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Abstract

We present OverpassNL, a complex dataset001
that pairs queries to the OpenStreetMap (OSM)002
database with natural language questions. It is003
based on nearly 10,000 queries issued by OSM004
users and developers in the Overpass query005
language. The Overpass queries were trans-006
lated into suitable natural language forms by 15007
trained computational linguistics students. The008
resulting dataset can be used as training data009
for real-world semantic parsing. The complex-010
ity of OverpassNL stems from both the nature011
of real-world queries and the expansive under-012
lying OSM database. While existing semantic013
parsing datasets such as Spider (Yu et al., 2018)014
use formulaic synthetic queries and achieve015
complexity by combining multiple simple un-016
derlying databases, there is no natural split into017
database schemata in OSM (Yu et al., 2018)018
nor does Overpass provide a clear structure for019
slot-filling (Yao et al., 2019). The complexity020
of the task is shown by the mere 21% execution021
accuracy achieved by a generic neural semantic022
parser. We enhance the model by using dif-023
ferent types of additional information and by024
training data augmentation, thereby increasing025
the performance to 36% execution accuracy.026

1 Introduction027

Semantic Parsing allows the mapping of natural028

language queries into a corresponding structural029

form. This form can be a structured query language030

like SQL (Yu et al., 2018), a programming language031

like Bash (Lin et al., 2018), If-Then recipes (Quirk032

et al., 2015), or a NoSQL language like Overpass1033

– a query language for the real-world, large-scale,034

and widely-used OpenStreetMap (OSM) database035

of geographic information.2036

1https://wiki.openstreetmap.org/wiki/
Overpass_API

2https://www.openstreetmap.org. For statis-
tics on usage and database, see Table 5 and Figure 4 in the
Appendix.

Most existing semantic parsing datasets face the 037

constraint that they only use a single database with 038

a small number of tables, thus limiting the num- 039

ber of possible queries. For example, GeoQuery 040

(Zelle and Mooney, 1996; Iyer et al., 2017) con- 041

tains eight tables, Restaurant (Tang and Mooney, 042

2000; Popescu et al., 2003) three tables, and IMDB 043

(Yaghmazadeh et al., 2017) sixteen tables. Re- 044

cent works such as Zhong et al. (2017) or Yu et al. 045

(2018) try to alleviate this problem by combining 046

multiple different databases found on the internet. 047

The combined databases comprise different tasks, 048

thus the meta-database consists of smaller, inde- 049

pendent databases. Taking the respective database 050

schemata into account during training and testing 051

allows for a drastic reduction of the complexity of 052

semantic parsing (Zhang et al., 2019). Such sim- 053

plifications by schema information cannot be ex- 054

ploited for real-world semantic parsing of the OSM 055

database. OSM consists of element types (nodes, 056

ways, and relations), each with associated database 057

information such as current, history, current_tags, 058

and history_tags. It thus comprises 39 tables that 059

are combined into one large and complex database 060

instead of a meta-database that consists of several 061

different and unrelated databases. 062

Moreover, our dataset OverpassNL is generated 063

from complex real-world queries of users and devel- 064

opers using the Overpass API. In contrast, existing 065

datasets such as Spider start from artificial formu- 066

laic questions from which queries are generated 067

by computer science students. We created Over- 068

passNL by letting computational linguistic students 069

create natural language counterparts for real-world 070

Overpass queries. We acquired those queries using 071

Overpass Turbo3, an online visualization tool for 072

Overpass that exploits the full expressivity of the 073

Overpass language. All annotators received train- 074

ing and went through a test to ensure high qual- 075

ity annotations. The resulting dataset consists of 076

3https://overpass-turbo.eu/
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nearly 10,000 Overpass queries, each accompanied077

