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Abstract

We present OverpassNL, a complex dataset
that pairs queries to the OpenStreetMap (OSM)
database with natural language questions. It is
based on nearly 10,000 queries issued by OSM
users and developers in the Overpass query
language. The Overpass queries were trans-
lated into suitable natural language forms by 15
trained computational linguistics students. The
resulting dataset can be used as training data
for real-world semantic parsing. The complex-
ity of OverpassNL stems from both the nature
of real-world queries and the expansive under-
lying OSM database. While existing semantic
parsing datasets such as Spider (Yu et al., 2018)
use formulaic synthetic queries and achieve
complexity by combining multiple simple un-
derlying databases, there is no natural split into
database schemata in OSM (Yu et al., 2018)
nor does Overpass provide a clear structure for
slot-filling (Yao et al., 2019). The complexity
of the task is shown by the mere 21% execution
accuracy achieved by a generic neural semantic
parser. We enhance the model by using dif-
ferent types of additional information and by
training data augmentation, thereby increasing
the performance to 36% execution accuracy.

1 Introduction

Semantic Parsing allows the mapping of natural
language queries into a corresponding structural
form. This form can be a structured query language
like SQL (Yu et al., 2018), a programming language
like Bash (Lin et al., 2018), If-Then recipes (Quirk
et al., 2015), or a NoSQL language like Overpass'
— a query language for the real-world, large-scale,
and widely-used OpenStreetMap (OSM) database
of geographic information.’

'"https://wiki.openstreetmap.org/wiki/
Overpass_API

https://www.openstreetmap.org. For statis-
tics on usage and database, see Table 5 and Figure 4 in the
Appendix.

Most existing semantic parsing datasets face the
constraint that they only use a single database with
a small number of tables, thus limiting the num-
ber of possible queries. For example, GeoQuery
(Zelle and Mooney, 1996; Iyer et al., 2017) con-
tains eight tables, Restaurant (Tang and Mooney,
2000; Popescu et al., 2003) three tables, and IMDB
(Yaghmazadeh et al., 2017) sixteen tables. Re-
cent works such as Zhong et al. (2017) or Yu et al.
(2018) try to alleviate this problem by combining
multiple different databases found on the internet.
The combined databases comprise different tasks,
thus the meta-database consists of smaller, inde-
pendent databases. Taking the respective database
schemata into account during training and testing
allows for a drastic reduction of the complexity of
semantic parsing (Zhang et al., 2019). Such sim-
plifications by schema information cannot be ex-
ploited for real-world semantic parsing of the OSM
database. OSM consists of element types (nodes,
ways, and relations), each with associated database
information such as current, history, current_tags,
and history_tags. It thus comprises 39 tables that
are combined into one large and complex database
instead of a meta-database that consists of several
different and unrelated databases.

Moreover, our dataset OverpassNL is generated
from complex real-world queries of users and devel-
opers using the Overpass APL. In contrast, existing
datasets such as Spider start from artificial formu-
laic questions from which queries are generated
by computer science students. We created Over-
passNL by letting computational linguistic students
create natural language counterparts for real-world
Overpass queries. We acquired those queries using
Overpass Turbo?, an online visualization tool for
Overpass that exploits the full expressivity of the
Overpass language. All annotators received train-
ing and went through a test to ensure high qual-
ity annotations. The resulting dataset consists of

*https://overpass-turbo.eu/
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nearly 10,000 Overpass queries, each accompanied Variable ONL  Spider WikiSQL ATIS
by a natural language question.*
We use OverpassNL to train a semantic parser NL len. 9:35 12.09 12.27 10.47
P P Vocab. size 11,259 7,230 29857 950
that allows access to the OSM database via natural
) . Query len. 203 116 57 1,020
anguage questions. A state-of-the-art sequence- )
. . String ops. 24% 2% 0% 0%
to-sequence model trained on our dataset achieves
21% execution accuracy, showing that semantic #DBs ! 200 26,521 !
4 8 #tablessDB 38 5.1 1 32

parsing of our dataset is indeed a challenging task.
Since we cannot take advantage of additional infor-
mation like the database schema, we increase the
performance of our model by 1) retrieving similar
examples from the training data as additional in-
puts, 2) clustering the data and augmenting them
with the resulting cluster information, 3) extract-
ing key-value pairs by fuzzy matching the natural
language questions to an already existing knowl-
edge source and 4) creating a synthetic dataset for
further data augmentation. The best combination
of these data enhancement techniques achieves an
significant increase in execution accuracy to 36%.

