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Question: Bird-Eye-View Trajectory Question:
Can you calculate the total distance covered || = Telectoy e Start e End Calculate how long it takes for the object to travel from New York (NY) to Los
by the object in the video? T— Angeles (LA) at the current speed.

Ground Truth:
Object speed: 20.19 mph (32.49 km/h)
Distance between NY and LA: 2,775.3 miles (4466.4 km)

Ground Truth:
The total distance traveled by the given
object is 20.15 meters.

GPT-5: GPT-5:

The frames don't provide the object's coordinates or real-world scale, so the ... If you assume a speed 60 mph, then ~46.7 hours (not including stops).
total distance traveled cannot be calculated from these images alone. r—o-
5 ﬂ) ST-VLM (Ours):

-J:E)ST-VLM (Ours): The distance between NY and LA is 2794.18 miles. The object's speed is
The given object moved a total distance of 19.84 m. 35.17 km/h. First, ... 2794.2 miles * 1.61 km/mile = 4487.5 km. Then, ...

4487.5 km / 35.17 km/h = 127.3 hours. Therefore, ... approximately 5.3 days ...

(a) A challenging case with a complex trajectory. (b) An emergent capability of ST-VLM.

Figure 1: Spatio-temporal reasoning in dynamic videos with moving objects. (a) asks the model
to predict the total traveled distance using only the video, without additional modalities such as 3D
point clouds, depth map, or camera poses. The video features a basketball player moving erratically
across the court, making it more difficult for the model to predict. (b) asks the model to solve multi-
step reasoning questions that require integrating spatio-temporal understanding with its existing
abilities (e.g., commonsense knowledge, logical reasoning, arithmetic computation). Since GPT-
5 lacks spatio-temporal reasoning ability, it fails to generate accurate answers. In (a), the model
avoids answering in the absence of a real-world scale, whereas in (b), it assumes a speed of 60
mph, resulting in a highly inaccurate response. In contrast, ST-VLM, equipped with spatio-temporal
reasoning with the proposed STKit dataset, consistently provides accurate answers in both cases.

ABSTRACT

Spatio-temporal reasoning is essential for understanding real-world environments
in various fields, e.g., autonomous driving and sports analytics. While recent ad-
vances have strengthened the spatial reasoning abilities of Vision-Language Mod-
els (VLMs) through large-scale training data, these models still struggle with kine-
matic aspects such as traveled distance and speed of moving objects. To bridge this
gap, we construct a spatio-temporal reasoning dataset and benchmark for kine-
matic instruction tuning, referred to as STKit and STKit-Bench. They consist of
real-world videos with 3D annotations that capture object motion dynamics, in-
cluding traveled distance, speed, movement direction, inter-object distance com-
parisons, and relative movement direction. To further scale data construction to
videos without 3D annotations, we propose an automatic pipeline for generat-
ing pseudo-labels via 4D reconstruction at a real-world scale. Building on this
kinematic instruction tuning data, we introduce ST-VLM, a VLM enhanced for
spatio-temporal reasoning, which achieves strong performance on STKit-Bench.
Moreover, ST-VLM generalizes robustly across diverse domains and tasks, out-
performing baselines on comprehensive spatio-temporal reasoning benchmarks.
Finally, by integrating learned spatio-temporal reasoning with existing abilities,
ST-VLM enables complex multi-step reasoning grounded in kinematics.



Under review as a conference paper at ICLR 2026

Traveling Speed

Moving Direction

Question:
What is the average speed of the object annotated with red
bounding box throughout the video?

Question:
At the end of the video, in which direction does the object
annotated with the blue bounding box move?

JK) ST-VLM:

The average speed of the object annotated with the red
bounding box is 15.04 km/h throughout the video.

JdPsTvim:
The object moves in the direction of 10 o'clock at the
end of the video.

Traveled Distance Comparison

Moving Direction Comparison

Question:
Which object moves farther throughout the video?

Question:
From 3.5 and 4.5 seconds, are these objects moving in
different directions?

JE) ST-VLM:
... blue bounding box covers more distance throughout
the video compared to the ...

JdOsTvLM:
... blue bounding box is moving in a different direction

from the object annotated with the red ...

Figure 2: Several task examples from the proposed STKit along with predictions of ST-VLM.

1 INTRODUCTION

Spatio-temporal reasoning is the ability to infer how objects move and interact over time within
dynamic environments from visual evidence. For example, when analyzing a video of two cars
driving on the road, it involves estimating kinematic quantities such as which car moves faster,
what their movement directions are, and the precise speed of a specific car. This ability is essential
in a wide range of applications, including autonomous driving, sports analytics, augmented/virtual
reality, and embodied AI. However, even advanced Al models still struggle to measure kinematic
quantities requiring 3D/4D understanding, as shown in Fig. [Ta] where GPT-5 fails to estimate a
basketball player’s traveled distance in a short video. Furthermore, these models often rely on
language priors instead of genuinely analyzing the video’s underlying kinematics. In Fig.[Tb] GPT-5
simply assumes a speed of 60 mph for a car to answer the question. These observations expose
a fundamental gap in the ability of existing Vision-Language Models (VLMs) to perform spatio-
temporal reasoning.

Current VLMs are mostly trained on high-level vision tasks, e.g., classifying object attributes or lo-
calizing 2D coordinates (Yu et al.} 2016} [Krishna et al.,2017). In contrast, spatio-temporal reasoning
requires 3D/4D information (e.g., point clouds, metric depths, and camera extrinsics). These signals
are inherently low-level and difficult for VLMs to leverage effectively. To overcome this limitation,
recent studies (Chen et al} 2024} [Cheng et al.,[2024a)) have attempted to enhance spatial reasoning
in image-based VLMs through large-scale datasets annotated with static geometric cues such as ob-
ject sizes and locations. However, these efforts remain restricted to static scenes and cannot capture
how objects evolve over time. As a result, temporal dynamics, e.g., motion patterns and trajec-
tory evolution, are left unaddressed, even though they are fundamental for kinematic understanding.
This limitation motivates the need for large-scale video datasets annotated with dynamic geometric
information, enabling video-based VLMs to reason over kinematics in evolving environments.

To this end, we propose ST-VLM, a VLM equipped with enhanced spatio-temporal reasoning capa-
bilities grounded in kinematic information. To train and evaluate ST-VLM, we introduce STKit
and STKit-Bench, spatio-temporal reasoning datasets and benchmarks specifically designed for
kinematic instruction tuning. These datasets comprise seven fundamental tasks that require kine-
matic reasoning, such as estimating traveled distance and speed (see Fig. 2| for examples). To ensure
high-quality kinematic instructions, the datasets are constructed from 3D annotations, including
driving videos (Wilson et al.} 2023}, [Caesar et al.},[2020) with LiDAR-based point clouds and sports
videos (Grauman et al., 2024) with SLAM-based point clouds estimated from AR devices
2023)). Since acquiring point cloud-labeled training videos is challenging, we further develop a
pseudo-labeling pipeline based on 4D reconstruction from unlabeled videos (Yu et al., [2020; [Zhang
et all 2024¢} [Li et al, 2021). By training on both labeled and pseudo-labeled kinematic instruc-
tion data, ST-VLM enables complex reasoning that integrates spatio-temporal reasoning with its
pretrained knowledge. For example, as shown in Fig. [[b] ST-VLM can answer questions that re-
quire integrating commonsense knowledge (distances between cities), kinematic estimation (speed),
logical reasoning (time = distance/speed), and arithmetic computation. These emergent capabilities
are seamlessly unified when spatio-temporal reasoning is incorporated into the model, even without
explicit training for complex reasoning.




Under review as

a conference paper at ICLR 2026

Table 1: Overview of kinematic instructions. A common prompt is prepended to each task, pro-
viding contextual information about the video: “The video lasts for ¢ seconds, and n frames are
uniformly sampled from it. These frames are located at ¢4, . ..,%, seconds. There are k objects

annotated with [

COLOR] bounding boxes in the video.”

Main Categories | Subcategories | Tasks | Descriptions

Predict the total traveled distance of the object given the timestamp.

‘ Traveled Distance e.g., Can you calculate the total distance the object traveled between [START] and [END] seconds?

Direction

Movement Direction | Compare whether objects are moving in the same direction or not.

Distance Traveling Speed Predict the average traveling speed of the object given the timestamp.
Single 8 5P e.g., Tell me the object’s average speed throughout the video.
Object Movement Direction Predict the movement direction of the object at the end of the video.
v ! e.g.. What direction does the object travel at the end of the video?
Direction Direction Timest Predict the timestamp when the object moves in the given direction.
irection Himestamp | -, g., Describe the timestamp when the object moves in the [DIRECTION] o’clock direction.
Traveled Distance Compare which object has traveled farther (or less).
Comparison e.g., Which object travels a greater distance in the video?
Multiple Distance Traveling Speed Compare which object has traveled faster (or slower).
Objects Comparison e.g., Which object moves faster throughout the video?

Comparison e.g., Is object A moving in the same direction as object B in the video?

In summary, our contributions are threefold:

* We introduce STKit and STKit-Bench, a new dataset and benchmark designed to endow

VLMs

with kinematic understanding in dynamic videos, enabling spatio-temporal reason-

ing over quantities such as traveled distance and movement direction.

* To address the scarcity of 3D-annotated data, we propose a pseudo-label generation
pipeline that leverages 4D reconstruction from unlabeled videos.

* We pre

sent ST-VLM, which significantly surpasses GPT-5 by 25.6% on STKit-Bench with

strong spatio-temporal reasoning. Our in-depth analyses demonstrate that ST-VLM excels
in complex reasoning about object kinematics across various scenarios.

2 RELATED WORK

Vision-Language Models (VLMs). Recent VLMs have demonstrated strong perception and rea-

soning across a wide range of image (Li et al, 20244} 2024, Wang et al.,[2024a; [Lin et al,
2024) and video (Zhang et al. [2024b; (Wang et al., 2024c} [Cheng et al., [2024b; Maaz et al., 2023}

Li et all 2024b) tasks, powered by LLMs. However, they struggle with 3D geometry (Liu et al.
2024). To mitigate this, spatial-aware image-based VLMs (Liu et al.| 2023}, [Cai et all, 20254} |Yang]|

et al., 2023} [Cai et all, [20254; [Cheng et all, 20244; [Chen et al., 2024) improve spatial reasoning,

such as SpatialCoT (Liu et al., 2025) with chain-of-thought (CoT) spatial grounding. Video-based

VLMs (Cheng et all 2024b; [Li et all] 2025} [Bhattacharyya et all 2024) have begun to explore

spatio-temporal

reasoning for domains like autonomous driving (Zhou et al [2024b; [Wang et all]

2024Db;Ma et al} 2024) and embodied AT (Huang et al., 2024} [Cai et al., 2025al). For example, Bhat-

tacharyya et al.|

2024) propose an elegant three-step video reasoning framework (Look, Remember,

Reason) incorporating a two-stream video encoder and spatio-temporal attention. In parallel, agent-

based systems

Shen et all, 2023}, [Gupta & Kembhavil, [2023)) achieve strong performance in 2D

tasks (Wang & |

Kel, [2024; [Lee et al.,[2024) by chaining specialist modules whose outputs (e.g., ob-

ject categories, 2D bounding box coordinates) are directly interpretable by VLMs. However, VLMs

remain unable t
‘We address this
which directly e

o interpret low-level 3D/4D signals, limiting generalization beyond 2D domains.
by proposing a new video-based VLM with spatio-temporal reasoning capabilities,
stimates object kinematics such as traveled distance and movement direction.

