Fantastic Questions and Where to Find Them:
FAIRYTELEQA— An Authentic Dataset for Narrative Comprehension

Anonymous ACL submission

Abstract

Question answering (QA) is a fundamental means to facilitate assessment and training of narrative comprehension skills for both machines and young children, yet there is scarcity of high-quality QA datasets carefully designed to serve this purpose. In particular, existing datasets rarely distinguish fine-grained reading skills, such as the understanding of varying narrative elements. Drawing from education domains where QA is also used to train children’s narrative comprehension, we introduce FAIRYTELEQA, a dataset focusing on narrative comprehension of kindergarten to eighth grade students. Generated by educational experts based on an evidence-based theoretical framework, FAIRYTELEQA consists of 10,580 explicit and implicit questions derived from 278 children-friendly stories, covering seven types of narrative elements/relations. Our dataset is valuable in two folds: First, with annotations on particular reading skills required for answering each question, FAIRYTELEQA decomposes the otherwise scarce performance into multiple analysis dimensions that are consistent to human-language-learning assessment. We ran existing QA models on our dataset, and confirmed that this annotation helps assess models’ fine-grained learning skills. Second, the dataset supports generating questions (QG) in the education domain. Through benchmarking with QG models, we show that the QG model trained on FAIRYTELEQA is capable of asking high-quality and more diverse questions.

1 Introduction

Reading comprehension is a complex, multidimensional cognitive process (Kim, 2017). Question answering (QA) are fundamental for supporting humans’ development of reading comprehension skills, as questions serve as both instruments for evaluation and tools to facilitate learning. To achieve this goal, comprehension questions should be valid and reliable, meaning that all items are designed to cohesively assess comprehension rather than some other skills (e.g., text matching, paraphrasing, or memorization) (Roberts and Priest, 2006). Moreover, from the educational perspective, given that reading comprehension is a multi-component skill, it is ideal for comprehension questions to be able to identify students’ performance in specific sub-skills, thus allowing teachers to provide tailored guidance (Francis et al., 2005). This kind of high-quality questions is also valuable for improving machine reading comprehension.

However, creating a large and suitable set of questions for supporting narrative comprehension is both time-consuming and cognitively demanding. Some researchers have proposed to develop mod-
els to automatically generate questions to satisfy the need for a continuous supply of new questions (Kurdi et al., 2020). However, existing datasets are not particularly suitable for training question generation (QG) models for educational purposes (Das et al., 2021). This is primarily because the datasets are not typically structured around the specific dimensions of reading comprehension sub-skills, nor do they provide sufficient information on what sub-skills are tested. As a consequence, QG models built on these datasets only yield one single “comprehension” score without a more detailed breakdown of performance on comprehension sub-skills. This issue is compounded by the fact that many benchmarks rely on crowd-sourced workers who may not have sufficient training or education domain knowledge needed to create valid questions in a consistent way.

To bridge the gap, we constructed Fairy taleQA, an open-source dataset focusing on comprehension of narratives, targeting students from kindergarten to eighth grade (Table 1. We focus on narrative comprehension for two reasons. First, narrative comprehension is a high-level comprehension skill strongly predictive of reading achievement (Lynch et al., 2008) and plays a central role in daily life as people frequently encounter narratives in different forms (Goldie, 2003). Second, narrative stories have a clear structure of specific elements and relations among these elements, and there are existing validated narrative comprehension frameworks around this structure, which provides a basis for developing the annotation schema for our dataset.

We employed education experts who generated 10,580 question-answer pairs based on a collection of 278 fairy tale stories for young readers, following evidence-based narrative comprehension frameworks (Paris and Paris, 2003; Alonzo et al., 2009). Thereby, Fairy taleQA contains questions that focus on seven narrative elements and relations, namely character, setting, feeling, action, causal relationship, outcome resolution, and prediction (Paris and Paris, 2003), thus increasing the validity and reliability of the assessment. In addition, Fairy taleQA also contains both explicit questions that involve answers found directly in the text and implicit questions that require inference making and high-level summarization, thus representing a relatively balanced assessment with questions of varying difficulty levels. Most importantly, our selection of annotators with education domain knowledge as well as the training and quality control process ensured that the aforementioned annotation protocol was consistently implemented. A subset of questions in our dataset has been validated with 120 kindergarten students, proving the questions’ reliability and validity.