2 Related Work

Text-to-SQL parsing has been popular since the
1990s. Many different datasets have been created,
e.g., ATIS (Dahl et al., 1994; Iyer et al., 2017),
GeoQuery (Zelle and Mooney, 1996) and WikiSQL
(Zhong et al., 2017), each with their own shortcom-
ings, like only using a single database each. This
problem was addressed by Yu et al. (2018), who
created a collection of databases pairing natural
language questions to SQL queries. This dataset
was later extended further into the contextual set-
ting by Yu et al. (2019b) and into the conversa-
tional or interactive setting by Yu et al. (2019a).
Another semantic parsing task turns natural lan-
guage expressions into If-Then recipes (Quirk et al.,
2015) which connect actions (starting an alarm)
to triggers (specific time is reached). This task has
been extended into an interactive setting by Yao
et al. (2019). In the field of OpenStreetMap se-
mantic parsing, preliminary work was already done
by Haas and Riezler (2016) who translated natu-
ral language queries into a self-designed Machine
Readable Language. We do not follow this ap-
proach since Overpass presents a more expressive
language that is used by the OSM community.

A crucial difference of our dataset to existing
semantic parsing data is that it consists of real-
world queries issued by users and developers trying

“Data  will be downloadable under
//anon-1ink upon acceptance of the paper.

http:

Table 1: Analysis of the complexity in OverpassNL
(ONL) versus other datasets. Natural language question
length (NL len.) and query length (Query len.) are
averaged. String ops. refers to string operations like
regular expressions.

to satisfy a genuine information-seeking task by
executing a query against a large-scale database of
geographical information (see Section 3.2).

3 OverpassNL Dataset

3.1 Dataset Creation

We extracted all 150,000 queries that were logged
on the Overpass Turbo API with no pre-selection
procedures. We filtered out duplicates, which left
us with around 50,000 examples. A randomly se-
lected 10,000 of these were manually annotated.
The queries are therefore “standard” representative
user queries. We hired 15 computational linguistics
students for annotation of database queries with nat-
ural language questions. The annotators received a
tutorial, solved some training examples and com-
pleted a test to ensure they understood the task.
Then they were shown random examples of queries
and results using the annotation interface shown
in Figure 1. The task of the annotators was to cre-
ate natural language question corresponding to the
given Overpass query. This resulted in a dataset
of 9,609 paired question-parse pairs. We separated
those into train (7,109), dev (1,500) and test data
(1,000). An example of a query-question pair is as
follows:

question Ways with "name" tag containing values
"Power" or "power" edited by user with ID
2041564 in the Philippines

query [out:json];( {{geocodeArea:
Philippines}} —>.searchArea; way["
name"~"".x[PpJower"] (uid
:2041564) (area.searchArea);); out
body;>;out skel;

This approach to database creation has two main
advantages: First, teaching annotators to interpret
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Query Result:
=?xml version="1.0" #
encoding="UTF-8"?= "
=osm version="0.6"
Query:
[out:j=son] [timecut:300];
aresz [name="JaneHESE0CTOUNKNA beOspameHu oxpyo" ] —».boundary:;
way (area.boundary) [highway=trunk] [ 'surface]:
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out meta;

Please enter the most specific natural language description of the information need expressed in the

Owverpass query:

High performance highways that are not motorways that have no surface attribute in JansHeBocTouHEIR

(e epansHelil oKpYT

Figure 1: Annotation interface showing the query that needs to be translated is in the middle of the figure, and the
output of the query on top. An example translation produced by an annotator is shown at the bottom.

existing queries into natural language is easier than
training them to produce queries in the Overpass
language. Using the existing Overpass queries is
therefore a way to efficiently create a dataset of
paired question-query tuples. Second, the origi-
nal queries were entered by developers and users,
thus the queries satisfy a real-world information
need and exploit the full expressivity of Overpass
instead of being based on the annotators’ limited
knowledge of the Overpass language.