Spatio-temporal reasoning datasets. Several datasets have been proposed in the literature

et all, 2023}, [Lei et all, [2020; [Zhang et al. 2020} [Zhou et al.| [2025) to improve the video-based

VLMs’ spatio-temporal reasoning ability. ST-Align (Li et al., 2025) is a video instruction dataset

that requires loc
spatio-temporal

alizing 2D coordinates over time, whereas VidSTG (Zhang et al.} 2020) focuses on
grounding given a query sentence. Also, several benchmarks have been introduced

to evaluate video-based VLMs’ spatio-temporal reasoning abilities in the general domain (Li et al.,

[2024b; [Fu et all|, 2024} [Liang et all [2025]), embodied Al [2024a)), and autonomous

driving (Zhou et al, 2024b; Wang et al., 2024D}, [Sima et al., 2024). For example,
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Answer: The distance is 9.5 meters.

Figure 3: Pseudo-label generation pipeline. In the geometric reconstruction branch, a canoni-
calized 4D scene is reconstructed using MonST3R and Metric3D v2. The semantic understanding
branch extracts object bounding boxes, segmentation masks, and trajectories via Grounded-SAM?2.
By integrating the two branches, 2D object masks are lifted into 3D, and trajectories are derived by
tracking 3D centroids within the reconstructed 4D scene. Finally, a three-stage filtering strategy is
applied to generate high-quality QA pairs.

introduce a novel pixel-level fine-grained spatio-temporal grounding benchmark in egocen-
tric videos. Also, [Sima et al.| (2024) focus on driving-specific scenarios, such as planning and
decision-making, while our dataset targets core kinematic reasoning. Concurrent with our work,
VLM4D introduced a video benchmark with 4D features designed to evaluate
the spatio-temporal reasoning capabilities of VLMs. However, these datasets and benchmarks do
not explicitly take into account kinematics in dynamic videos, while we present instruction-tuning
data annotated with kinematic information.

3 METHOD

We aim to infuse VLMs with spatio-temporal reasoning abilities through kinematic instruction tun-
ing data, STKit. In Sec.[3.I] we introduce seven tasks to categorize kinematic instructions of STKit.
We then present a kinematic grounding framework for generating QA pairs in STKit, using dy-
namic videos annotated with 3D point clouds in Sec.[3.2] To address the bottleneck of limited 3D
annotations, we propose a pseudo-labeling pipeline that leverages 4D reconstruction on unlabeled
videos, as detailed in Sec. @ Finally, in Sec @ we train ST-VLM with STKit based on both
3D-annotated and pseudo-labeled data.

3.1 KINEMATIC INSTRUCTIONS

We introduce STKit, a kinematic instruction tuning dataset designed to enhance VLMs’ spatio-
temporal reasoning capabilities. The dataset includes instructions for measuring kinematic quanti-
ties in dynamic videos, such as object trajectories, traveled distances, and movement directions. To
cover diverse kinematic aspects, we define seven tasks grouped into two categories, Single Objects
and Multiple Objects, each further subdivided into Distance and Direction (see Tab. [I] for details).
The tasks require the model to capture both absolute measures (distance and direction of an object’s
movement) and relative measures (comparisons across multiple objects). Solving them necessitates
inferring spatial information (e.g., object locations) and temporal information (e.g., object dynam-
ics), thereby fostering complex spatio-temporal reasoning built upon the prior knowledge of LLMs.

3.2 KINEMATIC GROUNDING IN DYNAMIC VIDEOS WITH 3D ANNOTATIONS

Generating QA pairs for STKit requires grounding object kinematics in dynamic videos. To this
end, we consider diverse dynamic scenarios, including autonomous driving and outdoor sports (e.g.,
football and basketball). Specifically, for driving, we use datasets such as Argoverse2
and NuScenes (Caesar et al,[2020), which provide LiDAR-based 3D object coordinates at a
real-world scale for each timestamp. For sports, we incorporate Ego-Exo4D (Grauman et al.,[2024),
captured with wearable AR devices (Engel et all, [2023)) that record both RGB images and IMU
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-:blrdseyevlewofacar —+:reference direction  —»: currentdirection  --»:fulltrajectory 1Dl 2: Data composmon of STKit. We ex-

63K kinematic instructions from six datasets, cov-
ering autonomous driving (AD), sports, and gen-
eral domains. For videos without 3D annotations,
we generate pseudo-labels via 4D reconstruction.

Dataset \ #QA pairs # Videos Domain 3D annot.
NuScenes 13K 4K AD LiDAR
Argoverse2 8K 0.6K AD LiDAR
Ego-Exo4D 6K 0.8K Sports VIO/SLAM
— 120’ clock <% 110’ clock Z. 100’ dlock 1,90 clock BDD100K 35.2K 15K AD pseudo-label
LLaVA-Video 0.5K 0.3K General  pseudo-label
MultiSports 0.3K 0.2K Sports pseudo-label

Figure 4: Movement directions as clockwise directions.

signals, enabling accurate 3D trajectory estimation via Visual-Inertial Odometry (VIO) and SLAM.
These trajectories are used as the practical ground truth (GT).

For each annotated object in the video, we obtain its 3D centroid and 3D bounding box coordinates

in world space at every timestamp. Using the 3D center coordinate Pii) of the ¢-th object at time ¢,
we construct trajectories by sampling centers at 0.5-second intervals over 40-frame videos, covering
up to 20 seconds. The traveled distance of object ¢ between s and e seconds is computed as the

cumulative sum of distances between consecutive frames, i.e., Zf;sl ||P§21 - Pgi) |l2. The average
speed is also obtained by dividing the traveled distance by the duration e — s.

For movement direction, we first define a reference direction for each object using its initial motion,
derived from the displacement between the first two frames in which it appears, i.e., PS)H — PS).
Subsequent movement directions are then expressed as relative angles with respect to this reference
vector. However, describing directions with angles is not intuitive, as humans typically do not
use exact degrees. To make this more accessible for both humans and VLMs, we discretize the
calculated angles into clockwise directions. Specifically, the initial reference direction is aligned
with 12 o’clock, and subsequent directions are expressed relative to this reference, as illustrated in
Fig.[d Due to the highly complex 3D trajectories in the sports domain, we exclude the movement
direction category from that domain (see Fig. [Ta|for an example trajectory). This results in a total of
27K high-quality samples with 3D GT annotations from NuScenes, Argoverse2, and Ego-Exo4D.

3.3 PSEUDO-LABELING FOR UNLABELED DYNAMIC VIDEOS

To mitigate the scarcity of 3D GT annotations and extend STKit to broader domains, we propose a
pseudo-labeling pipeline that leverages 4D reconstruction on unlabeled video datasets. Specifically,
we use BDD100K (Yu et al., 2020) for autonomous driving, MultiSports (Li et al., 2021])) for sports,
and LLaVA-Video (Zhang et al.,|2024c)) for the general domain. Building on recent advances in ge-
ometric reconstruction and semantic understanding, we reconstruct 4D scenes by lifting segmented
objects from 2D frames into 3D space. This extends the kinematic grounding described in Sec. [3.2]
to unlabeled videos. An overview of the pseudo-labeling pipeline is presented in Fig. 3]

Geometric reconstruction branch. For 4D reconstruction on unlabeled videos, we employ
MonST3R (Zhang et al.l [2025b), a framework that estimates scene geometry including depth and
camera intrinsics/extrinsics, even in dynamic videos with moving objects. However, the space re-
constructed by MonST3R is not aligned with real-world scale, since it lacks a fixed depth reference,
resulting in reconstructions that are accurate in shape but arbitrary in size. This scale misalignment
poses a significant challenge for spatio-temporal reasoning tasks such as estimating traveled dis-
tances and speeds. To resolve this issue, we incorporate Metric3D v2 (Hu et al.l 2024) to obtain
absolute metric depth at a real-world scale. Specifically, we canonicalize the reconstructed 4D scene
by rescaling MonST3R’s depth estimates to match the metric depths provided by Metric3D v2.
Semantic understanding branch. We extract bounding boxes, segmentation masks, and trajecto-
ries of target objects using the open-vocabulary video semantic understanding model, Grounded-
SAM2 (Ren et al.l 2024). We focus on moving object classes of interest, including automobiles
(e.g., cars, buses, trucks, motorcycles, bicycles) and humans.

Kinematic grounding in canonicalized 4D scene. By integrating the outputs from the two
branches, the 2D segmentation masks of selected objects are lifted into 3D point clouds within the
canonicalized 4D reconstructed scene. We then compute each object’s traveled distance, speed, and
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movement direction by tracking its 3D centroid across frames, following the procedure in Sec. [3.2]
Further details of the pseudo-labeling pipeline are provided in Sec.

Filtering strategy. Due to inherent limitations of monocular 4D reconstruction, e.g., partial visi-
bility and viewpoint constraints, we introduce a three-stage filtering strategy. Rule-based filtering
applies predefined heuristics to discard poorly reconstructed scenes. Specifically, we remove scenes
with insufficient point clouds or extremely small objects, detect outliers in 3D centroid trajectories,
and apply trajectory smoothing to recover natural motion patterns. General model-based filtering
leverages a VLM to exclude scenes with occluded objects or significant camera motion, while also
assessing object detection and tracking quality to eliminate low-quality cases. Task-specific model-
based filtering utilizes the model trained only on 3D-annotated (GT) data introduced in Sec. [3.2]
This model filters out low-quality pseudo-labeled samples based on their likelihood scores.

After the three-stage filtering, the number of low-quality samples is significantly reduced. For ex-
ample, scenes with occluded objects are reduced from 12,035 to 174, and those with failed object
detections from 9,278 to 206. As a result, we obtain a total of 36K high-quality pseudo-labeled
samples. To assess the reliability of pseudo-labels, we compare the computed trajectories against
GT trajectories from the 3D-annotated dataset, NuScenes. For the traveled distance, the mean error
rate decreases from 207% to 29% after applying the three-stage filtering strategy, where the error

rate is defined as =Sl 5 100. This demonstrates that our filtering strategy substantially improves
pseudo-label quality. Further details and analysis of the filtering strategy are provided in Sec.

