = 2; i.e., we predict the starting pose
and the ending poses of the object motion. Then, we use SE(3) interpolation between the two poses
to generate the continuous motion trajectory. We define that the object frames of { A} and {F'} are
centered at the centroids of the respective point clouds X 4 and X, and have the same orientation
as the world frame *. Each transformation Ty in the world frame can thus be computed by the
relative pose between the two objects Tar as Tw = TwaTar(Twr) 1A key challenge we aim
to address is generalizing the functional actions from training objects to unseen object instances and,
more importantly, novel object categories a robot may have never encountered during training.

“The transformation from {W} to an object frame can be computed given this definition. For example,
Twr = (Rwr,twr), where Ry F is set to an identity matrix and tw r is set to the centroid of X r.



3.1 Action as Part-Based Functional Correspondences

Composable part-based manipulation (CPM) models each action M as a composition of functional
correspondences between object parts. We formalize the symbolic representation of each correspon-
dence C € Cpg as (S;, Pa ;, Pr i), where Cay is the set of correspondences for M, S; is a spatial
relation, P4 ; and Pr ;, are two parts of the anchor and the functional objects, respectively. Consider
the example of pouring from a mug to a bowl, as depicted in Fig. 1. This “pour” action contains the
following three correspondences: {(align, rim(mug), rim(bowl)), (tilt, body(mug), body(bowl)), and
(facing-up, handle(mug), body(bowl)).

The task of predicting robot motion can be cast as the task of finding a robot trajectory that simultane-
ously satisfies all the part-based functional correspondences. Instead of manually specifying these
constraints given object point clouds and their poses, we propose to learn a neural network gg to
recognize the functional parts of objects based on their point clouds and another learned generative
model py to parameterize a distribution of 7. Using g4, we can extract point clouds for a given
part, for example g4(Xr, Pr ) = Xp, . Learning to recognize functional parts can be treated
as predicting a per-point part segmentation problem and have been studied extensively in prior
work [14, 15, 16, 27, 51]. Therefore, we focus on the second part which enables the robot to learn
manipulation trajectories of objects, based on the recognized parts.

3.2 Generative Modeling of Functional Correspondences with Diffusion Models

For each functional correspondence tuple (.S;, PA7j,PF’k>, we learn a generative distribution
99,5,(TP,.| X Pa,» Xpy. ). Here Tp,, denotes the relative transformations 7p, ,p,. , . We use
a point-cloud conditioned diffusion model to parameterize this distribution. In particular, each
primitive diffusion denoise model €y g, takes in the current diffusion time step ¢, two part point
clouds Xp, ; and Xp,. ,, and the noisy transformations 7p;, as input, and predicts the noise over
Tp]. .- As illustrated in Fig. 2 (c), the model is based on a transformer encoder. First, we encode
point clouds for the two parts separately using a point cloud transformer [52]. Then we encode each
transformation using a trained MLP. We input the point cloud and transformation encodings, together
with the diffusion time step ¢ to the transformer encoder. The output of the transformer encoder is the
predicted noise over the transformations 7p,, . We provide details for the architecture in Appendix A.

During training, we optimize the following loss for randomly sampled diffusion time step ¢ and
random Gaussian noise € sampled from a multivariate Gaussian distribution:

2
e—cos, (VI=BTE) +VBre | Xpa, Xppot) |

Lyvse =

where TI(J?Z is the target transformations to predict and J; is the diffusion noise schedule [53].
The added noise and the predicted noise are both in the tangent space of SE (3). We build on the
technique introduced for the SE(3) Denoising Score Matching (DSM) model [40], but use Denoising
Diffusion Probabilistic Model (DDPM) [53] for more stable training. In practice, we first compute
the exponential map of the transformations and then apply the noise. This can be viewed as predicting
the score function for an exponential energy function of SE(3) poses.