by a natural language question.4078

We use OverpassNL to train a semantic parser079

that allows access to the OSM database via natural080

language questions. A state-of-the-art sequence-081

to-sequence model trained on our dataset achieves082

21% execution accuracy, showing that semantic083

parsing of our dataset is indeed a challenging task.084

Since we cannot take advantage of additional infor-085

mation like the database schema, we increase the086

performance of our model by 1) retrieving similar087

examples from the training data as additional in-088

puts, 2) clustering the data and augmenting them089

with the resulting cluster information, 3) extract-090

ing key-value pairs by fuzzy matching the natural091

language questions to an already existing knowl-092

edge source and 4) creating a synthetic dataset for093

further data augmentation. The best combination094

of these data enhancement techniques achieves an095

significant increase in execution accuracy to 36%.096

2 Related Work097

Text-to-SQL parsing has been popular since the098

1990s. Many different datasets have been created,099

e.g., ATIS (Dahl et al., 1994; Iyer et al., 2017),100

GeoQuery (Zelle and Mooney, 1996) and WikiSQL101

(Zhong et al., 2017), each with their own shortcom-102

ings, like only using a single database each. This103

problem was addressed by Yu et al. (2018), who104

created a collection of databases pairing natural105

language questions to SQL queries. This dataset106

was later extended further into the contextual set-107

ting by Yu et al. (2019b) and into the conversa-108

tional or interactive setting by Yu et al. (2019a).109

Another semantic parsing task turns natural lan-110

guage expressions into If-Then recipes (Quirk et al.,111

2015) which connect actions (starting an alarm)112

to triggers (specific time is reached). This task has113

been extended into an interactive setting by Yao114

et al. (2019). In the field of OpenStreetMap se-115

mantic parsing, preliminary work was already done116

by Haas and Riezler (2016) who translated natu-117

ral language queries into a self-designed Machine118

Readable Language. We do not follow this ap-119

proach since Overpass presents a more expressive120

language that is used by the OSM community.121

A crucial difference of our dataset to existing122

semantic parsing data is that it consists of real-123

world queries issued by users and developers trying124

4Data will be downloadable under http:
//anon-link upon acceptance of the paper.

Variable ONL Spider WikiSQL ATIS

NL len. 9.35 12.09 12.27 10.47
Vocab. size 11,259 7,230 29,857 950
Query len. 203 116 57 1,020
String ops. 24% 2% 0% 0%
# DBs 1 200 26,521 1
# tables/DB 38 5.1 1 32

Table 1: Analysis of the complexity in OverpassNL
(ONL) versus other datasets. Natural language question
length (NL len.) and query length (Query len.) are
averaged. String ops. refers to string operations like
regular expressions.

to satisfy a genuine information-seeking task by 125

executing a query against a large-scale database of 126

geographical information (see Section 3.2). 127

3 OverpassNL Dataset 128

3.1 Dataset Creation 129

We extracted all 150,000 queries that were logged 130

on the Overpass Turbo API with no pre-selection 131

procedures. We filtered out duplicates, which left 132

us with around 50,000 examples. A randomly se- 133

lected 10,000 of these were manually annotated. 134

The queries are therefore “standard” representative 135

user queries. We hired 15 computational linguistics 136

students for annotation of database queries with nat- 137

ural language questions. The annotators received a 138

tutorial, solved some training examples and com- 139

pleted a test to ensure they understood the task. 140

Then they were shown random examples of queries 141

and results using the annotation interface shown 142

in Figure 1. The task of the annotators was to cre- 143

ate natural language question corresponding to the 144

given Overpass query. This resulted in a dataset 145

of 9,609 paired question-parse pairs. We separated 146

those into train (7,109), dev (1,500) and test data 147

(1,000). An example of a query-question pair is as 148

follows: 149

question Ways with "name" tag containing values 150

"Power" or "power" edited by user with ID 151

2041564 in the Philippines 152

query [ o u t : j s o n ] ; ( {{ geocodeArea : 153
P h i l i p p i n e s }} − >. s e a r c h A r e a ; way [ " 154
name " ~ " ^ . * [ Pp ] ower " ] ( u i d 155
: 2 0 4 1 5 6 4 ) ( a r e a . s e a r c h A r e a ) ; ) ; o u t 156
body ; > ; o u t s k e l ; 157