3.4 KINEMATIC INSTRUCTION TUNING

Based on 27K 3D sensor-annotated samples (Sec. and 36K pseudo-labeled samples generated
via 4D reconstruction (Sec. [3.3)), we construct STKit for kinematic instruction tuning using prede-
fined templates. We provide the templates for each task in Sec.[Fland present the detailed data com-
position of STKit in Tab. [2] To specify the object of interest, we overlay a bounding box on each
frame as a visual prompt and provide additional textual context, including frame timestamps and
bounding-box color, as input to the VLMs. We further blend STKit with subsets of general instruc-
tion tuning datasets, LLaVA-Video (Zhang et al., 2024c)), LLaVA-OneVision (Li et al., 2024a), and
OpenSpatialDataset (Cheng et al2024a)), to train ST-VLM. Our model is initialized from the pre-
trained LLaVA-OneVision 7B. Through this integration, we empirically observe that ST-VLM ex-
hibits emergent capabilities, combining pretrained knowledge with newly acquired spatio-temporal
reasoning to support complex multi-step reasoning. Detailed analyses are presented in Sec. [6.3]

4 STKIT-BENCH

Since no benchmark exists for evaluating the spatio-temporal reasoning capabilities of general
VLMs, particularly in object kinematics, we introduce STKit-Bench, which comprises four datasets
spanning autonomous driving and sports. For autonomous driving, we use NuPlan (Caesar et al.,
2021)), NuScenes (Caesar et al., 2020), and Argoverse2 (Wilson et al., [2023)), all of which provide
LiDAR-based annotations, with NuPlan serving as an unseen dataset for robust evaluation. For
sports, we adopt Ego-Exo4D (Grauman et al., 2024), which includes SLAM-based annotations.
Following the official validation splits, STKit-Bench consists of 74.8% NuPlan, 12.5% NuScenes,
5.6% Argoverse2, and 7.1% Ego-Exo4D. Each task contains 200 QA pairs, resulting in a total of
1,400 QA pairs. To mitigate the long-tailed label distribution in QA pairs, we balance the number
of samples across labels to ensure fair evaluation. Details of STKit-Bench are provided in Sec.

For evaluation, we use GPT-5-nano to extract predictions from natural language responses. We then
compare each prediction g with the GT y by using the following evaluation metrics:

(1) Traveled Distance and (2) Traveling Speed: Accuracy (correctif y x 0.75 < ¢ <y x 1.25) and
MAE (ly — ).

(3) Movement Direction: Accuracy (correct if y = §) and MAE (min(|ly — ¢|,12 — |y — §l), in
clockwise directions).

(4) Direction Timestamp: Accuracy (correct if ToU(y, §) > 0.5) and IoU.

(5) Traveled Distance Comparison, (6) Traveling Speed Comparison, and (7) Movement Direction
Comparison: Accuracy (binary).
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Table 3: Results on STKit-Bench. The average accuracy is reported in the last column.

| Single Object (absolute) | Multiple Objects (relative)

Models Traveled Traveling Movement Direction | Travel. Distance | Travel. Speed | Move. Direction | Average
odels Distance Speed Direction Timestamp Comparison Comparison Comparison

| Acet MAE] (m) | Acet MAE| (km/h) | Acet MAE/ (clock) | Acet ToUT | Acct | Acct | Acct Acct
closed-source models
GPT-4V 8.0 48.3 10.0 332 9.0 2.7 28.0 027 51.0 49.5 54.0 29.9
GPT-40 2.0 36.7 0.5 234 16.0 2.7 55 008 545 56.0 585 27.6
GPT-5 1.0 453 55 325 12.0 223 85 0.11 65.5 63.0 73.0 32.6
Gemini-2.5-Flash 16.5 37.8 14.5 47.1 20.5 2.04 340 033 59.0 57.5 68.5 38.6
Gemini-2.5-Pro 10.5 38.0 6.5 37.7 10.0 233 340 032 64.0 62.5 735 373
open-source models
VideoLLaMA3-7B (Zhang et al.;2025a} | 12.5 55.9 29.5 20.4 16.5 2.0 10.5  0.15 44.0 40.5 55.0 29.8
Qwen2.5-VL-7B (Bai et al.| 2025, 7.0 60.0 12.0 84.4 15.5 2.14 50 005 51.0 45.0 49.5 26.4
InternVL3-8B (Zhu et al.[2025] 10.0 55.5 8.0 55.21 16.0 1.99 150 0.16 52.0 55.0 57.0 30.4
InternVideo2.5-8B (Wang et al.}2025} 55 367.2 75 31.0 8.5 3.0 15.0 0.16 475 49.0 55.5 269
VideoChat-Flash-7B (L1 et al.|[2024c) 8.0 43.79 14.0 24.8 10.0 29 23.0 025 51.0 46.0 415 28.5
LLaVA-Video-7B (Zhang et al.12024c] | 9.5 50.0 9.5 22.7 13.0 2.3 7.0 0.08 49.5 45.0 46.5 25.7
LLaVA-OneVision-7B (L1 et al.{2024a| | 11.5 54.6 6.0 253 5.0 2.0 225 022 425 52.5 45.0 26.4
ST-VLM-7B (Ours) | 420 204 | 445 117 | 31.0 17 | 67.5 0.56 74.0 74.5 74.0 58.2

5 EXPERIMENTS
We compare ST-VLM with baselines on STKit-Bench under various settings for robust evaluation.

5.1 EXPERIMENTAL SETTINGS

Baselines. We evaluate closed-source proprietary models, including GPT-4V, GPT-40, GPT-5,
Gemini-2.5-Flash, and Gemini-2.5-Pro. In addition, we consider a range of open-source video-based
VLMs: VideoLLaMA3 (Zhang et al.,2025a), Qwen2.5-VL (Bai et al., 2025), InternVL3 (Zhu et al.,
2023)), InternVideo2.5 (Wang et al.,|2025)), VideoChat-Flash (Li et al.,[2024¢)), LLaVA-Video (Zhang
et al.,[2024c), and LLaVA-OneVision (L1 et al.l [2024al).

Implementation details. For instruction tuning, we construct the training set by blending STKit
(63K) with subsets of 500K samples from LLaVA-Video, 500K samples from LLaVA-OneVision,
and 100K samples from OpenSpatialDataset. 4D scene reconstruction using MonST3R takes ap-
proximately 400 seconds per video on a single A6000 GPU. We train our model for one epoch with
a batch size of 128, adopting a cosine learning rate scheduler with an initial learning rate of le-5.
The full training requires two weeks on 8 x A6000 GPUs. Further details are provided in Sec.[A.2]

5.2 QUANTITATIVE RESULTS

Tab. 3| reports results on STKit-Bench, comparing ST-VLM against baseline VLMs. Proprietary
models, including the GPT and Gemini series, exhibit weak spatio-temporal reasoning on this bench-
mark. For example, in Traveled Distance, Gemini-2.5-Pro attains only 16.5% accuracy with a mean
absolute error (MAE) of 37.8, corresponding to an average deviation of 37.8 m from the GT dis-
tance. Open-source models also face challenges; for instance, LLaVA-OneVision, the initialization
for ST-VLM, achieves only 26.4% average accuracy. In contrast, ST-VLM surpasses all baselines
across the seven tasks by a substantial margin, achieving a 31.8% higher average accuracy than
LLaVA-OneVision. Specifically, ST-VLM attains 44.5% accuracy on Traveling Speed with an aver-
age deviation of 11.7 km/h, showing kinematic reasoning capabilities absent in previous models.

5.3 ROBUST EVALUATION ACROSS DIVERSE SETTINGS

To ensure a fair and rigorous evaluation, we consider two experimental settings. First, since ST-VLM
implicitly learns 3D geometric priors from 3D ground-truth annotations and pseudo-labels from 4D
reconstruction, we compare it against a baseline augmented with the same information. Specifically,
we evaluate GPT-5 in a few-shot setting where specialized modules (i.e., MonST3R and Metric3D
v2) provide camera poses as textual prompts and depth maps as auxiliary image inputs. As shown
in Tab. [ incorporating few-shot examples and geometric priors yields no performance gain, still
leaving GPT-5 far behind our ST-VLM. Even with additional context, we observe that GPT-5 tends
to replicate the GT values from in-context examples rather than engaging in genuine reasoning (see
Sec. [D.5] for the case study). This suggests that even advanced Al agents remain limited in han-
dling 3D representations, highlighting the need for instruction data tailored to kinematic reasoning.
Second, we test the robustness of ST-VLM to question variations on STKit-Bench by paraphrasing
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Table 4: Comparison with GPT-5. Table 5: Results on paraphrased Table 6: Ablation studies on
We provide N few-shot examples and STKit-Bench. We report the aver- pseudo-labeled data and the fil-
additional geometric contexts, i.e., cam- age accuracy on both the original tering strategy.

era extrinsics and depth maps, to GPT-5 and paraphrased questions.

and report the average accuracy. GTlabel Pseudo-label Filtering | avg. acc.
Models | original paraphrased 264
Models | GPT-5 ST-VLM - - - | 2.
N-shots 0 1 3 0 1 3 N GPT-5 32.6 322 v - - 52.6
geometric| X X X ‘ vV v v _ LLaVA-OneVision | 26.4 28.6 - v - 40.4
- v v 46.1
avg. acc. [32.6 258 229329 246 324 582 ST-VLM ‘ 58.2 571 v v v 59.6
Question: Question:
Tell me how far the object moved from 16.00 seconds to 18.00 seconds. In which direction does the object move at the end of the video?
Ground Truth: Ground Truth:
Between 16.00 and 18.00 seconds, the given object traveled a total of 2.23 m. At the end of the video, the object is heading toward the 10 o’clock direction.
GPT-5: GPT-5:
... the object remains essentially stationary ..., exhibiting negligible movement. 9 o’ clock.
'l:E)ST-VLM (Ours): -.LpsT—VLM (Ours):
The distance the given object moved from 16.00 to 18.00 seconds is 2.34 m. The object is traveling toward the 10 o'clock direction at the end of the video.
(a) Multi- and small-object scenario (22 objects). (b) Object occlusion scenario (2nd frame).

Figure 5: Qualitative results on STKit-Bench.

questions using GPT-5. As shown in Tab. [5] ST-VLM consistently maintains strong performance
across paraphrased questions, outperforming all baselines by a clear margin.

5.4 QUALITATIVE RESULTS

Fig. 5| presents qualitative results on STKit-Bench to show the robustness of ST-VLM across diverse
scenarios. In Fig.[5a] ST-VLM accurately predicts the traveled distance even in videos containing
numerous small objects (22 in total). Moreover, as shown in Fig. [5b] ST-VLM provides correct
predictions despite partial temporal occlusions, underscoring its robustness in challenging real-world
settings. A detailed quantitative analysis across various scenarios is presented in Sec.[C.1]

6 ANALYSIS

In this section, we provide in-depth analyses to answer the following research questions:

Q1. How effective are pseudo-labels and the filtering strategy?

Q2. Does the spatio-temporal reasoning of ST-VLM generalize across various domains and tasks?
Q3. Does ST-VLM exhibit emergent capabilities, combining spatio-temporal reasoning (learned
ability) with LLM’s knowledge (existing ability) within multi-step reasoning?

