
On Flow-based Generative Models for Probabilistic
Forecasting

Anonymous Author(s)
Affiliation
Address
email

Abstract

Flow-based generative models (FBGM) have emerged as a dominant approach to1

generative modeling in many domains for their scalability and controllability, but2

have notably not made the same impact on autoregressive probabilistic forecasting.3

Although the methodology behind these models can be applied directly to the time4

series setting, and in theory offers the potential to apply the advances in generative5

modeling to time series, this direct approach is difficult to use in practice. In this6

work, we investigate this methodological gap by generalizing the key elements of7

flow-based generative modeling to the time series setting to devise a more practical8

related algorithm. We show that FBGMs based on linear stochastic differential9

equations are instances of a more general mean-field variational inference algorithm10

for conditional exponential family distributions that constructs Bayes estimators11

of natural parameters. This insight yields a family of mean-squared error based12

latent probabilistic forecasters that contains a discrete time counterpart of FBGMs13

for time series. We demonstrate that the models we develop inherit the convenient14

theoretical properties of FBGMs while being easy to work with in practice.15

1 Introduction16

Flow-based generative models (FBGM), including denoising diffusion, score based diffusion, and17

flow matching models, have become the dominant approach to generative modeling. These models18

represent a stochastic differential equation (SDE) that transforms samples from a known prior19

distribution into samples from an unknown target distribution, and often use a different recipe20

for solving the generative modeling problem compared to traditional approaches. This alternative21

approach is highly scalable [Ramesh et al., 2022, Podell et al., 2023, Saharia et al., 2022], can leverage22

conditioning information in flexible ways [Dhariwal and Nichol, 2021, Ho and Salimans, 2022], and23

can be controlled in order to incorporate user defined dynamics [Liu et al., 2024, Domingo-Enrich24

et al., 2024, Havens et al., 2025]. Furthermore, FBGMs are capable of learning from paired data. If x025

and x1 are samples from an unknown joint distribution p(x0, x1), then one can use the same approach26

to construct an SDE whose transition distribution from t = 0 to t = 1 is p(x1|x0) [De Bortoli et al.,27

2023]. Given this capability, it directly follows that this approach could, in principle, be used to28

construct an SDE to model time series data. If p(x1:N) = p(x1)
∏N−1

k=1 p(xk+1|x1:k) represents the29

unknown distribution of time series data, then each of the transition terms, p(xk+1|x1:k), can be30

interpreted as a target distribution for a FBGM in the paired data setting where the data pairs are31

consecutive elements of the time series, (xk+1, xk), and the previous elements x1:k−1 can be thought32

of as extra conditioning information. In theory, learning this kind of model for time series would33

inherit the scalability and controllability that FBGMs possess, allowing practitioners to port over34

the recent advances in generative modeling to time series applications. However, this approach has35

surprisingly only recently been explored [Chen et al., 2024a, Tamir et al., 2024, Park et al., 2024,36

Chen et al., 2024b] even though diffusion based time series models have been studied for several37

Submitted to 39th Conference on Neural Information Processing Systems (NeurIPS 2025). Do not distribute.

years [Yang et al., 2024, Meijer and Chen, 2024]. We attribute this gap to the practical numerical38

difficulties associated with training and sampling from these models as one must first learn, and39

then simulate, a stochastic differential equation, with potentially non-smooth dynamics, over a long40

time domain compared to the short time domain encountered in standard generative modeling. To41

address this problem, we develop a discrete time version of Neural SDEs derived from FBGMs42

that are founded on the same theoretical principles, while being substantially easier to work with43

in practice. We do this by generalizing two key elements needed to construct FBGMs, stochastic44

interpolation and the Markovian projection, to the time series setting, where they become Gaussian45

condition random fields and a form of mean-field variational inference respectively. We construct a46

family of latent probabilistic time series models that are closely related to existing time series models,47

including MSE based non-probabilistic forecasters and conditional Gaussian autoregressive models,48

and compare their performance on various latent probabilistic forecasting problems.49

2 Background50

We will first review how flow-based generative models are constructed and then build intuition for51

how to go about generalizing this construction to the time series setting. Suppose that p(y0, y1) is a52

joint distribution over a source and target random variable. The (paired) generative modeling problem53

is to find a parametric approximation of p(y1|y0) 1. Flow-based generative models solve this problem54

by constructing, and then learning, a latent SDE whose transition distribution from times t = 0 to55

t = 1 is p(y1|y0). There are three steps involved in constructing and learning this SDE - stochastic56

interpolation, the Markovian projection, and matching.57

Stochastic interpolation [Albergo and Vanden-Eijnden, 2023] is used to interpolate between proba-58

bility distributions by defining interpolations between their samples. For example, consider the joint59

distribution p(x0, xt, x1), where xt = (1− t)x0 + tx1 and (x0, x1) ∼ p(x0, x1). By the definition60

of xt, it is true that p(xt=1) = p(x1), and also that p(xt=1|x0) = p(x1|x0), so we verify that the61

marginal distribution of xt interpolates between p(x0) and p(x1). In practice, one assumes that at62

times t = 0 and t = 1, x0 := y0 and x1 := y1 so that p(xt) is an interpolation between p(y0) and63

p(y1).64

A popular method for constructing stochastic interpolants, which we use in this paper, is conditioning65

a user-defined base SDE, whose diffusion coefficient does not depend on the current state, to start at66

x0 and end at x1. This SDE takes the form dxt = bt(xt)dt+ LtdWt where bt(xt) is the drift of this67

base SDE and Lt is the diffusion coefficient. This SDE is used to construct a joint distribution of68

the form p(x0, xt, x1) = p(xt|x0, x1)p(x0, x1) where p(xt|x0, x1) is the probability of xt when the69

base SDE has been conditioned to start at x0 and end at x1. In order to solve the generative modeling70

problem of p(x1|x0), FBGMs are constructed as an SDE whose marginal distribution is p(xt|x0).71

This is accomplished using the Markovian projection.72

Proposition 1 (Markovian projection SDE [Shi et al., 2024]). Let p(x1|x0) be a conditional distribu-73

tion over target variables given source variables and let p(xt|x0, x1) denote the distribution of the74

base SDE dxt = bt(xt)dt+ LtdWt when conditioned to start at x0 and end at x1. The “Markovian75

projection SDE” is an SDE whose marginal distribution, denoted by q∗(xt|x0) is equal to p(xt|x0).76

It is given by:77

dxt = (bt(xt) + LtL
T
t Ep(x1|x0,xt) [∇ log p(x1|x0, xt)])dt+ LtdWt (1)

See Prop 3. of [De Bortoli et al., 2023] for a proof. Proposition 1 is a solution to the paired generative78

modeling problem because q∗(xt=1|x0) = p(x1|x0) := p(y1|y0). Given a sample from the source79

distribution, x0 ∼ p(x0), we can simulate the SDE from t = 0 to t = 1 to generate a sample from the80

target distribution. However, this SDE contains an intractable drift term that depends on the posterior81

distribution of x1 given x0 and xt. This is addressed using a matching learning objective. For82

example, in score matching, [Vincent, 2011, Song et al., 2021], one writes the drift in the following83

variational form:84

∇ log q∗(xt|x0) = argmin
st(xt,x0)

Ep(x0,x1,xt)

î∥∥LtL
T
t ∇ log p(x1|x0, xt)− st(xt, x0)

∥∥2ó (2)

1The unpaired setting is when we do not condition on y0.

2

If s(xt, x0; θ) is parameterized by a neural network, then one can minimize this expectation using85

the standard machine learning toolkit to find the Markovian projection SDE. However, obtaining a86

Monte Carlo estimate of the expectation for stochastic gradient descent requires being able to sample87

from p(x0, x1, xt), which requires simulation of the base SDE. As such, the base SDE is chosen so88

that this distribution is tractable. After training is complete, then the flow-based generative model is89

given by the SDE dxt = (bt(xt) + LtL
T
t st(xt, x0))dt+ LtdWt. In general, matching algorithms,90

such as score matching, drift matching and bridge matching, are algorithms for learning the Bayes91

estimator of a random variable because of the well known relationship between posterior expectations92

and mean squared error [Jaynes, 2003]:93

Proposition 2 (Bayes estimate of parameter). Let p(z, θ) be a joint distribution and let θ∗(z) be94

the Bayes estimate of θ based on z under the squared error risk. Then the Bayes estimate takes the95

following two forms:96

θ∗(z) = Ep(θ|z)[θ] = argmin
f(z)

Ep(z,θ)

[
∥f(z)− θ∥2

]
(3)

See Appendix C.3 for a derivation. In score matching, one would have z = (x0, xt) and θ =97

∇ log p(x1|x0, xt), while other matching approaches, such as flow matching [Albergo and Vanden-98

Eijnden, 2023, Lipman et al., 2023, Liu et al., 2023] and bridge matching [Shi et al., 2024].99

Given the strong theoretical, interpretability, and empirical results of FBGMs, one might expect100

that a direct application to time series would inherit the same benefits. However, this approach has101

surprisingly only recently been explored [Chen et al., 2024a,b, Tamir et al., 2024, Park et al., 2024]102

even though diffusion based time series models have been studied in a different manner for several103

years [Yang et al., 2024, Meijer and Chen, 2024]. We attribute this gap to the challenges that the time104

series setting presents to flow-based methods compared to settings such as image generation. In the105

standard image generation setting, there is no coupling between the prior and data distributions, and106

so one can learn SDEs that can be easily simulated with a few number of function evaluations [Liu107

et al., 2023, Pooladian et al., 2023]. However, SDEs that are constructed to model time series data108

present a challenge during inference due to compounding numerical errors that are attributed to either109

a mismatch between the learned model and data, or due to the numerical solver itself, get accumulated110

during generation which can lead to poor performance in practice. Discrete time autoregressive111

models, on the other hand, do not suffer from these issues to the extent that Neural SDEs do and are112

much more widely used in practice. With this in mind, we aim to understand find a discrete time113

version of FBGMs for time series that will work better in practice.114

3 Method115

We present a generalization of the FBGM construction for the time series setting.116

3.1 Generalized linear stochastic interpolation117

Recall that stochastic interpolation constructs a distribution over a latent stochastic process, which118

we denote by x, that is sampled from a base SDE that is conditioned to start at x0 := y0 and end at119

x1 := y1. Our generalization of stochastic interpolation is founded on the observation that many120

of the base SDEs used in practice are linear SDEs, and that the FBGM recipe is unchanged if we121

introduce Gaussian potential functions to relax the endpoint conditions. Since linear SDEs have122

Gaussian transition distributions, they can naturally be combined with these Gaussian potentials to123

construct a Gaussian conditional random field. This conditional random field will serve as our tool124

for stochastic interpolation, which we call “generalized linear stochastic interpolation”.125

Let yτ1:T denote time series data that is generated by an unknown distribution p(yτ1:T). For brevity,126

we assume that τ1:T is the same for all time series, but note that our theory accommodates datasets127

with series sampled at different times. We will construct, and perform inference, in the distribution128

p(x|yτ1:T), which we will obtain by conditioning a linear SDE on user defined Gaussian potential129

functions. The potential function at time tk ∈ R will be denoted by ϕ(xtk |θtk(yτ1:T)), where θtk the130

the natural parameter of the Gaussian that arbitrarily depends on yτ1:T . See Appendix C for a review of131

exponential family distributions. We also use the notation ϕk+1|k(xk+1|xk) = N(xk+1|Axk + u,Σ)132

to denote a Gaussian transition distribution from xk to xk+1 with state transition matrix A, bias133

vector u and covariance matrix Σ.134

3

y0 y1
x p(x|y0, y1)

(a) Stochastic interpolation

y 0

y 1

y 2

y 3x

p(x| (y 1 : 4))
(xtk | tk(y 1 : 4))

(b) Generalized stochastic interpolation

Figure 1: Generalized stochastic interpolation incorporates Gaussian potential functions to relax the
endpoint conditions of stochastic interpolation and is applied to time series data.

3.1.1 Gaussian conditional random fields135

Chain structured Gaussian CRFs are a tractable class of probabilistic models that are widely used in136

time series modeling (CITE):137

Definition 1 (Conditional Random Field [Lafferty et al., 2001, Sutton et al., 2012]). Let x1:N be a138

sequence of random variables, ϕk+1|k(xk+1|xk) be a set of Gaussian transition distributions between139

consecutive variables, and ϕ(xk|θk) a set of Gaussian potential functions with natural parameters140

θk ∈ θ. A conditional random field (CRF) is a probability distribution given by:141

p(x1:N |θ) ∝
N−1∏
k=1

ϕk+1|k(xk+1|xk)

N∏
k=1

ϕ(xk|θk) (4)

Due to the chain-structure of p(x1:N |θ) and the fact it is jointly Gaussian, inference can be performed142

efficiently using message passing. The backward messages, defined below, will play a significant role143

in our theory:144

Proposition 3 (Backward messages). The k’th backward message associated with the CRF in145

Definition 1 is defined with the following recurrence relation:146

ϕ(xk−1|βk−1) =

∫
ϕk|k−1(xk|xk−1)ϕ(xk|θk + βk)dxk, βN = 0 (5)

where θk+1+βk+1 denotes the direct sum of θk+1 and βk+1. This recurrence also uniquely identifies147

a function, denoted by Φk,k+1 that performs the parameter updates as:148

βk = Φk,k+1(θk+1 + βk+1) (6)

Note that each βk is a function of θk+1:N . See Appendix D for a full derivation of sequential and149

parallel message passing, and Appendix H for pseudo code and implementation considerations.150

Although we do not focus on the forward messages, they are defined with analogous recurrence151

relations to the backward messages and can be used to extend our methodology to flow-matching152

models for time series forecasting (see Corollary 5). CRFs offer an efficient way to model the latent153

variables at a fixed set of times, but are not immediately suited for continuous time.154

3.1.2 Linear time-invariant stochastic differential equations155

We will use linear-time invariant SDEs to construct the transition distributions of continuous time156

CRFs. Linear time-invariant SDEs (LTI-SDEs) are SDEs of the form dxt = Fxtdt+ LdWt, where157

the drift matrix F and diffusion coefficient matrix L are constant with respect to t and xt. LTI-SDEs158

have the convenient property that their transition distribution is available in closed form [Särkkä and159

Solin, 2019, Singhal et al., 2023]. The transition distribution from xt to xt+s, where s > 0 is an160

increment of time, is given by161

ϕt+s|t(xt+s|xt) = N(xt+s|Asxt,Σs), where
ï
As ΣsA

−T
s

0 A−T
s

ò
:= exp

ßï
F LLT

0 −FT

ò
s

™
(7)

4

We use LTI-SDEs for their tractability, but note that our theory is completely compatible with more162

general linear SDEs. One can directly plug in this transition distribution into a CRF in Definition 1 to163

obtain a conditional random field over a continuous time domain. However, we can be more general.164

In the next proposition, we highlight a relationship between conditioned linear SDEs and CRFs165

([Särkkä et al., 2006, Särkkä and Solin, 2019]):166

Proposition 4 (Conditioned LTI-SDE). Let ϕt+s|t(xt+s|xt) be the transition distribution of the167

LTI-SDE dxt = Fxtdt+ LdWt and let {ϕ(xtk |θtk)}tk∈R be potential functions at times in the set168

R. Then the piecewise-linear SDE,169

dxt = (Fxt + LLT∇ log ϕ(xt|βt))dt+ LdWt, xt1 ∼ ϕ(xt1 |β1 + θ1) (8)

where t ∈ (tk, tk+1) and tk, tk+1 ∈ R, has a joint distribution at the times t1:N = T ⊇ R that is170

given by a CRF:171

p(xt1:N |θ) ∝
∏
tk∈T

ϕtk+1|tk(xtk+1
|xtk)

∏
tk∈R

ϕ(xtk |θtk) (9)

where βt = Φt,tk+1
(θtk+1

+ βtk+1
).172

See appendix Appendix E.1 for the full proof and Corollary 5 for a nice expression for the associated173

probability flow ODE in terms of both the forward and backward messages. Proposition 4 suggests174

that a practical way to work with conditioned linear SDEs in practice is convert them into CRFs on a175

discretization of the time domain so that inference can be performed via message passing. This results176

in the ability to sample and perform inference in linear SDEs O(log |T |) time on parallel compute177

[Hassan et al., 2021, Corenflos et al., 2021, Smith et al., 2023]. The conditioned SDE Proposition 4178

is our main tool for stochastic interpolation as it gives us the ability to sample from p(x|θ(yτ1:T)) at179

an arbitrary discretization of the time domain.180

3.2 Target probabilistic model for FBGM181

Recall that in the FBGM recipe, we used the stochastic interpolation to construct a joint distribution182

over the interpolant and the data, p(y0, xt, y1), before performing the Markovian projection. We can183

take the same step here to construct a joint distribution over yτ1:T and x using the data distribution,184

p(yτ1:T) and the distribution of the interpolant, p(x|yτ1:T) := p(x|θ(yτ1:T)).185

Definition 2 (Target joint distribution). Let p(yτ1:T) be the distribution of observed time series data186

and let p(x|yτ1:T) be the distribution of the generalized linear stochastic interpolant, which is the187

distribution of a linear SDE conditioned on the user defined potential functions {θtk(yτ1:T)}tk∈R at188

the times R, as in Proposition 4. Then the induced joint distribution over x at the times t1:N = T ⊃ R189

and yτ1:T is given by:190

p(xt1:N , yτ1:T) = p(yτ1:T)

(
1

Z(yτ1:T)

∏
tk∈T

ϕtk+1|tk(xtk+1
|xtk)

∏
tk∈R

ϕ(xtk |θtk(yτ1:T))

)
(10)

where Z(yτ1:T) is the partition function of p(xt1:N |yτ1:T).191

Before continuing, it is crucial that we understand this joint distribution and the role it plays in192

the FBGM recipe. Unlike the standard approach to generative modeling where one defines a joint193

distribution by defining a prior over the latent variable and a likelihood distribution over the data,194

the FBGM uses an alternate construction to build p(x, yτ1:T) using the data distribution directly.195

Furthermore, the tools FBGMs employ are fundamentally designed for probabilistic inference in196

x instead of yτ1:T . Since x is completely user designed through the choice of base LTI-SDE and197

potential functions, we are able to solve a wide range time series problems.198

Suppose we split each sequence of data into observed and unobserved portions, yτ1:T = (yO, yU),199

where yO is a subsequence that we observe at both train and test time while yU is only observed200

at training time, as is the case in time series forecasting.2 The ability to perform inference in201

p(x|yO) would solve a general latent probabilistic forecasting problem that reduces to the stan-202

dard forecasting problem if the Gaussian potential functions are chosen as dirac delta functions -203

2This also covers the imputation setting, but we do not explore this in the interest of keeping a narrow scope.