We show the utility of Fairy taleQA through two benchmarking experiments. First, we used our data to train and evaluate state-of-the-art QA models and demonstrated that (1) Fairy taleQA contains challenging phenomena for existing models, and (2) it can support finer-grained analysis on the aforementioned seven types of comprehension sub-skills, even for models trained on standard QA datasets (NarrativeQA (Kočiský et al., 2018)). We further calibrated model performances with human baseline, highlighting the most visible gap on models’ reasoning capabilities on recognizing casual relationships and predicting event outcomes. Second, we used Fairy taleQA to power question generation and showed that the QG model trained on ours was more capable of asking diverse questions and generating questions with higher quality.

2 Related Work

This section reports a survey on closely related popular QA datasets that 1) focus on narratives and/or 2) are designed for educational purposes (dataset features in Table 2). 1

2.1 QA Datasets Focusing on Narratives

Despite the large number of datasets on reading comprehension, fewer focus on comprehension of narrative text. NarrativeQA (Kočiský et al., 2018) is one of the representative datasets. It was generated by crowd-source workers who wrote QA pairs according to summaries of books or movie scripts, while the task takers are supposed to answer these questions based on their reading of original books or movie scripts. As such, this dataset is posited to evaluate a person’s understanding of the underlying narrative. Indeed, a study (Mou et al., 2021) confirmed that NarrativeQA contains a significant amount of questions that focus on narrative events and the relationship among events. However, NarrativeQA simply instructed crowd-sourced workers to generate questions as if they were to "test students" without using a detailed annotation protocol.

1 It is worth noting that this review focuses on the purpose of reading-related education. Therefore, datasets assessing the education of natural science (Clark et al., 2018; Dalvi et al., 2018) are not covered.
It is questionable whether these workers actually had experiences in testing students in the first place, and the lack of protocol may have imposed too little control over the coverage of reading sub-skills being assessed.

BookTest (Bajgar et al., 2016) is an automatically constructed cloze-style QA dataset based on a collection of narrative texts retrieved from project Gutenberg. The questions were generated by automatically removing a noun or entity in a sentence that has appeared in the preceding context. While cloze-style tests can be a valid instrument for assessing reading comprehension, its validity depends on the careful selection of words to be removed so that filling them in requires proper comprehension (Gellert and Elbro, 2013). It is unlikely that automatically constructed cloze tests would meet such standard.

Another dataset, TellMeWhy (Lal et al., 2021), aims to facilitate and assess understanding of causal relationships. This dataset contains "why" questions that are relatively challenging, given that they require additional information not directly provided in the text. However, TellMeWhy only addresses one narrative component type (i.e., causal relationship), whereas FAIRYTALEQA provides seven evaluation components. Moreover, TellMeWhy was built upon ROCStories (Mostafazadeh et al., 2016) and thus only examine comprehension on incomplete story sections, which may have limited the dataset’s ability to assess macro-level summarization and inference making.

2.2 QA Datasets for Reading Education

There are several benchmarks derived from sources for education purposes (e.g., exams or curricula). RACE (Lai et al., 2017) is a large-scale dataset consisting of comprehension questions from English exams for Chinese middle and high school students. RACE uses a mixture of narrative and informational paragraphs. These two genres require slightly different comprehension skills (Liebfreund, 2021) and students perform differently based on what genres of text they read (Denton et al., 2015). Mixing these two together in one dataset without annotating the specific genre of each story/question obscures the ability to offer a precise assessment. Moreover, RACE is purely in multiple-choice format and the paragraphs are usually shorter. These two characteristics may make the RACE dataset less challenging; and recent models have demonstrated close-to-human performance.

CLOTH (Xie et al., 2017) is a cloze-style dataset also collected from English exams. Each question in CLOTH is fill-in-the-blank with multiple options to choose from. CLOTH can be advantageous for educational QG as each question is labeled with the level of reasoning it involves, including grammar, short-term reasoning, paraphrasing, and long-term reasoning. However, this dataset shares certain limitations inherent to multiple choice formats (Klufa, 2015).

2.3 Non-QA Datasets for Narrative Comprehension

There are some datasets that are designed for assessing narrative comprehension skills but do not use QA as a form of evaluation. Several datasets, such as NovelChapters (Ladhak et al., 2020) and BookSum (Kryściński et al., 2021), evaluate models’ comprehension through summarization tasks. However, there have been debates of whether comprehension can be assessed solely through summarization (Head et al., 1989), as summarization poses a high demand on writing that confounds the

Table 2: Properties of existing datasets compared to FAIRYTALEQA.