3.3 Inference-Time Composition of Diffusion Models

One of the key features of diffusion models is their compositionality. That is, suppose we have a set
of diffusion models, each trained for one specific type of functional correspondences, we can combine
their predicted noises during inference time to generate a trajectory that adheres to all functional
correspondences, as illustrated in Fig. 2 (b). Since each diffusion model implicitly parameterizes an
energy-based model: pg g, (T|-) o exp(—Ep, s, (T|-)) through its noise prediction [48, 49], sampling
from the composition of the diffusion models corresponds to sampling from the “intersection” of
distributions for the individual functional correspondences, or formally, from [[occ,, Po.s: (T])-

Similar to the definition of the object frame, the part frames {Pa ;} and {Pr .} are centered at the
centroids of the respective point clouds X p, ; and X p. , and have the same orientation as the world frame.
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Figure 3: We generate task demonstrations using the PartNet and ShapeNetSem datasets for the “pouring” and
“safe placing” tasks. We create demonstrations for a variety of function and anchor object combinations.

In particular, during inference time, starting from ’7;(17;.) randomly sampled from standard Gaussian
distributions, given the set of constraints Cpy, we iteratively update the pose prediction by:
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where T is the number of diffusion steps, a; = 1 — 3, is the denoise schedule, a; = H?:l ay is the
cumulated denoise schedule, o; is a fixed sampling-time noise schedule, and € is a randomly sampled

Gaussian noise. The differentiable operation fi, p..+ takes 7T, X} and transforms it to the part frame
Pj;. by (Tapya )_1Tf1tl),’Tp Pr.» for which each individual diffusion model is trained on.

4 Data Collection

We demonstrate CPM on the “pouring” and “safe placing” tasks. These two tasks require different
functional affordances. The pouring action pours from an anchor object to a target object, and
requires alignment of rims, collision avoidance of the handle and the container body, and body
tilt. The safe-placing action places a sharp function object into an anchor object, and requires head
containment for safety, tip touching bottom, and a body-body placement constraint. To validate our
approach, we collect 4522 successful demonstrations for pouring and 2836 successful demonstrations
for safe placing. To generate the demonstrations, we first source 13 categories of 3D objects from
PartNet [54] and the subset of ShapeNetSem [55] objects categorized in the Acronym dataset [56]. We
then extract aligned parts either from segmentations and category-level canonical poses in PartNet or
from manually labeled 3D keypoints for ShapeNetSem objects. We procedurally generate parameters
of the actions from the aligned parts (as illustrated in Fig. 3), simulate the interactions by tracing the
trajectories defined by the parameters, and render RGB-D images using multiple cameres set up in
the simulator. Details of the dataset are presented in Appendix C.

5 Experiments

The subsequent section will showcase the performance of CPM in comparison to baselines and other
variants of our method in simulation. In particular, we evaluate in two important generalization
settings: 1) generalization to novel object instances from seen object categories, and 2) generalization
to object instances from unseen object categories. We then discuss the deployment of CPM trained in
simulation on a real robot.

5.1 Experimental Setup

We evaluate all methods in the PyBullet physics simulator [57]. To isolate the problem of predicting
target transformations 7 from other components of the system (e.g., grasp sampling and motion
planning), we actuate the center of mass of the function object F'. We report average task completion
scores from 1500 trials indicating failure (0) and success (100), with credits assigned for partial
completion. The score is computed based on model-based classifiers designed for each task. To test



Table 1: CPM demonstrates strong generalization to novel instances of objects within seen categories.

Model Pouring  Safe Placing
Transformer-BC 19.21 37.11
TAX-Pose 21.71 76.97
PC-DDPM 75.83 51.55
Part-Aware PC-DDPM 75.28 42.68
CPM (ours) 80.00 70.99

Table 2: CPM demonstrates strong generalization to function objects from unseen object categories.

Pouring Safe Placing
Model Bowl Glass Mug Pan Fork Pen  Scissors
Transformer-BC 1023 2091 6.06 32.04 26.15 31.93 26.44
TAX-Pose 2332 382 8.64 46.14 5090 67.60 36.80
PC-DDPM 63.02 7595 7139 6439 40.60 46.63 32.34
Part-Aware PC-DDPM 5898 72.11 67.11 66.17 39.76 48.04  28.15
CPM (ours) 79.32 8144 7757 6213 5594 5945 @ 63.35

generalization to novel objects from seen categories, we randomly split the data for each task M
into 80% training and 20% testing. To test generalization to unseen object categories, we conduct
a separate experiment for each target category of the function objects, where we withhold data
involving the target category and train on the remaining data. Details of the evaluation are discussed
in Appendix D. We present results with binary success as metric in Appendix E.