5

z x

(a) p(x|z, θ)

z x

*(z)

(b) q∗(x|z) = p(x|z, θ∗(z))

Figure 2: The CMFVI approximation of p(x|z) is q∗(x|z). Choosing (x, z, θ) = (xt1:N , yO, θ(yτ1:T))
recovers qMSE, (x, z, θ) = (xtk , (xt1:k−1

, yO), θ(yτ1:T)) recovers qMSE-AR and (x, z, θ) =

lims→0(xt+s, (xt, xt1:k−1
, yO), θ(yτ1:T)) for t ∈ (tk, tk+1) recovers qNeural-SDE.

ϕ(xtk |θtk(yτ1:T)) := δ(xtk − ytk). For example, if one chooses the LTI-SDE to be the Wiener ve-204

locity model [Särkkä and Solin, 2019, Särkkä et al., 2006] and potential functions of the form205

ϕ(xtk |θ(yτ1:T)) ∝ N(xtk |ytk , σ2I), then inference in p(x|yO) corresponds to forecasting the206

smoothed position and velocity of the particle whose positions were observed at yτ1:T . However,207

p(x|yO) is intractable because p(yτ1:T) is arbitrary. To this end, we develop variational inference208

algorithms for this task.209

3.3 Neural latent SDE for latent probabilistic forecasting210

The first inference algorithm we develop is a direct extension of flow-based generative models to the211

latent probabilistic forecasting setting. For a fixed discretization of the time domain, we can treat212

consecutive latent variables (xtk , xtk+1
) as elements of a paired dataset with the previous elements213

xt1:k−1
and observations yO as extra conditioning information. This lets us directly apply the existing214

FBGM recipe to construct a conditional, piecewise SDE to solve the latent probabilistic forecasting215

problem.216

Proposition 5 (Neural latent SDE). Let p(xt1:N , yτ1:T) be the joint distribution defined in Definition 2217

and suppose that yτ1:T = (yO, yU), where O and U are the times at which sequences are observed218

and unobserved at test time, respectively. Then the neural latent SDE is the following piecewise SDE:219

dxt = (Ftxt + LtL
T
t ∇ log ϕ(xt|β∗

t (xt, xt1:k , yO)))dt+ LtdWt, (11)
where β∗

t (xt, xt1:k , yO) = Ep(yU |xt,xt1:k
,yO) [βt(yτ1:T)] , and t ∈ (tk, tk+1) (12)

Furthermore, the transition distribution of this SDE from time tk to tk+1 is p(xtk+1
|xt1:k , yO). We220

will use qNeural-SDE to denote the path measure associated to this SDE.221

See Appendix G.2 for a proof and Appendix G for the general constructions of the score function,222

Markovian projection SDE and probability flow ODE. By construction, Proposition 5 can be used to223

solve the latent probabilistic forecasting problem because it has the correct joint distribution over the224

latent space. Furthermore, its form is almost identical to that of its base LTI-SDE in Proposition 4,225

except that its parameter, β∗, is the Bayes estimator of a backward message. We will show next that226

models of this form can be derived by solving a constrained mean-field variational inference problem.227

3.4 Constrained mean-field variational inference228

Next we introduce our main contribution which is the variational inference algorithm underlying229

FBGMs, which we call “constrained mean-field variational inference”. Given a conditional expo-230

nential family distribution p(x|z, θ), CMFVI constructs a variational approximation of p(x|z) that is231

given by p(x|z, θ∗(z)) where θ∗(z) is the Bayes estimator of θ given z. We first introduce CMFVI in232

an abstract way and then show how it can be used to do variational inference on the latent probabilistic233

forecasting distribution, p(xt1:N |yO).234

Suppose that z is a random variable, θ ∼ p(θ|z) is the natural parameter of an exponential family235

distribution, and x ∼ p(x|z, θ) is a random variable drawn from a conditional exponential family of236

the form p(x|z, θ) = exp{⟨tz(x), θ⟩−A(z, θ)}. For intuition, assume that x represents the future of a237

stochastic process, z represents its past , and θ represents the parameters of this process. Furthermore,238

6

suppose that the parameters are only available at training time so that at test time, sampling x given239

z requires the ability to sample from p(x|z). Our goal is to predict the future of the process given240

its past, which requires the ability to sample from p(x|z), however this distribution is intractable241

because p(θ|z) is arbitrary. To this end, we introduce a variational approximation of p(x|z) using an242

algorithm closely resembling mean field variational inference, which we call “constrained mean field243

variational inference” (CMFVI):244

Theorem 1 (Constrained mean field VI solution). Let p(x|z, θ) ∝ exp{⟨tz(x), θ⟩ − A(z, θ)} be245

a conditional exponential family distribution with θ ∼ p(θ|z). The constrained mean field VI246

approximation of p(x|z), denoted by q∗(x|z), is defined as follows:247

q∗(x|z) = argmin
q(x|z)

KL [q(x|z)p(θ|z)∥p(x, θ|z)] (13)

= p(x|z, θ∗(z)), where θ∗(z) = Ep(θ|z) [θ] (14)

See Appendix F.1 for a proof, Lemma 4 for equivalent expressions for the objective involving248

KL[q∗(x|z)∥p(x|z)] and a term resembling the mutual information between x and θ given z. The249

parameter θ∗(z) is the Bayes estimator of θ given z and by Proposition 2 can be learned using mean250

squared error minimization, provided that it is possible to sample from p(z, θ). While this variational251

approximation is tractable, it seems restrictive because it is a conditional random field and only exact252

when θ and x are conditionally independent given z. However, this may not be a terrible assumption253

in the time series setting. If the process is deterministic, then we should be able to compute x directly254

from z without needing to know θ, and so this independence assumption will hold because one will255

be able to compute the future values of the process directly from its past. In fact, in Corollary 8,256

we show that a direct application of CMFVI to p(xt1:N |yO), by selecting x = xt1:N , z = yO and257

θ = θ(yτ1:T), exactly recovers MSE based non-probabilistic forecasters, which are clearly capable of258

learning deterministic processes (see Corollary 8). We denote the model in Corollary 8 by qMSE. In259

general, provided that the process is not too stochastic, we might expect that given a long enough260

history and a short enough prediction horizon that CMFVI could yield a reasonable approximation of261

p(x|z), and perhaps with an infinitely short prediction horizon we may recover something exactly.262

This intuition motivates the use of CMFVI for learning the autoregressive factors of p(xt1:N |yO) in263

order to construct an autoregressive model to solve the probabilistic forecasting problem.264

Suppose that p(xtk |xt1:k−1
, yO) is one of the autoregressive factors of the latent forecasting distri-265

bution p(xt1:N |yO). We can use CMFVI to approximate each of the k factors by setting x = xtk ,266

z = (xt1:k−1
, yO) and θ = θ(yτ1:T):267

Proposition 6 (CMFVI transition approximation). Let p(xt1:N |yO) be the target distribution and268

consider its k’th autoregressive factor p(xtk |xt1:k−1
, yO). Then the CMFVI transition approximation269

is given by:270

qtransition(xtk |xt1:k−1
, yO) ∝ ϕtk|tk−1

(xtk |xtk−1
)ϕ(xtk |β∗

tk
(xt1:k−1

, yO)) (15)

where β∗
tk
(xt1:k−1

, yO) = Ep(yU |xt1:k−1
,yO) [βtk(yτ1:T)] is the Bayes estimate of βtk(yτ1:T), which is271

defined using the message passing update operator Φtk,tk+1
from Definition 7 as:272

βtk =

®
Φtk,tk+1

(βtk+1
(yτ1:T) + θtk+1

(yτ1:T)) if tk+1 ∈ R
Φtk,tk+1

(βtk+1
(yτ1:T)) otherwise

(16)

See Proposition 6 for a proof. The form of Proposition 6 almost exactly matches the transition273

distribution of p(xt1:N |yτ1:T) in Proposition 12, except that the backward messages are replaced with274

their Bayes estimators. We will use qtransition to construct an autoregressive approximation model that275

will be a discrete time version of the Markovian projection SDE.276

To use CMFVI to construct a discrete time version of FBGMs for time series, we will need to277

make the assumption that the covariances of the potential functions are independent of the values278

of yτ1:T . This assumption holds in both the data space forecasting setting where we use dirac delta279

potential functions, and also in the case where the CRF is constructed as a linear dynamical system280

with constant observation noise. In this setting, it is also possible to rewrite qNeural SDE in a more281

interpretable form where the only unknown value is the mean of the next backward message:282

Corollary 1 (Neural latent SDE using potentials with fixed covariances). If the covariance matrices283

associated with qNeural SDE are constant with respect to y, then the SDE associated with qNeural SDE is:284

dxt = (Ftxt + LtL
T
t ∇ logN(xt|µβ

t

∗
(xt, xt1:k−1

, yO),Σ
β
t))dt+ LtdWt (17)

7

where t ∈ (tk−1, tk), Σ
β
t is the covariance of ϕ(xt|βt(yτ1:T)) and µ∗

t (xt, xt1:k−1
, yO) is the Bayes285

estimator for it’s mean.286

The result follows directly from converting βtk from natural parameters to standard parameters287

of a Gaussian and the linear equivariance of the Bayes estimator Appendix F.2. Note that by our288

assumption that the parameters of the potential functions do not depend on yτ1:T , Σβ
t can be computed289

by performing message passing on p(xt1:N |∅τ1:T), where ∅τ1:T is an empty (or random) sequence290

sampled at the same times as yτ1:T .291

3.5 Discrete time Markovian projection292

We propose an conditional Gaussian autoregressive model whose transition distributions are given293

by qtransition, which we denote by qMSE-AR. We will directly relate it to Markovian projection SDE294

qNeural-SDE by associating qMSE-AR with a piecewise linear SDE that closely resembles qNeural-SDE.295

Proposition 7 (Autoregressive CMFVI solution). Let p(xt1:N |yO) be the target distribution, as-296

sume that the covariance matrices of its potential functions are constant with respect to y. The297

autoregressive model whose transitions are CMFVI solution, denoted by qMSE-AR is given by:298

qMSE-AR(xt1:N |yO) ∝ p(xt1 |yO)
∏
tk∈T

ϕtk|tk−1
(xtk |xtk−1

)N(xtk |µ
β
tk

∗
(xt1:k−1

, yO),Σ
β
tk
) (18)

where Σβ
tk

and µβ
tk

∗
(xt1:k−1

, yO) are the same as in Corollary 1. Furthermore, qMSE-AR has the same299

joint distribution over xt1:N as the following piecewise linear SDE:300

dxt = (Ftxt + LtL
T
t ∇ logN(xt|µβ

t

∗
(xt1:k−1

, yO),Σ
β
t))dt+ LtdWt, xt1 ∼ p(xt1 |yO) (19)

where µ∗
t (xt1:k−1

, yO) is the Bayes estimator for the mean of βt(yτ1:T) = Φt,tk(βtk+1
(yτ1:T)), Σ

β
t is301

its covariance matrix and t ∈ (tk−1, tk) for k = 2, . . . , T .302

See Appendix F.3 and Definition 9 for a proof. A comparison of the piecewise linear SDE associated303

with qMSE-AR with the piecewise SDE associated to qNeural-SDE reveals why we interpret qMSE-AR as the304

discrete time version of the Markovian projection SDE. We can see that the only difference between305

the two SDEs are their Bayes estimators for µβ
t (yτ1:T):306

qMSE-AR :µβ
t

∗
(xt1:k , yO) = Ep(yU |xt1:k

,yO)

î
µβ
t (yτ1:T)

ó
qNeural-SDE :µβ

t

∗
(xt, xt1:k , yO) = Ep(yU |xt,xt1:k

,yO)

î
µβ
t (yτ1:T)

ó
The only difference between the two Bayes estimators is their dependence on the current state xt.307

If xt does not carry more information about yU compared to what is already available from xt1:k308

and yO, then we can expect that qMSE-AR and qNeural-SDE will model nearly the same distribution. As309

we will show in our experiments, this is something that one can expect in the time series setting310

because data is usually sampled frequently enough where the extra capacity that qNeural-SDE has over311

qMSE-AR may not make enough of an impact in practice to warrant using qNeural-SDE in practice. We312

introduced three different CMFVI based time series models - qMSE 8, qMSE-AR 7 and qNeural-SDE 1313

which use CMFVI to joint distribution, transition distributions, and infinitesimal transitions of the314

target distribution respecitvely. All of these models are Gaussian, and are therefore closely related to315

existing time series models.316

3.6 Connection to traditional time series models317

The CMFI-based time series models that we have developed all have an autoregressive Gaussian318

structure which makes them related to existing time series models. First, when one chooses potential319

functions to align with the data times R = τ1:T , then qMSE is identical to MSE based non-probabilistic320

forecasters, which are are trained to predict the future of a time series, yU given an observed history,321

yO. Next, qMSE-AR is a conditional Gaussian autoregressive model that is trained to minimize a322

mean-squared error based objective. This model is in the same family as conditional Gaussian models323

that are trained for maximum likelihood, but differ in that qMSE-AR can be though of parameterizing324

the mean of each transition distribution whereas maximum likelihood models parameterize both the325

mean and covariance. Overall, the models that we have developed can be seen as mean-squared326

error based time series models for probabilistic forecasting where the uncertainty in the models only327

depend on the time in between observations and not the observations themselves.328

8

Brusselator Double Pendulum FitzHugh Lorenz Lotka Van der Pol

MSE 3.04 ± 0.69 9.03 ± 0.34 27.75 ± 4.50 5.91 ± 0.60 2.16 ± 1.18 -0.77 ± 0.01
AR-MSE 0.49 ± 0.18 0.61 ± 0.02 15.08 ± 1.18 8.82 ± 0.29 0.12 ± 0.25 -0.59 ± 0.01
AR-MLE (Latent) 3.39 ± 1.91 0.43 ± 0.01 13.10 ± 2.48 8.49 ± 1.05 0.23 ± 0.27 -0.70 ± 0.00
AR-MLE (Obs.) 3.79 ± 2.05 0.42 ± 0.01 13.35 ± 2.47 7.77 ± 0.76 0.11 ± 0.32 -0.70 ± 0.00
FBGM (Latent) 2.06 ± 1.12 0.56 ± 0.03 6.15 ± 0.75 12.11 ± 0.80 0.17 ± 0.42 -0.69 ± 0.00
FBGM (Obs.) 0.93 ± 0.29 0.51 ± 0.01 11.67 ± 1.80 5.28 ± 0.50 0.47 ± 0.67 -0.71 ± 0.00

(a) Negative log likelihood (lower is better)

Brusselator Double Pendulum FitzHugh Lorenz Lotka Van der Pol

MSE 0.56 ± 0.02 0.99 ± 0.00 2.15 ± 0.16 1.09 ± 0.01 0.50 ± 0.02 0.48 ± 0.00
AR-MSE 0.59 ± 0.01 1.16 ± 0.01 3.58 ± 0.27 1.25 ± 0.01 0.55 ± 0.03 0.52 ± 0.00
AR-MLE (Latent) 0.65 ± 0.04 1.27 ± 0.01 2.32 ± 0.17 1.26 ± 0.03 0.59 ± 0.03 0.52 ± 0.01
AR-MLE (Obs.) 0.66 ± 0.05 1.27 ± 0.01 2.37 ± 0.13 1.26 ± 0.04 0.58 ± 0.03 0.52 ± 0.01
FBGM (Latent) 0.62 ± 0.05 1.20 ± 0.01 2.34 ± 0.17 1.09 ± 0.03 0.55 ± 0.03 0.49 ± 0.01
FBGM (Obs.) 0.64 ± 0.02 1.17 ± 0.01 2.29 ± 0.15 1.08 ± 0.02 0.55 ± 0.03 0.51 ± 0.00

(b) Normalized root mean squared error (lower is better)

Table 1: Evaluation metrics for our models (MSE and AR-MSE) for probabilistic forecasting
compared to baseline models trained in both the latent and data spaces.

4 Experiments329

We compare the performance of our models versus other approaches to time series modeling in latent330

probabilistic forecasting on dynamical system datasets. We created 6 synthetic datasets representing331

noisy observations of dynamical systems. Our models used a Wiener velocity model as our base SDE332

and emission potentials of the form ϕ(xtk |θtk(yτ1:N)) ∝ N(ytk |xtk , σ
2I). Our models, qMSE and333

qMSE-AR, and the baseline models were trained to approximate the probabilistic forecasting distribution334

p(xtk+1:N
|xt1:k , yO). See Appendix I for details about the datasets, parameters used for stochastic335

interpolation and other implementation details. Our models, qMSE and qMSE-AR, were each trained336

using mean squared error to learn their respective Bayes estimators. We used a non-autoregressive337

FBGM trained with flow-matching and a conditional Gaussian chain trained for maximum likelihood338

as our baselines. We trained each of these baselines in two ways to learn p(xtk+1:N
|xt1:k , yO). First,339

we trained these baseline models to learn the latent distribution directly by learning directly from340

samples from p(xt1:N |yτ1:N). Second, we trained these models in the observation space to learn341

p(yU |yO) directly, and at test time, produced latent samples xtk+1:N
by first sampling yU using yO,342

and then sampling from the stochastic interpolator using the full sequence (yO, yU). For all of the343

autoregressive models, instead of learning the distribution of the first point p(xtk+1
|yO), we produced344

a heuristic sample by sampling from the stochastic interpolant that is only conditioned on yO. We345

always chose tk+1 to be a time contained in O in order for this heuristic to give reasonable samples.346

For each model, we trained using 5 different seeds and report the (empirical) negative log likelihood347

and normalized root mean squared error of samples from the true distribution, p(xtk+1:N
|yU), using348

32 sampled trajectories from each model, averaged over each dimension and time step. In all of our349

models, we used a one layer recurrent neural network with a GRU cell as we found that this model350

had sufficient model capacity to represent our data. Our results are displayed in Table 1. We can see351

that the AR352

5 Conclusion353

We showed how to generalize the elements that comprise flow-based generative models to the354

time series setting and uncovered a discrete time version of these models that shares convenient355

properties that FBGMs possess, including a closed form solution and Bayes estimator parameters.356

Our framework also encapsulates other existing time series models, including MSE based non-357

probabilistic forecasters and conditional Gaussian autoregressive models. This unified perspective358

sheds light into the role that FBGMs can play in time series.359

9

References360

Aditya Ramesh, Prafulla Dhariwal, Alex Nichol, Casey Chu, and Mark Chen. Hierarchical text-361

conditional image generation with clip latents. arXiv preprint arXiv:2204.06125, 1(2):3, 2022.362

Dustin Podell, Zion English, Kyle Lacey, Andreas Blattmann, Tim Dockhorn, Jonas Müller, Joe363

Penna, and Robin Rombach. Sdxl: Improving latent diffusion models for high-resolution image364

synthesis. arXiv preprint arXiv:2307.01952, 2023.365

Chitwan Saharia, William Chan, Saurabh Saxena, Lala Li, Jay Whang, Emily L Denton, Kamyar366

