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Ground	Truth:
The	total	distance	traveled	by	the	given	
object	is	20.15	meters.

Question:
Can	you	calculate	the	total	distance	covered	
by	the	object	in	the	video?

GPT-5:
The	frames	don't	provide	the	object's	coordinates	or	real-world	scale,	so	the	
total	distance	traveled	cannot	be	calculated	from	these	images	alone.

ST-VLM	(Ours):
The	given	object	moved	a	total	distance	of	19.84	m.

(a) A challenging case with a complex trajectory.

Ground	Truth:
Object	speed:	20.19	mph	(32.49	km/h)
Distance	between	NY	and	LA:	2,775.3	miles	(4466.4	km)

Question:
Calculate	how	long	it	takes	for	the	object	to	travel	from	New	York	(NY)	to	Los	
Angeles	(LA)	at	the	current	speed.

						GPT-5:
…	If	you	assume	a	speed	60	mph,	then	~46.7	hours	(not	including	stops).

ST-VLM	(Ours):
The	distance	between	NY	and	LA	is	2794.18	miles.	The	object's	speed	is	
35.17	km/h.	First,	…	2794.2	miles	*	1.61	km/mile	=	4487.5	km.	Then,	...	
4487.5	km	/	35.17	km/h	=	127.3	hours.	Therefore,	...	approximately	5.3	days ...

(b) An emergent capability of ST-VLM.

Figure 1: Spatio-temporal reasoning in dynamic videos with moving objects. (a) asks the model
to predict the total traveled distance using only the video, without additional modalities such as 3D
point clouds, depth map, or camera poses. The video features a basketball player moving erratically
across the court, making it more difficult for the model to predict. (b) asks the model to solve multi-
step reasoning questions that require integrating spatio-temporal understanding with its existing
abilities (e.g., commonsense knowledge, logical reasoning, arithmetic computation). Since GPT-
5 lacks spatio-temporal reasoning ability, it fails to generate accurate answers. In (a), the model
avoids answering in the absence of a real-world scale, whereas in (b), it assumes a speed of 60
mph, resulting in a highly inaccurate response. In contrast, ST-VLM, equipped with spatio-temporal
reasoning with the proposed STKit dataset, consistently provides accurate answers in both cases.

ABSTRACT

Spatio-temporal reasoning is essential for understanding real-world environments
in various fields, e.g., autonomous driving and sports analytics. While recent ad-
vances have strengthened the spatial reasoning abilities of Vision-Language Mod-
els (VLMs) through large-scale training data, these models still struggle with kine-
matic aspects such as traveled distance and speed of moving objects. To bridge this
gap, we construct a spatio-temporal reasoning dataset and benchmark for kine-
matic instruction tuning, referred to as STKit and STKit-Bench. They consist of
real-world videos with 3D annotations that capture object motion dynamics, in-
cluding traveled distance, speed, movement direction, inter-object distance com-
parisons, and relative movement direction. To further scale data construction to
videos without 3D annotations, we propose an automatic pipeline for generat-
ing pseudo-labels via 4D reconstruction at a real-world scale. Building on this
kinematic instruction tuning data, we introduce ST-VLM, a VLM enhanced for
spatio-temporal reasoning, which achieves strong performance on STKit-Bench.
Moreover, ST-VLM generalizes robustly across diverse domains and tasks, out-
performing baselines on comprehensive spatio-temporal reasoning benchmarks.
Finally, by integrating learned spatio-temporal reasoning with existing abilities,
ST-VLM enables complex multi-step reasoning grounded in kinematics.
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Question:
What	is	the	average	speed	of	the	object	annotated	with	red	
bounding	box	throughout	the	video?

Traveling	
Speed

Movement	
Direction

0	sec.

1	sec.

2.7	sec.

3.5	sec.

4.5	sec.

							ST-VLM:
The	average	speed	of	the	object	annotated	with	the	red	
bounding	box	is	15.04	km/h	throughout	the	video.

Question:
At	the	end	of	the	video,	in	which	direction	does	the	object	
annotated	with	the	blue	bounding	box	move?

ST-VLM:
The	object	moves	in	the	direction	of	10	o'clock at	the	
end	of	the	video.

Question:
Which	object	moves	farther	throughout	the	video?

ST-VLM:
…	blue	bounding	box	covers	more	distance throughout	
the	video	compared	to	the	…

Question:
From	3.5	and	4.5	seconds,	are	these	objects	moving	in	
different	directions?

ST-VLM:
…	blue	bounding	box	is	moving	in	a	different	direction
from	the	object	annotated	with	the	red	…

Traveling	Speed

Traveled	Distance	Comparison

Moving	Direction

Moving	Direction	Comparison

Figure 2: Several task examples from the proposed STKit along with predictions of ST-VLM.

1 INTRODUCTION

Spatio-temporal reasoning is the ability to infer how objects move and interact over time within
dynamic environments from visual evidence. For example, when analyzing a video of two cars
driving on the road, it involves estimating kinematic quantities such as which car moves faster,
what their movement directions are, and the precise speed of a specific car. This ability is essential
in a wide range of applications, including autonomous driving, sports analytics, augmented/virtual
reality, and embodied AI. However, even advanced AI models still struggle to measure kinematic
quantities requiring 3D/4D understanding, as shown in Fig. 1a, where GPT-5 fails to estimate a
basketball player’s traveled distance in a short video. Furthermore, these models often rely on
language priors instead of genuinely analyzing the video’s underlying kinematics. In Fig. 1b, GPT-5
simply assumes a speed of 60 mph for a car to answer the question. These observations expose
a fundamental gap in the ability of existing Vision-Language Models (VLMs) to perform spatio-
temporal reasoning.

Current VLMs are mostly trained on high-level vision tasks, e.g., classifying object attributes or lo-
calizing 2D coordinates (Yu et al., 2016; Krishna et al., 2017). In contrast, spatio-temporal reasoning
requires 3D/4D information (e.g., point clouds, metric depths, and camera extrinsics). These signals
are inherently low-level and difficult for VLMs to leverage effectively. To overcome this limitation,
recent studies (Chen et al., 2024; Cheng et al., 2024a) have attempted to enhance spatial reasoning
in image-based VLMs through large-scale datasets annotated with static geometric cues such as ob-
ject sizes and locations. However, these efforts remain restricted to static scenes and cannot capture
how objects evolve over time. As a result, temporal dynamics, e.g., motion patterns and trajec-
tory evolution, are left unaddressed, even though they are fundamental for kinematic understanding.
This limitation motivates the need for large-scale video datasets annotated with dynamic geometric
information, enabling video-based VLMs to reason over kinematics in evolving environments.

To this end, we propose ST-VLM, a VLM equipped with enhanced spatio-temporal reasoning capa-
bilities grounded in kinematic information. To train and evaluate ST-VLM, we introduce STKit
and STKit-Bench, spatio-temporal reasoning datasets and benchmarks specifically designed for
kinematic instruction tuning. These datasets comprise seven fundamental tasks that require kine-
matic reasoning, such as estimating traveled distance and speed (see Fig. 2 for examples). To ensure
high-quality kinematic instructions, the datasets are constructed from 3D annotations, including
driving videos (Wilson et al., 2023; Caesar et al., 2020) with LiDAR-based point clouds and sports
videos (Grauman et al., 2024) with SLAM-based point clouds estimated from AR devices (Engel
et al., 2023). Since acquiring point cloud-labeled training videos is challenging, we further develop a
pseudo-labeling pipeline based on 4D reconstruction from unlabeled videos (Yu et al., 2020; Zhang
et al., 2024c; Li et al., 2021). By training on both labeled and pseudo-labeled kinematic instruc-
tion data, ST-VLM enables complex reasoning that integrates spatio-temporal reasoning with its
pretrained knowledge. For example, as shown in Fig. 1b, ST-VLM can answer questions that re-
quire integrating commonsense knowledge (distances between cities), kinematic estimation (speed),
logical reasoning (time = distance/speed), and arithmetic computation. These emergent capabilities
are seamlessly unified when spatio-temporal reasoning is incorporated into the model, even without
explicit training for complex reasoning.
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Table 1: Overview of kinematic instructions. A common prompt is prepended to each task, pro-
viding contextual information about the video: “The video lasts for t seconds, and n frames are
uniformly sampled from it. These frames are located at t1, t2 . . . , tn seconds. There are k objects
annotated with [COLOR] bounding boxes in the video.”

Main Categories Subcategories Tasks Descriptions

Single
Object

Distance

Traveled Distance Predict the total traveled distance of the object given the timestamp.
e.g., Can you calculate the total distance the object traveled between [START] and [END] seconds?

Traveling Speed Predict the average traveling speed of the object given the timestamp.
e.g., Tell me the object’s average speed throughout the video.

Direction

Movement Direction Predict the movement direction of the object at the end of the video.
e.g., What direction does the object travel at the end of the video?

Direction Timestamp Predict the timestamp when the object moves in the given direction.
e.g., Describe the timestamp when the object moves in the [DIRECTION] o’clock direction.

Multiple
Objects

Distance

Traveled Distance
Comparison

Compare which object has traveled farther (or less).
e.g., Which object travels a greater distance in the video?

Traveling Speed
Comparison

Compare which object has traveled faster (or slower).
e.g., Which object moves faster throughout the video?

Direction Movement Direction
Comparison

Compare whether objects are moving in the same direction or not.
e.g., Is object A moving in the same direction as object B in the video?