This approach to database creation has two main 158

advantages: First, teaching annotators to interpret 159
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Figure 1: Annotation interface showing the query that needs to be translated is in the middle of the figure, and the
output of the query on top. An example translation produced by an annotator is shown at the bottom.

existing queries into natural language is easier than160

training them to produce queries in the Overpass161

language. Using the existing Overpass queries is162

therefore a way to efficiently create a dataset of163

paired question-query tuples. Second, the origi-164

nal queries were entered by developers and users,165

thus the queries satisfy a real-world information166

need and exploit the full expressivity of Overpass167

instead of being based on the annotators’ limited168

knowledge of the Overpass language.169

3.2 Complexity of Semantic Parsing Data170

As the example in Section 3.1 shows, queries in171

OverpassNL often make use of regular expressions.172

In contrast, queries in the Spider dataset (Yu et al.,173

2018) consist only of simple string matching oper-174

ations, such as strings starting, containing or end-175

ing with a specific (sub)string. ATIS (Dahl et al.,176

1994; Iyer et al., 2017) and WikiSQL (Zhong et al.,177

2017) queries do not even contain string opera-178

tions, but only exact matches. Statistics comparing179

dataset complexity of OverpassNL to Spider, Wik-180

iSQL, and ATIS are given in Table 1. All of these181

properties show that OverpassNL offers a setting182

that has been lacking in research so far. We work183

with a new query language with its own challenges, 184

such as regular expressions and the NoSQL-style 185

that allows concise queries against a complicated 186

database. Moreover, the underlying database con- 187

sists of only one highly connected database, mak- 188

ing it possible to issue many different queries, re- 189

sulting in a high vocabulary size. 190

4 (Neural) Semantic Parsing 191

In addition to the dataset, we also present a first cut 192

on semantic parsing, showcasing the complexity 193

of the talk. We first employ a generic sequence-to- 194

sequence neural network (Sutskever et al., 2014) 195

the encoder-decoder variant from (Luong et al., 196

2015). We use Joey NMT (Kreutzer et al., 2019) 197

as framework to build the baseline parser. 198

Given a dataset D = {(Xn, yn)}Nn=1 of natural 199

language questions X and corresponding queries 200

y, standard supervised training is performed by 201

minimizing the average cross-entropy loss: 202

L = − 1

N

N∑
n=1

Tn∑
t=1

log p(yn,t | yn,<t, Xn), (1) 203

where the sum is over all timesteps t = 1 to t = Tn 204
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for sample n.205

The natural language question is fed into a bi-206

directional RNN (GRU) to generate the hidden207

states h ∈ R|X|×m, where |X| is the number208

of source inputs and m is the hidden state size.209

The decoder takes its previous hidden state st−1210

and calculates a context vector ct with an atten-211

tion mechanism (Bahdanau et al., 2015) such that212

ct = att(st−1, h). This context vector is then used213

for prediction by passing it through another feed-214

forward and softmax layer to generate the output215

distribution. Meta-parameter settings used in our216

experiments can be found in Table 6 in the Ap-217

pendix.218

5 Evaluation Measures219

We use a parseval-style (Black et al., 1991) evalu-220

ation metric that matches a generated query qpred221

against a gold standard parse qgold and counts how222

often the predicted key-value pairs kv(qpred) match223

their counterparts kv(qgold) in the gold standard224

parse. This is similar to the component matching225

done in Yu et al. (2018). Our parse_match met-226

ric is based on the Dice Coefficient (Dice, 1945)227

where the key-value pairs in predicted and gold228

parse is measured:229

parse_match =
1

|Q|

∑
q∈Q

|kv(qpred) ∩ kv(qgold)|
max(|kv(qpred)|, |kv(qgold)|)

.