Ghasemipour, Raphael Gontijo Lopes, Burcu Karagol Ayan, Tim Salimans, et al. Photorealistic367

text-to-image diffusion models with deep language understanding. Advances in neural information368

processing systems, 35:36479–36494, 2022.369

Prafulla Dhariwal and Alexander Nichol. Diffusion models beat gans on image synthesis. Advances370

in neural information processing systems, 34:8780–8794, 2021.371

Jonathan Ho and Tim Salimans. Classifier-free diffusion guidance. arXiv preprint arXiv:2207.12598,372

2022.373

Guan-Horng Liu, Yaron Lipman, Maximilian Nickel, Brian Karrer, Evangelos Theodorou, and Ricky374

T. Q. Chen. Generalized schrödinger bridge matching. In The Twelfth International Conference on375

Learning Representations, 2024. URL https://openreview.net/forum?id=SoismgeX7z.376

Carles Domingo-Enrich, Michal Drozdzal, Brian Karrer, and Ricky TQ Chen. Adjoint matching:377

Fine-tuning flow and diffusion generative models with memoryless stochastic optimal control.378

arXiv preprint arXiv:2409.08861, 2024.379

Aaron Havens, Benjamin Kurt Miller, Bing Yan, Carles Domingo-Enrich, Anuroop Sriram, Brandon380

Wood, Daniel Levine, Bin Hu, Brandon Amos, Brian Karrer, et al. Adjoint sampling: Highly381

scalable diffusion samplers via adjoint matching. arXiv preprint arXiv:2504.11713, 2025.382

Valentin De Bortoli, Guan-Horng Liu, Tianrong Chen, Evangelos A Theodorou, and Weilie Nie.383

Augmented bridge matching. arXiv preprint arXiv:2311.06978, 2023.384

Yifan Chen, Mark Goldstein, Mengjian Hua, Michael S. Albergo, Nicholas M. Boffi, and Eric385

Vanden-Eijnden. Probabilistic forecasting with stochastic interpolants and föllmer processes,386

2024a.387

Ella Tamir, Najwa Laabid, Markus Heinonen, Vikas Garg, and Arno Solin. Conditional flow matching388

for time series modelling. In ICML 2024 Workshop on Structured Probabilistic Inference {\&}389

Generative Modeling, 2024.390

Byoungwoo Park, Hyungi Lee, and Juho Lee. Efficient modeling of irregular time-series with stochas-391

tic optimal control. In NeurIPS 2024 Workshop on Bayesian Decision-making and Uncertainty,392

2024. URL https://openreview.net/forum?id=KRtuDGFJzu.393

Yu Chen, Marin Biloš, Sarthak Mittal, Wei Deng, Kashif Rasul, and Anderson Schneider. Recurrent394

interpolants for probabilistic time series prediction. arXiv preprint arXiv:2409.11684, 2024b.395

Yiyuan Yang, Ming Jin, Haomin Wen, Chaoli Zhang, Yuxuan Liang, Lintao Ma, Yi Wang, Chenghao396

Liu, Bin Yang, Zenglin Xu, et al. A survey on diffusion models for time series and spatio-temporal397

data. arXiv preprint arXiv:2404.18886, 2024.398

Caspar Meijer and Lydia Y. Chen. The rise of diffusion models in time-series forecasting, 2024.399

Michael Samuel Albergo and Eric Vanden-Eijnden. Building normalizing flows with stochastic400

interpolants. In The Eleventh International Conference on Learning Representations, 2023. URL401

https://arxiv.org/abs/2209.15571.402

Yuyang Shi, Valentin De Bortoli, Andrew Campbell, and Arnaud Doucet. Diffusion schrödinger403

bridge matching. Advances in Neural Information Processing Systems, 36, 2024.404

Pascal Vincent. A connection between score matching and denoising autoencoders. Neural computa-405

tion, 23(7):1661–1674, 2011.406

10

https://openreview.net/forum?id=SoismgeX7z
https://openreview.net/forum?id=KRtuDGFJzu
https://arxiv.org/abs/2209.15571

Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and Ben407

Poole. Score-based generative modeling through stochastic differential equations. In International408

Conference on Learning Representations, 2021. URL https://openreview.net/forum?id=409

PxTIG12RRHS.410

Edwin T Jaynes. Probability theory: The logic of science. Cambridge university press, 2003.411

Yaron Lipman, Ricky T. Q. Chen, Heli Ben-Hamu, Maximilian Nickel, and Matthew Le. Flow412

matching for generative modeling. In The Eleventh International Conference on Learning Repre-413

sentations, 2023. URL https://openreview.net/forum?id=PqvMRDCJT9t.414

Xingchao Liu, Chengyue Gong, and Qiang Liu. Flow straight and fast: Learning to generate415

and transfer data with rectified flow. In The Eleventh International Conference on Learning416

Representations, 2023. URL https://openreview.net/forum?id=XVjTT1nw5z.417

Aram-Alexandre Pooladian, Heli Ben-Hamu, Carles Domingo-Enrich, Brandon Amos, Yaron418

Lipman, and Ricky T. Q. Chen. Multisample flow matching: Straightening flows with mini-419

batch couplings. In International Conference on Machine Learning, 2023. URL https:420

//api.semanticscholar.org/CorpusID:258418096.421

John Lafferty, Andrew McCallum, Fernando Pereira, et al. Conditional random fields: Probabilistic422

models for segmenting and labeling sequence data. In Icml, volume 1, page 3. Williamstown, MA,423

2001.424

Charles Sutton, Andrew McCallum, et al. An introduction to conditional random fields. Foundations425

and Trends® in Machine Learning, 4(4):267–373, 2012.426

Simo Särkkä and Arno Solin. Applied stochastic differential equations, volume 10. Cambridge427

University Press, 2019.428

Raghav Singhal, Mark Goldstein, and Rajesh Ranganath. Where to diffuse, how to diffuse, and how to429

get back: Automated learning for multivariate diffusions. In The Eleventh International Conference430

on Learning Representations, 2023. URL https://openreview.net/forum?id=osei3IzUia.431

Simo Särkkä et al. Recursive Bayesian inference on stochastic differential equations. Helsinki432

University of Technology, 2006.433

Syeda Sakira Hassan, Simo Särkkä, and Ángel F García-Fernández. Temporal parallelization of434

inference in hidden markov models. IEEE Transactions on Signal Processing, 69:4875–4887,435

2021.436

Adrien Corenflos, Zheng Zhao, and Simo Särkkä. Gaussian process regression in logarithmic time.437

arXiv preprint arXiv, 2102, 2021.438

Jimmy T.H. Smith, Andrew Warrington, and Scott Linderman. Simplified state space layers for439

sequence modeling. In The Eleventh International Conference on Learning Representations, 2023.440

URL https://openreview.net/forum?id=Ai8Hw3AXqks.441

Calvin Luo. Understanding diffusion models: A unified perspective. arXiv preprint arXiv:2208.11970,442

2022.443

Sander Dieleman. Perspectives on diffusion, 2023. URL https://sander.ai/2023/07/20/444

perspectives.html.445

Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep unsupervised446

learning using nonequilibrium thermodynamics. In International conference on machine learning,447

pages 2256–2265. PMLR, 2015.448

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Advances in449

neural information processing systems, 33:6840–6851, 2020.450

Tim Dockhorn, Arash Vahdat, and Karsten Kreis. Score-based generative modeling with critically-451

damped langevin diffusion. In International Conference on Learning Representations, 2022. URL452

https://openreview.net/forum?id=CzceR82CYc.453

11

https://openreview.net/forum?id=PxTIG12RRHS
https://openreview.net/forum?id=PxTIG12RRHS
https://openreview.net/forum?id=PxTIG12RRHS
https://openreview.net/forum?id=PqvMRDCJT9t
https://openreview.net/forum?id=XVjTT1nw5z
https://api.semanticscholar.org/CorpusID:258418096
https://api.semanticscholar.org/CorpusID:258418096
https://api.semanticscholar.org/CorpusID:258418096
https://openreview.net/forum?id=osei3IzUia
https://openreview.net/forum?id=Ai8Hw3AXqks
https://sander.ai/2023/07/20/perspectives.html
https://sander.ai/2023/07/20/perspectives.html
https://sander.ai/2023/07/20/perspectives.html
https://openreview.net/forum?id=CzceR82CYc

Tianrong Chen, Jiatao Gu, Laurent Dinh, Evangelos Theodorou, Joshua M. Susskind, and Shuangfei454

Zhai. Generative modeling with phase stochastic bridge. In The Twelfth International Conference on455

Learning Representations, 2024c. URL https://openreview.net/forum?id=tUtGjQEDd4.456

Yaakov Bar-Shalom, X. Rong Li, and Thiagalingam Kirubarajan. Estimation with Applications457

to Tracking and Navigation. John Wiley & Sons, New York, 2001. ISBN 9780471221272.458

doi: 10.1002/0471221279. URL https://onlinelibrary.wiley.com/doi/book/10.1002/459

0471221279.460

Diederik Kingma, Tim Salimans, Ben Poole, and Jonathan Ho. Variational diffusion models. Advances461

in neural information processing systems, 34:21696–21707, 2021.462

Marcel Kollovieh, Abdul Fatir Ansari, Michael Bohlke-Schneider, Jasper Zschiegner, Hao Wang, and463

Yuyang Bernie Wang. Predict, refine, synthesize: Self-guiding diffusion models for probabilistic464

time series forecasting. Advances in Neural Information Processing Systems, 36:28341–28364,465

2023.466

Xinyu Yuan and Yan Qiao. Diffusion-TS: Interpretable diffusion for general time series generation.467

In The Twelfth International Conference on Learning Representations, 2024. URL https://468

openreview.net/forum?id=4h1apFjO99.469

Marcel Kollovieh, Marten Lienen, David Lüdke, Leo Schwinn, and Stephan Günnemann. Flow470

matching with gaussian process priors for probabilistic time series forecasting. In The Thirteenth471

International Conference on Learning Representations, 2025. URL https://openreview.net/472

forum?id=uxVBbSlKQ4.473

Yang Hu, Xiao Wang, Lirong Wu, Huatian Zhang, Stan Z Li, Sheng Wang, and Tianlong Chen. Fm-ts:474

Flow matching for time series generation. arXiv preprint arXiv:2411.07506, 2024.475

Kashif Rasul, Calvin Seward, Ingmar Schuster, and Roland Vollgraf. Autoregressive denoising476

diffusion models for multivariate probabilistic time series forecasting. In International Conference477

on Machine Learning, pages 8857–8868. PMLR, 2021.478

Macheng Shen and Chen Cheng. Neural sdes as a unified approach to continuous-domain sequence479

modeling. arXiv preprint arXiv:2501.18871, 2025.480

Ahmed El-Gazzar and Marcel van Gerven. Probabilistic forecasting via autoregressive flow matching.481

arXiv preprint arXiv:2503.10375, 2025.482

Matthew James Beal. Variational algorithms for approximate Bayesian inference. University of483

London, University College London (United Kingdom), 2003.484

Matthew James Johnson et al. Bayesian time series models and scalable inference. PhD thesis,485

Massachusetts Institute of Technology, 2014.486

Simo Särkkä and Ángel F García-Fernández. Temporal parallelization of bayesian smoothers. IEEE487

Transactions on Automatic Control, 66(1):299–306, 2020.488

Daphane Koller. Probabilistic Graphical Models: Principles and Techniques. The MIT Press, 2009.489

Bernt Øksendal and Bernt Øksendal. Stochastic differential equations. Springer, 2003.490

Rudolph Emil Kalman. A new approach to linear filtering and prediction problems. Transactions of491

the ASME–Journal of Basic Engineering, 82(Series D):35–45, 1960.492

H. E. Rauch, F. Tung, and C. T. Striebel. Maximum likelihood estimates of linear dynamic systems.493

AIAA Journal, 3(8):1445–1450, 1965.494

Emily Beth Fox. Bayesian nonparametric learning of complex dynamical phenomena. PhD thesis,495

Massachusetts Institute of Technology, 2009.496

Matthew Johnson and Scott Linderman. pylds: Bayesian inference for linear dynamical systems.497

https://github.com/mattjj/pylds, 2015. Accessed: 2025-05-07.498

12

https://openreview.net/forum?id=tUtGjQEDd4
https://onlinelibrary.wiley.com/doi/book/10.1002/0471221279
https://onlinelibrary.wiley.com/doi/book/10.1002/0471221279
https://onlinelibrary.wiley.com/doi/book/10.1002/0471221279
https://openreview.net/forum?id=4h1apFjO99
https://openreview.net/forum?id=4h1apFjO99
https://openreview.net/forum?id=4h1apFjO99
https://openreview.net/forum?id=uxVBbSlKQ4
https://openreview.net/forum?id=uxVBbSlKQ4
https://openreview.net/forum?id=uxVBbSlKQ4
https://github.com/mattjj/pylds

A Appendix499

The appendix contains proofs and implementation details for the main paper. It is organized as500

follows:501

1. Related work Appendix B502

2. Background Appendix C503

• Exponential family distributions Appendix C.1504

• Mean field variational inference Appendix C.2505

• Bayes estimation Appendix C.3506

3. Message passing (D)507

• Sequential message passing (D.1)508

• Parallel message passing (D.2)509

• Basic probabilistic queries (D.4)510

4. Conditioned linear SDEs (E)511

• Conditioned linear SDEs (E.1)512

• Basic probabilistic queries (E.2)513

• Corresponding probability flow ODE (E.3)514

5. Constrained mean field VI (F)515

• Derivation (F.1)516

• Bayes estimator equivariance (F.2)517

• CMFVI time series models (F.3)518

6. Flow-based generative models (G)519

• Score function of FBGMs (G.1)520

• General form of Markovian projection SDE (G.2)521

• General form of Markovian projection ODE (G.3)522

7. Message passing implementation details (H)523

• Numerical stability considerations (H.1)524

• Message passing pseudocode (H.2)525

8. Dataset details (I)526

9. Model implementation details (J)527

B Related Work528

There are numerous perspectives on flow-based generative models [Luo, 2022, Dieleman, 2023] and529

even more variants of these models. At their core, these models start by constructing a stochastic530

process that starts at a prior distribution and ends at the data distribution. Diffusion models use531

progressive noising of data to build this map [Sohl-Dickstein et al., 2015, Ho et al., 2020, Song et al.,532

2021] via a simple SDE whose stationary distribution is Gaussian. On the other hand, flow-matching533

models [Liu et al., 2023, Albergo and Vanden-Eijnden, 2023, Lipman et al., 2023] use a stochastic534

bridge to build this map by conditioning a simple SDE to start at a point in the prior distribution and535

end at the data distribution. The choice of simple SDE used in all of these models is a user-defined536

choice that typically is a linear SDE, such as variance preserving SDE [Song et al., 2021], Brownian537

motion, Ornstein-Uhlenbeck process, and others, due to their tractability as Gaussian processes538

[Särkkä and Solin, 2019], and is even used to construct more exotic latent SDEs such as critically539

damped langevin dynamics [Dockhorn et al., 2022, Chen et al., 2024c] or the Weiner velocity model540

[Bar-Shalom et al., 2001, Särkkä et al., 2006]. In our paper, we abstract away these choices and541

generally consider using linear SDEs to construct the initial map between distributions. There are a542

few different ways to go from this initial stochastic process to a FBGM. A common way to construct543

a FBGM from this is construct and optimize and ELBO for the likelihood of data under this initial544

process [Kingma et al., 2021]. Alternatively, one can directly solve for the SDE whose marignal545

distribution is that of this initial process [Song et al., 2021, Lipman et al., 2023] or define it as the546

13

SDE whose path measure is as close as possible to the initial process [Shi et al., 2024, De Bortoli547

et al., 2023] in terms of KL divergence, called the Markovian projection. We adopt the latter view548

over the ELBO view because it explicitly constructs a solution to the generative modeling problem549

and is available in closed form while this is hidden in the ELBO formulation and show that the550

solution to a mean field variational inference problem can be seen as an approximate discrete time551

counterpart.552

Flow-based generative models have been successfully applied to time series problems in a non-553

autoregressive fashion [Kollovieh et al., 2023, Yuan and Qiao, 2024, Kollovieh et al., 2025, Hu554

et al., 2024, Yang et al., 2024, Meijer and Chen, 2024]. These models transform the time series555

generative modeling problem into the standard generative modeling problem used in image generation556

by treating each time series as a single vector by concatenating all times together, and then learning a557

map from a Gaussian vector of the same size to the data vector. These approaches can be conditioned558

using guidance [Rasul et al., 2021, Dhariwal and Nichol, 2021, Ho and Salimans, 2022, Kollovieh559

et al., 2023] which allows them to perform tasks such as forecasting and imputation. Our approach560

differs from these in that we construct autoregressive models.561

The class of models most relevant to our paper are autoregressive neural SDEs that are trained using562

principles from flow-based generative models. [Chen et al., 2024a] uses a FÃűllmer process to model563

the transition distributions of the distribution of time series data, which is the same approach that we564

adopt in our Neural SDE model. [Park et al., 2024] also learns a similar latent Neural SDE model that565

uses a similar form of soft conditioning as us (through the use of emission potentials), and is trained566

to maximize the likelihood of data. [Tamir et al., 2024] is also similar where they perform stochastic567

interpolation using Gaussian processes and perform inference with Kalman smoothing as well, which568

is a form of message passing. Finally, [Shen and Cheng, 2025] learns a more general SDE to learn569

the distribution of time series data where the diffusion coefficient is not independent of the current570

state and also maximize the likelihood of data. These related papers are all related to the Neural571

SDE that we describe in our paper. Our main contributions are centered around investigating how to572

apply the approach used to construct these continuous time models for creating similar discrete time573

models. [El-Gazzar and van Gerven, 2025] used flow matching to learn the next state distribution of574

time series data, but did not learn a FÃűllmer process for this task and instead learned to transform a575

Gaussian into the next state distribution.576

C Background577

C.1 Exponential family distributions578

Our findings can be most easily written using exponential family distributions. Although we restrict579

our attention to Gaussian distributions, the form of our results are most readable in natural parameter580

space.581

Definition 3 (Exponential family distribution). An probability distribution is in the exponential family582

if its density function can be written in the following form:583

p(x|θ) = exp{⟨t(x), θ⟩ −A(θ)} (20)

where t(x) is called the sufficient statistic, θ the natural parameter and A(θ) the partition function.584

The member of this family that we will use is the multivariate Gaussian distribution. A multivariate585

Gaussian with mean µ and covariance matrix Σ has the sufficient statistic t(x) = (x, xxT) and natural586

parameters θ = (− 1
2Σ

−1,Σ−1µ). In practice, it is more convenient to drop the − 1
2 scaling term and587

work with the parameters (J, h) = (−Σ−1,Σ−1µ), where J is the precision matrix of the distribution.588