5.2 Compared Methods

Baselines. We compare CPM with four main baselines. The first is Transformer-BC, which uses a
multimodal transformer encoder-decoder from prior work [30] to condition on point clouds of the
objects and autoregressively predict target transformations. The second baseline is based on TAX-
Pose [37] which predicts relative poses between two objects from point-wise soft correspondences.
The third is PC-DDPM; similar to recent work [40, 47], a conditional denoising diffusion probabilistic
model [53] is trained to predict target transformations based on input point clouds of both the function
and the anchor objects. The fourth baseline is the Part-Aware PC-DDPM, which takes in both point
clouds of the objects and per-point segmentation masks that indicate object parts. We discuss the
baseline implementations in details in Appendix B.

CPM variants. We evaluate several variants of our model. The first is DDPM with 6D rotation
representation instead of SE(3). This variant of CPM learns different diffusion models for different
parts. However, it does not compose pose predictions in different part frames. This model is directly
adapted from existing composable diffusion models for image generation [48, 49]. The second is
DDPM with training-time composition; this model jointly train all primitive diffusion models by
composes thier noise predictions at training time. The last group are the individual primitive diffusion
models, which use single DDPM models corresponding to different part-part correspondences,
without any composition.

5.3 Simulation Results

Comparisons to baselines. We evaluate CPM’s generalization capability in two settings. First,
Table 1 shows a comparison of generalization to novel objects from seen categories. Overall, our
model achieves strong performance on both tasks of “pouring” and “safe placing”. We note that
TAX-Pose struggles with pouring that requires modeling multimodal actions because the method
extracts a single relative pose estimate from a fixed set of correspondences. The autoregressive
Transformer-BC is also not enough to capture the full distribution of the pouring action. We note that
although Part-Aware PC-DDPM leverages the same part segmentation as CPM, it fails to achieve
stronger performance compared to the PC-DDPM baseline, which only uses the object point clouds
as input. We attribute this to its potential overfitting to the part segmentations within the training data.
By contrast, CPM is able to effectively leverage part segmentations by learning primitive diffusion
models and composing them at inference time. Our model shows substantial improvements in the



Table 3: We ablate the contributions of CPM on the ability to generalize to novel categories of objects.

Target Pose Rep Part Frames ~ Composition \ Pouring  Safe Placing
6D Rot + 3D Trans No Inf-time 71.22 68.77
SE(3) Yes Train-time 69.89 48.46
SE(3) Yes Inf-time 75.11 59.58

Table 4: We explore the effect of composition, comparing to individual diffusion models, in generalization
across both “pouring” and “safe placing” tasks. *We note that for the align and facing-up evaluation, a small
percentage of examples were removed as they do not contain the involved parts in the partial object point clouds.

Pouring Safe Placing

(align, rim, rim) 70.05%* (contain, head, body) 41.22
(facing-up, handle, body) 16.42% (touch, tip, bottom) 9.34
(tilt, body, body) 68.69 (place, body, body) 39.86
CPM 75.11 CPM 59.58

“safe placing” task compared to other diffusion-based methods, largely due to each part constraint
significantly restricting the target pose distribution in this task. For instance, the constraint that
requires the fip of the function object to touch the bottom of the anchor object effectively constrains
the target pose.

Our second set of experiments assesses the model’s capacity to generalize to unseen object categories,
thereby highlighting the efficacy of part-based correspondences. Results can be found in Table 2.
Remarkably, CPM demonstrates its capability to generalize across object categories for both tasks in
a zero-shot manner. CPM’s performance dips slightly for pans as the rim’s of pans are significantly
larger compared to rim’s encountered during training (for example, those of bowls and mugs). As
a comparison, all baselines fall short in consistently generalizing to new categories for both tasks.
TAX-Pose is not able to maintain strong performance for safe placing when generalizing to more
geometrically complicated objects including scissors and forks. Our methods are robust to changes in
local geometry and overall topology by leveraging compositions of part-based correspondences.