<table>
<thead>
<tr>
<th>Dataset</th>
<th>Educ.</th>
<th>Narr.</th>
<th>Q. Type</th>
<th>A. Type</th>
<th>A. Source</th>
<th>Generation</th>
<th>Document Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>NarrativeQA</td>
<td>No</td>
<td>Yes</td>
<td>Natural</td>
<td>Natural</td>
<td>Free-form</td>
<td>Crowd-sourced</td>
<td>Movie Scripts, Literature</td>
</tr>
<tr>
<td>BookTest</td>
<td>No</td>
<td>Yes</td>
<td>Cloze</td>
<td>Mult. Choice</td>
<td>Entity/Span</td>
<td>Automated</td>
<td>Literature</td>
</tr>
<tr>
<td>TellMeWhy</td>
<td>No</td>
<td>Yes</td>
<td>Natural</td>
<td>Natural</td>
<td>Free-form</td>
<td>Crowd-sourced</td>
<td>Short Fiction (ROCStories)</td>
</tr>
<tr>
<td>RACE</td>
<td>Yes</td>
<td>No</td>
<td>Natural</td>
<td>Mult. Choice</td>
<td>Free-form</td>
<td>Expert</td>
<td>(Partially) Literature</td>
</tr>
<tr>
<td>CLOTH</td>
<td>Yes</td>
<td>No</td>
<td>Cloze</td>
<td>Mult. Choice</td>
<td>Span</td>
<td>Expert</td>
<td>Literature</td>
</tr>
</tbody>
</table>

2http://www.qizhexie.com/data/RACE_leaderboard.html
reading skills intended to be assessed. Two other recent datasets focus on singular specific elements in narratives. The LiSCU dataset (Brahman et al., 2021) targets readers’ understanding of characters, and Sims et al. (2019) propose a dataset for detecting events in narratives. Yet given their focus on single narrative elements, these two datasets may not provide a comprehensive evaluation of narrative comprehension.

3 FairytaleQA

The FairytaleQA contains 10,580 QA pairs from 278 classic fairytale stories. In the remainder of this section, we report the dataset construction process and its key statistics.

3.1 Source Texts

The narrative texts utilized in the dataset are classic fairytale stories with clear narrative structures. We gathered the text from the Project Gutenberg website\(^1\), using “fairytale” as the search term. Due to large number of fairytales found within the Gutenberg project, we used the most popular stories based on the number of downloads, since these stories presumably have more engaging plots and higher-quality writing.

To ensure the readability of the text, we made a small number of minor revisions to some obviously outdated vocabulary (e.g., changing “ere” to “before”) and the unconventional use of punctuation (e.g., changing consecutive semi-colons to periods). For each story, we evaluated the reading difficulty level using the textstat\(^2\) Python package, primarily based on sentence length, word length, and commonness of words. We excluded stories that are at 10th grade level or above.

These texts were broken down into small sections based on their semantic content by our annotators. Most of the resulting sections were one single natural paragraph of the original text. However, sometimes several paragraphs were combined (usually multiple exchanges of dialogues); and some exceptionally long paragraphs that contained more than one focal event were divided into multiple sections. On average, there are 15 sections per story, and each section has an average of 150 words.

3.2 Schema for Question Annotation

Categorization via Narrative Elements or Relations. FairytaleQA is intended to include QA pairs that capture the seven narrative elements/relations that are verified in prior educational research (Paris and Paris, 2003). Definitions of question types are shown below. Example questions for each type are in Appendix C.

- **Character** questions ask test takers to identify the character of the story or describe characteristics of characters.
- **Setting** questions ask about a place or time where/when story events take place and typically start with "Where" or "When."
- **Action** questions ask about characters’ behaviors or additional information about that behavior.
- **Feeling** questions ask about the character’s emotional status or reaction to certain events and are typically worded as "How did/does/do . . . feel".
- **Causal relationship** questions focus on two events that are causally related where the prior events causally lead to the latter event in the question. This type of questions usually begins with "Why" or "What made/makes."
- **Outcome resolution** questions ask for identifying outcome events that are causally led to by the prior event in the question. This type of questions are usually worded as "What happened/happens/has happened...after..."
- **Prediction** questions ask for the unknown outcome of a focal event, which is predictable based on the existing information in the text.

Categorization via Source of Answers. Orthogonal to the aforementioned question categories, questions in FairytaleQA are also categorized based on whether or not the answer source can be directly found in the text, namely explicit versus implicit questions. Generally speaking, explicit questions revolve around a specific story fact and implicit questions require summarizing and making an inference based on information that is only implicit in the text. Using a combination of explicit and implicit questions yield an assessment with more balanced difficulty (Raphael, 1986). In our data, explicit and implicit questions are defined as below (Examples in Appendix C):

- **Explicit** questions ask for answers that can be directly found in the stories. In other words, the source of answer are spans of text.
- **Implicit** questions ask for answers that cannot

\(^1\)https://www.gutenberg.org/
\(^2\)https://pypi.org/project/textstat/
be directly found in the text. Answering the questions require either reformulating language or making inference. In other words, the answer source is "free-form", meaning that the answers can be any free-text, and there is no limit to where the answer comes from.