While these are not exactly the natural parameters, we will refer to them as so. Throughout this paper,589

we will work with unnormalized Gaussian distributions, which we call “Gaussian potentials”. We590

use the notation ϕ(x|θ) to denote a Gaussian potential function over x with natural parameters θ. A591

convenient property of the natural parameter form is that the score function takes a simple form.592

∇ log ϕ(x|θ) = Jx− h (21)

Another Gaussian distribution that we will use extensively is the Gaussian transition distribution. We593

write ϕk+1|k(xk+1|xk) = N(xk+1|Axk + u,Σ) to denote the Gaussian transition distribution from594

xk to xk+1 with state transition matrix A, bias vector u and covariance matrix Σ.595

14

C.2 Mean field variational inference596

Mean field variational inference is an approximate inference algorithm for probabilistic models. It’s597

main feature is that it’s solution is available in a simple closed form expression. Let p(x, θ) be a joint598

distribution over x and θ. The mean field variational problem is to find distributions, qx(x) and qθ(θ)599

that minimize the KL divergence between qx(x)qθ(θ) and p(x, θ).600

Proposition 8 (Mean field variational inference for CRFs). Let p(θ) be a distribution over θ, p(x|θ)601

be the CRF in Definition 1 and p(x, θ) = p(θ)p(x|θ) be the joint distribution over x and θ. Then the602

solutions to603

argmin
qx(x),qθ(θ)

KL [qx(x)qθ(θ)|p(x, θ)] (22)

will satisfy:604

qx(x) ∝ exp{Eqθ(θ) [log p(x|θ)]} (23)

qθ(θ) ∝ exp{Eqx(x) [log p(θ|x)]} (24)

See [Beal, 2003] for a proof. Typical use cases of mean field VI use tractable classes of distributions605

for p(θ) and p(x|θ) so that one can perform EM style, alternating updates to obtain the optimal q606

distributions [Beal, 2003, Johnson et al., 2014]. However, in our setting, we will use mean field VI607

differently. We will assume nothing about the form of p(θ), but will constrain the variational problem608

by fixing qθ(θ) = p(θ).609

C.3 Bayes estimation610

Lemma 1 (Bayes estimate of parameter). Let p(z, θ) be a joint distribution and let θ∗(z) be the611

Bayes estimate of θ based on z under the squared error risk. Then the Bayes estimate takes the612

following two forms:613

θ∗(z) = Ep(θ|z)[θ] = argmin
f(z)

Ep(z,θ)

[
∥f(z)− θ∥2

]
(25)

Proof. Let L[f] be the loss function defined as follows:614

L[f] = Ep(z)

[
∥f(z)− θ∗(z)∥2

]
Clearly, the minimizer of L[f] is θ∗(z). With a bit of rearranging and using Bayes rule, we can615

rewrite L[f] as follows:616

L[f] = Ep(z)

[
∥f(z)− θ∗(z)∥2

]
= Ep(z)

[
∥f(z)∥2

]
− 2Ep(z) [⟨f(z), θ∗(z)⟩] + Ep(z)

[
∥θ∗(z)∥2

]︸ ︷︷ ︸
const. w.r.t. f

= Ep(z,θ)

[
∥f(z)∥2

]
− 2Ep(z)

[
⟨f(z),Ep(θ|z) [θ]⟩

]
+ const.

= Ep(z,θ)

[
∥f(z)∥2

]
− 2Ep(z,θ) [⟨f(z), θ⟩] + const.

(complete the square)

= Ep(z,θ)

[
∥f(z)− θ∥2

]
− Ep(z,θ)

[
∥θ∥2

]︸ ︷︷ ︸
const. w.r.t. f

+const.

The minimizer of L[f] is unaffected by the constant terms, and so we have that θ∗(z) = Ep(θ|z)[θ] is617

the solution to618

argmin
f(z)

Ep(z,θ)

[
∥θ − f(z)∥2

]
619

15

D Message passing620

In this section we will review message passing and identify the key operations that are needed to621

perform message passing updates. We defer the discussion of numerically stable implementations of622

these operations to Appendix H. First we’ll identify the key operations that are needed to perform623

message passing updates for the backward messages and then show how these operations can be used624

to perform message passing updates for the forward messages.625

At a high level, the sequential and parallel message passing algorithms are variable elimination626

algorithms that eliminate different variables of the chain structured graph. The sequential algorithms627

operates on individual nodes and begins at one of the ends of the chain and sequentially eliminate628

variable at the end of the chain, whereas the parallel algorithm operates on pairs of nodes and629

eliminates the middle variable of the pair. For example, a rough sketch of the sequential elimination630

process looks like (0), 1, 2, 3, 4 → (1), 2, 3, 4 → (2), 3, 4 → (3), 4 → (4), where the parentheses631

indicate the current node that is being processed. On the other hand, the parallel algorithm looks like632

(0, 1), 2, 3, 4 → (0, 2), 3, 4 → (0, 3), 4 → (0, 4).633

D.1 Sequential message passing634

The sequential message passing updates for the backward messages can be written using the following635

recurrence relation:636

ϕ(xk−1|βk−1) =

∫
ϕk|k−1(xk|xk−1)ϕ(xk|θk)ϕ(xk|βk)dxk, βN = 0 (26)

See Appendix H.3 for pseudocode. There are two operations on Gaussians that are needed to perform637

these updates. The first is a “multiply” operation that takes two potential functions and returns a new638

potential function, and the second is an “update” operation that absorbs a potential function into a639

transition function.640

Definition 4 (Multiply). Let ϕ1(x) and ϕ2(x) be potential functions over the same variable. Then641

the “multiply” operation is defined as642

ϕ1(x)ϕ2(x) 7→ ϕ̂(x) (27)

When ϕ1(x) and ϕ2(x) are parameterized using natural parameters, then the multiply operation simply643

adds the natural parameters, i.e. if θ1 and θ2 are the natural parameters of ϕ1(x) and ϕ2(x), then644

ϕ1(x|θ1)ϕ2(x|θ2) 7→ ϕ1(x|θ1 + θ2). We used this property to write the sequential message passing645

updates for the backward messages ??. We do note that when one uses a different parameterization,646

the multiply operation may look different. We will examples of this in Appendix H.647

The second operation is the “update” operation, which absorbs a potential function into a transition648

function. This operation is what handles the integral in the recurrence relation.649

Definition 5 (Update). Let ϕ(y|x) be a transition function and ϕ(y) be a potential function over the650

first variable. Then the “update” operation is defined as651

ϕ(y)ϕy|x(y|x) 7→ ϕ̂y|x(y|x)ϕ̂(x) (28)

where ϕ̂y|x(y|x) and ϕ̂(x) are a new transition function and potential function, respectively.652

Essentially, the update operation performs a change of variables of the coupling of x and y on the653

LHS. Furthermore, when the terms of the LHS are Gaussian, then the terms of the RHS are also654

Gaussian. This allows us to perform the update operation in closed form (see Appendix H).655

The multiply and update operations are sufficient to perform the sequential message passing updates656

for the backward messages. For example, the backward message passing updates can be written as:657 ∫
ϕk|k−1(xk|xk−1) ϕ(xk|θk)ϕ(xk|βk)︸ ︷︷ ︸

multiply →ϕ(xk|θk+βk)

dxk (29)

=

∫
ϕ(xk|θk + βk)ϕk|k−1(xk|xk−1)︸ ︷︷ ︸

update →ϕ̂k|k−1(xk|xk−1)ϕ(xk−1|βk−1)

dxk (30)

16

=

∫
ϕ̂k|k−1(xk|xk−1)dxk︸ ︷︷ ︸
transition integrates to 1

ϕ(xk−1|βk−1) (31)

= ϕ(xk−1|βk−1) (32)

The forward messages can be computed in a similar manner. The forward messages are given by:658

ϕ(xk+1|αk+1) =

∫
ϕk+1|k(xk+1|xk)ϕ(xk|θk)ϕ(xk|αk)dxk, α1 = 0 (33)

To find the forward messages, we can exploit the fact that our transition functions are Gaussian and659

can therefore be reversed. This means that given a transition ϕ(y|x), we can find a reversed transition660

ϕT (x|y) that evaluates to the same value as ϕ(y|x) for all x, y661

Definition 6 (Reversed transition). Let ϕ(y|x) be a transition function. Then the reversed transition662

is defined as663

ϕT (x|y) = ϕ(y|x) (34)

so that ϕT (x|y) = ϕ(y|x) for all x, y and
∫
ϕT (x|y)dx =

∫
ϕ(y|x)dx = 1.664

Using this reverse operation, we can simply reverse the transition distributions and then find the665

forward messages by using the same recurrence relation as for the backward messages:666 ∫
ϕk+1|k(xk+1|xk)︸ ︷︷ ︸

reverse

ϕ(xk|θk)ϕ(xk|αk)︸ ︷︷ ︸
multiply →ϕ(xk|θk+αk)

dxk (35)

=

∫
ϕT (xk|xk+1)ϕ(xk|θk + αk)︸ ︷︷ ︸

update →ϕ̂T (xk|xk+1)ϕ(xk+1|αk+1)

dxk (36)

=

∫
ϕ̂T (xk|xk+1)dxk︸ ︷︷ ︸

transition integrates to 1

ϕ(xk+1|αk+1) (37)

= ϕ(xk+1|αk+1) (38)

These message passing updates can be computed in O(N) time using the the multiply, update and667

reverse operations. However, there is a more efficient way to compute the forward messages using668

the parallel scan algorithm [Särkkä and García-Fernández, 2020] that reduces the complexity to669

O(logN) on parallel compute. We will describe this algorithm in Appendix D.2.670

D.2 Parallel message passing671

In this section we will use slightly different notation to describe the parallel message passing672

algorithm. We will avoid writing out the parameters of our potential functions and call them by their673

parameter name. For example, instead of writing ϕ(xk|θk), we will write ϕk(xk) and instead of674

writing ϕ(xk|βk), we will write β(xk).675

The building block of the parallel message passing algorithm Särkkä and García-Fernández [2020] is676

an unnormalized potential function over two variables, which we denote by Ψ(y, x). We assume that677

Ψ(y, x) can be decomposed into a (normalized) transition distribution and an unnormalized potential678

function:679

Ψ(y, x) = Ψ(y|x)Ψ(x) (39)

Whenever we write Ψ(y|x), we are referring to a valid conditional probability distribution680

(
∫
Ψ(y|x)dy = 1). Since Ψ(y, x) is jointly Gaussian over x and y, we are able to integrate out681

variables in x and y and can also combine neighboring potentials into a new Gaussian potential.682

These properties allow us to construct a chain operation over potentials that combines neighboring683

potentials and then integrates out the common variable. We denote this chain operation by ⊗:684

Ψ(y, x) :=

∫
Ψ(y, z)Ψ(z, x)dz =: Ψ(y, z)⊗Ψ(z, x) (40)

17

An important property of the chain operation is that it is associative due to the fact that we can swap685

the order or integration (we will prove this in Appendix D.3).686

A useful perspective of this chain operation is that it amounts to performing variable elimination on687

the graph defined by the potentials, i.e. performs some sort of message passing [Koller, 2009]. With688

this in mind, we can perform message passing by constructing the appropriate joint potentials:689

Proposition 9 (Parallel messages). Let ϕk+1|k and ϕk be the potential functions for the CRF in690

Definition 1 and α and β be the messages defined in Eqs. (26) and (33). Then691

αk(xk) =

∫
Ψfwd

1:k(xk, x1)dx1 and βk(xk) =

∫
Ψbwd

k:N (xN |xk)dxN (41)

where692

Ψfwd
1:k(xk, x1) =

k−1⊗
i=1

ϕi+1|i(xi+1|xi)ϕi(xi) (42)

and Ψbwd
k:N (xN |xk) =

k⊗
i=N−1

ϕi+1|i(xi+1|xi)ϕi+1(xi+1) (43)

See appendix Appendix D.3 for a proof and ?? for pseudocode. Since ⊗ is associative, we can693

evaluate Eq. (42) in O(logN) time using the parallel scan algorithm [Särkkä and García-Fernández,694

2020]. The rough idea is that on parallel compute, one can, in parallel, chain together consecutive695

pairs of potentials and then recurse on these new chained potentials in order to eventually chain the696

entire sequence. We provide pseudocode for this a special case of this algorithm in Appendix H.3.697

Ψfwd
1:k(xk, x1) and Ψbwd

k:N (xN |xk) can be thought of as the result of marginalization over the variables698

between x1 and xk and xk and xN , respectively.699

D.3 Chain operation700

Recall that the chain operation is defined in Eq. (40) as701

Ψ(y, x) :=

∫
Ψ(y, z)Ψ(z, x)dz =: Ψ(y, z)⊗Ψ(z, x) (44)

To see that it is associative, we need to check that Ψ(y, z) ⊗ (Ψ(z, x)⊗Ψ(x,w)) =702

(Ψ(y, z)⊗Ψ(z, x))⊗Ψ(x,w)703

Ψ(y, z)⊗ (Ψ(z, x)⊗Ψ(x,w)) =

∫
Ψ(y, z)

Å∫
Ψ(z, x)Ψ(x,w)dx

ã
dz (45)

=

∫ ∫
Ψ(y, z)Ψ(z, x)Ψ(x,w)dxdz (46)

=

∫ Å∫
Ψ(y, z)Ψ(z, x)dz

ã
Ψ(x,w)dx (47)

= (Ψ(y, z)⊗Ψ(z, x))⊗Ψ(x,w) (48)

Proposition 10 (Parallel messages). Let ϕk+1|k and ϕk be the potential functions for the CRF in704

Definition 1 and α and β be the messages defined in Eqs. (26) and (33). Then705

αk(xk) =

∫
Ψfwd

1:k(xk, x1)dx1 and βk(xk) =

∫
Ψbwd

k:N (xN |xk)dxN (49)

where706

Ψfwd
1:k(xk, x1) =

k−1⊗
i=1

ϕi+1|i(xi+1|xi)ϕi(xi) (50)

and Ψbwd
k:N (xN |xk) =

k⊗
i=N−1

ϕi+1|i(xi+1|xi)ϕi+1(xi+1) (51)

18

Proof. First for notational clarity, define707

Ψbwd
i+1,i(xi+1|xi) = ϕi+1|i(xi+1|xi)ϕi+1(xi+1) and Ψfwd

i+1,i(xi+1, xi) = ϕi+1|i(xi+1|xi)ϕi(xi)
(52)

We can compute the cumulative potentials as follows:708

Ψbwd
k:N (xN |xk) =

k⊗
i=N−1

Ψbwd
i+1,i(xi+1|xi) (53)

= Ψbwd
N :N−1(xN |xN−1)⊗Ψbwd

N−1:N−2(xN−1|xN−2)⊗ · · · ⊗Ψbwd
k+1:k(xk+1|xk)

(54)

=

∫
Ψbwd

N :N−1(xN |xN−1)

∫
Ψbwd

N−1:N−2(xN−1|xN−2)dxN−1

∫
Ψbwd

N−2:N−3(xN−2|xN−3)dxN−2 · · · dxk+1

(55)

=

∫
· · ·
∫ N−1∏

i=k

Ψbwd
i:i+1(xi+1|xi)dxN−1 · · · dxk+1 (56)

And similarly for the forward potentials:709

Ψfwd
1:k(xk, x1) =

k−1⊗
i=1

Ψfwd
i+1,i(xi+1, xi) (57)

=

∫
· · ·
∫ k−1∏

i=1

Ψfwd
i+1,i(xi+1, xi)dx2 · · · dxk−1 (58)

Next, we can rewrite the joint distribution of the CRF in a similar form:710

p(x1:N) =

N−1∏
k=1

ϕk+1|k(xk+1|xk)

N∏
k=1

ϕk(xk) (59)

= ϕk(xk)

N−1∏
i=k

Ψbwd
i+1,i(xi+1|xi)

k−1∏
i=1

Ψfwd
i+1,i(xi+1, xi), ∀k ∈ {1, . . . , N} (60)

Then, integrating over the variables dx1, . . . , d̂xk, . . . , dxN , where d̂xk denotes that we are not711

integrating over xk, completes the proof:712

p(xk) =

∫
· · ·
∫

p(x1:N)dx1 . . . d̂xk . . . dxN (61)

∝
∫

· · ·
∫ N−1∏

k=1

ϕk+1|k(xk+1|xk)

N∏
k=1

ϕk(xk)dx1 . . . d̂xk . . . dxN (62)

= ϕk(xk)

∫
· · ·
∫ N−1∏

i=k

Ψbwd
i+1,i(xi+1|xi)

k∏
i=1

Ψfwd
i+1,i(xi+1, xi)dx1 . . . d̂xk . . . dxN (63)

= ϕk(xk)

∫
Ψbwd

k:N (xN |xk)dxN︸ ︷︷ ︸
βk(xk)

∫
Ψfwd

1:k(xk, x1)dx1︸ ︷︷ ︸
αk(xk)

(64)

We can recognize the terms in the last equation as the forward and backward messages, which713

completes the proof.714

It will be convenient later to define an operator that actually transforms the parameters of the backward715

messages.716

19

Definition 7 (Message passing update operator). Let ϕk+1|k(xk+1, xk) be a Gaussian transition717

function and let ϕ(xk+1|ηk+1) be a Gaussian node potential with natural parameters ηk+1. Next718

consider the message passing update:719

ϕ(xk|ηk) =
∫

ϕk+1|k(xk+1|xk)ϕ(xk+1|ηk+1)dxk+1 (65)

The message passing update operator is denoted by Φk,k+1(ηk+1) and is defined to satisfy:720

ηk = Φk,k+1(ηk+1) (66)

In particular, the update rule for the backward messages is given by:721

βk = Φk,k+1(βk+1 + θk+1) (67)

Corollary 2 (Mixed parameterization update rule). Let ϕk+1|k(xk+1|xk) := N(xk+1|Axk+u,Σ) be722

a Gaussian transition function and let ϕ(xk+1|ηk+1) := N(xk+1|µk+1, J
−1
k+1) be a Gaussian node723

potential where Jk+1 is the precision matrix. If ηk and ηk+1 represent the mean and precision matrix724

of a Gaussian distribution, then the update and marginalize operator is denoted by Φk,k+1(ηk+1)725

and is given by:726

Φk,k+1 (µk+1, Jk+1) =
Ä
A−1(µk+1 − u),Φ

(J)
k,k+1(Jk+1)

ä
(68)

where Φ
(J)
k,k+1(Jk+1) is a nonlinear function of Jk+1.727

Proof. The result follows from Appendix H.3.728

D.4 Probabilistic queries729

The forward and backward messages can be used to compute the majority of the probabilistic queries730

of interest on a CRF. Recall our definition of a CRF:731

p(x1:N |θ) ∝
N−1∏
k=1

ϕk+1|k(xk+1|xk)