In summary, our contributions are threefold:

• We introduce STKit and STKit-Bench, a new dataset and benchmark designed to endow
VLMs with kinematic understanding in dynamic videos, enabling spatio-temporal reason-
ing over quantities such as traveled distance and movement direction.

• To address the scarcity of 3D-annotated data, we propose a pseudo-label generation
pipeline that leverages 4D reconstruction from unlabeled videos.

• We present ST-VLM, which significantly surpasses GPT-5 by 25.6% on STKit-Bench with
strong spatio-temporal reasoning. Our in-depth analyses demonstrate that ST-VLM excels
in complex reasoning about object kinematics across various scenarios.

2 RELATED WORK

Vision-Language Models (VLMs). Recent VLMs have demonstrated strong perception and rea-
soning across a wide range of image (Li et al., 2024a; Xu et al., 2024; Wang et al., 2024a; Lin et al.,
2024) and video (Zhang et al., 2024b; Wang et al., 2024c; Cheng et al., 2024b; Maaz et al., 2023;
Li et al., 2024b) tasks, powered by LLMs. However, they struggle with 3D geometry (Liu et al.,
2024). To mitigate this, spatial-aware image-based VLMs (Liu et al., 2025; Cai et al., 2025a; Yang
et al., 2025; Cai et al., 2025a; Cheng et al., 2024a; Chen et al., 2024) improve spatial reasoning,
such as SpatialCoT (Liu et al., 2025) with chain-of-thought (CoT) spatial grounding. Video-based
VLMs (Cheng et al., 2024b; Li et al., 2025; Bhattacharyya et al., 2024) have begun to explore
spatio-temporal reasoning for domains like autonomous driving (Zhou et al., 2024b; Wang et al.,
2024b; Ma et al., 2024) and embodied AI (Huang et al., 2024; Cai et al., 2025a). For example, Bhat-
tacharyya et al. (2024) propose an elegant three-step video reasoning framework (Look, Remember,
Reason) incorporating a two-stream video encoder and spatio-temporal attention. In parallel, agent-
based systems (Shen et al., 2023; Gupta & Kembhavi, 2023) achieve strong performance in 2D
tasks (Wang & Ke, 2024; Lee et al., 2024) by chaining specialist modules whose outputs (e.g., ob-
ject categories, 2D bounding box coordinates) are directly interpretable by VLMs. However, VLMs
remain unable to interpret low-level 3D/4D signals, limiting generalization beyond 2D domains.
We address this by proposing a new video-based VLM with spatio-temporal reasoning capabilities,
which directly estimates object kinematics such as traveled distance and movement direction.

Spatio-temporal reasoning datasets. Several datasets have been proposed in the literature (Li
et al., 2025; Lei et al., 2020; Zhang et al., 2020; Zhou et al., 2025) to improve the video-based
VLMs’ spatio-temporal reasoning ability. ST-Align (Li et al., 2025) is a video instruction dataset
that requires localizing 2D coordinates over time, whereas VidSTG (Zhang et al., 2020) focuses on
spatio-temporal grounding given a query sentence. Also, several benchmarks have been introduced
to evaluate video-based VLMs’ spatio-temporal reasoning abilities in the general domain (Li et al.,
2024b; Fu et al., 2024; Liang et al., 2025), embodied AI (Zhang et al., 2024a), and autonomous
driving (Zhou et al., 2024b; Wang et al., 2024b; Sima et al., 2024). For example, Liang et al.
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🌳

Bounding	Boxes

Metric	Depths

Question:	Tell	me	the	overall	distance	the	
object	has	traveled	in	the	video.
Answer:	The	distance	is	9.5	meters.	

Masks Trajectories

Camera	Poses Canonicalized	4D	PCs

Objects	of	Interest

Geometric	Reconstruction	Branch

Semantic	Understanding	Branch

4D	
recon.

Geometric	Output

Semantic	Output

Question	&	Answer	Pairs

·	·
	·

🎥
🎥

🎥

🎥

·	·	·

“car”

Kinematic	Grounding	in	4D	Scene

Filtering	Strategy

3m
3m 2m

1.5m

Model-based
(task-speciLic)

Model-based
(general)

Rule-based
(heuristics)

❷ ❸

Distance/Direction	Calculation

Figure 3: Pseudo-label generation pipeline. In the geometric reconstruction branch, a canoni-
calized 4D scene is reconstructed using MonST3R and Metric3D v2. The semantic understanding
branch extracts object bounding boxes, segmentation masks, and trajectories via Grounded-SAM2.
By integrating the two branches, 2D object masks are lifted into 3D, and trajectories are derived by
tracking 3D centroids within the reconstructed 4D scene. Finally, a three-stage filtering strategy is
applied to generate high-quality QA pairs.

(2025) introduce a novel pixel-level fine-grained spatio-temporal grounding benchmark in egocen-
tric videos. Also, Sima et al. (2024) focus on driving-specific scenarios, such as planning and
decision-making, while our dataset targets core kinematic reasoning. Concurrent with our work,
VLM4D (Zhou et al., 2025) introduced a video benchmark with 4D features designed to evaluate
the spatio-temporal reasoning capabilities of VLMs. However, these datasets and benchmarks do
not explicitly take into account kinematics in dynamic videos, while we present instruction-tuning
data annotated with kinematic information.

3 METHOD

We aim to infuse VLMs with spatio-temporal reasoning abilities through kinematic instruction tun-
ing data, STKit. In Sec. 3.1, we introduce seven tasks to categorize kinematic instructions of STKit.
We then present a kinematic grounding framework for generating QA pairs in STKit, using dy-
namic videos annotated with 3D point clouds in Sec. 3.2. To address the bottleneck of limited 3D
annotations, we propose a pseudo-labeling pipeline that leverages 4D reconstruction on unlabeled
videos, as detailed in Sec. 3.3. Finally, in Sec . 3.4, we train ST-VLM with STKit based on both
3D-annotated and pseudo-labeled data.

3.1 KINEMATIC INSTRUCTIONS

We introduce STKit, a kinematic instruction tuning dataset designed to enhance VLMs’ spatio-
temporal reasoning capabilities. The dataset includes instructions for measuring kinematic quanti-
ties in dynamic videos, such as object trajectories, traveled distances, and movement directions. To
cover diverse kinematic aspects, we define seven tasks grouped into two categories, Single Objects
and Multiple Objects, each further subdivided into Distance and Direction (see Tab. 1 for details).
The tasks require the model to capture both absolute measures (distance and direction of an object’s
movement) and relative measures (comparisons across multiple objects). Solving them necessitates
inferring spatial information (e.g., object locations) and temporal information (e.g., object dynam-
ics), thereby fostering complex spatio-temporal reasoning built upon the prior knowledge of LLMs.

3.2 KINEMATIC GROUNDING IN DYNAMIC VIDEOS WITH 3D ANNOTATIONS

Generating QA pairs for STKit requires grounding object kinematics in dynamic videos. To this
end, we consider diverse dynamic scenarios, including autonomous driving and outdoor sports (e.g.,
football and basketball). Specifically, for driving, we use datasets such as Argoverse2 (Wilson et al.,
2023) and NuScenes (Caesar et al., 2020), which provide LiDAR-based 3D object coordinates at a
real-world scale for each timestamp. For sports, we incorporate Ego-Exo4D (Grauman et al., 2024),
captured with wearable AR devices (Engel et al., 2023) that record both RGB images and IMU
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: bird’s eye view of a car : reference direction : current direction : full trajectory

12 o’ clock 11 o’ clock 10 o’ clock 9 o’ clock

Figure 4: Movement directions as clockwise directions.

Table 2: Data composition of STKit. We ex-
tract 21K dynamic videos and generate a total of
63K kinematic instructions from six datasets, cov-
ering autonomous driving (AD), sports, and gen-
eral domains. For videos without 3D annotations,
we generate pseudo-labels via 4D reconstruction.

Dataset # QA pairs # Videos Domain 3D annot.

NuScenes 13K 4K AD LiDAR
Argoverse2 8K 0.6K AD LiDAR
Ego-Exo4D 6K 0.8K Sports VIO/SLAM
BDD100K 35.2K 15K AD pseudo-label
LLaVA-Video 0.5K 0.3K General pseudo-label
MultiSports 0.3K 0.2K Sports pseudo-label

signals, enabling accurate 3D trajectory estimation via Visual-Inertial Odometry (VIO) and SLAM.
These trajectories are used as the practical ground truth (GT).

For each annotated object in the video, we obtain its 3D centroid and 3D bounding box coordinates
in world space at every timestamp. Using the 3D center coordinate P

(i)
t of the i-th object at time t,

we construct trajectories by sampling centers at 0.5-second intervals over 40-frame videos, covering
up to 20 seconds. The traveled distance of object i between s and e seconds is computed as the
cumulative sum of distances between consecutive frames, i.e.,

∑e−1
t=s ∥P

(i)
t+1 −P

(i)
t ∥2. The average

speed is also obtained by dividing the traveled distance by the duration e− s.

For movement direction, we first define a reference direction for each object using its initial motion,
derived from the displacement between the first two frames in which it appears, i.e., P(i)

s+1 − P
(i)
s .

Subsequent movement directions are then expressed as relative angles with respect to this reference
vector. However, describing directions with angles is not intuitive, as humans typically do not
use exact degrees. To make this more accessible for both humans and VLMs, we discretize the
calculated angles into clockwise directions. Specifically, the initial reference direction is aligned
with 12 o’clock, and subsequent directions are expressed relative to this reference, as illustrated in
Fig. 4. Due to the highly complex 3D trajectories in the sports domain, we exclude the movement
direction category from that domain (see Fig. 1a for an example trajectory). This results in a total of
27K high-quality samples with 3D GT annotations from NuScenes, Argoverse2, and Ego-Exo4D.