3.3 Annotation Process

Five annotators were involved in the annotation of QA pairs. All of these annotators have a B.A. degree in education, psychology, or cognitive science and have substantial experience in teaching and assessing students’ reading skills. These annotators were supervised by three experts in literacy education.

Annotation Guidelines The annotators were instructed to imagine that they were writing questions to test elementary school students who are in the process of reading a complete story. We required the annotators to generate only natural, open-ended questions that started with "wh-", avoiding "yes-") or "no-" questions. We also instructed them to provide a diverse set of questions about different narrative elements and include both implicit and explicit questions. Each question in the dataset has a label on the narrative element/relation to be assessed and whether it is implicit or explicit.

We asked the annotators to also generate answers for each of their questions. We asked them to provide the shortest possible answers but did not restrict them to either complete sentences or short phrases. For explicit questions (i.e., span), annotators extracted the shortest phrase from the text as the answer. For implicit questions (i.e., free-form), annotators provided at least two possible answers for each question. We also asked the annotators to label which section(s) the question and answer were from.

Annotator Training and Cross-Checking All annotators received a two-week training in which each of them was familiarized with the coding template (described in the section below), and conducted practice coding on the same five stories. The practice QA pairs were then reviewed by the other annotators and the three experts, and discrepancies among annotators were discussed. At then end of the training session, the five annotators had little disagreement with the questions generated by other coders. During the annotation process, the team met once every week to review and discuss each member’s work. All QA pairs were cross-checked by two annotators, and 10% of the QA pairs were additionally checked by the expert supervisor. This process is to ensure that the questions focused on key information to the narrative and the answers to the questions were correct.

Agreement among Annotators The questions generated by the five coders showed a consistent pattern. All coders’ questions have similar length (average length ranging from 8 to 10 words among the coders) and have similar readability level (average readability between fourth to fifth grade among the coders). The distributions in narrative elements focused as well as implicit/explicit questions were also consistent. A detailed description of the distributions by coders is displayed in Appendix D.

Second Answer Annotation For the 46 stories used as the evaluation set, we annotate a second reference answer by asking an annotator to independently read the story and answer the questions generated by others. All questions were judged as answerable and thus answered by the second annotator. The second answers are used for both human QA performance estimation, and for providing multiple references in automatic QA evaluation.

<table>
<thead>
<tr>
<th>Category</th>
<th>Count</th>
<th>Percentage (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Attributes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>character</td>
<td>1172</td>
<td>11.08</td>
</tr>
<tr>
<td>causal relationship</td>
<td>2940</td>
<td>27.79</td>
</tr>
<tr>
<td>action</td>
<td>3342</td>
<td>31.59</td>
</tr>
<tr>
<td>setting</td>
<td>630</td>
<td>5.95</td>
</tr>
<tr>
<td>feeling</td>
<td>1024</td>
<td>9.68</td>
</tr>
<tr>
<td>prediction</td>
<td>486</td>
<td>4.59</td>
</tr>
<tr>
<td>outcome resolution</td>
<td>986</td>
<td>9.32</td>
</tr>
<tr>
<td>Explicit vs Implicit</td>
<td></td>
<td></td>
</tr>
<tr>
<td>explicit</td>
<td>7880</td>
<td>74.48</td>
</tr>
<tr>
<td>implicit</td>
<td>2700</td>
<td>25.52</td>
</tr>
</tbody>
</table>

Table 3: Various descriptive statistics for the length of stories and number of questions in the dataset.

<table>
<thead>
<tr>
<th>Category</th>
<th>Count</th>
<th>Percentage (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Story Characteristics</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sections / story</td>
<td>14.7</td>
<td>2</td>
</tr>
<tr>
<td>Tokens / story</td>
<td>2110.9</td>
<td>208</td>
</tr>
<tr>
<td>Tokens / section</td>
<td>143.3</td>
<td>12</td>
</tr>
</tbody>
</table>

Table 4: Breakdown of questions per category based on the schema in Section 3.2.
3.4 Statistics of FAIRYTALEQA

Overall, the resulting FAIRYTALEQA dataset contained 10,580 questions from 278 fairytale stories. The description of story and question characteristics is presented in Table 3. In FAIRYTALEQA, action and causal relationship questions are the two most common types in the FAIRYTALEQA, which constituting 31.6% and 27.8%, respectively, of all questions. Outcome resolution, character, and feeling questions each constitutes about 10% of all questions. Setting and prediction questions are about 5% each. Our dataset contains about 75% explicit questions and 25% implicit questions. See Table 4 for details.