N∏
k=1

ϕ(xk|θk) (69)

Next we will describe two probabilistic queries of interest: the marginal distribution and the transition732

distribution.733

Proposition 11 (Marginal distribution).
p(xk|θ) = ϕ(xk|θk + αk + βk) (70)

Proof. The derivation is given in Eq. (61). For completness, we will change notation:734

p(xk) = ϕk(xk)βk(xk)αk(xk) (notation in previous section) (71)
:= ϕ(xk|θk)ϕ(xk|αk)ϕ(xk|βk) (notation in this section and in main text) (72)
= ϕ(xk|θk + αk + βk) (73)

735

Proposition 12 (Transition distribution).
p(xk+1|xk, θ) ∝ ϕk+1|k(xk+1|xk)ϕ(xk+1|θk+1 + βk+1) (74)

Proof. We can start by computing the joint distribution p(xk+1, xk|θ). By using variable elimination,736

we can show that737

p(xk+1, xk|θ) = ϕ(xk|αk)ϕk+1|k(xk+1|xk)ϕ(xk+1|θk+1)ϕ(xk+1|βk+1) (75)

Dividing by the marginal distribution p(xk|θ) and using the definition of the transition distribution,738

we get739

p(xk+1|xk, θ) = ϕk+1|k(xk+1|xk)
ϕ(xk+1|βk+1 + θk+1)

ϕ(xk|βk + θk)
(76)

which, after absorbing the denominator into the normalization constant, is equivalent to the desired740

result.741

20

Corollary 3 (Autoregressive factorization). The autoregressive factorization of p(x1:N |θ) takes the742

following form:743

p(x1:N |θ) ∝ ϕ(x1|θ1 + β1)

N−1∏
k=1

ϕk+1|k(xk+1|xk)ϕ(xk+1|θk+1 + βk+1) (77)

Proof. This follows directly from applying Proposition 11 and Proposition 12 to p(x1:N |θ) =744

p(x1|θ)
∏N−1

k=1 p(xk+1|xk, θ).745

E Conditioned SDEs746

In this section we derive the form of conditioned linear SDEs as well as the corresponding probability747

flow ODEs.748

E.1 Conditioned linear SDE749

Proposition 13 (Conditioned Linear SDE). Let ϕt+s|t(xt+s|xt) be the transition distribution of the750

linear SDE dxt = Ftxtdt+ LtdWt and let {ϕ(xtk |θtk)}tk∈R be potential functions at times in the751

set R. Then the piecewise-linear SDE,752

dxt = (Ftxt + LtL
T
t ∇ log ϕ(xt|βt))dt+ LtdWt, xt1 ∼ ϕ(xt1 |β1 + θ1) (78)

where t ∈ (tk, tk+1) and tk, tk+1 ∈ R, has a joint distribution over any superset of times t1:N =753

T ⊇ R that is given by a CRF:754

p(xt1:N |θ) ∝
∏
tk∈T

ϕtk+1|tk(xtk+1
|xtk)

∏
tk∈R

ϕ(xtk |θtk) (79)

where βt is the extension of the backward message defined in ?? to time t:755

ϕ(xt|βt) =

∫
ϕtk+1|t(xtk+1

|xt)ϕ(xtk+1
|θtk+1

+ βtk+1
)dxtk+1

(80)

Proof. We will first construct the transition distribution of the conditioned SDE and then use Doob’s756

h-transform to identify the form of the SDE. Recall that Doob’s h-transform ([Särkkä and Solin,757

2019] section 7.5) is used to find the SDE associated with a transition distribution of the form758

p(xt+s|xt) = ϕt+s|t(xt+s|xt)
ht+s(xt+s)

ht(xt)
where ϕt+s|t(xt+s|xt) is the transition distribution of759

a base SDE with the form dxt = utdt + LtdWt and ht is a function that satisfies ht(xt) =760 ∫ t+s

t
ϕt+s|t(xt+s|xt)ht+s(xt+s)dxt+s. Then the SDE whose transition distribution is p(xt+s|xt) is761

given by762

dxt = (ut + LtL
T
t ∇ log ht(xt))dt+ LtdWt (81)

We will show that the backward messages of the CRF are of the form ht(xt) and then use Doob’s763

h-transform to identify the form of the conditioned SDE.764

Suppose t ∈ (tk, tk+1) and s > 0 is small enough so that t+ s ∈ (tk, tk+1). Then we can construct765

the joint distribution over (tt+s, tk+1, . . . , tN) given xt as766

p(xt+s|xt) =

∫
· · ·

∫
p(xtk+1:N

, xt+s|xt)dxtk+1
· · · dxtN

(82)

∝
∫

· · ·
∫

ϕ(xtk+1
|θtk+1

)

Ñ
N−1∏

i=k+1

ϕti+1|ti (xti+1
|xti

)ϕ(xti+1
|θti+1

)

é
︸ ︷︷ ︸

integrate to get parallel bwd message (Proposition 9)

ϕtk+1|t+s(xtk+1
|xt+s)dxtk+1

· · · dxtN
ϕt+s|t(xt+s|xt)

(83)

=

∫ ∫
ϕ(xtk+1

|θtk+1
)Ψ

bwd
k+1:N (xtN

|xtk+1
)ϕtk+1|t+s(xtk+1

|xt+s)dxtN
dxtk+1

ϕt+s|t(xt+s|xt) (84)

=

∫
ϕ(xtk+1

|θtk+1
)ϕ(xtk+1

|βtk+1
)ϕtk+1|t+s(xtk+1

|xt+s)dxtk+1︸ ︷︷ ︸
=:ϕ(xt+s|βt+s)

ϕt+s|t(xt+s|xt) (85)

21

= ϕ(xt+s|βt+s)ϕt+s|t(xt+s|xt) (86)

We can find the normalizing constant by integrating over xt+s:767 ∫
ϕ(xt+s|βt+s)ϕt+s|t(xt+s|xt)dxt+s (87)

=

∫ ∫
ϕ(xtk+1

|θtk+1
)ϕ(xtk+1

|βtk+1
)ϕtk+1|t+s(xtk+1

|xt+s)dxtk+1
ϕt+s|t(xt+s|xt)dxt+s (88)

=

∫
ϕ(xtk+1

|θtk+1
)ϕ(xtk+1

|βtk+1
)

∫
ϕtk+1|t+s(xtk+1

|xt+s)ϕt+s|t(xt+s|xt)dxt+s︸ ︷︷ ︸
ϕtk+1|t(xtk+1

|xt)

dxtk+1
(89)

=

∫
ϕ(xtk+1

|θtk+1
)ϕ(xtk+1

|βtk+1
)ϕtk+1|t(xtk+1

|xt)dxtk+1
(90)

= ϕ(xt|βt) (91)

Therefore, the transition distribution is768

p(xt+s|xt) = ϕt+s|t(xt+s|xt)
ϕ(xt+s|βt+s)

ϕ(xt|βt)
(92)

Note that Eq. (87) also verifies that ϕ(xt|βt) satisfies the normalization condition for ht(xt) in Doob’s769

h-transform. Directly applying Doob’s h-transform to the transition distribution in Eq. (82) identifies770

the form of the conditioned SDE:771

dxt = (Ftxt + LtL
T
t ∇ log ϕ(xt|βt))dt+ LtdWt (93)

This piecewise-linear SDE has the correct conditional distribution, p(xt|xtk1
), but requires an initial772

distribution. One can verify that the initial distribution p(xt1) ∝ ϕ(xt1 |θt1 +βt1) is the first marginal773

distribution of the CRF in Definition 1.774

E.2 Probabilistic queries for conditioned linear SDEs775

Lemma 2 (Marignal distribution of conditioned SDE). Suppose t ∈ (tk, tk+1) is a time in between776

the inducing points tk and tk+1 of the conditioned linear SDE in Proposition 4. Then the marginal777

distribution of the SDE at time t is given by778

p(xt) = ϕ(xt|αt + βt) (94)

where αt and βt are extensions of the forward and backward messages defined in Eq. (33) and779

Eq. (26) to time t:780

ϕ(xt|αt) =

∫
ϕt|tk−1

(xt|xtk−1
)ϕ(xtk−1

|θtk−1
+ αtk−1

)dxtk−1
(95)

and781

ϕ(xt|βt) =

∫
ϕt|tk+1

(xt|xtk+1
)ϕ(xtk+1

|θtk+1
+ βtk+1

)dxtk+1
(96)

Proof. We can simply incorporate t into the set discretization times, t1:N , used in Proposition 4 to782

get the desired result. Suppose t ∈ (ti, ti+1) for some i. Then we can write the joint distribution as783

p(xt, xt1:N |θ) ∝ ϕti+1|ti(xti+1
|xti)ϕt|ti(xt|xti)

∏
tk∈T

ϕtk+1|tk(xtk+1
|xtk)

∏
tk∈R

ϕ(xtk |θtk) (97)

Then we can run variable elimination on the ends of the chain until we are left with the marginal784

distribution of xt:785

p(xt) =

∫
p(xt, xt1:N |θ)dxt1:N (98)

=

∫ ∫
ϕ(xti |αti + θti)ϕt|ti(xt|xti)ϕti+1|t(xti+1

|xt)ϕ(xti+1
|βti+1

+ θti+1
)dxti+1

dxti

(99)

22

=

∫
ϕ(xti |αti + θti)ϕt|ti(xt|xti)dxti︸ ︷︷ ︸

ϕ(xt|αt)

∫
ϕti+1|t(xti+1

|xt)ϕ(xti+1
|βti+1

+ θti+1
)dxti+1︸ ︷︷ ︸

ϕ(xt|βt)

(100)
= ϕ(xt|αt + βt) (101)

786

Lemma 3 (Transition distribution of conditioned linear SDE). Suppose t ∈ (tk, tk+1) is a time in787

between the inducing points tk and tk+1 of the conditioned linear SDE in Proposition 4, and suppose788

that s > 0 is small enough so that t+ s ∈ (tk, tk+1). Then the transition distribution of the SDE at789

time t is given by790

ϕt+s|t(xt+s|xt) ∝ ϕt+s|t(xt+s|xt)ϕ(xt+s|βt+s) (102)

Proof. The proof is embedded in the derivation of the conditioned linear SDE at Eq. (92).791

Corollary 4 (Autoregressive factorization). The autoregressive factorization of p(xt1:N |θ) is given792

by793

p(xt1:N |θ) = p(xt1 |θ)
∏
tk∈T

ϕtk|tk−1
(xtk |xtk−1

)ϕ(xtk |βtk) (103)

where βtk =

®
Φtk,tk+1

(βtk+1
+ θtk+1

) if tk ∈ R
Φtk,tk+1

(βtk+1
) otherwise

(104)

where Φtk,tk+1
is the message passing update operator defined in Definition 7.794

Proof. Recall that795

p(xt1:N |θ) ∝
∏
tk∈T

ϕtk+1|tk(xtk+1
|xtk)

∏
tk∈R

ϕ(xtk |θtk) (105)

Suppose that for each tk /∈ R, we introduce a new potential function whose natural parameters are 0,796

which we will denote by ϕ(xtk |∅tk). These new potentials have no effect on the joint distribution,797

but allow us to rewrite the joint distribution in the same form as in Corollary 3, which yields the798

result.799

E.3 Probability flow ODE for conditioned linear SDEs800

Corollary 5 (Probability flow ODE). The probability flow ODE of the SDE in Proposition 4 is given801

by802

dxt

dt
= Ftxt +

1

2
LtL

T
t (∇ log ϕ(xt|βt)−∇ log ϕ(xt|αt)) (106)

βt is the same as in Proposition 4 and αt is the extension of the forward message defined in Eq. (33)803

to time t:804

ϕ(xt|αt) =

∫
ϕt|tk(xt|xtk)ϕ(xtk |θtk + αtk)dxtk (107)

Proof. Let dxt = utdt+ LtdWt be an SDE. Then the probability flow ODE is defined Song et al.805

[2021] as806

dxt

dt
= ut −

1

2
LtL

T
t ∇ log pt(xt) (108)

where pt(xt) is defined as the marginal distribution of the SDE, which is given by Lemma 2. We can807

apply this directly to our SDE in Proposition 4 to get the result:808

dxt

dt
= (Ftxt + LtL

T
t ∇ log ϕ(xt|βt))−

1

2
LtL

T
t ∇ log pt(xt) (109)

= (Ftxt + LtL
T
t ∇ log ϕ(xt|βt))−

1

2
LtL

T
t (∇ log ϕ(xt|αt) +∇ log ϕ(xt|βt)) (110)

= Ftxt +
1

2
LtL

T
t (∇ log ϕ(xt|βt)−∇ log ϕ(xt|αt)) (111)

809

23

F CMFVI proofs810

F.1 Constrained mean field VI811

Let θ ∼ p(θ) be an unknown prior distribution on the parameters of the conditional exponential812

family distribution, p(x|z, θ) ∝ exp{⟨tz(x), θ⟩ − A(z, θ)}, where tz(x) is the sufficient statistic813

of the exponential family distribution and A(z, θ) is the log partition function. In our setting, we814

interpret x and z as unobserved and observed variables and θ as a a parameter that they both depend815

on. We are interested in performing inference in the predictive distribution p(x|z), where we must816

integrate out θ. This distribution can be written as:817

p(x|z) =
∫

p(x|z, θ)p(θ|z)dθ (112)

= Ep(θ|z) [exp{⟨tz(x), θ⟩ −A(z, θ)}] (113)

where tz(x) is the sufficient statistic of the conditional exponential family distribution. Since this818

distribution is intractable, we use a variational approximation to approximate it. Our variational819

approximation is called the constrained mean field VI approximation and is given by:820

q∗(x|z) = argmin
q(x|z)

KL [q(x|z)p(θ|z)∥p(x, θ|z)] (114)

In this appendix section we will derive facts about q∗(x|z).821

Lemma 4 (Alternate constrained mean field VI objectives). The constrained mean field VI objective,822

KL [q(x|z)p(θ|z)∥p(x, θ|z)] (115)

is equal to the following expressions:823

1.

Eq(x|z) p(θ|z)

ï
log

p(θ|z)
p(θ|x, z)

ò
+KL [q(x|z)∥p(x|z)] (116)

2.

Eq(x|z) p(θ|z)

ï
log

p(x|z)
p(x|z, θ)

ò
+KL [q(x|z)∥p(x|z)] (117)

3.
Eq(x|z)

[
log q(x|z)− Ep(θ|z) [log p(x|z, θ)]

]
(118)

Proof. The proof is a straightforward rearrangement of terms:824

KL [q(x|z)p(θ|z)∥p(x, θ|z)] =
∫ ∫

q(x|z)p(θ|z) log q(x|z)p(θ|z)
p(x, θ|z)

dxdy (119)

=

∫ ∫
q(x|z)p(θ|z) log p(θ|z)

p(θ|x, z)
q(x|z)
p(x|z)

dxdy (equals 1) (120)

=

∫ ∫
q(x|z)p(θ|z) log ���p(x|z)

p(x|z, θ)
q(x|z)
���p(x|z)

dxdy (equals 2) (121)

=

∫ ∫
q(x|z)p(θ|z) log q(x|z)

p(x|z, θ)
dxdy (122)

= Eq(x|z)
[
log q(x|z)− Ep(θ|z) [log p(x|z, θ)]

]
(123)

825

Theorem 2 (Constrained mean field VI solution). Let p(x|z, θ) ∝ exp{⟨tz(x), θ⟩ −A(z, θ)} be an826

exponential family distribution and that θ ∼ p(θ|z). The constrained mean field VI approximation of827

p(x|z), denoted by q∗(x|z), is defined as follows:828

q∗(x|z) = argmin
q(x|z)

KL [q(x|z)p(θ|z)∥p(x, θ|z)] (124)

= p(x|z, θ∗(z)), where θ∗(z) = Ep(θ|z) [θ] (125)

24

Proof. The proof can follow quickly from the standard mean field VI solutions Beal [2003], but for829

completeness we will derive it from scratch. Starting from the result of Lemma 4, we have that830

q∗(x|z) = argmin
q(x|z)

Eq(x|z)
[
log q(x|z)− Ep(θ|z) [log p(x|z, θ)]

]
(126)

We can introduce a Lagrange multiplier to enforce the constraint that the distribution is normalized.831

Let qϵ(x|z) = q(x|z) + ϵη(x|z) where η is the variation function and ϵ is a scalar. Then we can take832

a variation by differentiating with respect to ϵ:833

∂

∂ϵ

Å
Eqϵ(x|z)

[
log qϵ(x|z)− Ep(θ|z) [log p(x|z, θ)]

]
+ λ

Å∫
qϵ(x|z)dx− 1

ãã
= 0 (127)

=⇒ ∂

∂ϵ

∫
qϵ(x|z) log qϵ(x|z)dx+

∫
η(x|z)

(
Ep(θ|z) [log p(x|z, θ)] + λ

)
dx = 0 (128)

The negative entropy term simplies as follows:834

∂

∂ϵ

∫
qϵ(x|z) log qϵ(x|z)dx =

∫
∂

∂ϵ
qϵ(x|z) log qϵ(x|z)dx+

∫
qϵ(x|z)

∂

∂ϵ
log qϵ(x|z)dx (129)

=

∫
∂qϵ(x|z)

∂ϵ
log qϵ(x|z)dx+

∫
qϵ(x|z)

∂ log qϵ(x|z)
∂ϵ

dx (130)

=

∫
η(x|z) log qϵ(x|z)dx−

∫
qϵ(x|z)

1

qϵ(x|z)
∂qϵ(x|z)

∂ϵ
dx (131)

=

∫
η(x|z) (log qϵ(x|z)− 1) dx (132)

Plugging this back into the original equation and setting it equal to zero implies that the integrand835

must be zero:836

Ep(θ|z) [log p(x|z, θ)] + λ+ log qϵ(x|z)− 1 = 0 (133)

Solving for log qϵ(x|z) (and setting ϵ = 0) yields:837

log q(x|z) = Ep(θ|z) [log p(x|z, θ)] + λ− 1 (134)

The lagrange multiplier λ ensures that the distribution is normalized, and so we have that838

q∗(x|z) = exp
{
Ep(θ|z) [log p(x|z, θ)] + λ− 1

}
(135)

∝ exp
{
Ep(θ|z) [log p(x|z, θ)]

}
(136)

∝ exp
{
⟨tz(x),Ep(θ|z) [θ]⟩

}
(137)

And so we can recognize that q∗(x|z) is in the same exponential family as p(x|z, θ) but with natural839

parameter Ep(θ|z) [θ]. This completes the proof.840

Next, we emphasize another form of the CMFVI solution that is convenient when deriving CMFVI841

solutions of other models.842

Lemma 5 (Mean field form of CMFVI solution). The CMFVI approximation of p(x|z) has the843

following form:844

q∗(x|z) ∝ exp
{
Ep(θ|z) [log p(x|z, θ)]