3.3 PSEUDO-LABELING FOR UNLABELED DYNAMIC VIDEOS

To mitigate the scarcity of 3D GT annotations and extend STKit to broader domains, we propose a
pseudo-labeling pipeline that leverages 4D reconstruction on unlabeled video datasets. Specifically,
we use BDD100K (Yu et al., 2020) for autonomous driving, MultiSports (Li et al., 2021) for sports,
and LLaVA-Video (Zhang et al., 2024c) for the general domain. Building on recent advances in ge-
ometric reconstruction and semantic understanding, we reconstruct 4D scenes by lifting segmented
objects from 2D frames into 3D space. This extends the kinematic grounding described in Sec. 3.2
to unlabeled videos. An overview of the pseudo-labeling pipeline is presented in Fig. 3.
Geometric reconstruction branch. For 4D reconstruction on unlabeled videos, we employ
MonST3R (Zhang et al., 2025b), a framework that estimates scene geometry including depth and
camera intrinsics/extrinsics, even in dynamic videos with moving objects. However, the space re-
constructed by MonST3R is not aligned with real-world scale, since it lacks a fixed depth reference,
resulting in reconstructions that are accurate in shape but arbitrary in size. This scale misalignment
poses a significant challenge for spatio-temporal reasoning tasks such as estimating traveled dis-
tances and speeds. To resolve this issue, we incorporate Metric3D v2 (Hu et al., 2024) to obtain
absolute metric depth at a real-world scale. Specifically, we canonicalize the reconstructed 4D scene
by rescaling MonST3R’s depth estimates to match the metric depths provided by Metric3D v2.
Semantic understanding branch. We extract bounding boxes, segmentation masks, and trajecto-
ries of target objects using the open-vocabulary video semantic understanding model, Grounded-
SAM2 (Ren et al., 2024). We focus on moving object classes of interest, including automobiles
(e.g., cars, buses, trucks, motorcycles, bicycles) and humans.
Kinematic grounding in canonicalized 4D scene. By integrating the outputs from the two
branches, the 2D segmentation masks of selected objects are lifted into 3D point clouds within the
canonicalized 4D reconstructed scene. We then compute each object’s traveled distance, speed, and

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

movement direction by tracking its 3D centroid across frames, following the procedure in Sec. 3.2.
Further details of the pseudo-labeling pipeline are provided in Sec. A.1.
Filtering strategy. Due to inherent limitations of monocular 4D reconstruction, e.g., partial visi-
bility and viewpoint constraints, we introduce a three-stage filtering strategy. Rule-based filtering
applies predefined heuristics to discard poorly reconstructed scenes. Specifically, we remove scenes
with insufficient point clouds or extremely small objects, detect outliers in 3D centroid trajectories,
and apply trajectory smoothing to recover natural motion patterns. General model-based filtering
leverages a VLM to exclude scenes with occluded objects or significant camera motion, while also
assessing object detection and tracking quality to eliminate low-quality cases. Task-specific model-
based filtering utilizes the model trained only on 3D-annotated (GT) data introduced in Sec. 3.2.
This model filters out low-quality pseudo-labeled samples based on their likelihood scores.

After the three-stage filtering, the number of low-quality samples is significantly reduced. For ex-
ample, scenes with occluded objects are reduced from 12,035 to 174, and those with failed object
detections from 9,278 to 206. As a result, we obtain a total of 36K high-quality pseudo-labeled
samples. To assess the reliability of pseudo-labels, we compare the computed trajectories against
GT trajectories from the 3D-annotated dataset, NuScenes. For the traveled distance, the mean error
rate decreases from 207% to 29% after applying the three-stage filtering strategy, where the error
rate is defined as |Pred−GT|

GT ×100. This demonstrates that our filtering strategy substantially improves
pseudo-label quality. Further details and analysis of the filtering strategy are provided in Sec. B.

3.4 KINEMATIC INSTRUCTION TUNING

Based on 27K 3D sensor-annotated samples (Sec. 3.2) and 36K pseudo-labeled samples generated
via 4D reconstruction (Sec. 3.3), we construct STKit for kinematic instruction tuning using prede-
fined templates. We provide the templates for each task in Sec. F and present the detailed data com-
position of STKit in Tab. 2. To specify the object of interest, we overlay a bounding box on each
frame as a visual prompt and provide additional textual context, including frame timestamps and
bounding-box color, as input to the VLMs. We further blend STKit with subsets of general instruc-
tion tuning datasets, LLaVA-Video (Zhang et al., 2024c), LLaVA-OneVision (Li et al., 2024a), and
OpenSpatialDataset (Cheng et al., 2024a), to train ST-VLM. Our model is initialized from the pre-
trained LLaVA-OneVision 7B. Through this integration, we empirically observe that ST-VLM ex-
hibits emergent capabilities, combining pretrained knowledge with newly acquired spatio-temporal
reasoning to support complex multi-step reasoning. Detailed analyses are presented in Sec. 6.3.

4 STKIT-BENCH

Since no benchmark exists for evaluating the spatio-temporal reasoning capabilities of general
VLMs, particularly in object kinematics, we introduce STKit-Bench, which comprises four datasets
spanning autonomous driving and sports. For autonomous driving, we use NuPlan (Caesar et al.,
2021), NuScenes (Caesar et al., 2020), and Argoverse2 (Wilson et al., 2023), all of which provide
LiDAR-based annotations, with NuPlan serving as an unseen dataset for robust evaluation. For
sports, we adopt Ego-Exo4D (Grauman et al., 2024), which includes SLAM-based annotations.
Following the official validation splits, STKit-Bench consists of 74.8% NuPlan, 12.5% NuScenes,
5.6% Argoverse2, and 7.1% Ego-Exo4D. Each task contains 200 QA pairs, resulting in a total of
1,400 QA pairs. To mitigate the long-tailed label distribution in QA pairs, we balance the number
of samples across labels to ensure fair evaluation. Details of STKit-Bench are provided in Sec. E.

For evaluation, we use GPT-5-nano to extract predictions from natural language responses. We then
compare each prediction ŷ with the GT y by using the following evaluation metrics:
(1) Traveled Distance and (2) Traveling Speed: Accuracy (correct if y × 0.75 ≤ ŷ ≤ y × 1.25) and
MAE (|y − ŷ|).
(3) Movement Direction: Accuracy (correct if y = ŷ) and MAE (min(|y − ŷ|, 12 − |y − ŷ|), in
clockwise directions).
(4) Direction Timestamp: Accuracy (correct if IoU(y, ŷ) ≥ 0.5) and IoU.
(5) Traveled Distance Comparison, (6) Traveling Speed Comparison, and (7) Movement Direction
Comparison: Accuracy (binary).
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Table 3: Results on STKit-Bench. The average accuracy is reported in the last column.

Models

Single Object (absolute) Multiple Objects (relative)

AverageTraveled
Distance

Traveling
Speed

Movement
Direction

Direction
Timestamp

Travel. Distance
Comparison

Travel. Speed
Comparison

Move. Direction
Comparison

Acc↑ MAE↓ (m) Acc↑ MAE↓ (km/h) Acc↑ MAE↓ (clock) Acc↑ IoU↑ Acc↑ Acc↑ Acc↑ Acc↑

closed-source models
GPT-4V 8.0 48.3 10.0 33.2 9.0 2.7 28.0 0.27 51.0 49.5 54.0 29.9
GPT-4o 2.0 36.7 0.5 23.4 16.0 2.7 5.5 0.08 54.5 56.0 58.5 27.6
GPT-5 1.0 45.3 5.5 32.5 12.0 2.23 8.5 0.11 65.5 63.0 73.0 32.6
Gemini-2.5-Flash 16.5 37.8 14.5 47.1 20.5 2.04 34.0 0.33 59.0 57.5 68.5 38.6
Gemini-2.5-Pro 10.5 38.0 6.5 37.7 10.0 2.33 34.0 0.32 64.0 62.5 73.5 37.3

open-source models
VideoLLaMA3-7B (Zhang et al., 2025a) 12.5 55.9 29.5 20.4 16.5 2.0 10.5 0.15 44.0 40.5 55.0 29.8
Qwen2.5-VL-7B (Bai et al., 2025) 7.0 60.0 12.0 84.4 15.5 2.14 5.0 0.05 51.0 45.0 49.5 26.4
InternVL3-8B (Zhu et al., 2025) 10.0 55.5 8.0 55.21 16.0 1.99 15.0 0.16 52.0 55.0 57.0 30.4
InternVideo2.5-8B (Wang et al., 2025) 5.5 367.2 7.5 31.0 8.5 3.0 15.0 0.16 47.5 49.0 55.5 26.9
VideoChat-Flash-7B (Li et al., 2024c) 8.0 43.79 14.0 24.8 10.0 2.9 23.0 0.25 51.0 46.0 47.5 28.5
LLaVA-Video-7B (Zhang et al., 2024c) 9.5 50.0 9.5 22.7 13.0 2.3 7.0 0.08 49.5 45.0 46.5 25.7
LLaVA-OneVision-7B (Li et al., 2024a) 11.5 54.6 6.0 25.3 5.0 2.0 22.5 0.22 42.5 52.5 45.0 26.4

ST-VLM-7B (Ours) 42.0 20.4 44.5 11.7 31.0 1.7 67.5 0.56 74.0 74.5 74.0 58.2

5 EXPERIMENTS

We compare ST-VLM with baselines on STKit-Bench under various settings for robust evaluation.