Validation of FAIRYTALEQA for Comprehension Assessment We validated the questions in FAIRYTALEQA using established procedures in educational assessment development (Özdemir and Akyol, 2019) and have proven that our questions have high reliability and validity. Specifically, we sampled a small subset of the questions in our dataset (11 questions generated for one story) and tested them among 120 students in kindergarten. The Cronbach’s coefficient alpha was 0.83 for the items in this story comprehension assessment, suggesting was a high internal reliability. We also linked children’s performance answering our questions to another validated language assessment (Martin and Brownell, 2011), and the correlation was strong 0.76 (p<.001), suggesting an excellent external validity.

4 Baseline Benchmark: Question Answering

In the following sections, we present a couple of baseline benchmarks on both the Question Answering (QA) task and the Question Generation (QG) task with FAIRYTALEQA. We leveraged both pre-trained neural models and models fine-tuned on different QA datasets, including NarrativeQA and our dataset, FAIRYTALEQA. The baseline results show that our FAIRYTALEQA demonstrates challenging problems to existing approaches and those models fine-tuned on FAIRYTALEQA can benefit from the annotations a lot to achieve significant performance improvement. We also report human performance by scoring one reference answer to the other.

4.1 Question Answering Task and Model

Question Answering (QA) is a straight-forward task that our FAIRYTALEQA dataset can contribute to. We leveraged the commonly-used Rouge-L F1 score for the evaluation of QA performances. For each QA instance, we compared the generated answer with each of the two ground-truth answers and took the higher Rouge-L F1 score.

4.2 Main Results

Here in Table 5, we show the QA performance of a few pretrained SOTA neural-model architectures: BERT (Devlin et al., 2018), BART (Lewis et al., 2019), and DistilBERT (Sanh et al., 2019). The quality of answers generated by these pre-trained models is on par with each other. Since BART outperformed (Mou et al., 2021) other model architectures in the QA task of NarrativeQA, we decided to use BART as the backbone for our fine-tuned models.

We report the performance of fine-tuned BART models with the following settings: BART fine-tuned on NarrativeQA, which is the SOTA model reported in (Mou et al., 2021), one BART model fine-tuned on FAIRYTALEQA only, and another BART model fine-tuned on both NarrativeQA and FAIRYTALEQA. We note that for the QA task, the model that was fine-tuned on both large scale datasets performs much better than the other settings, and outperforms the model that fine-tuned on FAIRYTALEQA-only by at least 6%. This result leaves around 12% on both splits between human performance and the model fine-tuned with FAIRYTALEQA, which demonstrates that QA task is still a challenging problem for existing works on our FAIRYTALEQA dataset.

4.3 Analysis

Performance Decomposition FAIRYTALEQA has question type annotations on all the question-answer pairs. Therefore, it supports the decom-

<table>
<thead>
<tr>
<th>Model</th>
<th>Validation/Test ROUGE-L F1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre-trained Models</td>
<td></td>
</tr>
<tr>
<td>BERT</td>
<td>0.104 / 0.097</td>
</tr>
<tr>
<td>DistilBERT</td>
<td>0.097 / 0.082</td>
</tr>
<tr>
<td>BART</td>
<td>0.108 / 0.088</td>
</tr>
<tr>
<td>Fine-tuned Models</td>
<td></td>
</tr>
<tr>
<td>BART fine-tuned on NarrativeQA</td>
<td>0.475 / 0.492</td>
</tr>
<tr>
<td>BART fine-tuned on FAIRYTALEQA</td>
<td>0.533 / 0.536</td>
</tr>
<tr>
<td>Human</td>
<td>0.651 / 0.644</td>
</tr>
</tbody>
</table>

Table 5: Question Answering benchmarks on FAIRYTALEQA validation and test splits.
Figure 1: Decomposed QA results (Rouge-L) on 7 narrative elements on the validation split.

<table>
<thead>
<tr>
<th>Model</th>
<th>Validation / Test</th>
<th>ROUGE-L F1</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Implicit</td>
<td>Explicit</td>
</tr>
<tr>
<td>BART-NarQA</td>
<td>0.280/0.278</td>
<td>0.548/0.563</td>
</tr>
<tr>
<td>BART-FairytaleQA</td>
<td>0.304/0.286</td>
<td>0.619/0.620</td>
</tr>
<tr>
<td>Human</td>
<td>0.363/0.330</td>
<td>0.760/0.750</td>
</tr>
</tbody>
</table>

Table 6: Decomposed QA results on implicit/explicit types.