Ablation. First, we assess the significance of
our SE(3) encoding, part frame-based transfor-

mation, and inference-time composition within (
the context of generalizing to unseen categories
of objects. As depicted in Table 3, our full CPM
with part frames and inference-time composi-
tion shows superior performance compared to
the model trained with training-time composi-
tion. This verifies the importance of our designs
to support part-based composition and gener-
alization. Compared to the variant based on

Body

Contain Head Tip Touch Bottom Composed

6D Rotation + 3D Translation encoding, CPM
yields a better performance on the pouring task,
a scenario where the rotation of the function ob-

Figure 4: We illustrate the learned distribution of each
primitive diffusion model, which generates diverse sam-
ples conforming to the specified constraints, as well as

the distribution from the combined full CPM model. The

ject plays a pivotal role. On the safe placing  piohest-ranked sample is highlighted.

task, which involves less rotation of objects, we
observe a more comparable performance with our model. These results highlight the importance of
SE(3) diffusion model in rotation prediction.

Second, we compare the performance of composed part-based diffusion models with the performance
of primitive diffusion models. Shown in Table 4, the composed model outperforms individual
diffusion models, showing the efficacy of our composition paradigm. In addition, these results
show the importance of different part-based constraints for the given tasks. In the “pouring” task,
align and tilt strongly constrain the target pose for the function object, while for the “safe placing”
task, contain and place constraints are more salient. Fig. 4 provides a qualitative visualization by
showcasing the part-conditioned distribution associated with each individual diffusion model for
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Figure 5: We show sampled frames from trajectories of CPM’s policy. The model is trained only on demonstra-
tions with pans, bowls, and wine glasses in simulation and generalizes to mugs in the real world.

various constraints, as well as the corresponding composed distribution. The quantitative performance
of contain and place primitive models for these tasks aligns with this qualitative comparison, as
they have learned distributions that are close to the composed model. The CPM paradigm allows
us to train each primitive diffusion model independently, encouraging each model to concentrate on
distinct functional affordances, thus enabling them to learn and generalize to diverse distributions of
samples. During inference, the composition of distributions learned by individual models enables
CPM to find solutions that satisfy all correspondence constraints.

5.4 Real-World Transfer

Finally, we show a real-world robot manipulation experiment for the “pouring” task, highlighting
the transferability of our CPM to real-world manipulation. In this setting, we use the primitive
diffusion models trained on simulation data with function objects of glasses, pans, and bowls, and
zero-shot transfer to mugs in the real-world experiment. Our setup includes a Franka Emika robot
mounted in a tabletop environment. To conduct pouring, we perform plane segmentation and k-means
clustering to extract object point clouds from the scene point cloud captured by two calibrated Azure
Kinect RGB-D cameras. Next, we apply a pre-trained point transformer (PT) model [58] for part
segmentation. The segmentation model is trained on simulation data only. We then apply CPM
trained in simulation for the pouring task. To execute the trajectory, we use the Contact-GraspNet [59]
to sample robot grasps on the function object and Operational Space Controller [60] with impedance
from Deoxys [60] to following a sequence of end-effector pose waypoints computed from the target
transformations. Figure 5 shows our real-world setup and example trajectories predicted by CPM on
unseen mugs with different shapes and sizes.

6 Limitations and Conclusion

We introduced composable part-based manipulation (CPM), as an approach that leverages object-part
decomposition and part-part correspondences for robotic manipulation. We show that representing
actions as combinations of constraints between object parts enables strong generalization. Through the
composition of primitive diffusion models, we gain generalization capabilities across novel instances
of objects as well as unseen object categories, in simulation and in real-world robot experiments.