6.1 ANALYSIS ON PSEUDO-LABELS

Tab. [f] presents ablation studies on pseudo-labeled data and the filtering strategy to discuss Q1.
Training only with GT-labeled data substantially improves performance from 26.4% to 52.6%. Also,
training only with pseudo-labeled data improves performance by 14.0%, while the filtering strategy
provides an additional 5.7% gain. Finally, incorporating both GT-labeled and pseudo-labeled data
along with our filtering strategy shows a remarkable performance gain, underscoring the effective-
ness of our 4D reconstruction-based pseudo-labeling and filtering pipeline. A detailed analysis of
the pseudo-labels and the filtering strategy is presented in Sec. [B]

6.2 GENERALIZED SPATIO-TEMPORAL UNDERSTANDING

We assess the generalization ability of ST-VLM’s spatio-temporal reasoning on comprehensive
video benchmarks to answer Q2. As shown in Tab. [/, ST-VLM trained with STKit outperforms
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Table 7: Results on comprehensive video benchmarks. e
607 557 562 LLaVA-OneVision
Models PerceptionTest MVBench| VideoMME |MLVU|NEXT-QA| Avg. ST-VLM
val test w/o & w/ subtitle| m-avg test acc
GPT-40 - 719 & 772 64.6 71.2 40
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Table 8: Results on spatial & temporal categories. S TE SO S Fe
$ &
Models PerceptionTest| MVBench VideoMME LongVideoBench ¢ s S
physics moving direction|spatial perception|temporal perception| object tracking F 6 .
LLaVA-OneVision| 490 ‘ 205 ‘ 574 | 636 P igure 6: Results on spatial and temporal
ST-VLM (Ours) 58.5 35.0 66.7 76.4 47.9 reasoning benchmarks.
:i = |-
Question: Question:

How much slower is the speed of this object than that of a normal airplane?

Identify the two teams playing football and determine which team the faster
player belongs to.

LLaVA-OneVision:
The speed of the object is significantly slower than that of a normal airplane.

LLaVA-OneVision:
The two teams playing are Real Madrid (white jerseys) and FC Barcelona (blue
and yellow striped jerseys), and the faster player belongs to FC Barcelona.

c
:JE) ST-VLM (Ours):

The object's speed is 39.68 km/h, while a normal airplane's speed is 1000
km/h. Therefore, the object is 25.47 times slower than a normal airplane.

JP ST-VLM (Ours):
The two football teams are Real Madrid (RMA) and FC Barcelona (BAR). The
faster player belongs to Real Madrid.

(@)

(b)

Figure 7: Qualitative results on emergent capabilities of ST-VLM with multi-step reasoning.

LLaVA-OneVision by 3.0% in average accuracy on general video understanding benchmarks. In
particular, Tab. [§] reports results on spatial- and temporal-related categories. ST-VLM achieves
substantial improvements over LLaVA-OneVision in spatio-temporal tasks, including moving di-
rection, spatial/temporal perception, and object tracking, by effectively leveraging kinematic priors
from STKit. Qualitative examples are provided in Sec.[D.4]

Furthermore, Fig. [6| compares the performance of ST-VLM with LLaVA-OneVision on spatial and
temporal reasoning benchmarks across diverse tasks and domains. For spatial reasoning, we evaluate
on 3D scene understanding benchmarks OpenEQA (Majumdar et al, 2024) and ScanQA
2022), where ST-VLM improves performance by 0.5% and 14.4%, respectively. For temporal
reasoning, ST-VLM surpasses LLaVA-OneVision by 2.5% and 0.8% mloU on the video temporal
grounding tasks of Charades-STA and ActivityNet (Caba Heilbron et al, [2013).
Finally, even on autonomous driving benchmarks that demand complex spatio-temporal reasoning,
ST-VLM achieves a 2.4% gain over LLaVA-OneVision. These results demonstrate that incorpo-
rating the kinematics-based STKit dataset not only enhances general video understanding but also
strengthens spatio-temporal reasoning across diverse scenarios.

6.3 EMERGENT CAPABILITIES OF ST-VLM

Finally, we answer Q3 through qualitative analyses in Fig. [7]and [T} showcasing ST-VLM’s emer-
gent multi-step reasoning capabilities that involve spatio-temporal reasoning. Although not explic-
itly trained for complex reasoning, ST-VLM effectively integrates kinematic reasoning with the
existing abilities of VLMs, such as commonsense knowledge, logical inference, and arithmetic com-
putation. For example, in Fig. when asked “How much slower is this object’s speed compared
to a normal airplane?”, a model must (1) recall the average speed of a normal airplane, (2) esti-
mate the object’s speed from the video, and (3) perform arithmetic to compare them. Leveraging
kinematic reasoning, ST-VLM produces an accurate answer (25.47 times slower), whereas LLaVA-
OneVision provides a less precise response (10 times slower) without explicit reasoning. Similarly,
in Fig. [7b] identifying the faster player requires recognizing teams by jersey color and estimating
player speeds. ST-VLM correctly identifies the faster player as belonging to Real Madrid, whereas
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the baseline fails to do so. These examples demonstrate the effectiveness of STKit-trained ST-VLM
in enabling multi-step reasoning grounded in kinematics-based spatio-temporal understanding.

7 CONCLUSION

We present ST-VLM, a VLM with enhanced spatio-temporal reasoning capabilities, achieved
through kinematic understanding in dynamic videos. To this end, we introduce STKit and STKit-
Bench, which define seven fundamental tasks based on 3D-annotated video data. Furthermore, our
4D reconstruction-based data generation pipeline, along with the filtering strategy, effectively allevi-
ates the scarcity of 3D annotations. Extensive analyses reveal that ST-VLM generalizes well across
diverse video benchmarks and exhibits emergent multi-step reasoning by combining the pretrained
knowledge of VLMs with newly acquired kinematic understanding.

ETHICS STATEMENT

Our pseudo-labeling pipeline does not raise direct ethical concerns. However, the SFT datasets used
for training ST-VLM may contain biases, such as those related to religion, gender, or race, which
could lead ST-VLM to implicitly inherit these biases.

REPRODUCIBILITY STATEMENT

The 4D reconstruction-based pseudo-labeling pipeline and the filtering strategy are described in
Sec. For reproducibility, their implementation details are presented in Secs. and re-
spectively. Furthermore, the training details of ST-VLM are provided in Sec.[A.2]

THE USE OF LARGE LANGUAGE MODELS (LLMS)

We use LLMs for sentence-level refinement.
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APPENDIX

The appendix is organized into the following sections:

* Appendix [A} Implementation details

- [A1] Details of pseudo-labeling pipeline
- [A2] Details of ST-VLM training

* Appendix [B} Discussion on the filtering strategy

- [B.I]Details of the filtering strategy
- [B.2] Analysis on the filtering strategy

* Appendix [C} Further quantitative results

— [C1IResults on various scenarios of STKit-Bench
— [C.2JResults on each domain of STKit-Bench

- [C3|Results on out-of-domain settings

— [C.4Results of simulation data

- [C:5|Results on depth estimation

* Appendix [D} Further qualitative results

- [D.JIResults on STKit-Bench

- [D.2]Results on challenging samples

- [D.3|Results of emergent capabilities

- [D.4|Results on PerceptionTest

- [D.3Results of GPT-5

- [D.6|Results on extraordinary scenarios

* Appendix [E} Details of STKit-Bench

- [E.J]Comparison with other benchmarks
- GPT-5-nano prompts for evaluation

* Appendix [F} QA templates for STKit

A IMPLEMENTATION DETAILS

A.1 DETAILS OF PSEUDO-LABELING PIPELINE

First, for the geometric reconstruction branch, we employ Monst3r (Zhang et al., [2025b)) for 4D
scene reconstruction on dynamic videos. In detail, we set the window size to 5 and use a scene
graph configuration of swinstride-5-noncyclic to generate image pairs for feature matching. The
reconstruction is performed with MonST3R using a temporal smoothing weight of 0.01, a translation
weight of 1.0, and a flow loss weight of 0.01, applied after 10% of the total iterations and only to flow
values exceeding a threshold of 25. This process runs for 300 iterations with a learning rate of 0.01
under a linear schedule. To address the scale misalignment issue, we canonicalize the reconstructed
4D scenes by rescaling MonST3R’s depth estimates with the metric depths provided by Metric3D
v2 (Hu et al., [2024).

Second, in the semantic reconstruction branch, we utilize Grounded-SAM2 (Ren et al.| [2024) to
extract bounding boxes, segmentation masks, and trajectories of selected objects. We focus on object
categories related to dynamic movements, including “bus,” “car,” “vehicle,” “human,” “automobile,”
“person,” “animal,” “bicycle,” “motorcycle,” and “truck,” which are provided to Grounded-SAM?2
as text prompts. Overall, kinematic grounding in a canonicalized 4D scene requires approximately

400 seconds per video on a single A6000 GPU.
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A.2 DETAILS OF ST-VLM TRAINING

Our ST-VLM is initialized from LLLaVA-OneVision 7B |Li et al.|(2024a) and trained with 63K STKit
samples, SO0K LLaVA-Video samples, 500K LLaVA-OneVision samples, and 100K OpenSpatial-
Dataset samples. Training is performed on 8 x A6000 GPUs for one epoch, taking approximately
two weeks. We adopt a cosine learning rate scheduler with an initial learning rate of le-5 and a
batch size of 128, using up to 32 frames per video for training and inference. For each video input,
we provide additional temporal context in the form: “The video lasts for ¢ seconds, and n frames
are uniformly sampled from it. These frames are located at 1, to, . . ., t,, seconds.” For STKit sam-
ples, we further provide information about the visual prompt: “There are k£ objects annotated with
[COLOR] bounding boxes in the video.”

B DISCUSSION ON THE FILTERING STRATEGY

B.1 DETAILS OF THE FILTERING STRATEGY

To ensure reliable centroid trajectory estimations in our pseudo-labeling pipeline, we develop a
three-stage filtering strategy, calibrated by empirically comparing estimated trajectories against GT
trajectories in the NuScenes dataset (Caesar et al., [2020), which provides LiDAR-annotated videos.

Rule-based filtering. We design heuristics to remove unreliably reconstructed scenes. Specifically,
we eliminate noisy point clouds using DBSCAN (min_points = 5), discard detections with box con-
fidence below 0.4 or text confidence below 0.3, and exclude bounding boxes with an area smaller
than 10 pixels. After kinematic grounding, we detect trajectory outliers by removing centroid co-
ordinates with a Z-score above 3.0 or a cosine similarity below -0.2 relative to the mean direction
vector to discard trajectories containing such outliers. We then reorder each trajectory using the
nearest neighbor algorithm to enforce spatio-temporal consistency, followed by smoothing with a
3D Kalman filter (process_variance = 1.0, measurement_variance = 1000). These hyperparameters
are selected by comparison with GT trajectories on NuScenes, and subsequently applied during
pseudo-labeling to produce more accurate labels for unlabeled videos.

General model-based filtering. We employ a VLM to filter out scenes with occluded objects,
significant camera motion, or poor object detection and tracking. Specifically, LLaVA-OneVision,
the initialization for our ST-VLM, is used to assess these criteria based on the prompt in Tab. [0]
Scenes that do not satisfy any of these criteria are discarded.

Table 9: Prompts used for VLMs in general model-based filtering.

Occlusion: Is the object inside each bounding box fully visible, without significant occlusion?
Respond with ‘Yes’ or ‘No’.