3.2 Complexity of Semantic Parsing Data

As the example in Section 3.1 shows, queries in
OverpassNL often make use of regular expressions.
In contrast, queries in the Spider dataset (Yu et al.,
2018) consist only of simple string matching oper-
ations, such as strings starting, containing or end-
ing with a specific (sub)string. ATIS (Dabhl et al.,
1994; Iyer et al., 2017) and WikiSQL (Zhong et al.,
2017) queries do not even contain string opera-
tions, but only exact matches. Statistics comparing
dataset complexity of OverpassNL to Spider, Wik-
1SQL, and ATIS are given in Table 1. All of these
properties show that OverpassNL offers a setting
that has been lacking in research so far. We work

with a new query language with its own challenges,
such as regular expressions and the NoSQL-style
that allows concise queries against a complicated
database. Moreover, the underlying database con-
sists of only one highly connected database, mak-
ing it possible to issue many different queries, re-
sulting in a high vocabulary size.

4 (Neural) Semantic Parsing

In addition to the dataset, we also present a first cut
on semantic parsing, showcasing the complexity
of the talk. We first employ a generic sequence-to-
sequence neural network (Sutskever et al., 2014)
the encoder-decoder variant from (Luong et al.,
2015). We use Joey NMT (Kreutzer et al., 2019)
as framework to build the baseline parser.

Given a dataset D = {(X,,, y»)}_, of natural
language questions X and corresponding queries
y, standard supervised training is performed by
minimizing the average cross-entropy loss:

N T,

1
L= N Z Z 10gp(yn,t | Yn,<t, Xn), (D

n=1 t=1

where the sum is over all timesteps t = 1 tot = 1},



for sample n.

The natural language question is fed into a bi-
directional RNN (GRU) to generate the hidden
states h € RIX*™ where |X| is the number
of source inputs and m is the hidden state size.
The decoder takes its previous hidden state s;_
and calculates a context vector ¢; with an atten-
tion mechanism (Bahdanau et al., 2015) such that
¢t = att(si—1, h). This context vector is then used
for prediction by passing it through another feed-
forward and softmax layer to generate the output
distribution. Meta-parameter settings used in our
experiments can be found in Table 6 in the Ap-
pendix.

5 Evaluation Measures

We use a parseval-style (Black et al., 1991) evalu-
ation metric that matches a generated query gpreq
against a gold standard parse ggo1q and counts how
often the predicted key-value pairs kv (gpreq) match
their counterparts kv (ggold) in the gold standard
parse. This is similar to the component matching
done in Yu et al. (2018). Our parse_match met-
ric is based on the Dice Coefficient (Dice, 1945)
where the key-value pairs in predicted and gold
parse is measured:

1 Z |kV(Qpred) N kV(ngld)|

parse_match = —

QI =

2)

Furthermore, we use a grounded evaluation met-

ric that executes the queries against the Open-

StreetMap database and computes an execution

accuracy by matching the predicted results against
the correct result. It is computed as follows:

O(res ,Tes
exec_ace — quQ (res(ggola) (QPred))7 3)

Q|
where d(3, j) is the Kronecker delta and res(q) is a
function that executes the query ¢ and returns the
results.

However, sometimes a hypothesis query exe-
cutes, but produces only a part of the correct output.
Therefore we use an additional metric that com-
putes a part_exec average over partially correct
query results:

Z [res(qgota) M res(gprea)|
|res(qgola) |

part_exec =

[Ql

q€Q

“)

0 max(|kV(Qpred)|a |kV(Qg01d)|) .

6 Experiments

6.1 Experimental Setup

A state-of-the-art sequence-to-sequence model
trained on the dataset achieves an execution accu-
racy of 21% when executing the predicted queries
against the OSM database, showing that seman-
tic parsing of the OverpassNL dataset is indeed a
challenging task. We find that the difficulty stems
from three sources: 1) The correct use of database
keys and values, since a database schema cannot
be provided; 2) The complex syntax of Overpass
queries; 3) The limited size of the dataset. An ex-
ample of a predicted and gold parse for a natural
language question can be found in Table 7 in the
Appendix. Our goal is to solve these problems by
the following three approaches:

1. db_info: Adding additional information such
as possible database keys and values to the
model input (countering difficulty 1).

2. query_templates: Providing templates to
help with the difficult syntax by retrieving
similar examples from the training data or by
clustering the data and providing the cluster
ID (countering difficulty 2).

3. data_augmentation: Creating a synthetic sil-
ver training dataset by templating and substi-
tuting tokens in questions and queries (coun-
tering difficulty 3).