(2)230

Furthermore, we use a grounded evaluation met-231

ric that executes the queries against the Open-232

StreetMap database and computes an execution233

accuracy by matching the predicted results against234

the correct result. It is computed as follows:235

exec_acc =

∑
q∈Q δ(res(qgold), res(qpred))

|Q|
, (3)236

where δ(i, j) is the Kronecker delta and res(q) is a237

function that executes the query q and returns the238

results.239

However, sometimes a hypothesis query exe-240

cutes, but produces only a part of the correct output.241

Therefore we use an additional metric that com-242

putes a part_exec average over partially correct243

query results:244

part_exec =
1

|Q|
∑
q∈Q

|res(qgold) ∩ res(qpred)|
|res(qgold)|

.

(4)245

6 Experiments 246

6.1 Experimental Setup 247

A state-of-the-art sequence-to-sequence model 248

trained on the dataset achieves an execution accu- 249

racy of 21% when executing the predicted queries 250

against the OSM database, showing that seman- 251

tic parsing of the OverpassNL dataset is indeed a 252

challenging task. We find that the difficulty stems 253

from three sources: 1) The correct use of database 254

keys and values, since a database schema cannot 255

be provided; 2) The complex syntax of Overpass 256

queries; 3) The limited size of the dataset. An ex- 257

ample of a predicted and gold parse for a natural 258

language question can be found in Table 7 in the 259

Appendix. Our goal is to solve these problems by 260

the following three approaches: 261

1. db_info: Adding additional information such 262

as possible database keys and values to the 263

model input (countering difficulty 1). 264

2. query_templates: Providing templates to 265

help with the difficult syntax by retrieving 266

similar examples from the training data or by 267

clustering the data and providing the cluster 268

ID (countering difficulty 2). 269

3. data_augmentation: Creating a synthetic sil- 270

ver training dataset by templating and substi- 271

tuting tokens in questions and queries (coun- 272

tering difficulty 3). 273

6.1.1 Database Information 274

The OSM database is accessible through Overpass 275

using keys and values. However, it is hard for 276

the model to find the correct key for a value 277

that appears in a natural question because the 278

keys are often very general and cannot simply be 279

inferred from the value. To avoid this difficulty, 280

we aim to find the corresponding keys through 281

string matching in order to provide the keys 282

and values along with the input question. As 283

shown in the example below, the keys and values 284

are simply appended to the input string with a 285

[SEP] token separating the real natural language 286

question and the additional information. Keys and 287

values are marked with [K] and [V], respectively: 288

289

Charging stations around motorway A 8 in 290

Germany. [SEP] [K] amenity [V] charg- 291

ing_station [K] highway [V] motorway [SEP] 292

293
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Data #Examples with add. info Percentage

train 4117 58.76 %
dev 576 38.40 %
test 572 57.20 %

Table 2: Statistics about Additional Information (keys
and values that was added to the data