Camera movement: Do the video frames transition smoothly, without noticeable temporal
discontinuities? Respond with ‘Yes’ or ‘No’.

Object detection: Is each bounding box tightly enclosing an individual object, without
significant misalignment or cropping? Respond with ‘Yes’ or ‘No’.

Object tracking: Does each bounding box reliably track the target object across all frames,
without losing alignment or missing the object? Respond with ‘Yes’ or ‘No’

Task-specific model-based filtering. In this stage, we utilize a model trained only on 3D-
annotated datasets, i.e., NuScenes (Caesar et al., 2020), Argoverse2 (Wilson et al.| 2023), and Ego-
Exo04D (Grauman et al.,[2024), to filter out low-quality pseudo-labeled samples based on likelihood
scores. For each sample, the model computes a likelihood, which is then normalized using min-
max scaling within the same task across the seven defined tasks. We apply task-specific thresholds:
0.8 for Traveled Distance and Traveling Speed, 0.4 for Traveled Distance Comparison and Trav-
eling Speed Comparison, and 0.7 for Movement Direction and Movement Direction Comparison.
Samples with likelihood scores below these thresholds are discarded.
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B.2 ANALYSIS ON THE FILTERING STRATEGY

We provide an in-depth analysis to verify the effectiveness of our filtering strategy. Tab. [I0] presents
an ablation study, reporting the number of low-quality samples and the average accuracy on STKit-
Bench at each filtering stage. Low-quality samples are defined as those that fail to meet the criteria
in Sec. as evaluated by the advanced VLM InternVL3 (Zhu et al., [2025). The results indicate
that our filtering strategy significantly reduces the number of low-quality samples. For example, the
number of samples with occluded objects drops from 12,035 to 174 after the three-stage filtering.
This reduction leads to a notable performance improvement on STKit-Bench, increasing accuracy
from 40.4% to 46.1%.

Table 10: Ablation study on the filtering strategy.

Filtering strategy Number of low-quality samples |

Rule-based ~ General model-based — Task-specific model-based | Occlusion ~Camera movement Object detection — Object tracking avg. ace.t
- 12,035 28 9,278 118,856 404
v - - 2,123 4 1,463 18,274 41.0
v v - 348 4 419 9,905 41.9
v v v 174 3 206 5,962 46.1

We further compare the computed trajectories against GT trajectories from the 3D-annotated dataset,
NuScenes. For Traveled Distance, the mean error rate decreases from 207% to 29% after applying
the three-stage filtering, where the error rate is defined as ML}GT‘. These results demonstrate that
the filtering strategy substantially improves pseudo-label quality and overall performance.

™ «
] ]
T o ?
> >
X-axis X-axis
————— [GT] Total Distance: 8.13m — — — — — [GT] Total Distance: 32.02m
[PS] Total Distance: 7.69m ————— [PS] Total Distance: 28.46m
(@ (b)

Figure 8: Comparison of projected trajectories. GT trajectory is shown in gray dash line and
estimated trajectory from pseudo-label (PS) is shown in blue solid line.

Fig.|8|compares GT trajectories, shown as dashed gray lines, with our estimated trajectories, shown
as solid blue lines. The alignment indicates close correspondence in straight-line movements
(Fig. [8a)), which are common in real-world scenarios, with only minor deviations in curved paths
(Fig.[8b). Quantitatively, the estimated traveled distances show only small deviations from the GT
distances, e.g., with an error of 0.44 m for straight-line movements and 3.56 m for curved paths.
These results highlight the reliability of our pseudo-labeling pipeline for estimating object trajecto-
ries without requiring 3D annotations.

C FURTHER QUANTITATIVE RESULTS

C.1 RESULTS ON VARIOUS SCENARIOS OF STKIT-BENCH
Tabs. demonstrate the results of ST-VLM across diverse scenarios in STKit-Bench. These

results highlight the robustness of ST-VLM despite challenges such as object occlusion, multi-object
scenarios, dynamic scenes, small object sizes, and varying FPS.
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Table 11

Table 12

occlusion \ single object multiple objects \ avg. acc.

number of objects ‘ single object multiple objects ‘ avg. acc.

not occluded | 46.9% (363 /774) 74.3% (350/471) | 57.3% (713 /1,245) few 52.0% (204 /392)  73.8% (236 /320) | 61.8% (440/712)
occluded 26.9% (71 26) 73.6% (95/129) 65.8% (102 /155) several 42.1% (130/309)  76.4% (162/212) | 56.1% (292/521)
many 36.4% (36/99) 69.1% (47 / 68) 49.7% (831 167)

Table 13 Table 14

camera movement \ single object multiple objects \ avg. acc. object size ‘ single object multiple objects ‘ avg. acc.

static ) ‘ 46.1% (360 /781) 74.5% (444 /596) | 58.4% (804 / 1,377) small 60.3% (38 /63) 67.7% (88 / 130) | 65.3% (440 /712)
dynamic B3 A/16)  5T1%@/7) | 478%11/23) medium | 65.6% (88 /187) 76.6% (242/316) | 56.1% (292 / 521)
large 44.4% (2447550) 74.7% (115 154) | 49.7% (83 /167)
Table 15
FPS | avg. acc.
2 58.2
1 56.8
0.5 46.3

0.25 40.2

Table 16: Results on each domain of STKit-Bench. AD stands for autonomous driving.

. Traveled Distance Traveling Speed

Train Test ‘ ‘ Acct  MAE} | Acct  MAE]
- Sports 16.0 6.7 8.0 2.8
AD Sports 22.0 4.8 64.0 0.9
Sports Sports 76.0 2.0 78.0 0.8
AD + Sports  Sports 76.0 1.7 78.0 0.7
- AD 13.0 49.1 10.0 243
AD AD 355 21.7 32.0 12.6
Sports AD 5.0 36.4 6.5 29.0
AD + Sports AD 38.5 17.0 325 12.6

C.2 RESULTS ON EACH DOMAIN OF STKIT-BENCH

Tab. [T presents cross-domain evaluation between autonomous driving and sports. Training solely
on autonomous driving data substantially improves performance in the sports domain. For instance,
in Traveling Speed, accuracy increases from 8.0% to 64.0%. In contrast, training only on sports
data provides no improvement for autonomous driving. We attribute this to the difficulty of learning
vehicle motion patterns, such as traveled distance and speed, from the relatively limited sports data
in STKit. By incorporating both domains, the model achieves the best performance, underscoring
the importance of broad domain coverage.

C.3 RESULTS ON OUT-OF-DOMAIN SETTINGS

Table 17: Results on out-of-domain settings.

‘ in-domain (NuScenes & Argoverse2) out-of-domain (NuPlan) out-of-domain (Waymo)

LLaVA-OneVision (Li et al.|2024a) 35.4 26.0 30.8
ST-VLM (ours) 63.4 (+28.0) 55.6 (+29.6) 58.4 (+27.6)

To evaluate out-of-domain generalization, STKit-Bench incorporates NuPlan data, which is not in-
cluded in the training set, constituting 74.8% of the evaluation benchmark and featuring distinct
camera intrinsics/extrinsics, road scenes, weather conditions, illumination, and locations. We fur-
ther conduct an additional evaluation on the Waymo dataset (Sun et al., [2020), which also employs
different camera parameters at different road scenes. Tab.[T7shows detailed results across in-domain
and out-of-domain settings, demonstrating the robustness of our model to variations in camera con-
figurations and road scenes across datasets.
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C.4 RESULTS OF SIMULATION DATA

Table 18: Results of simulation data.

| Accuracy
LLaVA-OneVision (Li et al.}[2024a) ‘ 26.4
ST-VLM (simulation) 29.1
ST-VLM (pseudo) 46.1
ST-VLM (GT) 52.6

We construct kinematic instruction data using two simulation datasets, VKITTI (Gaidon et al.|
2016) and GTA V (Richter et al.| 2017), to evaluate the effectiveness of simulation-based videos
for real-world evaluation scenarios. Tab. [I§]reports the performance of ST-VLM trained with simu-
lation data, showing that simulation alone provides performance gains, although the improvement is
smaller compared to training with real-world videos, i.e., pseudo-labeled and GT-labeled data, due
to the domain gap.

C.5 RESULTS ON DEPTH ESTIMATION

Table 19: Results on depth estimation.

‘ STKit-Bench (acc.) DepthLMBench (acc. / MAE)

LLaVA-OneVision (Li et al., 2024a) 26.4 751459
DepthLM (Cai et al.||2025b) 132 19.7/9.9
ST-VLM (ours) 58.2 21.2/10.2

Surprisingly, our kinematic instruction tuning enables ST-VLM to implicitly acquire depth under-
standing as part of its kinematic understanding process, even though our dataset does not contain
any explicit depth estimation samples. Tab. [I9)compares the performance on depth estimation with
DepthLM (Cai et al., |2025b)), which is a specialized model dedicated solely to depth estimation
and does not generalize to kinematic understanding tasks. ST-VLM achieves 21.2% accuracy and a
10.2 m MAE on DepthLMBench despite no explicit depth-specific supervision, whereas DepthLM
cannot estimate the object kinematic quantities required in STKit-Bench, underscoring the broader
reasoning capability of our model.

D FURTHER QUALITATIVE RESULTS

D.1 RESULTS ON STKIT-BENCH

We present qualitative results on STKit-Bench, comparing ST-VLM with baseline models such as
GPT-5 and LLaVA-OneVision (Li et all, 2024a). Fig. 13| and [16]illustrate examples across seven
spatio-temporal reasoning tasks: traveled distance, traveling speed, movement direction, direction
timestamp, traveled distance comparison, traveling speed comparison, and movement direction com-
parison.

D.2 RESULTS ON CHALLENGING SAMPLES

In Fig.[T7, we present additional qualitative results on challenging cases. As shown in Fig.[T7a)and
[T76] ST-VLM successfully predicts the traveled distance of objects with complex trajectories. In
Fig. we further assess the model’s spatio-temporal reasoning ability without visual prompts
by removing bounding boxes and providing only textual instructions with object attributes. For the
query, “Which is moving slower, the cyclist on the right or the yellow trailer?””, LLaVA-OneVision
incorrectly predicts that the cyclist is moving slower than the yellow trailer, whereas ST-VLM cor-
rectly identifies the yellow trailer as slower. This demonstrates that ST-VLM leverages video ev-
idence to answer accurately, while LLaVA-OneVision tends to rely on commonsense priors (e.g.,
vehicles are generally faster than bicycles), leading to erroneous predictions.
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D.3 RESULTS OF EMERGENT CAPABILITIES

Question:
Calculate how long the object takes to travel from Vancouver to Toronto at the
current speed?

LLaVA-OneVision:
... we need to know its speed. However, the speed of the car is not provided ...
we cannot accurately calculate the time it would take for the car to travel ...

:.IK) ST-VLM (Ours):
The distance between Vancouver and Toronto is 2,800 miles. The object's
speed is 19.40 mph. ... 2,800 miles / 19.40 mph = 145.33 hours. ...

Figure 9: Qualitative results of emergent capabilities.