6.1.1 Database Information

The OSM database is accessible through Overpass
using keys and values. However, it is hard for
the model to find the correct key for a value
that appears in a natural question because the
keys are often very general and cannot simply be
inferred from the value. To avoid this difficulty,
we aim to find the corresponding keys through
string matching in order to provide the keys
and values along with the input question. As
shown in the example below, the keys and values
are simply appended to the input string with a
[SEP] token separating the real natural language
question and the additional information. Keys and
values are marked with [K] and [V], respectively:

Charging stations around motorway A 8 in
Germany. [SEP] [K] amenity [V] charg-
ing_station [K] highway [V] motorway [SEP]



Data #Examples with add. info Percentage
train 4117 58.76 %
dev 576 38.40 %
test 572 57.20 %

Table 2: Statistics about Additional Information (keys
and values that was added to the data

The approach db_info makes use of a nom-
inatim table’. This table maps OSM entries to
categories to be used as keys and values in Over-
pass. Similar to Lin et al. (2020), we apply a fuzzy
string matching algorithm to obtain the additional
information from the nominatim table. The exact
algorithm is explained in Appendix A.6. Naturally,
matches can only be found if the word in the natu-
ral language question (& two characters) appears
in the nominatim table. This is not the case for all
examples in the OverpassNL dataset: Overall, for
the train and test set, keys and values could only be
added in around 60 % of the cases. Exact numbers
can be found in Table 2.

6.1.2 Query Templates

In approach retrieve, we follow Hashimoto
et al. (2018) to retrieve for every natural language
question x the most similar question-query pair
(2',y") from the training data, using BERTScore
(Zhang et al., 2020) as similarity metric. These
additional inputs are fed into different encoders
with their own attention mechanisms. The output
of the encoders are then concatenated in the order
x, 7', 1 and fed into the decoder, turning this into a
multi-source setup (Zoph and Knight, 2016). This
gives the model access to a similar question-query
pair through the additional encoded input.

In approach cluster, we provide the model
with additional information about the type of query.
This approach is inspired by previous approaches to
use control tags as additional inputs (Sennrich et al.,
2016a). We first embed the natural language ques-
tions with BERT (Devlin et al., 2019), cluster the
data with the k-Means clustering algorithm (k=10),
and then augment the data with a special tag in-
dicating the corresponding cluster. For example,
similar natural language questions like planetarium
in current view and places of worship in current
view will be assigned to the same cluster. Examples
for clusters are given in Fig. 6 in the Appendix.

Shttps://wiki.openstreetmap.org/wiki/
Nominatim/Special_Phrases/EN

gold question Recycling in admin level 10 areas
with the name Kupferdreh

silver question Restaurants in admin level 5 ar-
eas with the name La Vida

gold query area["name"="Kupferdreh"]
[admin_level=10]->.a;
(node (area.a)
["amenity"="recycling"];);

silver query area["name"="La Vida"]
[admin_level=5]->.a;
(node (area.a)
["amenity"="restaurant"];);

Figure 2: Example for a silver example creation. The
underlined part in the gold example is replaced by ran-
dom values from the training data to create the silver
data.

6.1.3 Data Augmentation

Lastly, we conduct two further data augmentation
strategies. In approach substitution, we gen-
erate silver data by jointly templating both natural
language questions and queries, replacing tokens
occurring in both question and query. Afterwards
we insert random values from the training data into
the template slots. This resulting data was then
filtered by removing nonsense natural language
questions according to their sentence probability
predicted by GPT-2 (Radford et al., 2018). The
sentence probability was normalized by sentence
length and thresholded with a value of 0.0001. A
full example can be seen in Figure 2. The final
silver dataset contains 14,000 examples and is used
on its own or combined with the other approaches.
In approach back-trans, we made use an ap-
proach inspired by backtranslation (Sennrich et al.,
2016b). We use the existing question-query pairs to
train a query-to-question model that was then used
to generate natural language questions for queries
that were not given manual annotations with ques-
tions. This process resulted in additional 19,000
data points that were added to the training data.