The approach db_info makes use of a nom-294

inatim table5. This table maps OSM entries to295

categories to be used as keys and values in Over-296

pass. Similar to Lin et al. (2020), we apply a fuzzy297

string matching algorithm to obtain the additional298

information from the nominatim table. The exact299

algorithm is explained in Appendix A.6. Naturally,300

matches can only be found if the word in the natu-301

ral language question (± two characters) appears302

in the nominatim table. This is not the case for all303

examples in the OverpassNL dataset: Overall, for304

the train and test set, keys and values could only be305

added in around 60 % of the cases. Exact numbers306

can be found in Table 2.307

6.1.2 Query Templates308

In approach retrieve, we follow Hashimoto309

et al. (2018) to retrieve for every natural language310

question x the most similar question-query pair311

(x′, y′) from the training data, using BERTScore312

(Zhang et al., 2020) as similarity metric. These313

additional inputs are fed into different encoders314

with their own attention mechanisms. The output315

of the encoders are then concatenated in the order316

x, x′, y′ and fed into the decoder, turning this into a317

multi-source setup (Zoph and Knight, 2016). This318

gives the model access to a similar question-query319

pair through the additional encoded input.320

In approach cluster, we provide the model321

with additional information about the type of query.322

This approach is inspired by previous approaches to323

use control tags as additional inputs (Sennrich et al.,324

2016a). We first embed the natural language ques-325

tions with BERT (Devlin et al., 2019), cluster the326

data with the k-Means clustering algorithm (k=10),327

and then augment the data with a special tag in-328

dicating the corresponding cluster. For example,329

similar natural language questions like planetarium330

in current view and places of worship in current331

view will be assigned to the same cluster. Examples332

for clusters are given in Fig. 6 in the Appendix.333

5https://wiki.openstreetmap.org/wiki/
Nominatim/Special_Phrases/EN

gold question Recycling in admin level 10 areas
with the name Kupferdreh

silver question Restaurants in admin level 5 ar-
eas with the name La Vida

gold query area["name"="Kupferdreh"]
[admin_level=10]->.a;
(node(area.a)
["amenity"="recycling"];);

silver query area["name"="La Vida"]
[admin_level=5]->.a;
(node(area.a)
["amenity"="restaurant"];);

Figure 2: Example for a silver example creation. The
underlined part in the gold example is replaced by ran-
dom values from the training data to create the silver
data.

6.1.3 Data Augmentation 334

Lastly, we conduct two further data augmentation 335

strategies. In approach substitution, we gen- 336

erate silver data by jointly templating both natural 337

language questions and queries, replacing tokens 338

occurring in both question and query. Afterwards 339

we insert random values from the training data into 340

the template slots. This resulting data was then 341

filtered by removing nonsense natural language 342

questions according to their sentence probability 343

predicted by GPT-2 (Radford et al., 2018). The 344

sentence probability was normalized by sentence 345

length and thresholded with a value of 0.0001. A 346

full example can be seen in Figure 2. The final 347

silver dataset contains 14,000 examples and is used 348

on its own or combined with the other approaches. 349

In approach back-trans, we made use an ap- 350

proach inspired by backtranslation (Sennrich et al., 351

2016b). We use the existing question-query pairs to 352

train a query-to-question model that was then used 353

to generate natural language questions for queries 354

that were not given manual annotations with ques- 355

tions. This process resulted in additional 19,000 356

data points that were added to the training data. 357

6.2 Experimental Results 358

As shown in the top part of Table 3, the baseline 359

performance of our model achieves only 21% ex- 360

ecution accuracy. Using approach retrieve to 361

retrieve similar question-query pairs through the 362

additional encoded input increases the model per- 363
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Approach Model exec_acc part_exec parse_match

- baseline 0.21 0.43 0.22
Database Information db_info 0.33 0.62 0.35
Query Templates cluster 0.35 0.6 0.35

retrieve 0.33 0.57 0.3
Data Augmentation back_trans 0.33 0.62 0.35

substitution 0.35 0.6 0.31

Combined cluster db_info 0.36 0.62 0.37
Combined cluster retrieve 0.35 0.61 0.33
Combined cluster substitution 0.34 0.61 0.32

Table 3: Accuracy in percent of different semantic parsing models: A baseline, enhanced by retrieving similar
question-query pairs (+ retrieve), augmenting the data with special cluster tags (+ cluster) and adding more
training data using automatic generated data (+ substitution or + back_trans). All results are significantly
better than the baseline (p < 0.001).