Fig. 0] presents an example of a complex instruction that requires multi-step reasoning. The task
involves integrating spatio-temporal understanding with existing capabilities (e.g., commonsense
knowledge, logical reasoning, and arithmetic computation). Our ST-VLM successfully derives the
correct answer, whereas LLaVA-OneVision fails.

D.4 RESULTS ON PERCEPTIONTEST

Question: Question:
‘What happens with the object after being placed on the slanted plane? If the object were launched with a greater force or the friction was smaller,
with which object would the launched object collide?
LLaVA-OneVision: LLaVA-OneVision:
The object rolls or slides. white sock
..I:\o ST-VLM (Ours): l’E) ST-VLM (Ours):
The object stays put. book
(a) (b)

Figure 10: Qualitative results on PerceptionTest.

Fig. [T0] provides qualitative results of ST-VLM on PerceptionTest (Patraucean et al} [2023). In
Fig. ST-VLM correctly answers “The object stays put” to the question, “What happens with

the object after being placed on the slanted plane?”’, demonstrating its ability to reason over learned
object kinematics. In contrast, LLaVA-OneVision predicts the incorrect answer, “The object rolls or
slides,” likely due to over-reliance on textual cues (e.g., “placed on slanted plane”) rather than visual
reasoning.

D.5 RESULTS OF GPT-5

Fig. [TT] provides a qualitative example of GPT-5 with additional context, i.e., in-context examples,
depth maps, and camera extrinsics. We observe that GPT-5 often replicates the GT (2.45 m) from
in-context examples rather than engaging in genuine reasoning.

D.6 RESULTS ON EXTRAORDINARY SCENARIOS

We observe strong generalization even in extraordinary scenarios involving a remote-controlled
(RC) car, which we attribute to the pseudo-labeled data sourced from diverse domains beyond road
scenes. As illustrated in Fig. when asked “Can you calculate the total distance covered by the red
RC car throughout the entire video?”, ST-VLM estimates the traveled distance as 12.73 m, which
lies within a plausible range for the actual distance.
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In-context examples

Question:
How much distance did the object travel during the entire video?

Question:
Ground Truth: In which direction does the object move at the end of the video?
The given object has traveled a total of 2.45 meters.
| Depth maps & camera extrinsics |
® =] i
w & Ground Truth:
] @ [Rolts] The total distance traveled by the given object is 40.18 m.
: GPT-5:
2.45m.
& <7 [Rultn]

Figure 11: Qualitative results of GPT-5. Even with additional context, we observe that GPT-5
tends to replicate the GT of in-context examples rather than performing genuine reasoning.

-~ e [ - | E
N —

Question:
Can you calculate the total distance covered by the red RC car throughout the
entire video?

Jﬁ) ST-VLM (Ours):
12.73 meters.

Figure 12: Qualitative results of extraordinary scenarios.

E DETAILS OF STKIT-BENCH

E.1 COMPARISON WITH OTHER BENCHMARKS

Recently, several video benchmarks have been proposed in the literature (Li et al.| 2024b} [Pdtraucean
et all 2023} [Fu et al.} 2024} [Zhou et al 2024a). For example, MLVU (Zhou et al., [2024a) aims to
assess video-based VLMs for long-form video understanding, and VideoMME (Fu et al 2024)
focuses on the comprehensive perception ability of the model on a wide range of domams To
tackle the problem that most VLMs overlook the temporal information, MVBench (Li et al.
has been proposed by covering diverse temporal understanding tasks, e.g., action sequence under—
standing, action prediction, and counterfactual inference. More recently, several works (W

2024b};[Zhou et al., 2024b} [Ding et al., 2024} Nie et al.|[2024) have been introduced as a video spatlo-
temporal understanding benchmark for autonomous driving scenes. In contrast, our STKit-Bench
covers general scenes, e.g., sports, not limited to autonomous driving scenarios.

E.2 STATISTICS

Fig.[[3]illustrates the statistics of STKit-Bench. Directly adopting the generated QA pairs for bench-
marking results in a long-tail label distribution, which we mitigate by balancing the labels, as shown
in Fig. [[3a and [I3b] The red bars highlight the imbalanced distribution in both distance and di-
rection categories, while the green bars indicate the balanced distribution. Fig c|illustrates the
dataset composition: 74.8% NuPlan (Caesar et al., [2021), 12.5% NuScenes +[2020),
5.6% Argoverse2 (Wilson et all,[2023), and 7.1% Ego-Ex04D (Grauman et al., 2024). We pr1mar-

ily use NuPlan, which is not included in the training data, to evaluate out-of-domain scenarios in
STKit-Bench.

E.3 GPT-5-NANO PROMPTS FOR EVALUATION

Tab. 20[26] present the prompts used with GPT-5-nano for evaluation on STKit-Bench. During
evaluation, our goal is to extract only the essential information from the final VLM outputs. To this
end, we convert the outputs into JSON format using GPT-5-nano with the designed prompts. These
JSON files are then used for the final task evaluation, as detailed in Sec.
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Figure 13: Statistics of STKit-Bench. (a), (b) We balance the number of samples for each label to
prevent biased results. Red and green bars indicate the number of samples before/after balancing.
(c) shows the composition of STKit-Bench.

F QA TEMPLATES FOR STKIT

Tab. 27H36] provide all the QA templates used in STKit, as detailed in Sec. [3.4] These templates are
designed as kinematic instructions for each spatio-temporal reasoning task.

G EXAMPLES OF FILTERING

(b) Occlusion.

Figure 14: Examples of filtered samples.

To illustrate how the model identifies low-quality samples, we provide examples of filtered cases in
Fig.[T4 In Fig. the model detects a significant scene transition between the first and second
frames. In Fig. @t successfully identifies object occlusion, demonstrating that our filtering strat-
egy effectively removes low-quality samples. Overall, applying this filtering strategy yields a 5.7%
performance improvement.
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Question:
Measure the distance the object traveled throughout the video.

Question:
What is the average speed of the given object from 1.00 seconds to 1.50

seconds?

Ground Truth:
The given object has traveled a total of 0.07 miles.

Ground Truth:
The object's average speed from 1.00 to 1.50 seconds is 14.00 meters per

second.

@cpr-s:

Small distance.

@cpr-s:

slow.

LLaVA-OneVision:
The object moved from the left side of the frame to the center, covering a
distance of approximately 10 meters.

LLaVA-OneVision:
The average speed of the object is approximately 1.5 meters per second.

gm) ST-VLM (Ours):

The given object moved a total distance of 0.12 kilometers.

c.mj ST-VLM (Ours):
The object's average speed between 1.00 and 1.50 seconds is 28.94 mph.

(a) Traveled Distance

b i

Question:
At the end of the video, in which direction does the object move?

Question:
Describe the timestamp when the object moves in the 1 o’clock direction.

Ground Truth:
The given object is heading toward the 9 o’clock direction at the end of the

video.

Ground Truth:
Between 3.00 and 5.50 seconds, the object moves toward the 1 o’clock

direction.

@cpr-s:

12 o’ clock.

@cpr-s:
1.50s, 3.00s

LLaVA-OneVision:
The object moves in the 12 o’clock direction.

LLaVA-OneVision:
The object moves in the 1 o’clock direction between 3.00s and 3.50s.

r3
..IP ST-VLM (Ours):

The object is traveling toward the 9 o’clock direction at the end of the video.

r
gﬁ’ ST-VLM (Ours):

The object moves in the direction of 1 o'clock between 3.00 and 5.50 seconds.

(c) Movement Direction

(d) Direction Timestamp

Figure 15: Qualitative results on STKit-Bench.
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Question: Question:
Which object travels a shorter distance in the video: the one with the red Which object moves at a lower speed in the video: the one with the red
bounding box or the one with the green bounding box? bounding box or the one with the blue bounding box?
Ground Truth: Ground Truth:
In the video, the object annotated with the green bounding box has traveled a The object annotated with the blue bounding box maintains a lower speed
shorter distance than the object annotated with the red bounding box. compared to the object annotated with the red bounding box.
@cpr-s: @cpr-s:
Red bounding box. Red.
LLaVA-OneVision: LLaVA-OneVision:
The object with the red bounding box travels a shorter distance in the video. The object with the red bounding box moves at a lower speed in the video.
gm) ST-VLM (Ours): c.ﬁj ST-VLM (Ours):
In the video, the object annotated with the green bounding box has moved a In the video, the object annotated with the blue bounding box has moved
shorter distance than the one annotated with the red bounding box. more slowly than the object annotated with the red bounding box.

(a) Traveled Distance Comparison (b) Traveling Speed Comparison

= e 3

Question:
Is the object annotated with the blue bounding box heading in the same
direction as the object annotated with the green bounding box?

Ground Truth:
Actually, the object annotated with the blue bounding box is heading in a
different direction from the object annotated with the green bounding box.

@cpr-5:

Yes.

LLaVA-OneVision:
Yes, the object annotated with the blue bounding box is heading in the same
direction as the object annotated with the green bounding box.

gI,‘EJST-VLM (Ours):

No, the object annotated with the blue bounding box is moving in a different
direction from the object annotated with the green bounding box.

(c) Movement Direction Comparison

Figure 16: Qualitative results on STKit-Bench.
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Bird-Eye-View Trajectory
—— Trajectory e Start e End

Question:
Provide the total distance traveled by the
object between 3.50 and 17.00 seconds.

Ground Truth:
Between 3.50 and 17.00 seconds, the given
object traveled a total of 15.28 m.

Bird-Eye-View Trajectory
—— Trajectory e Start e End

Question:
Could you provide the total distance the
object moved throughout the video?

Ground Truth:
The given object has traveled a total of
17.04 meters.

LLaVA-OneVision:
The total distance traveled by the object between 3.50 and 17.00 seconds is
approximately 20 meters.

LLaVA-OneVision:
The object moved a total distance of 10.5 meters throughout the video.

JPstvim (Ours):

The distance the given object moved from 3.50 to 17.00 seconds is 16.24 m.

JK) ST-VLM (Ours):

The given object moved a total distance of 17.42 meters.

The person in the blue bounding box is moving faster than the person in the
red bounding box.

Question: Question:

Identify the exact speed of each object and determine which object is moving Which is moving slower, the cyclist on the right or the yellow trailer?
faster.

LLaVA-OneVision: LLaVA-OneVision:

The cyclist on the right is moving slower than the yellow trailer.

gIIPST-VLM (Ours):
... with the red bounding box has a higher speed of 2.84 m/s compared to the
object annotated with the blue bounding box, which has a speed of 1.05 m/s.

gﬁ) ST-VLM (Ours):

The yellow trailer is moving more slowly than the cyclist on the right.

©

()

Figure 17: Qualitative results on challenging examples.
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Table 20: GPT-5-nano prompts for Traveled Distance.

traveled.distance_prompt = £"""You should help me to evaluate the response given the
question and the correct answer.

You need to convert the distance of the correct answer and response to meters.

The conversion factors are as follows: 1 inch = 0.0254 meters. 1 foot = 0.3048 meters. 1 centimeter
(cm) = 0.01 meters.

You should output two floats in meters, one for the answer, and one for the response.