In this paper, we focus on manipulation tasks involving two objects. Extending CPM to learn skills
involving more objects would be important for future work, in particular for manipulating piles or
stacks of objects. Second, we parameterize each manipulation action by the starting and ending
poses. Extending the transformer-based diffusion model to output more waypoints to parameterize
longer trajectory is important for potentially a wider range of tasks. In addition, CPM does not model
temporal constraints over the trajectory. One possible extension is to learn trajectory samplers for
temporal constraints and trajectories with loops. CPM assumes external part segmentations. Although
many categories can be segmented by off-the-shelf computer vision models [26], extending the
system to jointly learn or finetune part segmentation is important. Finally, composing a larger number
of diffusion models may require more efficient sampling techniques such as [61]. We provide an
extended discussion of CPM’s assumptions in Appendix F and suggest directions for future research.
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A Network Architecture

For each functional correspondence (S;, P4 ;, Pr i), we aim to learn a generative distribution
10.5,(TP;.| X P4 ;» X P, ). Here we discuss the network architecture for primitive diffusion model
€p,s, that learns to estimate the generative distribution. We leverage modality-specific encoders to
convert the multimodal inputs to latent tokens that are later processed by a transformer network.

Object encoder. Given part point clouds Xp, . and Xp.. ,, we use a learned encoder h), to
encode each part separately as h,(Xp, ;) and h,(X p;., ). This encoder is built on the Point Cloud
Transformer (PCT) [52].

Diffusion encodings. Since the goal transformations 7p,, = {T'p,, . }5—, are iteratively refined by
the diffusion model and need to feed back to the model during inference, we use a MLP to encode
each goal transformation separately iz (Tp;, »). To compute the time-dependent Gaussian posterior
for reverse diffusion, we obtain a latent code for ¢ using a Sinusoidal embedding ;e (t).

Positional encoding. We use a learned position embedding h,,s({) to indicate the position index [ of
the part point clouds and poses in input sequences to the subsequent transformer.

Diffusion Transformer. The diffusion model predicts the goal poses T},?Z starting from the last time

step of the reverse diffusion process 7 1(,3;) ~ N(0,Z), which is sampled from a multivariate normal
distribution with independent components. We use a transformer encoder as the backbone for the

diffusion model €y g, <{T1(Dtj )k 7 I | Xpa s Xpe s t) , which predicts the time-dependent noise
{egt), e egf,)}. We obtain the transformer input for the parts y and the target poses 7 as
t
XE4) = [hp(XPA,j); hpos (0)7 htime (t)]
t
X5 = (X ) hpos (1): heime (1)
t
7 = [hr (TS, ,); hpos (1 = 2); haime (1)
where [;] is the concatenation at the feature dimension. The model takes in the sequence
{XE;), X;f), Tl(t), . 7'1(\;)} and predicts {e(lt), -y eg\t,)} for the object poses.
Parameters. We provide network and training parameters in Table Al.

Table Al: Model Parameters

Parameter Value

Number of Py ; and Pr ;. points 512
PCT point cloud encoder h, out dim 200

Position embedding h,0s learned embedding
Position embedding 5, dim 16

Time embedding hyime Sinusoidal
Time embedding A, dim 40

Pose encoder hr out dim 200
Transformer number of layers 4
Transformer number of heads 4
Transformer hidden dim 128
Transformer dropout 0.0
Diffusion steps T’ 200
Diffusion noise schedule [, Linear
Start value 5 0.0001
End value S 0.02

Loss Huber
Epochs 2000
Optimizer Adam
Learning rate le-4
Gradient clip value 1.0
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B Implementation Details for Baselines

We discuss the implementation of each baseline below:

* Transformer-BC: this baseline takes point clouds X 4 and X r as input, and predicts target
transformations 74 . This baseline uses a multimodal transformer encoder-decoder from
prior work [30] to condition on point clouds of the objects and autoregressively predict
target transformations. The point clouds are first individually encoded with a point cloud
transformer [52]. The point cloud embeddings are fed to the transformer encoder. The
transformer decoder autoregressively decodes the target poses {Tar 1, .., Tar n }-

* TAX-Pose: this baseline takes point clouds X 4 and X as input, and predicts target
transformations 74 . We use the code and hyperparameters from the official repository
. We use the variant that does not require pretrained object embeddings because we use
different objects from the paper. As discussed in Appendix F.1.2 of the original paper,
pretraining mainly helps to reduce training time. Because the TAX-Pose model only
predicts one relative pose for each pair of point clouds, we learn a separate model for each
transformation in 7Tap. Specifically, one TAX-Pose is trained to predict start pose and
another TAX-Pose is trained to predict end pose.