5.1 EXPERIMENTAL SETTINGS

Baselines. We evaluate closed-source proprietary models, including GPT-4V, GPT-4o, GPT-5,
Gemini-2.5-Flash, and Gemini-2.5-Pro. In addition, we consider a range of open-source video-based
VLMs: VideoLLaMA3 (Zhang et al., 2025a), Qwen2.5-VL (Bai et al., 2025), InternVL3 (Zhu et al.,
2025), InternVideo2.5 (Wang et al., 2025), VideoChat-Flash (Li et al., 2024c), LLaVA-Video (Zhang
et al., 2024c), and LLaVA-OneVision (Li et al., 2024a).

Implementation details. For instruction tuning, we construct the training set by blending STKit
(63K) with subsets of 500K samples from LLaVA-Video, 500K samples from LLaVA-OneVision,
and 100K samples from OpenSpatialDataset. 4D scene reconstruction using MonST3R takes ap-
proximately 400 seconds per video on a single A6000 GPU. We train our model for one epoch with
a batch size of 128, adopting a cosine learning rate scheduler with an initial learning rate of 1e-5.
The full training requires two weeks on 8 × A6000 GPUs. Further details are provided in Sec. A.2.

5.2 QUANTITATIVE RESULTS

Tab. 3 reports results on STKit-Bench, comparing ST-VLM against baseline VLMs. Proprietary
models, including the GPT and Gemini series, exhibit weak spatio-temporal reasoning on this bench-
mark. For example, in Traveled Distance, Gemini-2.5-Pro attains only 16.5% accuracy with a mean
absolute error (MAE) of 37.8, corresponding to an average deviation of 37.8 m from the GT dis-
tance. Open-source models also face challenges; for instance, LLaVA-OneVision, the initialization
for ST-VLM, achieves only 26.4% average accuracy. In contrast, ST-VLM surpasses all baselines
across the seven tasks by a substantial margin, achieving a 31.8% higher average accuracy than
LLaVA-OneVision. Specifically, ST-VLM attains 44.5% accuracy on Traveling Speed with an aver-
age deviation of 11.7 km/h, showing kinematic reasoning capabilities absent in previous models.

5.3 ROBUST EVALUATION ACROSS DIVERSE SETTINGS

To ensure a fair and rigorous evaluation, we consider two experimental settings. First, since ST-VLM
implicitly learns 3D geometric priors from 3D ground-truth annotations and pseudo-labels from 4D
reconstruction, we compare it against a baseline augmented with the same information. Specifically,
we evaluate GPT-5 in a few-shot setting where specialized modules (i.e., MonST3R and Metric3D
v2) provide camera poses as textual prompts and depth maps as auxiliary image inputs. As shown
in Tab. 4, incorporating few-shot examples and geometric priors yields no performance gain, still
leaving GPT-5 far behind our ST-VLM. Even with additional context, we observe that GPT-5 tends
to replicate the GT values from in-context examples rather than engaging in genuine reasoning (see
Sec. D.5 for the case study). This suggests that even advanced AI agents remain limited in han-
dling 3D representations, highlighting the need for instruction data tailored to kinematic reasoning.
Second, we test the robustness of ST-VLM to question variations on STKit-Bench by paraphrasing
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Table 4: Comparison with GPT-5.
We provide N few-shot examples and
additional geometric contexts, i.e., cam-
era extrinsics and depth maps, to GPT-5
and report the average accuracy.

Models GPT-5 ST-VLM

N -shots 0 1 3 0 1 3 -
geometric ✘ ✘ ✘ ✔ ✔ ✔ -

avg. acc. 32.6 25.8 22.9 32.9 24.6 32.4 58.2

Table 5: Results on paraphrased
STKit-Bench. We report the aver-
age accuracy on both the original
and paraphrased questions.

Models original paraphrased

GPT-5 32.6 32.2
LLaVA-OneVision 26.4 28.6

ST-VLM 58.2 57.1

Table 6: Ablation studies on
pseudo-labeled data and the fil-
tering strategy.

GT label Pseudo-label Filtering avg. acc.

- - - 26.4

✔ - - 52.6
- ✔ - 40.4
- ✔ ✔ 46.1
✔ ✔ ✔ 59.6

Ground	Truth:
Between	16.00	and	18.00	seconds,	the	given	object	traveled	a	total	of	2.23	m.

Question:
Tell	me	how	far	the	object	moved	from	16.00	seconds	to	18.00	seconds.

ST-VLM	(Ours):
The	distance	the	given	object	moved	from	16.00	to	18.00	seconds	is	2.34	m.

GPT-5:
…	the	object	remains	essentially	stationary…,	exhibiting	negligible	movement.

(a) Multi- and small-object scenario (22 objects).

Ground	Truth:
At	the	end	of	the	video,	the	object	is	heading	toward	the	10	o’clock	direction.

Question:
In	which	direction	does	the	object	move	at	the	end	of	the	video?

ST-VLM	(Ours):
The	object	is	traveling	toward	the	10	o'clock	direction at	the	end	of	the	video.

GPT-5:
9	o’	clock.

(b) Object occlusion scenario (2nd frame).

Figure 5: Qualitative results on STKit-Bench.

questions using GPT-5. As shown in Tab. 5, ST-VLM consistently maintains strong performance
across paraphrased questions, outperforming all baselines by a clear margin.

5.4 QUALITATIVE RESULTS

Fig. 5 presents qualitative results on STKit-Bench to show the robustness of ST-VLM across diverse
scenarios. In Fig. 5a, ST-VLM accurately predicts the traveled distance even in videos containing
numerous small objects (22 in total). Moreover, as shown in Fig. 5b, ST-VLM provides correct
predictions despite partial temporal occlusions, underscoring its robustness in challenging real-world
settings. A detailed quantitative analysis across various scenarios is presented in Sec. C.1.

6 ANALYSIS

In this section, we provide in-depth analyses to answer the following research questions:
Q1. How effective are pseudo-labels and the filtering strategy?
Q2. Does the spatio-temporal reasoning of ST-VLM generalize across various domains and tasks?
Q3. Does ST-VLM exhibit emergent capabilities, combining spatio-temporal reasoning (learned
ability) with LLM’s knowledge (existing ability) within multi-step reasoning?

6.1 ANALYSIS ON PSEUDO-LABELS

Tab. 6 presents ablation studies on pseudo-labeled data and the filtering strategy to discuss Q1.
Training only with GT-labeled data substantially improves performance from 26.4% to 52.6%. Also,
training only with pseudo-labeled data improves performance by 14.0%, while the filtering strategy
provides an additional 5.7% gain. Finally, incorporating both GT-labeled and pseudo-labeled data
along with our filtering strategy shows a remarkable performance gain, underscoring the effective-
ness of our 4D reconstruction-based pseudo-labeling and filtering pipeline. A detailed analysis of
the pseudo-labels and the filtering strategy is presented in Sec. B.

6.2 GENERALIZED SPATIO-TEMPORAL UNDERSTANDING

We assess the generalization ability of ST-VLM’s spatio-temporal reasoning on comprehensive
video benchmarks to answer Q2. As shown in Tab. 7, ST-VLM trained with STKit outperforms
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Table 7: Results on comprehensive video benchmarks.
Models PerceptionTest MVBench VideoMME MLVU NExT-QA Avg.

val test w/o & w/ subtitle m-avg test acc

GPT-4o - - 71.9 & 77.2 64.6 - 71.2
Gemini-1.5-Pro - - 75.0 & 81.3 - - 78.2
VILA-40B 54.0 - 60.1 & 61.1 - 67.9 60.8
LLaVA-N-Video-32B 59.4 - 60.2 & 63.0 65.5 77.3 65.1

LLaVA-OneVision-7B 57.1 58.4 58.6 & 61.8 64.8 79.3 63.3
ST-VLM-7B (Ours) 64.1 61.5 61.1 & 64.1 65.9 80.9 66.3

Table 8: Results on spatial & temporal categories.
Models PerceptionTest MVBench VideoMME LongVideoBench

physics moving direction spatial perception temporal perception object tracking

LLaVA-OneVision 49.0 21.5 57.4 63.6 43.8
ST-VLM (Ours) 58.5 35.0 66.7 76.4 47.9
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LLaVA-OneVision

ST-VLM

Figure 6: Results on spatial and temporal
reasoning benchmarks.

LLaVA-OneVision:
The	speed	of	the	object	is	significantly	slower than	that	of	a	normal	airplane.

Question:
How	much	slower	is	the	speed	of	this	object	than	that	of	a	normal	airplane?

ST-VLM	(Ours):
The	object's	speed	is	39.68	km/h,	while	a	normal	airplane's	speed	is	1000	
km/h.	Therefore,	the	object	is	25.47	times	slower	than	a	normal	airplane.

(a)

LLaVA-OneVision:
The	two	teams	playing	are	Real	Madrid	(white	jerseys)	and	FC	Barcelona	(blue	
and	yellow	striped	jerseys),	and	the	faster	player	belongs	to	FC	Barcelona.

Question:
Identify	the	two	teams	playing	football	and	determine	which	team	the	faster	
player	belongs	to.

ST-VLM	(Ours):
The	two	football	teams	are	Real	Madrid	(RMA)	and	FC	Barcelona	(BAR).	The	
faster	player	belongs	to	Real	Madrid.