formance by 12 points to 33% execution accuracy.364

The db_info approach reaches the same perfor-365

mance. Allowing the model to easily generate simi-366

lar queries by using approach cluster also leads367

to a better performance with 35% execution accu-368

racy. Finally, using approach substitution to369

add the silver data to our training data, the model370

also achieves 35% execution accuracy.371

The bottom part of Table 3 shows the re-372

sults for the best combinations of approaches.373

Combining cluster with either retrieve or374

substitute achieves a score of 35% execution375

accuracy. Combining cluster and db_info376

yields the highest improvement, reaching 36% ex-377

ecution accuracy. Combining all three methods378

does not lead to further improvements. We conjec-379

ture that this result can be explained by a certain380

amount of redundancy in the information provided381

by retrieving similar instances or adding silver data,382

with the most accurate addition to the cluster383

information being provided by the explicit keys384

and values in the db_info approach. This combi-385

nation also reaches the highest values according to386

the partial execution and parse match metrics.387

In order to investigate the interaction of data388

properties and parsing performance, we took a389

closer look at the data characteristics of question390

length. Our hypothesis was that the dataset poses391

increased difficulties due to increased question392

length: The longer the question, the harder to find393

the correct query. In order to test this hypothesis,394

we use an LMEM-based significance test (Riezler395

and Hagmann, 2022) to investigate the interaction396

between the question length and the execution ac-397

model parse static nominatim

baseline 0.05 0.02 0.11
+cluster 0.05 0.03 0.05
+retrieve 0.05 0.02 0.04
+db_info 0.07 0.02 0.05
+cluster+db_info 0.06 0.02 0.03

Table 4: Analysis of error types that make queries not
executable against the database. Parse errors are errors
like missing closing brackets, static errors are wrong
keywords and nominatim errors are errors that hinder
nominatim to return area ids for locations.

curacy. With a p-value of < 0.01, question length 398

makes a significant difference. This can be con- 399

firmed by fitting a line to the results split by ques- 400

tion length, as can be seen in Figure 3. The negative 401

gradient confirms our observation. An advantage of 402

the best model (db_info + cluster) is that 403

it seems to close the gap between the performance 404

difference of long and short examples. As Figure 405

3 shows, the base model (left) performs worse the 406

longer the natural language question gets. How- 407

ever, the best model seems to perform equally well 408

independent of the question length. As the p-value 409

shows, the line of best fit is not significantly differ- 410

ent from a horizontal line, which would indicate no 411

performance loss due to the question length. Fur- 412

ther information on the distribution of the test data 413

due to question length can be found in Figure 5 in 414

the Appendix. 415
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(a) Base Model: The line of best fit is significantly differ-
ent from a horizontal line (p: 0.006).

(b) Base Model enhanced with cluster tags and
db_info: The line of best fit is not significantly dif-
ferent from a horizontal line (p: 0.58).

Figure 3: Interaction of execution accuracy and question length in the base model and the best models. The questions
were binned based on their sentence length. The average execution accuracy of each bin (blue dots) is measured on
the y-axis. The line of best fit is illustrated in red.