Figure 1 gives the QA performance decomposition as a wind rose chart. (the full results on both validation and test sets can be found in Table 10 in Appendix A). From the results, compared to the model trained on NarrativeQA, our FairytaleQA helped most on dimensions of Setting and Feeling with more than 10% improvement. The Character and Prediction dimensions were also improved with a large margin (7-8%). It can be seen that these four dimensions cover important fundamental elements of children’s understanding of stories. The large improvement shows that despite narrative domain focus of the NarrativeQA dataset, it fails to cover these fundamental elements, probably due to typical crowd-source workers’ limited knowledge in reading assessment. By comparison, on dimensions of Action, Causal Relationship and Outcome Resolution, our FairytaleQA brings small advantage. This is consistent with the human study in (Mou et al., 2021), which showed that most of the NarrativeQA questions are about event arguments and causal or temporal relation between events.

Our performance decomposition also reveals major gaps between existing state-of-the-art (SOTA) models and humans. From the results, humans were 15-20% better on Causal Relationship, Outcome Resolution and Prediction. While the gaps on the former two dimensions reflect the deficiency of current NLP models in understanding story plots, the third dimension asks the models to envision what will come next in the text, which requires connecting commonsense knowledge with the content of the text.

The gaps on Character and Setting were also considerable, showing that the understanding of these fundamental reading elements is still far from accurate. Finally, it is interesting to see that the model trained on our dataset outperformed humans on the Feeling dimension. This is mainly because the answers of these Feeling questions were mostly explicitly described in the story. Therefore, it did not actually require reasoning of character’s mental states, but rather understanding which parts of the texts express the feelings.

Learning Curve Finally, we show the learning curve of the BART QA model on our FairytaleQA. Figure 2 plots the model performance on the validation set with different sizes of training data. The curve becomes flatter after training with 6,000 QA pairs in our dataset. This shows that our dataset has a reasonably good size for fine-tuning a state-of-the-art pre-trained model; and the performance gap between models and humans requires more sophisticated reading model design rather than solely augmenting the training examples.

5 Baseline Benchmark: Question Generation

5.1 Question Generation Task and Model

In terms of the QG performance on FairytaleQA, the task was to generate question-answer pairs that
We adopted the method from (Yao et al., 2021), which first used a rule-based method to generate question types according to the beginning word of a question (wh- words). The model trained on our dataset was able to mimic the education experts’ strategy of asking questions that assess the seven elements of reading comprehension. This can be further seen in the qualitative examples in Table 9. By comparison, the model trained on NarrativeQA tended to ask general questions, which reflects the distribution of annotation behaviors of crowd-source workers. Furthermore, the crowd workers only read the abstracts to create QA-pairs in NarrativeQA, while we asked our coders to read the complete story. This may have lead to an issue where the evidence of the answer in the original text content is not detailed and obvious enough for QA-pairs in NarrativeQA. We also find from Table 11 in Appendix B that the model trained on NarrativeQA may generate questions with formats that seem to be correct, but suffer from fact error.

6 Conclusion

In summary, we constructed a large scale dataset, FairyTaleQA, for the context of children’s narrative comprehension. The dataset was generated through a rigorous labeling process with educational domain experts. Through benchmark testing and qualitative analysis, our dataset is proved to add unique educational values to the narrative comprehension research and the future development of educational applications with QG and QA capacities, thus contributing to both NLP and education community. Upon paper acceptance, we will release the dataset and organize shared tasks to invite the community members to advance research in narrative comprehension.
References

A Decomposed QA results on 7 narrative elements for val/test splits

<table>
<thead>
<tr>
<th></th>
<th>BART-NarQA</th>
<th>BART-FAIRYTALEQA</th>
<th>Human</th>
</tr>
</thead>
<tbody>
<tr>
<td>Validation</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Character</td>
<td>0.65</td>
<td>0.720</td>
<td>0.804</td>
</tr>
<tr>
<td>Causal Relationship</td>
<td>0.417</td>
<td>0.422</td>
<td>0.570</td>
</tr>
<tr>
<td>Action</td>
<td>0.560</td>
<td>0.601</td>
<td>0.716</td>
</tr>
<tr>
<td>Setting</td>
<td>0.618</td>
<td>0.757</td>
<td>0.833</td>
</tr>
<tr>
<td>Feeling</td>
<td>0.231</td>
<td>0.517</td>
<td>0.453</td>
</tr>
<tr>
<td>Prediction</td>
<td>0.298</td>
<td>0.377</td>
<td>0.605</td>
</tr>
<tr>
<td>Outcome Resolution</td>
<td>0.425</td>
<td>0.423</td>
<td>0.645</td>
</tr>
<tr>
<td>Test</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Character</td>
<td>0.691</td>
<td>0.757</td>
<td>0.864</td>
</tr>
<tr>
<td>Causal Relationship</td>
<td>0.447</td>
<td>0.432</td>
<td>0.589</td>
</tr>
<tr>
<td>Action</td>
<td>0.559</td>
<td>0.608</td>
<td>0.710</td>
</tr>
<tr>
<td>Setting</td>
<td>0.683</td>
<td>0.696</td>
<td>0.755</td>
</tr>
<tr>
<td>Feeling</td>
<td>0.301</td>
<td>0.308</td>
<td>0.533</td>
</tr>
<tr>
<td>Prediction</td>
<td>0.275</td>
<td>0.300</td>
<td>0.366</td>
</tr>
<tr>
<td>Outcome Resolution</td>
<td>0.409</td>
<td>0.486</td>
<td>0.574</td>
</tr>
</tbody>
</table>