(b)

Figure 7: Qualitative results on emergent capabilities of ST-VLM with multi-step reasoning.

LLaVA-OneVision by 3.0% in average accuracy on general video understanding benchmarks. In
particular, Tab. 8 reports results on spatial- and temporal-related categories. ST-VLM achieves
substantial improvements over LLaVA-OneVision in spatio-temporal tasks, including moving di-
rection, spatial/temporal perception, and object tracking, by effectively leveraging kinematic priors
from STKit. Qualitative examples are provided in Sec. D.4.

Furthermore, Fig. 6 compares the performance of ST-VLM with LLaVA-OneVision on spatial and
temporal reasoning benchmarks across diverse tasks and domains. For spatial reasoning, we evaluate
on 3D scene understanding benchmarks OpenEQA (Majumdar et al., 2024) and ScanQA (Azuma
et al., 2022), where ST-VLM improves performance by 0.5% and 14.4%, respectively. For temporal
reasoning, ST-VLM surpasses LLaVA-OneVision by 2.5% and 0.8% mIoU on the video temporal
grounding tasks of Charades-STA (Gao et al., 2017) and ActivityNet (Caba Heilbron et al., 2015).
Finally, even on autonomous driving benchmarks that demand complex spatio-temporal reasoning,
ST-VLM achieves a 2.4% gain over LLaVA-OneVision. These results demonstrate that incorpo-
rating the kinematics-based STKit dataset not only enhances general video understanding but also
strengthens spatio-temporal reasoning across diverse scenarios.

6.3 EMERGENT CAPABILITIES OF ST-VLM

Finally, we answer Q3 through qualitative analyses in Fig. 7 and 1b, showcasing ST-VLM’s emer-
gent multi-step reasoning capabilities that involve spatio-temporal reasoning. Although not explic-
itly trained for complex reasoning, ST-VLM effectively integrates kinematic reasoning with the
existing abilities of VLMs, such as commonsense knowledge, logical inference, and arithmetic com-
putation. For example, in Fig. 7a, when asked “How much slower is this object’s speed compared
to a normal airplane?”, a model must (1) recall the average speed of a normal airplane, (2) esti-
mate the object’s speed from the video, and (3) perform arithmetic to compare them. Leveraging
kinematic reasoning, ST-VLM produces an accurate answer (25.47 times slower), whereas LLaVA-
OneVision provides a less precise response (10 times slower) without explicit reasoning. Similarly,
in Fig. 7b, identifying the faster player requires recognizing teams by jersey color and estimating
player speeds. ST-VLM correctly identifies the faster player as belonging to Real Madrid, whereas

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

the baseline fails to do so. These examples demonstrate the effectiveness of STKit-trained ST-VLM
in enabling multi-step reasoning grounded in kinematics-based spatio-temporal understanding.

7 CONCLUSION

We present ST-VLM, a VLM with enhanced spatio-temporal reasoning capabilities, achieved
through kinematic understanding in dynamic videos. To this end, we introduce STKit and STKit-
Bench, which define seven fundamental tasks based on 3D-annotated video data. Furthermore, our
4D reconstruction-based data generation pipeline, along with the filtering strategy, effectively allevi-
ates the scarcity of 3D annotations. Extensive analyses reveal that ST-VLM generalizes well across
diverse video benchmarks and exhibits emergent multi-step reasoning by combining the pretrained
knowledge of VLMs with newly acquired kinematic understanding.

ETHICS STATEMENT

Our pseudo-labeling pipeline does not raise direct ethical concerns. However, the SFT datasets used
for training ST-VLM may contain biases, such as those related to religion, gender, or race, which
could lead ST-VLM to implicitly inherit these biases.

REPRODUCIBILITY STATEMENT

The 4D reconstruction-based pseudo-labeling pipeline and the filtering strategy are described in
Sec. 3.3. For reproducibility, their implementation details are presented in Secs. A.1 and B.1, re-
spectively. Furthermore, the training details of ST-VLM are provided in Sec. A.2.

THE USE OF LARGE LANGUAGE MODELS (LLMS)

We use LLMs for sentence-level refinement.

REFERENCES

Daichi Azuma, Taiki Miyanishi, Shuhei Kurita, and Motoaki Kawanabe. Scanqa: 3d question an-
swering for spatial scene understanding. In CVPR, 2022.

Shuai Bai, Keqin Chen, Xuejing Liu, Jialin Wang, Wenbin Ge, Sibo Song, Kai Dang, Peng Wang,
Shijie Wang, Jun Tang, et al. Qwen2. 5-vl technical report. arXiv preprint arXiv:2502.13923,
2025.

Apratim Bhattacharyya, Sunny Panchal, Mingu Lee, Reza Pourreza, Pulkit Madan, and Roland
Memisevic. Look, remember and reason: Grounded reasoning in videos with language models.
In ICLR, 2024.

Fabian Caba Heilbron, Victor Escorcia, Bernard Ghanem, and Juan Carlos Niebles. Activitynet: A
large-scale video benchmark for human activity understanding. In CVPR, 2015.

Holger Caesar, Varun Bankiti, Alex H Lang, Sourabh Vora, Venice Erin Liong, Qiang Xu, Anush
Krishnan, Yu Pan, Giancarlo Baldan, and Oscar Beijbom. nuscenes: A multimodal dataset for
autonomous driving. In CVPR, 2020.

Holger Caesar, Juraj Kabzan, Kok Seang Tan, Whye Kit Fong, Eric Wolff, Alex Lang, Luke Fletcher,
Oscar Beijbom, and Sammy Omari. nuplan: A closed-loop ml-based planning benchmark for
autonomous vehicles. arXiv preprint arXiv:2106.11810, 2021.

Wenxiao Cai, Iaroslav Ponomarenko, Jianhao Yuan, Xiaoqi Li, Wankou Yang, Hao Dong, and
Bo Zhao. Spatialbot: Precise spatial understanding with vision language models. In ICLR, 2025a.

Zhipeng Cai, Ching-Feng Yeh, Hu Xu, Zhuang Liu, Gregory Meyer, Xinjie Lei, Changsheng Zhao,
Shang-Wen Li, Vikas Chandra, and Yangyang Shi. Depthlm: Metric depth from vision language
models. arXiv preprint arXiv:2509.25413, 2025b.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Boyuan Chen, Zhuo Xu, Sean Kirmani, Brain Ichter, Dorsa Sadigh, Leonidas Guibas, and Fei Xia.
Spatialvlm: Endowing vision-language models with spatial reasoning capabilities. In CVPR,
2024.

An-Chieh Cheng, Hongxu Yin, Yang Fu, Qiushan Guo, Ruihan Yang, Jan Kautz, Xiaolong Wang,
and Sifei Liu. Spatialrgpt: Grounded spatial reasoning in vision language model. In NeurIPS,
2024a.

Zesen Cheng, Sicong Leng, Hang Zhang, Yifei Xin, Xin Li, Guanzheng Chen, Yongxin Zhu, Wenqi
Zhang, Ziyang Luo, Deli Zhao, et al. Videollama 2: Advancing spatial-temporal modeling and
audio understanding in video-llms. arXiv preprint arXiv:2406.07476, 2024b.

Xinpeng Ding, Jianhua Han, Hang Xu, Xiaodan Liang, Wei Zhang, and Xiaomeng Li. Holistic
autonomous driving understanding by bird’s-eye-view injected multi-modal large models. In
CVPR, 2024.

Jakob Engel, Kiran Somasundaram, Michael Goesele, Albert Sun, Alexander Gamino, Andrew
Turner, Arjang Talattof, Arnie Yuan, Bilal Souti, Brighid Meredith, et al. Project aria: A new
tool for egocentric multi-modal ai research. arXiv preprint arXiv:2308.13561, 2023.

Chaoyou Fu, Yuhan Dai, Yondong Luo, Lei Li, Shuhuai Ren, Renrui Zhang, Zihan Wang, Chenyu
Zhou, Yunhang Shen, Mengdan Zhang, et al. Video-mme: The first-ever comprehensive evalua-
tion benchmark of multi-modal llms in video analysis. arXiv preprint arXiv:2405.21075, 2024.

Adrien Gaidon, Qiao Wang, Yohann Cabon, and Eleonora Vig. Virtual worlds as proxy for multi-
object tracking analysis. In CVPR, 2016.

Jiyang Gao, Chen Sun, Zhenheng Yang, and Ram Nevatia. Tall: Temporal activity localization via
language query. In ICCV, 2017.

Kristen Grauman, Andrew Westbury, Lorenzo Torresani, Kris Kitani, Jitendra Malik, Triantafyllos
Afouras, Kumar Ashutosh, Vijay Baiyya, Siddhant Bansal, Bikram Boote, et al. Ego-exo4d:
Understanding skilled human activity from first-and third-person perspectives. In CVPR, 2024.

Tanmay Gupta and Aniruddha Kembhavi. Visual programming: Compositional visual reasoning
without training. In CVPR, 2023.

Mu Hu, Wei Yin, Chi Zhang, Zhipeng Cai, Xiaoxiao Long, Hao Chen, Kaixuan Wang, Gang
Yu, Chunhua Shen, and Shaojie Shen. Metric3d v2: A versatile monocular geometric
foundation model for zero-shot metric depth and surface normal estimation. arXiv preprint
arXiv:2404.15506, 2024.

Wenlong Huang, Chen Wang, Yunzhu Li, Ruohan Zhang, and Li Fei-Fei. Rekep: Spatio-temporal
reasoning of relational keypoint constraints for robotic manipulation. In CoRL, 2024.