}
(138)

Proof. See Eq. (136)845

Corollary 6 (Value of CMFVI objective at optimum). The value of the CMFVI objective at the846

optimum is given by:847

KL [q∗(x|z)p(θ|z)∥p(x, θ|z)] = Ep(θ|z) [A(z, θ)]−A(z, θ∗(z)) (139)

where z is fixed, θ∗(z) = Ep(θ|z) [θ] and A(z, θ) is the partition function of p(x|z, θ).848

25

Proof. Let θ∗(z) = Ep(θ|z) [θ]. Recall that p(x|z, θ) = exp {⟨tz(x), θ⟩ −A(z, θ)}, q∗(x|z) =849

p(x|z, θ∗(z)) and that the CMFVI objective can be written using an identity from Lemma 4:850

KL [q(x|z)p(θ|z)∥p(x, θ|z)] = Eq(x|z)
[
log q(x|z)− Ep(θ|z) [log p(x|z, θ)]

]
(140)

We can plug q∗(x|z) and p(x|z, θ) into the identity to get:851

KL [q∗(x|z)p(θ|z)∥p(x, θ|z)] (141)

= Eq∗(x|z)
[
log q∗(x|z)− Ep(θ|z) [log p(x|z, θ)]

]
(142)

= Eq∗(x|z)

(⟨tz(x), θ∗(z)⟩ −A(z, θ∗(z)))−

Ö
⟨tz(x),Ep(θ|z) [θ]︸ ︷︷ ︸

θ∗(z)

⟩ − Ep(θ|z) [A(z, θ)]

è
(143)

= Ep(θ|z) [A(z, θ)]−A(z, θ∗(z)) (144)

852

Proposition 14 (Forward KL divergence). The forward KL divergence between p(x|z) and q∗(x|z)853

is given by:854

KL [p(x|z)∥q∗(x|z)] = −Hp[x|z]− ⟨t∗(z), θ∗(z)⟩+A(z, θ∗(z)) (145)

where Hp[x|z] is the differential entropy of p(x|z), t∗(z) = Ep(x|z) [tz(x)], θ∗(z) = Ep(θ|z) [θ] and855

A(z, θ) is the partition function of p(x|z, θ).856

Proof. This follows from a direct computation:857

KL [p(x|z)∥q∗(x|z)] = −Hp[x|z]−
∫

p(x|z) log q∗(x|z)dx (146)

= −Hp[x|z]−
∫

p(x|z) (⟨tz(x), θ∗(z)⟩ −A(z, θ∗(z))) dx (147)

= −Hp[x|z]− ⟨
∫

p(x|z)tz(x)dx, θ∗(z)⟩+A(z, θ∗(z)) (148)

= −Hp[x|z]− ⟨t∗(z), θ∗(z)⟩+A(z, θ∗(z)) (149)

858

F.2 Bayes estimator equivariance859

We will use the equivariance of the Bayes estimator to linear transformations to show that it is also860

equivariant to message passing updates when the Gaussian potential functions of the corresponding861

CRF have covariances that only depend on the node index. This result will allow us to reparameterize862

the Bayes estimator of the backward messages in terms of the previously computed backward863

messages, and also in terms of the potential function means themselves. This will be useful for864

relating the CMFVI time series models we construct back traditional time series models, and also865

for proving that the autoregressive CMFVI model we construct is an approximation of flow-based866

generative models for time series.867

Corollary 7 (Commutativity of Bayes estimator with update and marginalize opera-868

tor). Let ϕk+1|k(xk+1|xk) be a Gaussian transition function and let ϕ(xk+1|ηk+1) :=869

N(xk+1|µk+1(y), J
−1
k+1) be a Gaussian node potential where y ∼ p(y) is an auxilary variable870

set of variables that only the mean of the potential depends on. Then the Bayes estimator of ηk871

commutes with the update and marginalize operator. That is,872

Ep(y)[ηk(y)] = Ep(y)[Φk,k+1 (ηk+1(y))] = Φk,k+1

(
Ep(y)[ηk+1(y)]

)
(150)

Proof. We can examine the form of Φk,k+1 from Corollary 2 to see that Φk,k+1 is linear with respect873

to µk+1(y). Then the result follows from linearity equivariance of the Bayes estimator.874

26

F.3 CMFVI time series models875

Proposition 15 (Naive CMFVI solution). Let p(xt1:N |yO) be the target distribution. Then the naive876

CMFVI solution, denoted by qCRF(xt1:N) is the CMFVI approximation of p(xt1:N |yO) and is given877

by:878

qCRF(xt1:N) ∝
∏
tk∈T

ϕtk+1|tk(xtk+1
|xtk)

∏
tk∈R

ϕ(xtk |θ∗tk(yO)) (151)

where θ∗tk(yO) = Ep(yU |yO) [θtk(yτ1:T)] is the Bayes estimator of θtk .879

Proof. By expanding q∗ using Lemma 5, one finds that the terms of the log likelihood is linear with880

respect to θtk(yτ1:T). Then the result follows from the equivariance of the Bayes estimator to linear881

transformations.882

Proposition 16 (CMFVI transition approximation). Let p(xt1:N |yO) be the target distribution and883

consider its k’th autoregressive factor p(xtk |xt1:k−1
, yO). Then the CMFVI transition approximation884

is given by:885

qtransition(xtk |xt1:k−1
, yO) ∝ ϕtk|tk−1

(xtk |xtk−1
)ϕ(xtk |β∗

tk
(xt1:k−1

, yO)) (152)

where β∗
tk
(xt1:k−1

, yO) = Ep(yU |xt1:k−1
,yO) [βtk(yτ1:T)] is the Bayes estimate of βtk(yτ1:T), which is886

defined using the message passing update operator Φtk,tk+1
from Definition 7 as:887

βtk =

®
Φtk,tk+1

(βtk+1
(yτ1:T) + θtk+1

(yτ1:T)) if tk+1 ∈ R
Φtk,tk+1

(βtk+1
(yτ1:T)) otherwise

(153)

Proof. The transition distribution in the fully observed setting is given by:888

p(xtk |xt1:k−1
, yτ1:T) = p(xtk |xtk−1

, yτ1:T) (154)
∝ ϕtk|tk−1

(xtk |xtk−1
)ϕ(xtk |βtk(yτ1:T)) (155)

If we expand the log likelihood of p(xtk |xt1:k−1
, yτ1:T), we would find that the log likelihood is linear889

with respect to βtk(yτ1:T), and so writing the CMFVI solution using Eq. (136) yields the result.890

We denote this model by qMSE(xt1:N |yO).891

Corollary 8 (MSE Forecaster). Let p(xt1:N |yO) be the target distribution and suppose the co-892

variances of its potentials are constant with respect to y. Then the MSE-CMFVI solution, de-893

noted by qMSE(xt1:N) is the CMFVI approximation of p(xt1:N |yO) obtained by choosing (x, z, θ) =894

(xt1:N , yO, θ(yτ1:T)):895

qMSE(xt1:N |yO) ∝
∏
tk∈T

ϕtk+1|tk(xtk+1
|xtk)

∏
tk∈R

N(xtk |µ∗
tk
(yO),Σtk) (156)

where µ∗
tk
(yO) = Ep(yU |yO) [µtk(yτ1:T)] is the Bayes estimate of µtk , and ϕ(xtk |θtk(yτ1:T)) =896

N(xtk |µ∗
tk
(yτ1:T),Σtk).897

See Appendix F.3 for a proof.898

Definition 8 (Autoregressive CMFVI solution). Let p(xt1:N |yO) be the target distribution. Then the899

autoregressive CMFVI solution, denoted by qAR(xt1:N) is the CMFVI approximation of p(xt1:N |yO)900

and is given by:901

qAR(xt1:N) ∝ p(xt1 |yO)
∏
tk∈T

qtransition(xtk |xt1:k−1
, yO) (157)

where qtransition(xtk |xt1:k−1
, yO) is the CMFVI transition approximation given by Proposition 6.902

Corollary 9 (MSE Forecaster). Let p(xt1:N |yO) be the target distribution and suppose the covari-903

ances of its potentials are constant with respect to y. Then the MSE-CMFVI solution, denoted by904

qMSE(xt1:N) is the CMFVI approximation of p(xt1:N |yO) and is given by:905

qMSE(xt1:N) ∝
∏
tk∈T

ϕtk+1|tk(xtk+1
|xtk)

∏
tk∈R

N(xtk |µ∗
tk
(yO),Σtk) (158)

where µ∗
tk
(yO) = Ep(yU |yO) [µtk(yτ1:T)] is the Bayes estimate of µtk .906

27

Proof. This follows from the fact that the potentials are constant with respect to y and the linear907

equivariance of the Bayes estimator.908

Corollary 10 (Autoregressive MSE Forecaster). Let p(xt1:N |yO) be the target distribution and909

suppose the covariances of its potentials are constant with respect to y. Then the autoregressive910

MSE-CMFVI solution, denoted by qAR-MSE(xt1:N) is the CMFVI approximation of p(xt1:N |yO) and is911

given by:912

qAR-MSE(xt1:N) ∝ p(xt1 |yO)
∏
tk∈T

ϕtk|tk−1
(xtk |xtk−1

)
∏
tk∈R

N(xtk |
Ä
µβ
tk

ä∗
(xt1:k , yO),Σ

β
tk
) (159)

where
Ä
µβ
tk

ä∗
(xt1:k , yO) = Ep(yU |xt1:k

,yO)

î
µβ
tk
(yτ1:T)

ó
is the Bayes estimate of µβ

tk
and Σβ

tk
is the913

covariance of the backward message of p(xt1:N |yτ1:T).914

Proof. This follows from the fact that the potentials are constant with respect to y and the linear915

equivariance of the Bayes estimator.916

Definition 9 (Continuous extension of AR-MSE model). Let qAR be the autoregressive CMFVI917

solution and consider the setting where the potential functions of p(xt1:N |yτ1:T) have covariances918

that do not depend on y. Then the continuous extension of qAR is given by the following piecewise919

linear SDE:920

dxt = (Ftxt + LtL
T
t ∇ log ϕ(xt|β∗

t (xt1:k , yO)))dt+ LtdWt, (160)
where β∗

t (xt1:k , yO) = Ep(yU |xt1:k
,yO) [βt(yτ1:T)] , and t ∈ (tk, tk+1) (161)

where β∗
t (xt1:k , yO) is the Bayes estimator of βt(yτ1:T) = Φt,tk+1

(βtk+1
(yτ1:T)).921

Proof. We just need to verify that this piecewise linear SDE has the same joint distribution as qAR922

on t1:N . To do this, we can just check that each of the linear SDEs that are defined on the intervals923

(tk, tk+1) have the same joint distribution as qtransition(xtk |xt1:k−1
, yO) from Proposition 6. This is924

true by construction TODO: add proof.925

G Flow-based generative models proofs926

In this section we provide basic results about Bayes estimation for generalized linear stochastic927

interpolants. Let dxt = Ftxtdt+ LtdWt be the base linear SDE and let the distribution of random928

draws, at times t1:N , be denoted by p(xt1:N |c). Let p(xt1:N |θ, c) be its conditional distribution given929

parameters θ that are only available during training time and some extra conditioning information c930

that is avilable at both training and test time, and suppose that p(θ|c) is the (unknown) distribution of931

θ given c. The goal of the techniques in this section (and FBGMs in general), is to construct, and932

learn, the distribution of p(xt1:N |c), which is the distribution needed to generate samples of xt1:N933

when we do not have access to the parameters θ. At a high level, FBGMs offer different inference934

algroithms for this task. In this section, we will derive three of these inference algorithms.935

G.1 Score function for FBGMs936

Proposition 17 (Score function for FBGMs). Suppose that p(θ|c) is a probability distribution937

over θ given some extra conditioning information c and p(xt|θ, c) is the marignal distribution of a938

generalized linear stochastic interpolant whose base linear SDE is given by dxt = Ftxtdt+ LtdWt.939

Then the score function of p(xt|c) is given by:940

∇ log p(xt|c) = ∇ log ϕ(xt|α∗
t (xt, θ, c) + β∗

t (xt, θ, c)) (162)

where α∗
t (xt, θ, c) = Ep(θ|xt,c) [αt(θ, c)] and β∗

t (xt, θ, c) = Ep(θ|xt,c) [βt(θ, c)] are Bayes estimators941

of the forward and backward messages to time t using xt respectively.942

Proof. A straightforward calculation will lead to the desired result.943

∇ log p(xt|c) =
1

p(xt|c)
∇p(xt|c) (163)

28

=
1

p(xt|c)
∇
∫

p(θ|c)p(xt|θ, c)dθ (164)

=
1

p(xt|c)

∫
p(θ|c)∇p(xt|θ, c)dθ (165)

=

∫
p(θ|c)p(xt|θ, c)

p(xt|c)
∇ log p(xt|θ, c)dθ (166)

= Ep(θ|xt,c) [∇ log p(xt|θ, c)] (167)

= Ep(θ|xt,c) [∇ log ϕ(xt|αt(θ, c) + βt(θ, c))] ∵ Lemma 2 (168)

= ∇ log ϕ(xt|α∗
t (xt, θ, c) + β∗

t (xt, θ, c)) ∵ Eq. (21) (169)

944

G.2 General form of Markovian projection SDE945

Lemma 6 (General form of Markovian projection SDE). Suppose that p(θ|c) is a probability946

distribution over θ given some extra conditioning information c and p(xt|θ, c) is the marignal947

distribution of a generalized linear stochastic interpolant whose base linear SDE is given by dxt =948

Ftxtdt+ LtdWt. Then the Markovian projection SDE is given by:949

dxt = (Ftxt + LtL
T
t ∇ log ϕ(xt|β∗

t (xt, θ, c)))dt+ LtdWt (170)

where β∗
t (xt, θ, c) = Ep(θ|xt,c) [βt(θ, c)] is the Bayes estimate of the backward message to time t950

using xt.951

Proof. The Markovian projection SDE is the SDE whose marginal distribution evolves in time in952

the same way that p(xt|c) evolves in time, and so our proof strategy will follow the same strategy953

as [Lipman et al., 2023, Theorem 1] where we take the time derivative of p(xt|c) and recognize the954

form of the SDE.955

First, recall that the Fokker-Planck equation [Särkkä and Solin, 2019, Øksendal and Øksendal, 2003]956

relates an SDE to the time derivative of its marginal distribution. Let p(xt|θ, c) be the marginal957

distribution of the generalized linear stochastic interpolant and recall that its corresponding SDE958

is given by dxt = (Ftxt + LtL
T
t ∇ log ϕ(xt|βt(θ, c)))dt + LtdWt (see Proposition 4). Then the959

Fokker-Planck equation for this SDE is given by:960

∂p(xt|θ, c)
∂t

= −Div(p(xt|θ, c)(Ftxt + LtL
T
t ∇ log ϕ(xt|βt(θ, c)))) +

1

2
LtL

T
t Div(∇p(xt|θ, c))

(171)

LtL
T
t appears outside the divergence operator because it does not depend on xt. Next, we can directly961

take the time derivative of p(xt|c) and recognize the form of the corresponding SDE.962

∂p(xt|c)
∂t

= Ep(θ|c)

ï
∂p(xt|θ, c)

∂t

ò
(172)

= Ep(θ|c)

ï
−Div(p(xt|θ, c)(Ftxt + LtL

T
t ∇ log ϕ(xt|βt(θ, c)))) +

1

2
LtL

T
t Div(∇p(xt|θ, c))

ò
(173)

= Ep(θ|c) [−Div(p(xt|θ, c)Ftxt)] (A) (174)

+ Ep(θ|c)
[
−Div(p(xt|θ, c)LtL

T
t ∇ log ϕ(xt|βt(θ, c)))

]
(B) (175)

+ Ep(θ|c)

ï
1

2
LtL

T
t Div(∇p(xt|θ, c))

ò
(C) (176)

Since all of the divergence and gradient operators depend only on xt, we can pass the expectation963

through these terms. We can simplify each terms as follows:964

(A)
Ep(θ|c) [−Div(p(xt|θ, c)Ftxt)] = −Div(p(xt|c)Ftxt) (177)

29

(B)

Ep(θ|c)
[
−Div(p(xt|θ, c)LtL

T
t ∇ log ϕ(xt|βt(θ, c)))

]
= −Div(

∫
p(θ|c)p(xt|θ, c)LtL

T
t ∇ log ϕ(xt|βt(θ, c))dθ)

(178)

= −Div(
∫

p(θ|xt, c)p(xt|c)LtL
T
t ∇ log ϕ(xt|βt(θ, c))dθ)

(179)

= −Div(p(xt|c)LtL
T
t Ep(θ|xt,c) [∇ log ϕ(xt|βt(θ, c))])

(180)

(C)

Ep(θ|c)

ï
1

2
LtL

T
t Div(∇p(xt|θ, c))

ò
=

1

2
LtL

T
t Div(∇Ep(θ|c) [p(xt|θ, c)]) (181)

=
1

2
LtL

T
t Div(∇p(xt|c)) (182)

Putting these terms back together, we get:965

∂p(xt|c)
∂t

= −Div(p(xt|c)
(
Ftxt + LtL

T
t Ep(θ|xt,c) [∇ log ϕ(xt|βt(θ, c))]

)︸ ︷︷ ︸
recognize as drift term in Fokker-Planck equation

) +
1

2
LtL

T
t Div(∇p(xt|c))

(183)
We can see that the form of the Markovian projection SDE is given by:966

dxt =
(
Ftxt + LtL

T
t Ep(θ|xt,c) [∇ log ϕ(xt|βt(θ, c))]

)
dt+ LtdWt (184)

Lastly because ϕ(xt|βt(θ, c)) is a Gaussian distribution with natural parameters βt(θ, c), its pdf is967

given by:968

ϕ(xt|βt(θ, c)) = exp{⟨tc(xt), βt(θ, c)⟩ −A(c, θ)} (185)
(186)

where tc(xt) is the sufficient statistic of the Gaussian distribution and A(c, θ) is the log partition969

function. From this form, we can immediately see that the expectation around the score function970

passes through to the natural parameters:971

Ep(θ|xt,c) [∇ log ϕ(xt|βt(θ, c))] = ⟨∇tc(xt),Ep(θ|xt,c) [βt(θ, c)]⟩ (187)
If we let β∗

t (xt, θ, c) = Ep(θ|xt,c) [βt(θ, c)] and stop the gradient with respect to xt through β∗
t , then972

we recover the desired result.973

Proposition 18 (Neural latent SDE). Let p(xt1:N , y1:T) be the joint distribution defined in Definition 2974

and suppose that y = (yO, yU), where O and U are the times at which sequences are observed and975

unobserved, respectively. Then the neural latent SDE is the following piecewise SDE defined on the976

intervals (tk, tk+1) for k = 1, . . . , N :977

dxt = (Ftxt + LtL
T
t ∇ log ϕ(xt|β∗

t (xt, xt1:k , yO)))dt+ LtdWt, (188)
where β∗

t (xt, xt1:k , yO) = Ep(yU |xt,xt1:k
,yO) [βt(y1:T)] , and t ∈ (tk, tk+1) (189)