6.2 Experimental Results

As shown in the top part of Table 3, the baseline
performance of our model achieves only 21% ex-
ecution accuracy. Using approach retrieve to
retrieve similar question-query pairs through the
additional encoded input increases the model per-
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Approach Model exec_acc part_exec parse_match
- baseline 0.21 0.43 0.22
Database Information db_info 0.33 0.62 0.35
Query Templates cluster 0.35 0.6 0.35
retrieve 0.33 0.57 0.3
Data Augmentation back_trans 0.33 0.62 0.35
substitution 0.35 0.6 0.31
Combined cluster db_info 0.36 0.62 0.37
Combined cluster retrieve 0.35 0.61 0.33
Combined cluster substitution 0.34 0.61 0.32

Table 3: Accuracy in percent of different semantic parsing models: A baseline, enhanced by retrieving similar
question-query pairs (+ ret rieve), augmenting the data with special cluster tags (+ cluster) and adding more
training data using automatic generated data (+ substitution or + back_trans). All results are significantly

better than the baseline (p < 0.001).

formance by 12 points to 33% execution accuracy.
The db__info approach reaches the same perfor-
mance. Allowing the model to easily generate simi-
lar queries by using approach cluster also leads
to a better performance with 35% execution accu-
racy. Finally, using approach substitution to
add the silver data to our training data, the model
also achieves 35% execution accuracy.

The bottom part of Table 3 shows the re-
sults for the best combinations of approaches.
Combining cluster with either retrieve or
substitute achieves a score of 35% execution
accuracy. Combining cluster and db_info
yields the highest improvement, reaching 36% ex-
ecution accuracy. Combining all three methods
does not lead to further improvements. We conjec-
ture that this result can be explained by a certain
amount of redundancy in the information provided
by retrieving similar instances or adding silver data,
with the most accurate addition to the cluster
information being provided by the explicit keys
and values in the db_ info approach. This combi-
nation also reaches the highest values according to
the partial execution and parse match metrics.

In order to investigate the interaction of data
properties and parsing performance, we took a
closer look at the data characteristics of question
length. Our hypothesis was that the dataset poses
increased difficulties due to increased question
length: The longer the question, the harder to find
the correct query. In order to test this hypothesis,
we use an LMEM-based significance test (Riezler
and Hagmann, 2022) to investigate the interaction
between the question length and the execution ac-

model ‘ parse static nominatim
baseline 0.05 0.02 0.11
+cluster 0.05 0.03 0.05
+retrieve 0.05 0.02 0.04
+db_info 0.07 0.02 0.05
+cluster+db_info | 0.06 0.02 0.03

Table 4: Analysis of error types that make queries not
executable against the database. Parse errors are errors
like missing closing brackets, static errors are wrong
keywords and nominatim errors are errors that hinder
nominatim to return area ids for locations.

curacy. With a p-value of < 0.01, question length
makes a significant difference. This can be con-
firmed by fitting a line to the results split by ques-
tion length, as can be seen in Figure 3. The negative
gradient confirms our observation. An advantage of
the best model (db_info + cluster) is that
it seems to close the gap between the performance
difference of long and short examples. As Figure
3 shows, the base model (left) performs worse the
longer the natural language question gets. How-
ever, the best model seems to perform equally well
independent of the question length. As the p-value
shows, the line of best fit is not significantly differ-
ent from a horizontal line, which would indicate no
performance loss due to the question length. Fur-
ther information on the distribution of the test data
due to question length can be found in Figure 5 in
the Appendix.



0.6
0.5
0.4 e .

.
0.3 ) . .

0.2

Av. Exec. Accuracy of Bin

0.1

.

20 40 6‘0 BIU 160 12‘0 lﬂlv(! lEI»U
Question Length

(a) Base Model: The line of best fit is significantly differ-
ent from a horizontal line (p: 0.006).

°
o

*e

o
o
I

=4
n
L

o
=
L
.

..

=4

w
L
.

Av. Exec. Accuracy of Bin

o
o
L

=4
o

20 40 Bb Bb ll:lr(! 150 14‘.0 160
Question Length

(b) Base Model enhanced with cluster tags and
db_info: The line of best fit is not significantly dif-
ferent from a horizontal line (p: 0.58).

Figure 3: Interaction of execution accuracy and question length in the base model and the best models. The questions
were binned based on their sentence length. The average execution accuracy of each bin (blue dots) is measured on

the y-axis. The line of best fit is illustrated in red.