Table 10: Decomposed QA results on 7 narrative elements.

Table 10 shows the full decomposed QA results on 7 narrative elements for both validation and test splits, in terms of BART fine-tuned on NarrativeQA, BART fine-tuned on FAIRYTALEQA, and human performance for the experts created ground-truth QA-pairs.

B QG examples by benchmark models on event-based answers

Table 11 shows two QG examples that have input of event-related ground-truth answers. We may notice that BART fine-tuned on NarrativeQA is able to generate questions that seem to be in a correct format, but suffer from fact error, while BART fine-tuned on FAIRYTALEQA is able to generate questions that very alike ground-truth questions, and are semantically correct. Since the crowd workers only read the abstracts to create QA-pairs in NarrativeQA, in comparison, we ask our coders to read the complete story. This may leads to an issue with models fine-tuned on NarrativeQA where the evidence of the answer in the original text content is not detailed and obvious enough for QA-pairs in NarrativeQA, so that the QG model fine-tuned on NarrativeQA is not as good as models fine-tuned on FAIRYTALEQA in locating evidences.

C Example questions by category in FAIRYTALEQA

Table 12 shows example QA-pairs for different annotations in FAIRYTALEQA dataset. There is one example QA-pair for each narrative element as well as for implicit and explicit.

D Proportion of Each Question Type
<table>
<thead>
<tr>
<th>Category</th>
<th>Example QA Pair</th>
</tr>
</thead>
</table>
| **Character** | Q: How did the man’s daughter look?
A: beautiful
Q: Who were the brother and sister living with after their mom died?
A: their stepmother
Q: Where did the man and his wife and two girls live?
A: near the forest
Q: What did the cook do after she opened the hamper?
A: unpacked the vegetables
Q: How did Johnny Town-Mouse and his friends treat Timmy Willie when they met him?
A: Johnny Town-Mouse and his friends treat Timmy Willie poorly.
Q: Why did the two mice come tumbling in, squeaking, and laughing?
A: They were being chased by the cat.
Q: How did the princess feel in her new home?
A: happy
Q: How will the other animals treat the duckling?
A: The other animals will look down on the duckling.
Q: How did the girl feel when she saw the old woman’s teeth?
A: terrified
Context: ...but she had such great teeth that the girl was terrified...
Q: What happened when the door of the stove was opened?
A: The flames darted out of its mouth.
Context: ...when the door of the stove was opened, the flames darted out of its mouth. This is customary with all stoves...
Q: What happened when the prince broke open one of the crow’s eggs?
A1: The prince found a beautiful palace inside.
A2: There was a beautiful palace inside.
A3: A little palace was inside and it grew until it covered as much ground as seven large barns.
Context: The Swan Maiden lit in a great wide field, and there she told the prince to break open one of the crow’s eggs. The prince did as she bade him, and what should he find but the most beautiful little palace, all of pure gold and silver. He set the palace on the ground, and it grew and grew and grew until it covered as much ground as seven large barns. |
| **Setting** | |
| **Action** | Q: How did Johnny Town-Mouse and his friends treat Timmy Willie when they met him?
A: Johnny Town-Mouse and his friends treat Timmy Willie poorly.
Q: Why did the two mice come tumbling in, squeaking, and laughing?
A: They were being chased by the cat.
Q: How did the princess feel in her new home?
A: happy
Q: How will the other animals treat the duckling?
A: The other animals will look down on the duckling.
Q: How did the girl feel when she saw the old woman’s teeth?
A: terrified
Context: ...but she had such great teeth that the girl was terrified...
Q: What happened when the door of the stove was opened?
A: The flames darted out of its mouth.
Context: ...when the door of the stove was opened, the flames darted out of its mouth. This is customary with all stoves...
Q: What happened when the prince broke open one of the crow’s eggs?
A1: The prince found a beautiful palace inside.
A2: There was a beautiful palace inside.
A3: A little palace was inside and it grew until it covered as much ground as seven large barns.
Context: The Swan Maiden lit in a great wide field, and there she told the prince to break open one of the crow’s eggs. The prince did as she bade him, and what should he find but the most beautiful little palace, all of pure gold and silver. He set the palace on the ground, and it grew and grew and grew until it covered as much ground as seven large barns. |
| **Causal relationship** | Q: Why did the two mice come tumbling in, squeaking, and laughing?
A: They were being chased by the cat.