β∗
t (xt, xt1:k , yO) is the Bayes estimator of βt using the current state xt.978

Proof. The result follows directly from Lemma 6 by choosing θ = yU and c = xt1:k .979

G.3 General form of Markovian projection ODE980

Lemma 7 (General form of Markovian projection ODE). Suppose that p(θ|c) is a probability981

distribution over θ given some extra conditioning information c and p(xt|θ, c) is the marignal982

distribution of a generalized linear stochastic interpolant whose base linear SDE is given by dxt =983

Ftxtdt+ LtdWt. Then the Markovian projection ODE is defined as the probability flow ODE of the984

Markovian projection SDE and is given by:985

dxt

dt
= Ftxt +

1

2
LtL

T
t (∇ log ϕ(xt|β∗

t (xt, θ, c))−∇ log ϕ(xt|α∗
t (xt, θ, c))) (190)

where β∗
t (xt, θ, c) = Ep(θ|xt,c) [βt(θ, c)] and α∗

t (xt, θ, c) = Ep(θ|xt,c) [αt(θ, c)] are Bayes estimators986

of the forward and backward messages to time t using xt respectively.987

30

Proof. Recall that the definition of the probability flow ODE of an SDE of the form dxt = ut(xt)dt+988

LtdWt is given by [Song et al., 2021]:989

dxt

dt
= ut(xt)−

1

2
LtL

T
t ∇ log p(xt|c) (191)

Plugging in drift of the Markovian projection SDE in Lemma 6, and the score function of p(xt|c) in990

Proposition 17, we get the desired result.991

H Message Passing Implementation Details992

We devise a careful implementation of message passing to ensure numerical stability. There are many993

different ways to implement message passing. For example, [Särkkä et al., 2006] parameterizes the994

potentials in the standard form of Gaussians and uses Kalman filtering [Kalman, 1960] to obtain995

the forward messages and does not directly compute the backward messages, but instead uses the996

Rauch-Tung-Striebel smoother [Rauch et al., 1965] to blend the forward and backward message997

computations to obtain the smoothed potentials. Alternatively, [Fox, 2009, Johnson and Linderman,998

2015] utilize a natural parameterization of the potentials in order to have simple message passing999

updates. Our implementation requires that we can express both total uncertainty, and total certainty,1000

in a variable in order to be able to work with incomplete, or missing data, and to condition exactly1001

on variables. To do this, we adopt a mixed parametrization that contains the mean of the Gaussian1002

and precision matrix so that we can express total uncertainty using a precision matrix of 0 and total1003

certainty in the mean value by using a symbolic infinity. We also use symbolic zeros to mitigate1004

accumulation of errors when perform message passing on long chains of latent variables without any1005

evidence.1006

H.1 Numerical stability considerations1007

Before we look at the implementation details, we will look at what considerations we need to make1008

for the implementation of these operations in a numerically stable way. Recall that the transition1009

distribution of an LTI-SDE is given by1010

ϕ(xt+s|xt) = N(xt+s|Asxt,Σs) (192)

where1011 ï
As ΣsA

−T
s

0 A−T
s

ò
:= exp{

ï
F LLT

0 −FT

ò
s} (193)

and that potential functions can be written in natural or standard form as:1012

ϕ(x) = exp{−1

2
xTJx+ xTh− logZ} (194)

= exp{−1

2
xTΣ−1x+ xTΣ−1µ− logZ} (195)

where Σ = J−1 and µ = J−1h. We assume that the time intervals between consecutive variables1013

are bounded and nonzero so that Σs, As, and A−T
s are numerically stable. We also assume that the1014

covariance matrices that the user specifies for the node potentials, e.g. Σ or J , are well conditioned.1015

We do not assume that Σ−1
s , Σ−1 nor J−1 are well conditioned. These assumptions are made to1016

accomodate operations that a user might perform in practice. For example, a user may choose to1017

express 0 certainty in a variable by setting Σ → ∞ or J = 0 and can choose to express 0 uncertainty1018

by setting Σ = 0 or J → ∞. Furthermore, if a user chooses to discretize an SDE at points where1019

s is small, or even exactly 0, then Σs is close to 0 and so Σ−1
s can be very large. To account1020

for these considerations, we use symbolic computation to represent matrices that are 0 or ∞ as1021

needed. Furthermore, we use three different parameterizations of the Gaussian to ensure that we1022

can handle all cases. We use the standard parameterization, (µ,Σ), natural parameterization 3,1023

(J = Σ−1, h = Σ−1µ), and mixed parameterization (J = Σ−1, µ). For brevity, we will not include1024

the updates for the normalizing constant logZ in our pseudocode.1025

3The true natural parameters are scaled by − 1
2

31

H.2 Message passing pseudocode1026

In Appendix D we identified the key operations that are needed to perform variable elimination in the1027

sequential and parallel settings (see Appendices D.1 and D.2). These operations are:1028

1. An “add” operation adds the parameters of two potential functions together (code in Ap-1029

pendix H.3).1030

2. An “update” operation that absorbs a potential function into a transition function (defined in1031

Definition 5 and code in Appendix H.3).1032

3. A “marginalize” operation that marginalizes out a variable from a Gaussian joint distribution.1033

In practice, we fuse this with the “update” operation (code in Appendix H.3).1034

4. A “reverse” operation that reverses the direction of a transition (code in Appendix H.3).1035

5. A “chain” operation that chains two transition functions (defined in Eq. (40) and code in1036

Appendix H.3).1037

In Appendix H.3, Appendix H.3, Appendix H.3, and Appendix H.3 we provide pseudocode for1038

message passing that involves these operations.1039

H.3 Update rules1040

Now we provide pseudocode for the update rules.

Algorithm 1 Add

1. Require: potential functions ϕ1 and ϕ2

2. (J1, h1) = to_natural(ϕ1)

3. (J2, h2) = to_natural(ϕ2)

4. Return from_natural((J1 + J2, h1 + h2))

1041

Algorithm 2 Update

1. Require: potential function ϕ and transition ϕk+1|k

2. (J, µ) = to_mixed(ϕ)
3. (A, u,Σ) = ϕk+1|k

4. R = J(I +ΣJ)−1

5. S = ΣR

6. T = I − S

7. ϕ̄k+1|k = (TA, Tu+ Sµ, TΣ)

8. ϕ̄ = from_mixed((ATRTA,A−1(µ− u)))

9. Ψk+1,k = (ϕ̄k+1|k, ϕ̄)

10. Return Ψk+1,k

Algorithm 3 Update and marginalize

1. Require: potential function ϕ and transition ϕk+1|k

2. (_, ϕ̄) = Update(ϕ, ϕk+1|k)

3. Return ϕ̄

32

Algorithm 4 Reverse

1. Require: transition ϕk+1|k

2. (A, u,Σ) = ϕk+1|k

3. Ā = A−1

4. ū = −A−1u

5. Σ̄ = A−1ΣA−T

6. Return (Ā, ū, Σ̄)

Algorithm 5 Chain

1. Require: transition functions ϕk|k−1 and ϕk+1|k

2. Ak, uk,Σk = ϕk+1|k

3. Ak−1, uk−1,Σk−1 = ϕk|k−1

4. A = AkAk−1

5. u = Akuk−1 + uk

6. Σ = Σk +AkΣk−1A
T
k

7. Return (A, u,Σ)

Algorithm 6 BackwardMessagePassing

1. Require (ϕ2|1, . . . , ϕN |N−1) and (ϕ1, . . . , ϕN)

2. Initialize βN = 0

3. For k = N, . . . , 2:
(a) Ψk,k−1 = Update(ϕk|k−1, ϕk + βk)

(b) βk−1 = Marginalize(Ψk,k−1)

4. Return (β1, . . . , βN)

Algorithm 7 ParallelBackwardMessagePassing

1. Require (ϕ2|1, . . . , ϕN |N−1) and (ϕ1, . . . , ϕN)

2. In parallel, for k = N, . . . , 2:
(a) Ψk,k−1 = Update(ϕk|k−1, ϕk)

3. (Ψ1:N , . . . ,ΨN−1:N) = AssociativeScan(Chain,Ψ2,1, . . . ,ΨN,N−1)

4. In parallel, for k = N − 1, . . . , 1:
(a) βk = Marginalize(Ψk:N)

5. βN = 0

6. Return (β1, . . . , βN)

33

Algorithm 8 ForwardMessagePassing

1. Require (ϕ2|1, . . . , ϕN |N−1), (ϕ1, . . . , ϕN) and use_parallel
2. For k = 1, . . . , N − 1:

(a) ϕk|k+1 = Reverse(ϕk+1|k)

3. If use_parallel:
(a) MessagePassing = ParallelBackwardMessagePassing

4. Else:
(a) MessagePassing = BackwardMessagePassing

5. (αN , . . . , α1) = MessagePassing((ϕN−1|N , . . . , ϕ1|2), (ϕN , . . . , ϕ1))

6. Return (α1, . . . , αN)

Algorithm 9 AssociativeScan (Even number of elements only)

1. Require: operator ⊕, elements (t1, t2, . . . , tn) where n is a power of 2
2. If n == 1:

(a) Return t1

3. In parallel, for k = 1, . . . , n/2:
(a) pk = t2k−1 ⊕ t2k

4. (r2, r4, . . . , rn) = AssociativeScan(⊕, (p1, p2, . . . , pn/2))

5. In parallel, for k = 1, . . . , n/2− 1:
(a) r2k+1 = r2k ⊕ t2k+1

6. r1 = t1

7. Return (r1, r2, . . . , rn)

I Dataset details1042

We used two synthetic datasets and five real-world datasets for our experiments - a synthetic noisy1043

double pendulum and synthetic sine wave datasets, and real world datasets for modeling stocks,1044

energy, etth, mujoco, and fmri datasets. For all of our experiments, we use an 80/10/10 split for the1045

training, validation, and test sets. We adopted two different approaches to generate these splits, one1046

for then the dataset only containd a single time series, and one for when the dataset containd multiple1047

time series. For datasets that only contain a single time series, such as the noisy double pendulum,1048

stocks, etth and fmri datasets, we split our data into training, validation, and test sets by splitting the1049

series into three contiguous segments for the training, validation, and test sets respectively, using1050

the 80/10/10 split, and then construct windowed batches of a fixed length for each of the training,1051

validation, and test sets.1052

J Model implementation details1053

J.1 Neural network architecture and training details1054

To ensure a fair comparison, we use nearly the exact same neural network architectures and training1055

procedures for all of the models. The architecture that we use is an encoder-decoder transformer1056

architecture where each transformer has 10 layers, 32 heads and a hidden dimension of 128. In1057

between each transformer layer we use a Wavenet convolution block that has 256 channels and1058

uses a kernel size of 4. The observed sequence of variables is passed through the encoder and1059

then used to condition the decoder as it processes the currently generated sequence. We did not1060

do extensive architecture tuning and chose this model early on because it performed well enough1061

for our experiments. We incorporated information about the times in each series by constructing1062

34

a feature vector for each scalar time and concatenating it with the observed sequence of variables1063

before passing the contatenation to the transformer. For the models that needed to be autoregressive,1064

we used causal convolutions and causal attention masks to ensure that the Jacobian matrix of the1065

model was lower triangular. See our code for full details.1066

Each of our models were trained on a single 2080ti GPU using a learning rate of 10−4 using the1067

adamw optimizer, linear warmup of 1000 steps, and an effictive batch size of 256 (we used a batch1068

size of 64 and 4 gradient accumulation steps). For each experiment, we used 5 random seeds to1069

initialize the model parameters and to split the data into training, validation, and test sets using an1070

80/10/10 split. We evaluated the objective function on the entire validation set every 1000 gradient1071

updates and stopped training when the value of the objective function over the entire validation set1072

stopped improving for 5 evaluations. We normalized the elements of each series by subtracting the1073

mean and dividing by the standard deviation of the first, observed variable in the series to ensure that1074

the elements of each series were on a similar scale.1075

J.2 Model details1076

We implemented 8 different models, of which 6 are latent space forecasters and 2 are observation1077

space forecasters. The baseline, observation space models, were trained to model p(yk+1:N |y1:k)1078

while the latent space models were trained to model p(x1:N |y1:k). Of the latent space forecasters,1079

4 are CMFVI based models and while the last 2 are the same baseline models that we used for the1080

observation space models, just trained on the latent process instead of the observed process.1081

1. Baselines probabilistic forecasters (Trained to approximate p(yk+1:N |y1:k)):1082

(a) Conditional Gaussian autoregressive model1083

(b) Diffusion model1084

2. Latent probabilistic forecasters (Trained to approximate p(x1:N |y1:k)):1085

(a) CMFVI models:1086

i. MSE forecaster1087

ii. Autoregressive MSE forecaster1088

iii. Neural ODE1089

iv. Neural SDE1090

(b) Conditional gaussian autoregressive1091

(c) Diffusion model1092

The encoder networks in each model accept as input y1:k and output a context embedding that is1093

used to condition the decoder. The decoder accepts as input a sequence of variables that are currently1094

being generated and outputs a sequence of different quantities whose interpretation depends on the1095

model. Next, we will describe each of the models that we implemented, what their decoder outputs1096

are, what their training objective is, and how they generate samples.1097

Conditional Gaussian autoregressive model The Gaussian conditional chains parameterize the1098

distribution of the next variable in the sequence as a Gaussian distribution. The decoder transformer1099

network outputs the mean and covariance of the next distribution for the entire sequence of generated1100

variables at once. Since the decoder is autoregressive, the mean and covariance of the next distribution1101

is found at the same position as the most recently generated variable. For the latent space model, the1102

first variable is sampled from a CRF, of the same kind used to construct the latent process, that is1103

conditioned on the observed variables. The model is trained to maximize the log likelihood of the1104

unobserved sequence given the observed sequence.1105

Diffusion model The diffusion model is trained using flow-matching [Lipman et al., 2023] using1106

a brownian bridge between a Gaussian random variable and the sequence of unobserved variables.1107

This model is effectively the same as standard diffusion models for images, but applied to a flattened1108

time series vector. The decoder transformer network outputs the vector field of the probability flow1109

ODE that is used to simulate the process. Samples are generated by passing a sequence of Gaussian1110

random variables of the same size as yk+1:N to an ODE solver that uses the vector field output by1111

the decoder to simulate the process.1112

35

MSE forecaster The MSE forecaster predicts the mean of the potential functions of the CRF used1113

to construct the latent process. This model is trained to minimize the mean squared error between1114

the predicted mean of each potential function, and the mean of the potential function of the target1115

process. To generate samples from this model, we use the input y1:k to generate the means of the1116

CRF potentials for the entire sequence of generated variables. We then sample from the CRF defined1117

by these potentials to get a sample from this model.1118

Autoregressive MSE forecaster This model is also a conditional Gaussian autoregressive model,1119

except that the model only parameterizes the mean of each transition distribution, and not the1120

covariance, because, as mentioned in (REF), when the covariance matrices of the potential functions1121

do not depend on the values of y, then the covariance matrices are known analytically using Kalman1122

smoothing. To train this model, we minimize the mean squared error between the means of the1123

true transition distributions (using the entire observed sequence), p(xi+1|xi,y1:N), and the mean1124

predicted by our model for q(xi+1|xi,y1:k). We generate samples from this model using the same1125

procedure as the one for the conditional Gaussian autoregressive model defined above.1126

Neural ODE/SDE We designed a novel parameterization of neural process models based on flow-1127

based generative models in order to be able to use the same autoregressive transformer architecture1128

as the other models, and also to make these scalable during training. Recall that a single step of1129

training a flow-based generative model requires constructing a stochastic bridge between samples1130

from a source and target distribution, sampling a random time in between the source and target time,1131

sampling from the stochastic bridge at this time and then computing the probability flow ODE vector1132

(or drift) of the bridge at this time. To extend this to time series, we must be able to perform this1133

procedure for every pair of consecutive time points in a time series. To this end, we construct our1134

transformer decoder to take as input the latent sequence that we are generating at the fixed set of times1135

T := {t1, . . . , tN} and also elements of the latent sequence at (uniformly) random times inbetween1136

these times, compute both the predicted and true control (either probability flow ODE vector or drift1137

vector) at both the original and new times, and then return the mean squared error between the two.1138

More formally, at training time suppose that we uniformly sample times in between the times1139

in T as τi ∼ U(ti, ti+1) for i = 1, . . . , N − 1. Then we can sample from the stochas-1140

tic bridge at these times to get a sample from the model, xT +τ ∼ p(xT +τ |y1:N), where1141

xT +τ := (xt1 , xτ1 , xt2 , xτ2 , . . . , xτN−1
, xtN). Our decoder transformer network takes as input1142

xT +τ and the embedding of y1:k from the encoder and outputs the probability flow ODE vector1143

(if we are training a neural ODE) or the drift vector (if we are training a neural SDE) at the times1144

T + τ . Our conditioned linear SDE library allows us to efficiently sample from p(xT +τ |y1:N), as1145

well as compute the target control vector for the samples. We then compute the mean squared error1146

between the predicted control vector and the target control vector to get our loss function. Since we1147

ensure that our decoder network is autoregressive, we are able to compute the loss for the drift for the1148

entire sequence at once, rather than having to compute for a single time step as is the case in existing1149

implementations of these kinds of models (CITE).1150

Our sample generation procedure simulates and ODE/SDE where the control vector at time t is given1151

by the k’th element of the decoder output, where t ∈ (tk, tk+1). To begin, we first sample an initial1152

point from pCRF(xt0 |y1:k). Note that this distribution is not equal to the target p(xt0 |y1:k), but is a1153

reasonable approximation if k is reasonably large. Then we sample a set of times, τ , in between the1154

times in T , like we do during training, to hold the intermediate variables that we store in order to1155

feed the neural network an input that looks similar to the one used during training. The sampling1156

procedure can be broken down into a sequence of k steps, where at step k ∈ [0, N), we simulate1157

the variable xtk forward in time from time t = tk, tk+1 to predict the next element of the sequence,1158

xtk+1
. At the first step, we initialize the buffer of 2N − 1 elements (xt0 , 0, . . . , 0). Then for each1159

step k ∈ [0, N), we simulate the variable xtk forward in time from time t = tk−1, tk to predict the1160

next element of the sequence, xtk . The control of this simulation process is computed by passing1161

the current buffer of variables to the decoder network. During simulation, we record the value of1162

the process at the time, τk, so that at the end of step k, we update the buffer to include both xτk and1163

xtk+1
. We then repeat this process for each step k ∈ [0, N) to get a sample from the model. See ??1164

for a discussion on the performance of this sampling procedure.1165

36

NeurIPS Paper Checklist1166

The checklist is designed to encourage best practices for responsible machine learning research,1167

addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove1168

the checklist: The papers not including the checklist will be desk rejected. The checklist should1169

follow the references and follow the (optional) supplemental material. The checklist does NOT count1170

towards the page limit.1171

Please read the checklist guidelines carefully for information on how to answer these questions. For1172

each question in the checklist:1173

• You should answer [Yes] , [No] , or [NA] .1174

• [NA] means either that the question is Not Applicable for that particular paper or the1175

relevant information is Not Available.1176

• Please provide a short (1-2 sentence) justification right after your answer (even for NA).1177