The output should be in JSSON format."" "

messages = [ {"role" :"system", "content" :traveled,distance,prompt}]

for sample in fewshot_samples:
messages.append ({"role" :"user", "content":sample[ ‘context’] })
messages .append ({"role" :"assistant", "content":sample[ ‘response’ ] })

messages.append ({"role":"user", "content":‘\n’.join(query)})

Table 21: GPT-5-nano prompts for Traveling Speed.

traveling_speed_-prompt = £"""You should help me to evaluate the response given the
question and the correct answer.

You need to convert the speed of the correct answer and response to kilometers per hour (km/h).
The conversion factors are as follows: 1 meters per second (m/s) = 3.6 kilometers per hour (km/h).
1 miles per hour (mph) = 1.60934 kilometers per hour (km/h). 1 foot per second (ft/s) = 1.09728
kilemoeters per hour (km/h).

You should output two floats in kilometers per hour (km/h), one for the answer, and one for the
response.

The output should be in JSSON format."""

messages =[{"role":"system", "content":traveling.speed prompt}]

for sample in fewshot_samples:
messages.append ({"role" :"user", "content":sample[ ‘context’] })
messages.append ({"role" :"assistant", "content":sample[ ‘response’ ] })

messages.append ({"role":"user", "content":‘\n’.Jjoin(query)})

Table 22: GPT-5-nano prompts for Movement Direction.

movement_direction_prompt = £"""You should help me to evaluate the response given
the question and the correct answer.

You need to extract the direction of the correct answer and response.

You should output two integers in clock directions, one for the answer, and one for the response.
The output should be in JSSON format."" "

messages =[{"role":"system", "content":movement_-direction_prompt}]

for sample in fewshot_samples:
messages.append ({"role":"user", "content":sample[ ‘context’]})
messages.append ({"role" :"assistant", "content":sample[ ‘response’ ] })

messages.append ({"role":"user", "content":‘\n’.Jjoin(query)})
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Table 23: GPT-5-nano prompts for Direction Timestamp.

direction_timestamp_prompt = £"""You should help me to evaluate the response given
the question and the correct answer.

You need to extract the start time and end time in seconds of the correct answer and response.

You should output four floats in seconds, one for the answer start time, one for the answer end time,
one for the response start time, and one for the response end time.

The output should be in JSON format."""

messages =[ {"role":"system", "content":direction-timestamp-prompt }]

for sample in fewshot_samples:
messages .append ({"role" :"user", "content":sample[ ‘context’] })
messages.append ({"role" :"assistant", "content":sample[ ‘response’ ] })

messages.append ({"role":"user", "content":‘\n’.Jjoin(query)})

Table 24: GPT-5-nano prompts for Traveled Distance Comparison.

distance_comparison_prompt = £"""You should help me to evaluate the response given
the question and the correct answer.

To mark a response, you should output a single integer between 0 and 1.

1 means that the response perfectly matches the answer.

0 means that the response is completely different from the answer.

The output should be in JSON format." " "

messages =[ {"role":"system", "content":distance_comparison _prompt }]

for sample in fewshot_samples:
messages.append ({"role":"user", "content":sample[ ‘context’]})
messages.append ({"role" :"assistant", "content":sample[ ‘response’ ] })

messages.append ({"role":"user", "content":‘\n’.Jjoin(query)})

Table 25: GPT-5-nano prompts for Traveling Speed Comparison.

speed_comparison_prompt = £"""You should help me to evaluate the response given the
question and the correct answer.

To mark a response, you should output a single integer between 0 and 1.

1 means that the response perfectly matches the answer.

0 means that the response is completely different from the answer.

The output should be in JSON format." " "

messages =[{"role":"system", "content":speed comparison prompt}]

for sample in fewshot_samples:
messages.append ({"role" :"user", "content":sample[ ‘context’] })
messages.append ({"role" :"assistant", "content":sample[ ‘response’ ] })

messages.append({"role" :"user", "content": ‘\n’ .join (query) })
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Table 26: GPT-5-nano prompts for Movement Direction Comparison.

direction_comparison_prompt = £"""You should help me to evaluate the response given
the question and the correct answer.

To mark a response, you should output a single integer between 0 and 1.

1 means that the response perfectly matches the answer.

0 means that the response is completely different from the answer.

The output should be in JSON format." " "

messages=[{"role":"system", "content":direction_comparison prompt}]

for sample in fewshot_samples:
messages.append ({"role":"user", "content":sample[ ‘context’]})
messages.append ({"role" :"assistant", "content":sample[ ‘response’ ] })

messages.append ({"role":"user", "content":‘\n’.Jjoin(query)})
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Table 27: QA templates for Traveled Distance.

]

traveled.distance_common_prompt = £"""The video lasts for [SECONDS] seconds,
and [FRAMES] frames are uniformly sampled from it.
OND1]s,[SECOND2]s,[SECOND3]s, ... . Please answer the following questions related to this
video.

There is an object annotated with a [COLOR] bounding box in the video. """

traveled.-distance_questions = [

“What is the total distance traveled by the given object in the video?”,

“Can you calculate the total distance covered by the object in the video?”,
“Tell me the overall distance the object has traveled in the video.”,

“Could you provide the total distance the object moved throughout the video?”,
“How much distance did the object travel during the entire video?”,

“Measure the distance the object traveled throughout the video.”,

“What is the total distance traveled by a given object from [START] seconds to
[END] seconds?”,

“Can you calculate the total distance the object traveled between [START] sec-
onds and [END] seconds?”,

“Tell me how far the object moved from [START] seconds to [END] seconds.”,
“Could you measure the total distance the object covered between [START]
and [END] seconds?”,

“How much distance did the object travel during the period from [START] to
[END] seconds?”,

“Provide the total distance traveled by the object between [START] and [END]
seconds.”

traveled_.distance_answers = [

“The total distance traveled by the given object is [DISTANCE].”,

“The given object’s traveled distance is [DISTANCE].”,

“The given object has traveled a total of [DISTANCE].”,

“The entire distance the given object traveled amounts to [DISTANCE].”,
“The given object moved a total distance of [DISTANCE].”,

“The distance traveled by the given object from [START] to [END] seconds is
[DISTANCE].”,

“The given object traveled [DISTANCE] between [START] and [END] sec-
onds.”,

“From [START] to [END] seconds, the given object moved a distance of [DIS-
TANCE].”,

“The distance the given object moved from [START] to [END] seconds is [DIS-
TANCE].”,

“Between [START] and [END] seconds, the given object traveled a total of
[DISTANCE].”
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Table 28: QA templates for Traveling Speed.

]

traveling_speed_common_prompt = £"""The video lasts for [SECONDS] seconds,
and [FRAMES] frames are uniformly sampled from it.
OND1]s,[SECOND2]s,[SECOND3]s, ...
video.

There is an object annotated with a [COLOR] bounding box in the video. """

traveling_speed_questions = [

“What is the average speed of the given object in the video?”,

“Calculate the average speed of the object in the video.”,

“Tell me the object’s average speed throughout the video.”,

“Could you provide the average velocity of the object throughout the video?”,
“What is the object’s average speed during the video?”,

“Can you measure the average speed for the object in the entire video?”,
“What is the average speed of the given object from [START] seconds to [END]
seconds?”,

“Can you calculate the average speed of the object between [START] and
[END] seconds?”,

“Tell me the object’s average speed from [START] to [END] seconds.”,
“Could you provide the average velocity of the object during the time period
from [START] to [END] seconds?”,

“What is the average speed of the object between [START] and [END] sec-
onds?”,

“Measure the object’s average velocity during the interval from [START] to
[END] seconds?”

traveling_speed._answers = [

“The average speed of the given object is [SPEED] throughout the video.”,
“The object’s average speed across the entire video is [SPEED].”,
“Throughout the video, the object moves at an average speed of [SPEED].”,
“The given object maintains an average speed of [SPEED] during the entire
video.”,

“The average velocity of the given object throughout the video is [SPEED].”,
“The average speed of the given object from [START] to [END] seconds is
[SPEED].”,

“The object’s average speed between [START] and [END] seconds is
[SPEED].”,

“From [START] to [END] seconds, the object moves at an average speed of
[SPEED].”,

“The given object has an average velocity of [SPEED] during the time period
from [START] to [END] seconds.”,

“The object’s average speed from [START] to [END] seconds is [SPEED].”
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Table 29: QA templates for Movement Direction.

movement _direction_common_prompt = £"""The video lasts for [SECONDS] seconds,
and [FRAMES] frames are uniformly sampled from it. These frames are located at [SEC-
OND1]s,[SECOND2]s,[SECOND3]s, ... . Please answer the following questions related to this
video.

There is an object annotated with a [COLOR] bounding box in the video. """

movement_direction_questions =[

“In which direction does the object move at the end of the video?”,
“What direction does the object travel at the end of the video?”,

“At the end of the video, in which direction does the object move?”,
“Describe the direction of the object moving at the end of the video.”,
“Provide the direction of the object moving at the end of the video.”

]

movement_direction_answers = [

“The given object is heading toward the [CLOCK] o’clock direction at the end
of the video.”,

“The object moves in the direction of [CLOCK] o’clock at the end of the
video.”,

“At the end of the video, the object is heading toward the [CLOCK] o’clock
direction.”,

“The object is traveling toward the [CLOCK] o’clock direction at the end of
the video.”,

“At the end of the video, the object moves toward the [CLOCK] o’clock direc-
tion.”
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Table 30: QA templates for Direction Timestamp.

direction_timestamp_common_prompt = £"""The video lasts for [SECONDS] seconds,
and [FRAMES] frames are uniformly sampled from it. These frames are located at [SEC-
OND1]s,[SECOND2]s,[SECOND?3]s, ... . Please answer the following questions related to this
video.

There is an object annotated with a [COLOR] bounding box in the video. """

direction_timestamp_questions = [

“Describe the timestamp when the object moves in the [CLOCK] o’clock di-
rection.”,

“Can you provide the moment when the object moves in the [CLOCK] o’clock
direction?”,

“Explain the time at which the object heads toward the [CLOCK] o’clock di-
rection.”,

“At what timestamp does the object start moving in the [CLOCK] o’clock di-
rection?”,

“When does the object begin traveling in the [CLOCK] o’clock direction?”

]

direction_timestamp_answers = [

“The given object is heading toward the [CLOCK] o’clock direction from
[START] to [END] seconds.”,

“The object moves in the direction of [CLOCK] o’clock between [START] and
[END] seconds.”,

“From [START] to [END] seconds, the object is heading toward the [CLOCK]
o’clock direction.”,

“The object is traveling toward the [CLOCK] o’clock direction during the time
period from [START] to [END] seconds.”,

“Between [START] and [END] seconds, the object moves toward the [CLOCK]
o’clock direction.”

32



Under review as a conference paper at ICLR 2026

Table 31: Question templates for Traveled Distance Comparison.

traveled.distance_comparison_common_prompt = f£"""The video lasts for [SEC-
ONDS] seconds, and [FRAMES] frames are uniformly sampled from it. These frames are located
at [SECOND1]s,[SECOND2]s,[SECOND3]s, ... . Please answer the following questions related to
this video.