Ranjay Krishna, Yuke Zhu, Oliver Groth, Justin Johnson, Kenji Hata, Joshua Kravitz, Stephanie
Chen, Yannis Kalantidis, Li-Jia Li, David A Shamma, et al. Visual genome: Connecting language
and vision using crowdsourced dense image annotations. IJCV, 2017.

Byung-Kwan Lee, Beomchan Park, Chae Won Kim, and Yong Man Ro. Collavo: Crayon large
language and vision model. In ACL Findings, 2024.

Jie Lei, Licheng Yu, Tamara L Berg, and Mohit Bansal. Tvqa+: Spatio-temporal grounding for
video question answering. In ACL, 2020.

Bo Li, Yuanhan Zhang, Dong Guo, Renrui Zhang, Feng Li, Hao Zhang, Kaichen Zhang, Yanwei
Li, Ziwei Liu, and Chunyuan Li. Llava-onevision: Easy visual task transfer. arXiv preprint
arXiv:2408.03326, 2024a.

Hongyu Li, Jinyu Chen, Ziyu Wei, Shaofei Huang, Tianrui Hui, Jialin Gao, Xiaoming Wei, and
Si Liu. Llava-st: A multimodal large language model for fine-grained spatial-temporal under-
standing. In CVPR, 2025.

11



594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Kunchang Li, Yali Wang, Yinan He, Yizhuo Li, Yi Wang, Yi Liu, Zun Wang, Jilan Xu, Guo Chen,
Ping Luo, et al. Mvbench: A comprehensive multi-modal video understanding benchmark. CVPR,
2024b.

Xinhao Li, Yi Wang, Jiashuo Yu, Xiangyu Zeng, Yuhan Zhu, Haian Huang, Jianfei Gao, Kunchang
Li, Yinan He, Chenting Wang, et al. Videochat-flash: Hierarchical compression for long-context
video modeling. arXiv preprint arXiv:2501.00574, 2024c.

Yixuan Li, Lei Chen, Runyu He, Zhenzhi Wang, Gangshan Wu, and Limin Wang. Multisports: A
multi-person video dataset of spatio-temporally localized sports actions. In ICCV, 2021.

Shuo Liang, Yiwu Zhong, Zi-Yuan Hu, Yeyao Tao, and Liwei Wang. Fine-grained spatiotemporal
grounding on egocentric videos. In ICCV, 2025.

Ji Lin, Hongxu Yin, Wei Ping, Pavlo Molchanov, Mohammad Shoeybi, and Song Han. Vila: On
pre-training for visual language models. In CVPR, 2024.

Yuan Liu, Haodong Duan, Yuanhan Zhang, Bo Li, Songyang Zhang, Wangbo Zhao, Yike Yuan,
Jiaqi Wang, Conghui He, Ziwei Liu, et al. Mmbench: Is your multi-modal model an all-around
player? In ECCV, 2024.

Yuecheng Liu, Dafeng Chi, Shiguang Wu, Zhanguang Zhang, Yaochen Hu, Lingfeng Zhang,
Yingxue Zhang, Shuang Wu, Tongtong Cao, Guowei Huang, et al. Spatialcot: Advancing spatial
reasoning through coordinate alignment and chain-of-thought for embodied task planning. arXiv
preprint arXiv:2501.10074, 2025.

Yingzi Ma, Yulong Cao, Jiachen Sun, Marco Pavone, and Chaowei Xiao. Dolphins: Multimodal
language model for driving. In ECCV, 2024.

Muhammad Maaz, Hanoona Rasheed, Salman Khan, and Fahad Shahbaz Khan. Video-chatgpt:
Towards detailed video understanding via large vision and language models. In ACL, 2023.

Arjun Majumdar, Anurag Ajay, Xiaohan Zhang, Pranav Putta, Sriram Yenamandra, Mikael Henaff,
Sneha Silwal, Paul Mcvay, Oleksandr Maksymets, Sergio Arnaud, et al. Openeqa: Embodied
question answering in the era of foundation models. In CVPR, 2024.

Ming Nie, Renyuan Peng, Chunwei Wang, Xinyue Cai, Jianhua Han, Hang Xu, and Li Zhang. Rea-
son2drive: Towards interpretable and chain-based reasoning for autonomous driving. In ECCV,
2024.
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APPENDIX

The appendix is organized into the following sections:

• Appendix A: Implementation details

– A.1 Details of pseudo-labeling pipeline
– A.2 Details of ST-VLM training

• Appendix B: Discussion on the filtering strategy

– B.1 Details of the filtering strategy
– B.2 Analysis on the filtering strategy

• Appendix C: Further quantitative results

– C.1 Results on various scenarios of STKit-Bench
– C.2 Results on each domain of STKit-Bench
– C.3 Results on out-of-domain settings
– C.4 Results of simulation data
– C.5 Results on depth estimation

• Appendix D: Further qualitative results

– D.1 Results on STKit-Bench
– D.2 Results on challenging samples
– D.3 Results of emergent capabilities
– D.4 Results on PerceptionTest
– D.5 Results of GPT-5
– D.6 Results on extraordinary scenarios

• Appendix E: Details of STKit-Bench

– E.1 Comparison with other benchmarks
– E.3 GPT-5-nano prompts for evaluation

• Appendix F: QA templates for STKit

A IMPLEMENTATION DETAILS

A.1 DETAILS OF PSEUDO-LABELING PIPELINE

First, for the geometric reconstruction branch, we employ Monst3r (Zhang et al., 2025b) for 4D
scene reconstruction on dynamic videos. In detail, we set the window size to 5 and use a scene
graph configuration of swinstride-5-noncyclic to generate image pairs for feature matching. The
reconstruction is performed with MonST3R using a temporal smoothing weight of 0.01, a translation
weight of 1.0, and a flow loss weight of 0.01, applied after 10% of the total iterations and only to flow
values exceeding a threshold of 25. This process runs for 300 iterations with a learning rate of 0.01
under a linear schedule. To address the scale misalignment issue, we canonicalize the reconstructed
4D scenes by rescaling MonST3R’s depth estimates with the metric depths provided by Metric3D
v2 (Hu et al., 2024).

Second, in the semantic reconstruction branch, we utilize Grounded-SAM2 (Ren et al., 2024) to
extract bounding boxes, segmentation masks, and trajectories of selected objects. We focus on object
categories related to dynamic movements, including “bus,” “car,” “vehicle,” “human,” “automobile,”
“person,” “animal,” “bicycle,” “motorcycle,” and “truck,” which are provided to Grounded-SAM2
as text prompts. Overall, kinematic grounding in a canonicalized 4D scene requires approximately
400 seconds per video on a single A6000 GPU.
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A.2 DETAILS OF ST-VLM TRAINING

Our ST-VLM is initialized from LLaVA-OneVision 7B Li et al. (2024a) and trained with 63K STKit
samples, 500K LLaVA-Video samples, 500K LLaVA-OneVision samples, and 100K OpenSpatial-
Dataset samples. Training is performed on 8 × A6000 GPUs for one epoch, taking approximately
two weeks. We adopt a cosine learning rate scheduler with an initial learning rate of 1e-5 and a
batch size of 128, using up to 32 frames per video for training and inference. For each video input,
we provide additional temporal context in the form: “The video lasts for t seconds, and n frames
are uniformly sampled from it. These frames are located at t1, t2, . . . , tn seconds.” For STKit sam-
ples, we further provide information about the visual prompt: “There are k objects annotated with
[COLOR] bounding boxes in the video.”

B DISCUSSION ON THE FILTERING STRATEGY

B.1 DETAILS OF THE FILTERING STRATEGY

To ensure reliable centroid trajectory estimations in our pseudo-labeling pipeline, we develop a
three-stage filtering strategy, calibrated by empirically comparing estimated trajectories against GT
trajectories in the NuScenes dataset (Caesar et al., 2020), which provides LiDAR-annotated videos.

Rule-based filtering. We design heuristics to remove unreliably reconstructed scenes. Specifically,
we eliminate noisy point clouds using DBSCAN (min points = 5), discard detections with box con-
fidence below 0.4 or text confidence below 0.3, and exclude bounding boxes with an area smaller
than 10 pixels. After kinematic grounding, we detect trajectory outliers by removing centroid co-
ordinates with a Z-score above 3.0 or a cosine similarity below -0.2 relative to the mean direction
vector to discard trajectories containing such outliers. We then reorder each trajectory using the
nearest neighbor algorithm to enforce spatio-temporal consistency, followed by smoothing with a
3D Kalman filter (process variance = 1.0, measurement variance = 1000). These hyperparameters
are selected by comparison with GT trajectories on NuScenes, and subsequently applied during
pseudo-labeling to produce more accurate labels for unlabeled videos.

General model-based filtering. We employ a VLM to filter out scenes with occluded objects,
significant camera motion, or poor object detection and tracking. Specifically, LLaVA-OneVision,
the initialization for our ST-VLM, is used to assess these criteria based on the prompt in Tab. 9.
Scenes that do not satisfy any of these criteria are discarded.

Table 9: Prompts used for VLMs in general model-based filtering.

Occlusion: Is the object inside each bounding box fully visible, without significant occlusion?
Respond with ‘Yes’ or ‘No’.

Camera movement: Do the video frames transition smoothly, without noticeable temporal
discontinuities? Respond with ‘Yes’ or ‘No’.

Object detection: Is each bounding box tightly enclosing an individual object, without
significant misalignment or cropping? Respond with ‘Yes’ or ‘No’.