The checklist answers are an integral part of your paper submission. They are visible to the1178

reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it1179

(after eventual revisions) with the final version of your paper, and its final version will be published1180

with the paper.1181

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.1182

While "[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No] " provided a1183

proper justification is given (e.g., "error bars are not reported because it would be too computationally1184

expensive" or "we were unable to find the license for the dataset we used"). In general, answering1185

"[No] " or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we1186

acknowledge that the true answer is often more nuanced, so please just use your best judgment and1187

write a justification to elaborate. All supporting evidence can appear either in the main paper or the1188

supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification1189

please point to the section(s) where related material for the question can be found.1190

1. Claims1191

Question: Do the main claims made in the abstract and introduction accurately reflect the1192

paper’s contributions and scope?1193

Answer: [Yes]1194

Justification: We introduced a generalization of the key elements of flow-based generative1195

models that are relevant to the time series setting and showed how this can be used to1196

construct related discrete time models.1197

Guidelines:1198

• The answer NA means that the abstract and introduction do not include the claims1199

made in the paper.1200

• The abstract and/or introduction should clearly state the claims made, including the1201

contributions made in the paper and important assumptions and limitations. A No or1202

NA answer to this question will not be perceived well by the reviewers.1203

• The claims made should match theoretical and experimental results, and reflect how1204

much the results can be expected to generalize to other settings.1205

• It is fine to include aspirational goals as motivation as long as it is clear that these goals1206

are not attained by the paper.1207

2. Limitations1208

Question: Does the paper discuss the limitations of the work performed by the authors?1209

Answer: [Yes]1210

Justification: In section 3.4 and 3.6 we explained how the class of models we introduced are1211

ultimately just mean squared error based conditional Gaussian models and therefore may1212

not work as well in practice as their maximum likelihood counterparts on more stochastic1213

data.1214

Guidelines:1215

37

• The answer NA means that the paper has no limitation while the answer No means that1216

the paper has limitations, but those are not discussed in the paper.1217

• The authors are encouraged to create a separate "Limitations" section in their paper.1218

• The paper should point out any strong assumptions and how robust the results are to1219

violations of these assumptions (e.g., independence assumptions, noiseless settings,1220

model well-specification, asymptotic approximations only holding locally). The authors1221

should reflect on how these assumptions might be violated in practice and what the1222

implications would be.1223

• The authors should reflect on the scope of the claims made, e.g., if the approach was1224

only tested on a few datasets or with a few runs. In general, empirical results often1225

depend on implicit assumptions, which should be articulated.1226

• The authors should reflect on the factors that influence the performance of the approach.1227

For example, a facial recognition algorithm may perform poorly when image resolution1228

is low or images are taken in low lighting. Or a speech-to-text system might not be1229

used reliably to provide closed captions for online lectures because it fails to handle1230

technical jargon.1231

• The authors should discuss the computational efficiency of the proposed algorithms1232

and how they scale with dataset size.1233

• If applicable, the authors should discuss possible limitations of their approach to1234

address problems of privacy and fairness.1235

• While the authors might fear that complete honesty about limitations might be used by1236

reviewers as grounds for rejection, a worse outcome might be that reviewers discover1237

limitations that aren’t acknowledged in the paper. The authors should use their best1238

judgment and recognize that individual actions in favor of transparency play an impor-1239

tant role in developing norms that preserve the integrity of the community. Reviewers1240

will be specifically instructed to not penalize honesty concerning limitations.1241

3. Theory assumptions and proofs1242

Question: For each theoretical result, does the paper provide the full set of assumptions and1243

a complete (and correct) proof?1244

Answer: [Yes]1245

Justification: We provide all of our proofs in the appendix.1246

Guidelines:1247

• The answer NA means that the paper does not include theoretical results.1248

• All the theorems, formulas, and proofs in the paper should be numbered and cross-1249

referenced.1250

• All assumptions should be clearly stated or referenced in the statement of any theorems.1251

• The proofs can either appear in the main paper or the supplemental material, but if1252

they appear in the supplemental material, the authors are encouraged to provide a short1253

proof sketch to provide intuition.1254

• Inversely, any informal proof provided in the core of the paper should be complemented1255

by formal proofs provided in appendix or supplemental material.1256

• Theorems and Lemmas that the proof relies upon should be properly referenced.1257

4. Experimental result reproducibility1258

Question: Does the paper fully disclose all the information needed to reproduce the main ex-1259

perimental results of the paper to the extent that it affects the main claims and/or conclusions1260

of the paper (regardless of whether the code and data are provided or not)?1261

Answer: [Yes]1262

Justification: We provide all of our implementation details in the appendix and provide our1263

code as supplementary material.1264

Guidelines:1265

• The answer NA means that the paper does not include experiments.1266

• If the paper includes experiments, a No answer to this question will not be perceived1267

well by the reviewers: Making the paper reproducible is important, regardless of1268

whether the code and data are provided or not.1269

38

• If the contribution is a dataset and/or model, the authors should describe the steps taken1270

to make their results reproducible or verifiable.1271

• Depending on the contribution, reproducibility can be accomplished in various ways.1272

For example, if the contribution is a novel architecture, describing the architecture fully1273

might suffice, or if the contribution is a specific model and empirical evaluation, it may1274

be necessary to either make it possible for others to replicate the model with the same1275

dataset, or provide access to the model. In general. releasing code and data is often1276

one good way to accomplish this, but reproducibility can also be provided via detailed1277

instructions for how to replicate the results, access to a hosted model (e.g., in the case1278

of a large language model), releasing of a model checkpoint, or other means that are1279

appropriate to the research performed.1280

• While NeurIPS does not require releasing code, the conference does require all submis-1281

sions to provide some reasonable avenue for reproducibility, which may depend on the1282

nature of the contribution. For example1283

(a) If the contribution is primarily a new algorithm, the paper should make it clear how1284

to reproduce that algorithm.1285

(b) If the contribution is primarily a new model architecture, the paper should describe1286

the architecture clearly and fully.1287

(c) If the contribution is a new model (e.g., a large language model), then there should1288

either be a way to access this model for reproducing the results or a way to reproduce1289

the model (e.g., with an open-source dataset or instructions for how to construct1290

the dataset).1291

(d) We recognize that reproducibility may be tricky in some cases, in which case1292

authors are welcome to describe the particular way they provide for reproducibility.1293

In the case of closed-source models, it may be that access to the model is limited in1294

some way (e.g., to registered users), but it should be possible for other researchers1295

to have some path to reproducing or verifying the results.1296

5. Open access to data and code1297

Question: Does the paper provide open access to the data and code, with sufficient instruc-1298

tions to faithfully reproduce the main experimental results, as described in supplemental1299

material?1300

Answer: [Yes]1301

Justification: We include our code as supplementary material.1302

Guidelines:1303

• The answer NA means that paper does not include experiments requiring code.1304

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/1305

public/guides/CodeSubmissionPolicy) for more details.1306

• While we encourage the release of code and data, we understand that this might not be1307

possible, so âĂIJNoâĂİ is an acceptable answer. Papers cannot be rejected simply for1308

not including code, unless this is central to the contribution (e.g., for a new open-source1309

benchmark).1310

• The instructions should contain the exact command and environment needed to run to1311

reproduce the results. See the NeurIPS code and data submission guidelines (https:1312

//nips.cc/public/guides/CodeSubmissionPolicy) for more details.1313

• The authors should provide instructions on data access and preparation, including how1314

to access the raw data, preprocessed data, intermediate data, and generated data, etc.1315

• The authors should provide scripts to reproduce all experimental results for the new1316

proposed method and baselines. If only a subset of experiments are reproducible, they1317

should state which ones are omitted from the script and why.1318

• At submission time, to preserve anonymity, the authors should release anonymized1319

versions (if applicable).1320

• Providing as much information as possible in supplemental material (appended to the1321

paper) is recommended, but including URLs to data and code is permitted.1322

6. Experimental setting/details1323

39

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-1324

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the1325

results?1326

Answer: [Yes]1327

Justification: We explain our experimental setting in the experiments section1328

Guidelines:1329

• The answer NA means that the paper does not include experiments.1330

• The experimental setting should be presented in the core of the paper to a level of detail1331

that is necessary to appreciate the results and make sense of them.1332

• The full details can be provided either with the code, in appendix, or as supplemental1333

material.1334

7. Experiment statistical significance1335

Question: Does the paper report error bars suitably and correctly defined or other appropriate1336

information about the statistical significance of the experiments?1337

Answer: [Yes]1338

Justification: We provide the mean and standard error for the models trained in our experi-1339

ments.1340

Guidelines:1341

• The answer NA means that the paper does not include experiments.1342

• The authors should answer "Yes" if the results are accompanied by error bars, confi-1343

dence intervals, or statistical significance tests, at least for the experiments that support1344

the main claims of the paper.1345

• The factors of variability that the error bars are capturing should be clearly stated (for1346

example, train/test split, initialization, random drawing of some parameter, or overall1347

run with given experimental conditions).1348

• The method for calculating the error bars should be explained (closed form formula,1349

call to a library function, bootstrap, etc.)1350

• The assumptions made should be given (e.g., Normally distributed errors).1351

• It should be clear whether the error bar is the standard deviation or the standard error1352

of the mean.1353

• It is OK to report 1-sigma error bars, but one should state it. The authors should1354

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis1355

of Normality of errors is not verified.1356

• For asymmetric distributions, the authors should be careful not to show in tables or1357

figures symmetric error bars that would yield results that are out of range (e.g. negative1358

error rates).1359

• If error bars are reported in tables or plots, The authors should explain in the text how1360

they were calculated and reference the corresponding figures or tables in the text.1361

8. Experiments compute resources1362

Question: For each experiment, does the paper provide sufficient information on the com-1363

puter resources (type of compute workers, memory, time of execution) needed to reproduce1364

the experiments?1365

Answer: [Yes]1366

Justification: We provide these details in the appendix.1367

Guidelines:1368

• The answer NA means that the paper does not include experiments.1369

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,1370

or cloud provider, including relevant memory and storage.1371

• The paper should provide the amount of compute required for each of the individual1372

experimental runs as well as estimate the total compute.1373

40

• The paper should disclose whether the full research project required more compute1374

than the experiments reported in the paper (e.g., preliminary or failed experiments that1375

didn’t make it into the paper).1376

9. Code of ethics1377

Question: Does the research conducted in the paper conform, in every respect, with the1378

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?1379

Answer: [Yes]1380

Justification: We read the code of ethics.1381

Guidelines:1382

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.1383

• If the authors answer No, they should explain the special circumstances that require a1384

deviation from the Code of Ethics.1385

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-1386

eration due to laws or regulations in their jurisdiction).1387

10. Broader impacts1388

Question: Does the paper discuss both potential positive societal impacts and negative1389

societal impacts of the work performed?1390

Answer: [NA]1391

Justification: Our paper is mostly theoretical with limited societal impacts at this stage.1392

Guidelines:1393

• The answer NA means that there is no societal impact of the work performed.1394

• If the authors answer NA or No, they should explain why their work has no societal1395

impact or why the paper does not address societal impact.1396

• Examples of negative societal impacts include potential malicious or unintended uses1397

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations1398

(e.g., deployment of technologies that could make decisions that unfairly impact specific1399

groups), privacy considerations, and security considerations.1400

• The conference expects that many papers will be foundational research and not tied1401

to particular applications, let alone deployments. However, if there is a direct path to1402

any negative applications, the authors should point it out. For example, it is legitimate1403

to point out that an improvement in the quality of generative models could be used to1404

generate deepfakes for disinformation. On the other hand, it is not needed to point out1405

that a generic algorithm for optimizing neural networks could enable people to train1406

models that generate Deepfakes faster.1407

• The authors should consider possible harms that could arise when the technology is1408

being used as intended and functioning correctly, harms that could arise when the1409

technology is being used as intended but gives incorrect results, and harms following1410

from (intentional or unintentional) misuse of the technology.1411

• If there are negative societal impacts, the authors could also discuss possible mitigation1412

strategies (e.g., gated release of models, providing defenses in addition to attacks,1413

mechanisms for monitoring misuse, mechanisms to monitor how a system learns from1414

feedback over time, improving the efficiency and accessibility of ML).1415

11. Safeguards1416

Question: Does the paper describe safeguards that have been put in place for responsible1417

release of data or models that have a high risk for misuse (e.g., pretrained language models,1418

image generators, or scraped datasets)?1419

Answer: [NA]1420

Justification: Our method does not require safeguards.1421

Guidelines:1422

• The answer NA means that the paper poses no such risks.1423

41

https://neurips.cc/public/EthicsGuidelines

• Released models that have a high risk for misuse or dual-use should be released with1424

necessary safeguards to allow for controlled use of the model, for example by requiring1425

that users adhere to usage guidelines or restrictions to access the model or implementing1426

safety filters.1427

• Datasets that have been scraped from the Internet could pose safety risks. The authors1428

should describe how they avoided releasing unsafe images.1429

• We recognize that providing effective safeguards is challenging, and many papers do1430

not require this, but we encourage authors to take this into account and make a best1431

faith effort.1432

12. Licenses for existing assets1433

Question: Are the creators or original owners of assets (e.g., code, data, models), used in1434

the paper, properly credited and are the license and terms of use explicitly mentioned and1435

properly respected?1436

Answer: [NA]1437

Justification: We wrote the code for our models and datasets from scratch.1438

Guidelines:1439

• The answer NA means that the paper does not use existing assets.1440

• The authors should cite the original paper that produced the code package or dataset.1441

• The authors should state which version of the asset is used and, if possible, include a1442

URL.1443

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.1444

• For scraped data from a particular source (e.g., website), the copyright and terms of1445

service of that source should be provided.1446

• If assets are released, the license, copyright information, and terms of use in the1447

package should be provided. For popular datasets, paperswithcode.com/datasets1448

has curated licenses for some datasets. Their licensing guide can help determine the1449

license of a dataset.1450

• For existing datasets that are re-packaged, both the original license and the license of1451

the derived asset (if it has changed) should be provided.1452

• If this information is not available online, the authors are encouraged to reach out to1453

the asset’s creators.1454

13. New assets1455

Question: Are new assets introduced in the paper well documented and is the documentation1456

provided alongside the assets?1457

Answer: [NA]1458

Justification: N/A1459

Guidelines:1460

• The answer NA means that the paper does not release new assets.1461

• Researchers should communicate the details of the dataset/code/model as part of their1462

submissions via structured templates. This includes details about training, license,1463

limitations, etc.1464

• The paper should discuss whether and how consent was obtained from people whose1465

asset is used.1466

• At submission time, remember to anonymize your assets (if applicable). You can either1467

create an anonymized URL or include an anonymized zip file.1468

14. Crowdsourcing and research with human subjects1469

Question: For crowdsourcing experiments and research with human subjects, does the paper1470

include the full text of instructions given to participants and screenshots, if applicable, as1471

well as details about compensation (if any)?1472

Answer: [NA]1473

Justification: N/A1474

42

paperswithcode.com/datasets

Guidelines:1475

• The answer NA means that the paper does not involve crowdsourcing nor research with1476

human subjects.1477

• Including this information in the supplemental material is fine, but if the main contribu-1478

tion of the paper involves human subjects, then as much detail as possible should be1479

included in the main paper.1480

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,1481

or other labor should be paid at least the minimum wage in the country of the data1482

collector.1483

15. Institutional review board (IRB) approvals or equivalent for research with human1484

subjects1485

Question: Does the paper describe potential risks incurred by study participants, whether1486

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)1487

approvals (or an equivalent approval/review based on the requirements of your country or1488

institution) were obtained?1489

Answer: [NA]1490

Justification: N/A1491

Guidelines:1492

• The answer NA means that the paper does not involve crowdsourcing nor research with1493

human subjects.1494

• Depending on the country in which research is conducted, IRB approval (or equivalent)1495

may be required for any human subjects research. If you obtained IRB approval, you1496

should clearly state this in the paper.1497

• We recognize that the procedures for this may vary significantly between institutions1498

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the1499

guidelines for their institution.1500

• For initial submissions, do not include any information that would break anonymity (if1501

applicable), such as the institution conducting the review.1502

16. Declaration of LLM usage1503

Question: Does the paper describe the usage of LLMs if it is an important, original, or1504

non-standard component of the core methods in this research? Note that if the LLM is used1505

only for writing, editing, or formatting purposes and does not impact the core methodology,1506

scientific rigorousness, or originality of the research, declaration is not required.1507

Answer: [NA]1508

Justification: We do not use LLMs in this work.1509

Guidelines:1510

• The answer NA means that the core method development in this research does not1511

involve LLMs as any important, original, or non-standard components.1512

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)1513

for what should or should not be described.1514

43

https://neurips.cc/Conferences/2025/LLM

	Introduction
	Background
	Method
	Generalized linear stochastic interpolation
	Gaussian conditional random fields
	Linear time-invariant stochastic differential equations

	Target probabilistic model for FBGM
	Neural latent SDE for latent probabilistic forecasting
	Constrained mean-field variational inference
	Discrete time Markovian projection
	Connection to traditional time series models

	Experiments
	Conclusion
	Appendix
	Related Work
	Background
	Exponential family distributions
	Mean field variational inference
	Bayes estimation

	Message passing
	Sequential message passing
	Parallel message passing
	Chain operation
	Probabilistic queries

	Conditioned SDEs
	Conditioned linear SDE
	Probabilistic queries for conditioned linear SDEs
	Probability flow ODE for conditioned linear SDEs

	CMFVI proofs
	Constrained mean field VI
	Bayes estimator equivariance
	CMFVI time series models

	Flow-based generative models proofs
	Score function for FBGMs
	General form of Markovian projection SDE
	General form of Markovian projection ODE

	Message Passing Implementation Details
	Numerical stability considerations
	Message passing pseudocode
	Update rules

	Dataset details
	Model implementation details
	Neural network architecture and training details
	Model details