* PC-DDPM: this baseline takes point clouds X 4 and X g as input, and predicts target
transformations 74 p. Similar to recent work [40, 47], a conditional denoising diffusion
probabilistic model [53] is trained to predict target transformations based on input point
clouds of both the function and the anchor objects. This model has the same architecture,
including encoders, latent embeddings, and the diffusion transformer, as the primitive
diffusion models, which is discussed in Appendix A.

* Part-Aware PC-DDPM: this baseline takes point clouds X 4 € RVx*3 and Xy € RVx*3
and two segmentation masks 4 € RVx>*N1 and T € RVx*N1 ag input, and predicts
target transformations 74 p. Nx is the number of points for each point cloud and Ny is
the number of known object parts. Each channel of the segmentation mask is a binary
mask indicating points for a specific part. Each segmentation mask encodes all parts that
can be extracted from an object point cloud. For simulation experiment, the segmentation
masks come from groundtruth part segmentation. While CPM use the segmentation masks
to extract part point clouds, this baseline directly encode the segmentation mask together
with the object point cloud. This baseline shares most of the network architecture as
PC-DDPM except that point cloud encoder now encodes [X a; Ia] € RVx*B3+N1) and
[Xp;Ip] € RNx x(3+Nr)

C Dataset Details

In total, we collected 4522 successful demonstrations for pouring and 2836 successful demonstrations
for safe placing. For each experiment, we use a subset of these demonstrations for training the models,
and the remaining data for initializing the simulation. We provide a breakdown of the dataset in
Table A2. Because the expert policies do not have 100% success rate, the models will only be trained
on the successful demonstrations. Below we discuss our data collection process in details.

Sourcing 3D objects. We source a wide variety of 3D objects from PartNet [54] and the subset of
ShapeNetSem [55] objects categorized in the Acronym dataset [56]. We use 13 object categories
to investigate generalization, including mug, pan, bowl, wine glass, knife, can opener, scissors,
screwdriver, fork, spoon, marker, pen, and flashlight. Some object categories are reused for different
tasks; for example, mug is used as an anchor for safe placing but also as an object for pouring.

Extracting aligned parts. Our generative diffusion models uses part segmentations of objects to
learn primitive diffusion models. For 3D objects from PartNet, we use the segmentations provided in

Code from https://github.com/r-pad/taxpose.
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Table A2: Simulation and Demonstration Data

Task Object Source  Number of Simulations Number of Success Demonstrations

Pen PartNet 1000 568

Fork PartNet 1000 390
ScrewDriver  PartNet 1000 145

Spoon PartNet 1000 410

Safe Placing Knife Acronym 1000 496
Scissors PartNet 1000 354
Flashlight PartNet 1000 141
CanOpener PartNet 1000 101
Marker PartNet 1000 231

Mug PartNet 2000 1051

Pouring WineGlass PartNet 2000 1542
Bowl Acronym 2000 776

Pan PartNet 2000 1153

the dataset. For 3D objects from ShapeNetSem, we first label 3D keypoints, then from the labeled
keypoints, we procedurally extract parts. As ShapeNet provides canonical poses for 3D models, we
can also align the extracted functional parts for each object category.

Simulating trajectories and rendering. We simulate the robot-object interactions by tracing the
trajectories defined by the parameters. We first use multiple cameras to render RGB-D images, which
yield realistic object point clouds. We then map the functional parts to the point clouds with the
correct transformation and scaling. Finally, we obtain point cloud segments of each affordance part.
Because these parts are extracted from the rendered point clouds, they can be incomplete, which
increases the robustness of our method and helps transferability to real-world settings.

D Evaluation Details

In Section 5, we report task completion scores. For each experiment, we randomly draw 100 samples
from the withheld testing data to initialize simulation for evaluation. This procedure ensures that the
action can be successfully performed for the pair of anchor and function objects. To systematically
evaluate multimodal actions (e.g, pouring from different directions), we sample from each model 5
times and simulate the predicted actions. We repeat each experiment with 3 different random seeds,
resulting in a total of 1500 trials.