Object tracking: Does each bounding box reliably track the target object across all frames,
without losing alignment or missing the object? Respond with ‘Yes’ or ‘No’

Task-specific model-based filtering. In this stage, we utilize a model trained only on 3D-
annotated datasets, i.e., NuScenes (Caesar et al., 2020), Argoverse2 (Wilson et al., 2023), and Ego-
Exo4D (Grauman et al., 2024), to filter out low-quality pseudo-labeled samples based on likelihood
scores. For each sample, the model computes a likelihood, which is then normalized using min-
max scaling within the same task across the seven defined tasks. We apply task-specific thresholds:
0.8 for Traveled Distance and Traveling Speed, 0.4 for Traveled Distance Comparison and Trav-
eling Speed Comparison, and 0.7 for Movement Direction and Movement Direction Comparison.
Samples with likelihood scores below these thresholds are discarded.
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B.2 ANALYSIS ON THE FILTERING STRATEGY

We provide an in-depth analysis to verify the effectiveness of our filtering strategy. Tab. 10 presents
an ablation study, reporting the number of low-quality samples and the average accuracy on STKit-
Bench at each filtering stage. Low-quality samples are defined as those that fail to meet the criteria
in Sec. B.1, as evaluated by the advanced VLM InternVL3 (Zhu et al., 2025). The results indicate
that our filtering strategy significantly reduces the number of low-quality samples. For example, the
number of samples with occluded objects drops from 12,035 to 174 after the three-stage filtering.
This reduction leads to a notable performance improvement on STKit-Bench, increasing accuracy
from 40.4% to 46.1%.

Table 10: Ablation study on the filtering strategy.

Filtering strategy Number of low-quality samples ↓ avg. acc.↑Rule-based General model-based Task-specific model-based Occlusion Camera movement Object detection Object tracking

- - - 12,035 28 9,278 118,856 40.4
✔ - - 2,123 4 1,463 18,274 41.0
✔ ✔ - 348 4 419 9,905 41.9
✔ ✔ ✔ 174 3 206 5,962 46.1

We further compare the computed trajectories against GT trajectories from the 3D-annotated dataset,
NuScenes. For Traveled Distance, the mean error rate decreases from 207% to 29% after applying
the three-stage filtering, where the error rate is defined as |Pred−GT|

GT . These results demonstrate that
the filtering strategy substantially improves pseudo-label quality and overall performance.

(a) (b)

Figure 8: Comparison of projected trajectories. GT trajectory is shown in gray dash line and
estimated trajectory from pseudo-label (PS) is shown in blue solid line.

Fig. 8 compares GT trajectories, shown as dashed gray lines, with our estimated trajectories, shown
as solid blue lines. The alignment indicates close correspondence in straight-line movements
(Fig. 8a), which are common in real-world scenarios, with only minor deviations in curved paths
(Fig. 8b). Quantitatively, the estimated traveled distances show only small deviations from the GT
distances, e.g., with an error of 0.44 m for straight-line movements and 3.56 m for curved paths.
These results highlight the reliability of our pseudo-labeling pipeline for estimating object trajecto-
ries without requiring 3D annotations.

C FURTHER QUANTITATIVE RESULTS

C.1 RESULTS ON VARIOUS SCENARIOS OF STKIT-BENCH

Tabs. 11–15 demonstrate the results of ST-VLM across diverse scenarios in STKit-Bench. These
results highlight the robustness of ST-VLM despite challenges such as object occlusion, multi-object
scenarios, dynamic scenes, small object sizes, and varying FPS.
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Table 11
occlusion single object multiple objects avg. acc.
not occluded 46.9% (363 / 774) 74.3% (350 / 471) 57.3% (713 / 1,245)
occluded 26.9% (7 / 26) 73.6% (95 / 129) 65.8% (102 / 155)

Table 12
number of objects single object multiple objects avg. acc.
few 52.0% (204 / 392) 73.8% (236 / 320) 61.8% (440 / 712)
several 42.1% (130 / 309) 76.4% (162 / 212) 56.1% (292 / 521)
many 36.4% (36 / 99) 69.1% (47 / 68) 49.7% (83 / 167)

Table 13
camera movement single object multiple objects avg. acc.
static 46.1% (360 / 781) 74.5% (444 / 596) 58.4% (804 / 1,377)
dynamic 43.8% (7 / 16) 57.1% (4 / 7) 47.8% (11 / 23)

Table 14
object size single object multiple objects avg. acc.
small 60.3% (38 / 63) 67.7% (88 / 130) 65.3% (440 / 712)
medium 65.6% (88 / 187) 76.6% (242 / 316) 56.1% (292 / 521)
large 44.4% (244 / 550) 74.7% (115 / 154) 49.7% (83 / 167)

Table 15

FPS avg. acc.
2 58.2
1 56.8
0.5 46.3
0.25 40.2

Table 16: Results on each domain of STKit-Bench. AD stands for autonomous driving.

Train Test Traveled Distance Traveling Speed
Acc↑ MAE↓ Acc↑ MAE↓

- Sports 16.0 6.7 8.0 2.8
AD Sports 22.0 4.8 64.0 0.9

Sports Sports 76.0 2.0 78.0 0.8
AD + Sports Sports 76.0 1.7 78.0 0.7

- AD 13.0 49.1 10.0 24.3
AD AD 35.5 21.7 32.0 12.6

Sports AD 5.0 36.4 6.5 29.0
AD + Sports AD 38.5 17.0 32.5 12.6

C.2 RESULTS ON EACH DOMAIN OF STKIT-BENCH

Tab. 16 presents cross-domain evaluation between autonomous driving and sports. Training solely
on autonomous driving data substantially improves performance in the sports domain. For instance,
in Traveling Speed, accuracy increases from 8.0% to 64.0%. In contrast, training only on sports
data provides no improvement for autonomous driving. We attribute this to the difficulty of learning
vehicle motion patterns, such as traveled distance and speed, from the relatively limited sports data
in STKit. By incorporating both domains, the model achieves the best performance, underscoring
the importance of broad domain coverage.

C.3 RESULTS ON OUT-OF-DOMAIN SETTINGS

Table 17: Results on out-of-domain settings.

in-domain (NuScenes & Argoverse2) out-of-domain (NuPlan) out-of-domain (Waymo)

LLaVA-OneVision (Li et al., 2024a) 35.4 26.0 30.8
ST-VLM (ours) 63.4 (+28.0) 55.6 (+29.6) 58.4 (+27.6)

To evaluate out-of-domain generalization, STKit-Bench incorporates NuPlan data, which is not in-
cluded in the training set, constituting 74.8% of the evaluation benchmark and featuring distinct
camera intrinsics/extrinsics, road scenes, weather conditions, illumination, and locations. We fur-
ther conduct an additional evaluation on the Waymo dataset (Sun et al., 2020), which also employs
different camera parameters at different road scenes. Tab. 17 shows detailed results across in-domain
and out-of-domain settings, demonstrating the robustness of our model to variations in camera con-
figurations and road scenes across datasets.
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C.4 RESULTS OF SIMULATION DATA

Table 18: Results of simulation data.

Accuracy

LLaVA-OneVision (Li et al., 2024a) 26.4

ST-VLM (simulation) 29.1
ST-VLM (pseudo) 46.1
ST-VLM (GT) 52.6

We construct kinematic instruction data using two simulation datasets, VKITTI (Gaidon et al.,
2016) and GTA V (Richter et al., 2017), to evaluate the effectiveness of simulation-based videos
for real-world evaluation scenarios. Tab. 18 reports the performance of ST-VLM trained with simu-
lation data, showing that simulation alone provides performance gains, although the improvement is
smaller compared to training with real-world videos, i.e., pseudo-labeled and GT-labeled data, due
to the domain gap.

C.5 RESULTS ON DEPTH ESTIMATION

Table 19: Results on depth estimation.

STKit-Bench (acc.) DepthLMBench (acc. / MAE)

LLaVA-OneVision (Li et al., 2024a) 26.4 7.5 / 45.9
DepthLM (Cai et al., 2025b) 13.2 19.7 / 9.9
ST-VLM (ours) 58.2 21.2 / 10.2

Surprisingly, our kinematic instruction tuning enables ST-VLM to implicitly acquire depth under-
standing as part of its kinematic understanding process, even though our dataset does not contain
any explicit depth estimation samples. Tab. 19 compares the performance on depth estimation with
DepthLM (Cai et al., 2025b), which is a specialized model dedicated solely to depth estimation
and does not generalize to kinematic understanding tasks. ST-VLM achieves 21.2% accuracy and a
10.2 m MAE on DepthLMBench despite no explicit depth-specific supervision, whereas DepthLM
cannot estimate the object kinematic quantities required in STKit-Bench, underscoring the broader
reasoning capability of our model.

D FURTHER QUALITATIVE RESULTS

D.1 RESULTS ON STKIT-BENCH

We present qualitative results on STKit-Bench, comparing ST-VLM with baseline models such as
GPT-5 and LLaVA-OneVision (Li et al., 2024a). Fig. 15 and 16 illustrate examples across seven
spatio-temporal reasoning tasks: traveled distance, traveling speed, movement direction, direction
timestamp, traveled distance comparison, traveling speed comparison, and movement direction com-
parison.