7 Error Analysis

An error analysis (Table 4) shows that for the base-
line parser, 11% of the queries do not yield a correct
result due to nominatim errors. In these cases, the
geolocation service provided by nominatim® can-
not find an id for a query string like "Nermany’
instead of ‘Germany’. For the best model that
uses cluster and db_info, the nominatim er-
ror rate for the dataset is significantly lower at 3%.
The nominatim error rate is the lowest even com-
pared to models that use only one enhancement,
the lowest being ret rieve having an error rate
of 4%.

An inspection of selected examples shows that
the baseline model seems to have a problem with
hallucination by inserting values in the hypothe-
ses that appear often in the query but are different
from the values given in the questions. Giving the
model access to query templates via cluster or
retrieve appears to make the model hallucinate
less. In the following example, the baseline model
inserts the correct uid only in one of the two places,
whereas the improved model correctly predicts the
correct uid in both places.

Question: Ways and nodes with the uid 9847941
newer than yesterday

Baseline: (way (uid:9847994)

®https://nominatim.openstreetmap.ory/
ui/search.html?g=Germany

(newer:"{{date:1day}}");
node (uid:9847941)
(newer:"{{date:1day}}"););out;

cluster: (way (uid:9847941)
(newer:"{{date:1day}}l");
node (uid:9847941)
(newer:"{{date:1day}}") ;) ;out;

Cluster and retrieve also seems to reduce
the generation of typos, as can be seen in the follow-
ing example, where the baseline model produces
the typo "miltary" instead of "military".

Question: Way with the attribute usage having a
value military in Colorado

Baseline: geocodeArea:Colorado—>
.searchArea; (
way["usage"="miltary"]

(area.searchArea);); out;

cluster: geocodeArea:Colorado—>
.searchArea; (
way["usage"="military"]

(area.searchArea);); out;

Interestingly, even if cluster or retrieve
approaches have never seen a certain value in the
training data (like "furnace" in the following exam-
ple), they seem to be able to copy better from the
source than the baseline model.

Question: furnace shops in current view
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Baseline: ( node["shop"="furniture"]
({{bbox}});
way ["shop"="furniture"]
({{bbox}});
relation["shop"="furniture"]
({{bbox}}););out;

cluster: ( node["shop"="furnace"]
({{bbox}});
way ["shop"="furnace"]
({{bbox}});
relation["shop"="furnace"]

({{bbox}}););out;

Looking at model outputs trained with the
db_info approach, it can be seen how the per-
formance is increased by using nominatim informa-
tion (described in section 6.1.1). The nominatim
table contains an entry for "florist", returning "shop-
florist" as a key-value pair. The model learns that
the augmentation is often of high quality, thus it
only needs to focus more on the key-value infor-
mation, even if the specific key-value pair has not
occurred very often ("florist” only appears in one
training example).

Question: florist in current view

Augmented Question: florist in current view [K]
shop [V] florist

Baseline: ( node["historic"= "fort"]
({{bbox}}); way["historic"=
"fort "] ({{bbox}});
relation["historic"=
"fort"] ({{bbox}}););out;

db_info: ( node["shop"="florist"]

({{bbox}});way["shop"="florist"]

({{bbox}});
relation["shop"="florist"]
({{bbox}});)jiout;

The db_info approach also seems to be able
to reduce certain types of halluctionations, which
can be seen in the following query, where a typo
in the question ("is" instead of "in") confuses the
baseline model, but not the augmented model.

Question: Cinemas is current view

Baseline: (node["landuse"="cemetery"]
({{bbox}}); way["landuse"=
"cemetery"] ({{bbox}});
relation["landuse"="cemetery"]

db_info: ( node["amenity"="cinema"]
({{bbox}}); way["amenity"=
"cinema"] ({{bbox}});
relation["amenity"="cinema"]
({{bbox}}););out;

8 Conclusion

We introduced OverpassNL, a new dataset for
semantic parsing and interpretation of Overpass
queries to the OpenStreetMap database. Over-
passNL is a semantic parsing dataset that builds
upon complex real-world user queries issued to
a large-scale complex database. We illustrate the
complexity of the dataset and the difficulty of the
semantic parsing task, with the baseline model only
reaching around 21% of execution accuracy. We
then improved the model by incorporating more in-
formation, either by feeding similar examples into
the model, by exploiting similarities in the natu-
ral language questions, and by enhancing our train
data with silver data. Our best model then reaches
an execution accuracy of 36%.