7 Error Analysis416

An error analysis (Table 4) shows that for the base-417

line parser, 11% of the queries do not yield a correct418

result due to nominatim errors. In these cases, the419

geolocation service provided by nominatim6 can-420

not find an id for a query string like ´Nermany’421

instead of ‘Germany’. For the best model that422

uses cluster and db_info, the nominatim er-423

ror rate for the dataset is significantly lower at 3%.424

The nominatim error rate is the lowest even com-425

pared to models that use only one enhancement,426

the lowest being retrieve having an error rate427

of 4%.428

An inspection of selected examples shows that429

the baseline model seems to have a problem with430

hallucination by inserting values in the hypothe-431

ses that appear often in the query but are different432

from the values given in the questions. Giving the433

model access to query templates via cluster or434

retrieve appears to make the model hallucinate435

less. In the following example, the baseline model436

inserts the correct uid only in one of the two places,437

whereas the improved model correctly predicts the438

correct uid in both places.439

Question: Ways and nodes with the uid 9847941440

newer than yesterday441

Baseline: (way(uid:9847994)442

6https://nominatim.openstreetmap.org/
ui/search.html?q=Germany

(newer:"{{date:1day}}"); 443

node(uid:9847941) 444

(newer:"{{date:1day}}"););out; 445

cluster: (way(uid:9847941) 446

(newer:"{{date:1day}}"); 447

node(uid:9847941) 448

(newer:"{{date:1day}}"););out; 449

Cluster and retrieve also seems to reduce 450

the generation of typos, as can be seen in the follow- 451

ing example, where the baseline model produces 452

the typo "miltary" instead of "military". 453

Question: Way with the attribute usage having a 454

value military in Colorado 455

Baseline: geocodeArea:Colorado-> 456

.searchArea; ( 457

way["usage"="miltary"] 458

(area.searchArea);); out; 459

cluster: geocodeArea:Colorado-> 460

.searchArea; ( 461

way["usage"="military"] 462

(area.searchArea);); out; 463

Interestingly, even if cluster or retrieve 464

approaches have never seen a certain value in the 465

training data (like "furnace" in the following exam- 466

ple), they seem to be able to copy better from the 467

source than the baseline model. 468

Question: furnace shops in current view 469
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Baseline: ( node["shop"="furniture"]470

({{bbox}});471

way["shop"="furniture"]472

({{bbox}});473

relation["shop"="furniture"]474

({{bbox}}););out;475

cluster: ( node["shop"="furnace"]476

({{bbox}});477

way["shop"="furnace"]478

({{bbox}});479

relation["shop"="furnace"]480

({{bbox}}););out;481

Looking at model outputs trained with the482

db_info approach, it can be seen how the per-483

formance is increased by using nominatim informa-484

tion (described in section 6.1.1). The nominatim485

table contains an entry for "florist", returning "shop-486

florist" as a key-value pair. The model learns that487

the augmentation is often of high quality, thus it488

only needs to focus more on the key-value infor-489

mation, even if the specific key-value pair has not490

occurred very often ("florist" only appears in one491

training example).492

Question: florist in current view493

Augmented Question: florist in current view [K]494

shop [V] florist495

Baseline: ( node["historic"= "fort"]496

({{bbox}}); way["historic"=497

"fort "]({{bbox}});498

relation["historic"=499

"fort"]({{bbox}}););out;500

db_info: ( node["shop"="florist"]501

({{bbox}});way["shop"="florist"]502

({{bbox}});503

relation["shop"="florist"]504

({{bbox}}););out;505

The db_info approach also seems to be able506

to reduce certain types of halluctionations, which507

can be seen in the following query, where a typo508

in the question ("is" instead of "in") confuses the509

baseline model, but not the augmented model.510

Question: Cinemas is current view511

Baseline: (node["landuse"="cemetery"]512

({{bbox}}); way["landuse"=513

"cemetery"]({{bbox}});514

relation["landuse"="cemetery"]515

({{bbox}}););out;516

db_info: ( node["amenity"="cinema"] 517

({{bbox}}); way["amenity"= 518

"cinema"]({{bbox}}); 519

relation["amenity"="cinema"] 520

({{bbox}}););out; 521

8 Conclusion 522

We introduced OverpassNL, a new dataset for 523

semantic parsing and interpretation of Overpass 524

queries to the OpenStreetMap database. Over- 525

passNL is a semantic parsing dataset that builds 526

upon complex real-world user queries issued to 527

a large-scale complex database. We illustrate the 528

complexity of the dataset and the difficulty of the 529

semantic parsing task, with the baseline model only 530

reaching around 21% of execution accuracy. We 531

then improved the model by incorporating more in- 532

formation, either by feeding similar examples into 533

the model, by exploiting similarities in the natu- 534

ral language questions, and by enhancing our train 535

data with silver data. Our best model then reaches 536

an execution accuracy of 36%. 537

9 Future Work 538

An avenue of research we aim to pursuit in the fu- 539

ture is to use the PICARD (Scholak et al., 2021) 540

algorithm which led to improvements on the Spider 541

dataset by constraining the beam search to valid out- 542

puts. A reimplementation for the Overpass syntax 543

could also yield improvements in our experiments. 544

Additionally we want to research the possibility 545

of augmenting our models with even more knowl- 546

edge sources, for example the contents of the Open- 547

StreetMap wiki 7. Lastly, we are planning to es- 548

tablish an interactive setup where OSM users and 549

developers can use a semantic parser trained on 550

OverpassNL and provide feedback for interactive 551

machine learning. 552

10 Limitations 553

A possible limitation of the presented work could 554

be an inherent bias in the developer-generated data, 555

for example, a gender bias, or simply a bias towards 556

queries that appear complex on the surface, but ask 557

for trivial contents. We hope that a future interac- 558

tive scenario will encourage users and developers 559

to take advantage of the natural language interface 560

to query for interesting contents. 561

7https://wiki.openstreetmap.org/wiki/
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A Appendix 762