Q: How did the princess feel in her new home?
A: happy
Q: How will the other animals treat the duckling?
A: The other animals will look down on the duckling.
Q: How did the girl feel when she saw the old woman’s teeth?
A: terrified
Context: ...but she had such great teeth that the girl was terrified...
Q: What happened when the door of the stove was opened?
A: The flames darted out of its mouth.
Context: ...when the door of the stove was opened, the flames darted out of its mouth. This is customary with all stoves...
Q: What happened when the prince broke open one of the crow’s eggs?
A1: The prince found a beautiful palace inside.
A2: There was a beautiful palace inside.
A3: A little palace was inside and it grew until it covered as much ground as seven large barns.
Context: The Swan Maiden lit in a great wide field, and there she told the prince to break open one of the crow’s eggs. The prince did as she bade him, and what should he find but the most beautiful little palace, all of pure gold and silver. He set the palace on the ground, and it grew and grew and grew until it covered as much ground as seven large barns. |
| **Outcome resolution** | Q: What happened to Timmy after he got in the hamper?
A: The hamper takes him to the garden.
Q: How did the princess feel in her new home?
A: happy
Q: How will the other animals treat the duckling?
A: The other animals will look down on the duckling.
Q: How did the girl feel when she saw the old woman’s teeth?
A: terrified
Context: ...but she had such great teeth that the girl was terrified...
Q: What happened when the door of the stove was opened?
A: The flames darted out of its mouth.
Context: ...when the door of the stove was opened, the flames darted out of its mouth. This is customary with all stoves...
Q: What happened when the prince broke open one of the crow’s eggs?
A1: The prince found a beautiful palace inside.
A2: There was a beautiful palace inside.
A3: A little palace was inside and it grew until it covered as much ground as seven large barns.
Context: The Swan Maiden lit in a great wide field, and there she told the prince to break open one of the crow’s eggs. The prince did as she bade him, and what should he find but the most beautiful little palace, all of pure gold and silver. He set the palace on the ground, and it grew and grew and grew until it covered as much ground as seven large barns. |
| **Feeling** | Q: How did the princess feel in her new home?
A: happy
Q: How will the other animals treat the duckling?
A: The other animals will look down on the duckling.
Q: How did the girl feel when she saw the old woman’s teeth?
A: terrified
Context: ...but she had such great teeth that the girl was terrified...
Q: What happened when the door of the stove was opened?
A: The flames darted out of its mouth.
Context: ...when the door of the stove was opened, the flames darted out of its mouth. This is customary with all stoves...
Q: What happened when the prince broke open one of the crow’s eggs?
A1: The prince found a beautiful palace inside.
A2: There was a beautiful palace inside.
A3: A little palace was inside and it grew until it covered as much ground as seven large barns.
Context: The Swan Maiden lit in a great wide field, and there she told the prince to break open one of the crow’s eggs. The prince did as she bade him, and what should he find but the most beautiful little palace, all of pure gold and silver. He set the palace on the ground, and it grew and grew and grew until it covered as much ground as seven large barns. |
| **Prediction** | Q: How will the other animals treat the duckling?
A: The other animals will look down on the duckling.
Q: How did the girl feel when she saw the old woman’s teeth?
A: terrified
Context: ...but she had such great teeth that the girl was terrified...
Q: What happened when the door of the stove was opened?
A: The flames darted out of its mouth.
Context: ...when the door of the stove was opened, the flames darted out of its mouth. This is customary with all stoves...
Q: What happened when the prince broke open one of the crow’s eggs?
A1: The prince found a beautiful palace inside.
A2: There was a beautiful palace inside.
A3: A little palace was inside and it grew until it covered as much ground as seven large barns.
Context: The Swan Maiden lit in a great wide field, and there she told the prince to break open one of the crow’s eggs. The prince did as she bade him, and what should he find but the most beautiful little palace, all of pure gold and silver. He set the palace on the ground, and it grew and grew and grew until it covered as much ground as seven large barns. |

Table 12: Example QA-pairs of FAIRYTALEQA. We show one QA-pair for each narrative element as well as implicit and explicit.