9 Future Work

An avenue of research we aim to pursuit in the fu-
ture is to use the PICARD (Scholak et al., 2021)
algorithm which led to improvements on the Spider
dataset by constraining the beam search to valid out-
puts. A reimplementation for the Overpass syntax
could also yield improvements in our experiments.

Additionally we want to research the possibility
of augmenting our models with even more knowl-
edge sources, for example the contents of the Open-
StreetMap wiki 7. Lastly, we are planning to es-
tablish an interactive setup where OSM users and
developers can use a semantic parser trained on
OverpassNL and provide feedback for interactive
machine learning.

10 Limitations

A possible limitation of the presented work could
be an inherent bias in the developer-generated data,
for example, a gender bias, or simply a bias towards
queries that appear complex on the surface, but ask
for trivial contents. We hope that a future interac-
tive scenario will encourage users and developers
to take advantage of the natural language interface
to query for interesting contents.

({{bbox}}););out;

"https://wiki.openstreetmap.org/wiki/
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A Appendix

A.1 Overpass Statistics

number of OSM users 8.3 million
number of nodes in OSM 7.4 billion
map changes per day in OSM 4.5 million

Table 5: Database statistics of OpenStreetMap as of 2022-01-10 (https://wiki.openstreetmap.org/
wiki/Stats).
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Figure 4: Accumulated registerd users (linear scale) of OpenStreetMap (https://wiki.openstreetmap.
org/wiki/Stats)
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764 A.2 Dataset Properties
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Figure 5: Distribution of the test data due to question length (in characters). The dotted line indicates the arithmetic
mean.
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A.3 Hyperparameter Settings

Parameter Value
optimizer adam
learning rate 0.0002
batch size 4
encoder rnn type bidirectional GRU
attention bahdanau
encoder embedding dim | 620
encoder hidden dim 400
encoder layers 1
decoder rnn type GRU
decoder embedding dim | 620
decoder hidden dim 800
deccoder layers 1

Table 6: Hyperparameter settings of JoeyNMT sequence-to-sequence model used in our experiments.

A.4 Semantic Parsing Example

SRC Highways or routes with official name
Rodovia Vespertino de Medeiros Bonorino in Brasil
PRED. {{geocodearea:rs,brasil}}—->.searcharea;
(way ["highway"~".+«"] ["official_name"~
"“rodovia estadual Jjodo cédndido$"] (area.searcharea);
GOLD {{geocodearea:rs,brasil}}—->.searcharea;

(way ["highway"~"
"“rodovia vespertino de medeiros bonorino$"] (area.searcharea);

.*"] ["name"N

Table 7: Semantic parsing example. SRC is the natural language question, PRED. the predicted query and GOLD
the correct query.
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A.5 Cluster Examples

e Cluster 0

— Admin level 3 in Russia
— Admin level 3 in Tanzania

— Admin level 4 in Angola

e Cluster 2

— places I can grill outside
in current view

- places of worship in
current view

— planetarium in current
view

¢ Cluster 6

— Boundary relations in Rio
Grande do Sul,
with IBGE order numbers
matching the regular
expression "43[0-9]{8}$"
Milestones in mesorregiao
do oeste catarinense that
have a description or a
reference matching "&cC"

Brazil

¢ Cluster 9

— Nodes and ways that
were changed between
2018-07-02T00:00:00%2
and 2018-07-02T19:39:
by the user with the
8076784

Nodes and ways that
were changed between
2019-07-10T00:00:00%2
and 2019-07-10T23:59:
by the user with the
8710004

Nodes and ways that
were edited between
2019-02-11T00:00:00%
and 2019-02-11T23:55:
by the user with the
77254477

597
ID

597
ID

597
ID

Figure 6: Cluster examples that were used to improve
the performance of our encoder-decoder model.
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A.6 Fuzzy String Matching

For this algorithm, the natural language question
and the whole word/phrase column from the nomi-
natim table are converted into lower-cased charac-
ter sequences and the longest subsequence match
between the question and the column values is
computed. The subsequence match is only consid-
ered valid if the word boundaries can be detected
within £2 characters of the match, thereby matches
that are substrings of the words in the natural lan-
guage question such as “way” in “motorway” are
excluded. Additionally, if there is a preposition
right after the word in the natural language ques-
tion, it is checked whether the preposition appears
in the nominatim table in the column “operator”.