A.1 Overpass Statistics 763

number of OSM users 8.3 million
number of nodes in OSM 7.4 billion

map changes per day in OSM 4.5 million

Table 5: Database statistics of OpenStreetMap as of 2022-01-10 (https://wiki.openstreetmap.org/
wiki/Stats).

Figure 4: Accumulated registerd users (linear scale) of OpenStreetMap (https://wiki.openstreetmap.
org/wiki/Stats)
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A.2 Dataset Properties764

Figure 5: Distribution of the test data due to question length (in characters). The dotted line indicates the arithmetic
mean.
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A.3 Hyperparameter Settings 765

Parameter Value

optimizer adam
learning rate 0.0002
batch size 4
encoder rnn type bidirectional GRU
attention bahdanau
encoder embedding dim 620
encoder hidden dim 400
encoder layers 1
decoder rnn type GRU
decoder embedding dim 620
decoder hidden dim 800
deccoder layers 1

Table 6: Hyperparameter settings of JoeyNMT sequence-to-sequence model used in our experiments.

A.4 Semantic Parsing Example 766

SRC Highways or routes with official name
Rodovia Vespertino de Medeiros Bonorino in Brasil

PRED. {{geocodearea:rs,brasil}}->.searcharea;
( way["highway"~".*"]["official_name"~
"^rodovia estadual joão cândido$"](area.searcharea);

GOLD {{geocodearea:rs,brasil}}->.searcharea;
(way["highway"~".*"]["name"~
"^rodovia vespertino de medeiros bonorino$"](area.searcharea);

Table 7: Semantic parsing example. SRC is the natural language question, PRED. the predicted query and GOLD
the correct query.
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A.5 Cluster Examples767

• Cluster 0

– Admin level 3 in Russia

– Admin level 3 in Tanzania

– Admin level 4 in Angola

• Cluster 2

– places I can grill outside
in current view

– places of worship in
current view

– planetarium in current
view

• Cluster 6

– Boundary relations in Rio
Grande do Sul, Brazil
with IBGE order numbers
matching the regular
expression "4̂3[0-9]{8}$"

– Milestones in mesorregião
do oeste catarinense that
have a description or a
reference matching "ŜC"

• Cluster 9

– Nodes and ways that
were changed between
2018-07-02T00:00:00Z
and 2018-07-02T19:39:59Z
by the user with the ID
8076784

– Nodes and ways that
were changed between
2019-07-10T00:00:00Z
and 2019-07-10T23:59:59Z
by the user with the ID
8710004

– Nodes and ways that
were edited between
2019-02-11T00:00:00Z
and 2019-02-11T23:55:59Z
by the user with the ID
7725447

Figure 6: Cluster examples that were used to improve
the performance of our encoder-decoder model.

A.6 Fuzzy String Matching 768

For this algorithm, the natural language question 769

and the whole word/phrase column from the nomi- 770

natim table are converted into lower-cased charac- 771

ter sequences and the longest subsequence match 772

between the question and the column values is 773

computed. The subsequence match is only consid- 774

ered valid if the word boundaries can be detected 775

within ±2 characters of the match, thereby matches 776

that are substrings of the words in the natural lan- 777

guage question such as “way” in “motorway” are 778

excluded. Additionally, if there is a preposition 779

right after the word in the natural language ques- 780

tion, it is checked whether the preposition appears 781

in the nominatim table in the column “operator”. 782
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