The task score indicates task completion between failure (0) and success (100), with credits assigned
for partial completion. The score is computed based on model-based classifiers designed for each
task. Now we describe how the score is computed in more detail:

* Pouring: we first use PyBullet’s collision test to check whether the function object and anchor
object will ever interpenetrate during the execution of the action by rigidly transforming
the function object to the predicted poses. If the objects interpenetrate, we assign a score
of zero because the action cannot be realistically executed. Then we simulate the pouring
action, and use the percentage of particles successfully transferred from the function object
to the anchor object as the partial score.

 Safe Placing: similar to pouring, we check interpenetration for the start pose of the placement
action. If the objects interpenetrate, we assign a score of zero. Then we simulate the
placement action until contact between the anchor and function object. If the orientation
of the function object is incorrect (e.g., the blade of the knife is outside of the container),
we assign a score of zero. If the orientation is correct, the percentage of the trajectory
parameterized by the predicted transformations that is successfully executed is used as the
partial score.
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E Additional Results

Besides reporting the task completion scores, we include additional task success rates in Table A3 and
Table A4. For pouring, a trial is considered successful if there is no interpenetration between objects
and 70% of particles are successfully transferred. For safe placing, a successful trial requires no
interpenetration at the predicted start pose for the function object, correct orientation of the function
object, and 70% of the predicting trajectory being successfully executed without collision between
objects. We observe similar trends as the results presented in Section 5.

Table A3: CPM shows strong generalization to novel instances of objects within seen categories.

Model Pouring Safe Placing
Transformer-BC 17.5343.13  33.27+2.14
TAX-Pose 21.33+0.58  74.00+1.00
PC-DDPM 70.67£1.27  48.73+2.97
Part-Aware PC-DDPM  73.60+£2.60  36.5342.20
CPM (ours) 76.87£1.70  68.87+2.25

Table A4: CPM demonstrates strong generalization to function objects from unseen object categories.

Pouring Safe Placing
Model Bowl Glass Mug Pan Fork Pen Scissors
Transformer-BC 10.00+2.51  19.20+0.92  5.80+1.93  29.33+£2.04 24.00£1.51 27.33£2.34 18.474+2.93
TAX-Pose 21.00£1.00  3.00+1.00 8.00+1.00  42.674+2.08 47.67+3.21 62.67+4.04 33.33+1.15
PC-DDPM 56.53£2.00 70.67£3.06 68.67£4.31 59.93+2.80 38.004+3.83 43.47+1.68 28.47+0.83
Part-Aware PC-DDPM  54.874+2.10 68.33+2.97 65.20+4.61 62.00+3.56 28.67+1.68 42.40+3.12 17.67+2.70
CPM (ours) 76.40+1.78 78.93+3.14 76.00+5.26 54.67+1.50 53.93+2.91 56.53+2.04 62.07+1.72

F Assumptions

During training, our method assumes 1) a description of the manipulation skill as a set of part
correspondences, 2) access to the dataset of successful trajectories, and 3) access to part segmentations
for objects in the dataset. During testing, our method assumes the part segmentations for objects
being manipulated. We contend that these assumptions align with our current focus. Nonetheless,
subsequent research should aim to address them.

First, the description of manipulation skills is in symbolic text, e.g., pouring from mugs to bowls
contains three constraints. They can be easily annotated by humans as there is no need to specify
any continuous parameters or mathematical formulas. An interesting future direction is to leverage
large language models to more efficiently extract constraints. CPM then learns the grounding of these
constraints from data.

Second, we assume access to successful manipulation trajectories. That is, we do not assume any
additional annotations, such as programs for generating these trajectories. The key focus of the
paper is to improve the data efficiency of learning such skills, in particular for generalization across
categories. An important future direction is to improve the data efficiency of this method and learn
from noisy human demonstrations.

Finally, relying on external part segmentation is limiting, but 2D or 3D part segmentation models
are generally available for many object categories [15, 16, 26]. An exciting future direction is to
extend the current framework to automatically discover functional part segmentations leveraging
manipulation data.
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