There are two objects annotated with [COLOR1] and [COLOR2] bounding boxes in the video. """

traveled.distance_comparison_positive_questions =[

“Which object travels a greater distance in the video: the one with the
[COLORI1] bounding box or the one with the [COLOR2] bounding box?”,
“Which object moves farther throughout the video, the object annotated with
the [COLOR1] bounding box or the [COLOR2] bounding box?”,

“Which object covers more distance in the video: the one annotated with the
[COLORI1] bounding box or the [COLOR2] bounding box?”,

“Between the objects annotated with the [COLOR1] and [COLOR2] bounding
boxes, which one moves a longer distance throughout the video?”,

“Between the two objects, one annotated with the [COLOR1] bounding box
and the other annotated with the [COLOR2] bounding box, which one moves
farther during the entire video?”,

“Which object, the one annotated with the [COLOR1] bounding box or the
[COLORZ2] bounding box, has a greater travel distance in the video?”

]

traveled.-distance_comparison_negative_questions = [

“Which object travels a shorter distance in the video: the one with the
[COLORI1] bounding box or the one with the [COLOR2] bounding box?”,
“Which object moves a shorter distance throughout the video, the object anno-
tated with the [COLOR1] bounding box or the [COLOR2] bounding box?”,
“Which object covers less distance in the video: the one annotated with the
[COLORI1] bounding box or the [COLOR2] bounding box?”,

“Between the objects annotated with the [COLOR1] and [COLOR2] bounding
boxes, which one moves a shorter distance throughout the video?”,

“Between the two objects, one annotated with the [COLOR1] bounding box
and the other annotated with the [COLOR2] bounding box, which one moves
less during the entire video?”,

“Which object, the one annotated with the [COLOR1] bounding box or the
[COLORZ2] bounding box, has a shorter travel distance in the video?”
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Table 32: Answer templates for Traveled Distance Comparison.

]

traveled.-distance_comparison_positive_answers = [

“The object annotated with the [COLOR1] bounding box has traveled a greater
distance than the object annotated with the [COLOR2] bounding box through-
out the video.”,

“In the video, the object annotated with the [COLOR1] bounding box has
moved a greater distance than the one annotated with the [COLOR2] bound-
ing box.”,

“The object annotated with the [COLOR1] bounding box covers more distance
throughout the video compared to the object annotated with the [COLOR?2]
bounding box.”,

“During the entire video, the distance traveled by the object annotated with the
[COLORI1] bounding box is greater than that of the object annotated with the
[COLORZ2] bounding box.”,

“In the video, the object annotated with the [COLOR1] bounding box has trav-
eled farther than the object annotated with the [COLOR2] bounding box.”

traveled.distance_comparison_negative_answers = [

“The object annotated with the [COLOR1] bounding box has traveled a shorter
distance than the object annotated with the [COLOR2] bounding box through-
out the video.”,

“In the video, the object annotated with the [COLOR1] bounding box has
moved a shorter distance than the one annotated with the [COLOR2] bound-
ing box.”,

“The object annotated with the [COLOR1] bounding box covers less distance
throughout the video compared to the object annotated with the [COLOR?2]
bounding box.”,

“During the entire video, the distance traveled by the object annotated with
the [COLORI1] bounding box is less than that of the object annotated with the
[COLORZ2] bounding box.”,

“In the video, the object annotated with the [COLORI1] bounding box has trav-
eled a shorter distance than the object annotated with the [COLOR2] bounding
box.”
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Table 33: Question templates for Traveling Speed Comparison.

traveling_speed_comparison_common_prompt = f"""The video lasts for [SEC-
ONDS] seconds, and [FRAMES] frames are uniformly sampled from it. These frames are located
at [SECOND1]s,[SECOND2]s,[SECOND3]s, ... . Please answer the following questions related to
this video.

There are two objects annotated with [COLOR1] and [COLOR2] bounding boxes in the video. """

traveling_speed_comparison_positive_questions =[

“Which object moves at a higher speed in the video: the one with the
[COLORI1] bounding box or the one with the [COLOR2] bounding box?”,
“Which object moves faster throughout the video, the object annotated with the
[COLORI1] bounding box or the [COLOR2] bounding box?”,

“Which object maintains a greater speed in the video: the one annotated with
the [COLOR1] bounding box or the [COLOR2] bounding box?”,

“Between the objects annotated with the [COLOR1] and [COLOR2] bounding
boxes, which one moves at a higher speed throughout the video?”,

“Between the two objects, one annotated with the [COLOR1] bounding box
and the other with the [COLOR?2] bounding box, which one has a higher speed
during the entire video?”,

“Which object, the one annotated with the [COLOR1] bounding box or the
[COLORZ2] bounding box, has a greater average speed in the video?”

]

traveling_speed_comparison_negative_questions = [

“Which object moves at a lower speed in the video: the one with the [COLOR1]
bounding box or the one with the [COLOR2] bounding box?”,

“Which object moves more slowly throughout the video, the object annotated
with the [COLOR1] bounding box or the [COLOR2] bounding box?”,
“Which object maintains a slower speed in the video: the one annotated with
the [COLOR1] bounding box or the [COLOR2] bounding box?”,

“Between the objects annotated with the [COLOR1] and [COLOR2] bounding
boxes, which one moves at a slower speed throughout the video?”,

“Between the two objects, one annotated with the [COLOR1] bounding box
and the other with the [COLOR2] bounding box, which one has a slower speed
during the entire video?”,

“Which object, the one annotated with the [COLOR1] bounding box or the
[COLORZ2] bounding box, has a lower average speed in the video?”
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Table 34: Answer templates for Traveling Speed Comparison.

]

traveling_speed_comparison_positive_answers = [

“The object annotated with the [COLOR1] bounding box has moved at a faster
speed than the object annotated with the [COLOR?2] bounding box throughout
the video.”,

“In the video, the object annotated with the [COLOR1] bounding box moves
faster than the one annotated with the [COLOR?2] bounding box.”,

“The object annotated with the [COLOR1] bounding box maintains a higher
speed throughout the video compared to the object annotated with the
[COLORZ2] bounding box.”,

“During the entire video, the speed of the object annotated with the [COLOR1]
bounding box is greater than that of the object annotated with the [COLOR2]
bounding box.”,

“In the video, the object annotated with the [COLOR1] bounding box has
moved faster than the object annotated with the [COLOR2] bounding box.”

traveling_speed._comparison_negative_answers = [

“The object annotated with the [COLOR1] bounding box has moved at a slower
speed than the object annotated with the [COLOR?2] bounding box throughout
the video.”,

“In the video, the object annotated with the [COLOR1] bounding box moves
more slowly than the one annotated with the [COLOR2] bounding box.”,

“The object annotated with the [COLOR1] bounding box maintains a lower
speed throughout the video compared to the object annotated with the
[COLORZ2] bounding box.”,

“During the entire video, the speed of the object annotated with the [COLOR1]
bounding box is less than that of the object annotated with the [COLOR?2]
bounding box.”,

“In the video, the object annotated with the [COLOR1] bounding box has
moved more slowly than the object annotated with the [COLOR?2] bounding
box.”
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Table 35: Question templates for Movement Direction Comparison.

movement _direction_comparison_common_prompt = £"""The video lasts for [SEC-
ONDS] seconds, and [FRAMES] frames are uniformly sampled from it. These frames are located
at [SECOND1]s,[SECOND2]s,[SECOND3]s, ... . Please answer the following questions related to
this video.

There are two objects annotated with [COLOR1] and [COLOR2] bounding boxes in the video. """

movement _direction_comparison_positive_questions =

“Is the object annotated with the [COLOR1] bounding box moving in the same
direction as the object annotated with the [COLOR2] bounding box in the
video?”,

“Is the object annotated with the [COLOR1] bounding box heading in the same
direction as the object annotated with the [COLOR2] bounding box throughout
the video?”,

“Are the object annotated with the [COLOR1] bounding box and the object an-
notated with the [COLOR?2] bounding box moving in the same direction during
the video?”,

“In the video, does the object with the [COLOR1] bounding box move in the
same direction as the object with the [COLOR2] bounding box?”,

“Are the objects annotated with the [COLOR1] and [COLOR2] bounding boxes
traveling in the same direction during the entire video?”

]

movement_direction_comparison_negative_questions = [

“Is the object annotated with the [COLOR1] bounding box moving in a differ-
ent direction from the object annotated with the [COLOR2] bounding box in
the video?”,

“Is the object annotated with the [COLOR1] bounding box heading in a dif-
ferent direction from the object annotated with the [COLOR2] bounding box
throughout the video?”,

“Are the object annotated with the [COLOR1] bounding box and the object
annotated with the [COLOR2] bounding box moving in a different direction
during the video?”,

“In the video, does the object with the [COLOR1] bounding box move in a
different direction from the object with the [COLOR?2] bounding box?”,

“Are the objects annotated with the [COLOR1] and [COLOR2] bounding boxes
traveling in different directions during the entire video?”
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Table 36: Answer templates for Movement Direction Comparison.

]

]

]

movement_direction_comparison_true_positive_answers = [

“Yes, the object annotated with the [COLOR1] bounding box is moving in
the same direction as the object annotated with the [COLOR?2] bounding box
throughout the video.”,

“Indeed, the object annotated with the [COLOR1] bounding box is heading in
the same direction as the object annotated with the [COLOR2] bounding box
during the entire video.”,

“Correct, the object annotated with the [COLOR1] bounding box and the object
annotated with the [COLOR2] bounding box are moving in the same direction
in the video.”

movement_direction_comparison_true_negative_answers =|[

“No, the object annotated with the [COLOR1] bounding box is moving in
the same direction as the object annotated with the [COLOR2] bounding box
throughout the video.”,

“Actually, the object annotated with the [COLOR1] bounding box is heading in
the same direction as the object annotated with the [COLOR2] bounding box
during the entire video.”,

“Incorrect, the object annotated with the [COLOR1] bounding box and the ob-
ject annotated with the [COLOR2] bounding box are moving in the same di-
rection in the video.”

movement _direction_comparison_false positive_answers =[

“No, the object annotated with the [COLORI1] bounding box is moving in a dif-
ferent direction from the object annotated with the [COLOR2] bounding box
throughout the video.”,

“Actually, the object annotated with the [COLOR1] bounding box is heading in
a different direction from the object annotated with the [COLOR2] bounding
box during the entire video.”,

“Incorrect, the object annotated with the [COLOR1] bounding box and the ob-
ject annotated with the [COLOR2] bounding box are moving in a different
direction in the video.”

movement_direction_comparison_false_negative_answers =|[

“Yes, the object annotated with the [COLOR1] bounding box is moving in a
different direction from the object annotated with the [COLOR?2] bounding box
throughout the video.”,

“Indeed, the object annotated with the [COLOR1] bounding box is heading in
a different direction from the object annotated with the [COLOR2] bounding
box during the entire video.”,

“Correct, the object annotated with the [COLOR1] bounding box and the object
annotated with the [COLOR2] bounding box are moving in a different direction
in the video.”
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