D.2 RESULTS ON CHALLENGING SAMPLES

In Fig. 17, we present additional qualitative results on challenging cases. As shown in Fig. 17a and
17b, ST-VLM successfully predicts the traveled distance of objects with complex trajectories. In
Fig. 17d, we further assess the model’s spatio-temporal reasoning ability without visual prompts
by removing bounding boxes and providing only textual instructions with object attributes. For the
query, “Which is moving slower, the cyclist on the right or the yellow trailer?”, LLaVA-OneVision
incorrectly predicts that the cyclist is moving slower than the yellow trailer, whereas ST-VLM cor-
rectly identifies the yellow trailer as slower. This demonstrates that ST-VLM leverages video ev-
idence to answer accurately, while LLaVA-OneVision tends to rely on commonsense priors (e.g.,
vehicles are generally faster than bicycles), leading to erroneous predictions.
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D.3 RESULTS OF EMERGENT CAPABILITIES

LLaVA-OneVision:
…we	need	to	know	its	speed.	However,	the	speed	of	the	car	is	not	provided	…
we	cannot	accurately	calculate	the	time it	would	take	for	the	car	to	travel	…

Question:
Calculate	how	long	the	object	takes	to	travel	from	Vancouver	to	Toronto	at	the	
current	speed?

ST-VLM	(Ours):
The	distance	between	Vancouver	and	Toronto	is	2,800	miles.	The	object's	
speed	is	19.40	mph.	… 2,800	miles	/	19.40	mph	=	145.33	hours.	…

Figure 9: Qualitative results of emergent capabilities.

Fig. 9 presents an example of a complex instruction that requires multi-step reasoning. The task
involves integrating spatio-temporal understanding with existing capabilities (e.g., commonsense
knowledge, logical reasoning, and arithmetic computation). Our ST-VLM successfully derives the
correct answer, whereas LLaVA-OneVision fails.

D.4 RESULTS ON PERCEPTIONTEST

LLaVA-OneVision:
The	object	rolls	or	slides.

Question:
What	happens	with	the	object	after	being	placed	on	the	slanted	plane?

ST-VLM	(Ours):
The	object	stays	put.

(a)

LLaVA-OneVision:
white	sock

Question:
If	the	object	were	launched	with	a	greater	force	or	the	friction	was	smaller,	
with	which	object	would	the	launched	object	collide?

ST-VLM	(Ours):
book

(b)

Figure 10: Qualitative results on PerceptionTest.

Fig. 10 provides qualitative results of ST-VLM on PerceptionTest (Pătrăucean et al., 2023). In
Fig. 10a, ST-VLM correctly answers “The object stays put” to the question, “What happens with
the object after being placed on the slanted plane?”, demonstrating its ability to reason over learned
object kinematics. In contrast, LLaVA-OneVision predicts the incorrect answer, “The object rolls or
slides,” likely due to over-reliance on textual cues (e.g., “placed on slanted plane”) rather than visual
reasoning.

D.5 RESULTS OF GPT-5

Fig. 11 provides a qualitative example of GPT-5 with additional context, i.e., in-context examples,
depth maps, and camera extrinsics. We observe that GPT-5 often replicates the GT (2.45 m) from
in-context examples rather than engaging in genuine reasoning.

D.6 RESULTS ON EXTRAORDINARY SCENARIOS

We observe strong generalization even in extraordinary scenarios involving a remote-controlled
(RC) car, which we attribute to the pseudo-labeled data sourced from diverse domains beyond road
scenes. As illustrated in Fig. 12, when asked “Can you calculate the total distance covered by the red
RC car throughout the entire video?”, ST-VLM estimates the traveled distance as 12.73 m, which
lies within a plausible range for the actual distance.
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Ground	Truth:
The	total	distance	traveled	by	the	given	object	is	40.18	m.

Question:
In	which	direction	does	the	object	move	at	the	end	of	the	video?

								GPT-5:
2.45	m.

Ground	Truth:
The	given	object	has	traveled	a	total	of	2.45	meters.

Question:
How	much	distance	did	the	object	travel	during	the	entire	video?

In-context examples

🌳

🌳

🌳

·	·
	·

🎥

🎥

🎥

Depth	maps	&	camera	extrinsics

Figure 11: Qualitative results of GPT-5. Even with additional context, we observe that GPT-5
tends to replicate the GT of in-context examples rather than performing genuine reasoning.

Question:
Can you calculate the total	distance	covered	by	the	red	RC	car	throughout	the	
entire	video?

ST-VLM	(Ours):
12.73	meters.

Figure 12: Qualitative results of extraordinary scenarios.

E DETAILS OF STKIT-BENCH

E.1 COMPARISON WITH OTHER BENCHMARKS

Recently, several video benchmarks have been proposed in the literature (Li et al., 2024b; Pătrăucean
et al., 2023; Fu et al., 2024; Zhou et al., 2024a). For example, MLVU (Zhou et al., 2024a) aims to
assess video-based VLMs for long-form video understanding, and VideoMME (Fu et al., 2024)
focuses on the comprehensive perception ability of the model on a wide range of domains. To
tackle the problem that most VLMs overlook the temporal information, MVBench (Li et al., 2024b)
has been proposed by covering diverse temporal understanding tasks, e.g., action sequence under-
standing, action prediction, and counterfactual inference. More recently, several works (Wang et al.,
2024b; Zhou et al., 2024b; Ding et al., 2024; Nie et al., 2024) have been introduced as a video spatio-
temporal understanding benchmark for autonomous driving scenes. In contrast, our STKit-Bench
covers general scenes, e.g., sports, not limited to autonomous driving scenarios.

E.2 STATISTICS

Fig. 13 illustrates the statistics of STKit-Bench. Directly adopting the generated QA pairs for bench-
marking results in a long-tail label distribution, which we mitigate by balancing the labels, as shown
in Fig. 13a and 13b. The red bars highlight the imbalanced distribution in both distance and di-
rection categories, while the green bars indicate the balanced distribution. Fig. 13c illustrates the
dataset composition: 74.8% NuPlan (Caesar et al., 2021), 12.5% NuScenes (Caesar et al., 2020),
5.6% Argoverse2 (Wilson et al., 2023), and 7.1% Ego-Exo4D (Grauman et al., 2024). We primar-
ily use NuPlan, which is not included in the training data, to evaluate out-of-domain scenarios in
STKit-Bench.

E.3 GPT-5-NANO PROMPTS FOR EVALUATION

Tab. 20-26 present the prompts used with GPT-5-nano for evaluation on STKit-Bench. During
evaluation, our goal is to extract only the essential information from the final VLM outputs. To this
end, we convert the outputs into JSON format using GPT-5-nano with the designed prompts. These
JSON files are then used for the final task evaluation, as detailed in Sec. 4.
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(a) (b)

(c)

Figure 13: Statistics of STKit-Bench. (a), (b) We balance the number of samples for each label to
prevent biased results. Red and green bars indicate the number of samples before/after balancing.
(c) shows the composition of STKit-Bench.

F QA TEMPLATES FOR STKIT

Tab. 27–36 provide all the QA templates used in STKit, as detailed in Sec. 3.4. These templates are
designed as kinematic instructions for each spatio-temporal reasoning task.

G EXAMPLES OF FILTERING

(a) Camera movement.

(b) Occlusion.

Figure 14: Examples of filtered samples.

To illustrate how the model identifies low-quality samples, we provide examples of filtered cases in
Fig. 14. In Fig. 14a, the model detects a significant scene transition between the first and second
frames. In Fig. 14b, it successfully identifies object occlusion, demonstrating that our filtering strat-
egy effectively removes low-quality samples. Overall, applying this filtering strategy yields a 5.7%
performance improvement.

22



1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

LLaVA-OneVision:
The	object	moved	from	the	left	side	of	the	frame	to	the	center,	covering	a	
distance	of	approximately 10	meters.

Question:
Measure	the	distance	the	object	traveled	throughout	the	video.

ST-VLM	(Ours):
The	given	object	moved	a	total	distance	of	0.12	kilometers.

Ground	Truth:
The	given	object	has	traveled	a	total	of	0.07	miles.

GPT-5:
Small	distance.

(a) Traveled Distance

LLaVA-OneVision:
The	average	speed	of	the	object	is	approximately	1.5	meters	per	second.

Question:
What	is	the	average	speed	of	the	given	object	from	1.00	seconds	to	1.50	
seconds?

ST-VLM	(Ours):
The	object's	average	speed	between	1.00	and	1.50	seconds	is	28.94	mph.

Ground	Truth:
The	object's	average	speed	from	1.00	to	1.50	seconds	is	14.00	meters	per	
second.

GPT-5:
slow.

(b) Traveling Speed

LLaVA-OneVision:
The	object	moves	in	the	12	o’clock	direction.

Question:
At	the	end	of	the	video,	in	which	direction	does	the	object	move?

ST-VLM	(Ours):
The	object	is	traveling	toward	the	9	o’clock	direction at	the	end	of	the	video.

Ground	Truth:
The	given	object	is	heading	toward	the	9	o’clock	direction at	the	end	of	the	
video.

GPT-5:
12	o’	clock.

(c) Movement Direction

LLaVA-OneVision:
The	object	moves	in	the	1	o’clock	direction	between	3.00s	and	3.50s.

Question:
Describe	the	timestamp	when	the	object	moves	in	the	1	o’clock	direction.

ST-VLM	(Ours):
The	object	moves	in	the	direction	of	1	o'clock	between	3.00	and	5.50	seconds.

Ground	Truth:
Between	3.00	and	5.50	seconds,	the	object	moves	toward	the	1	o’clock	
direction.

GPT-5:
1.50s,	3.00s

(d) Direction Timestamp

Figure 15: Qualitative results on STKit-Bench.
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LLaVA-OneVision:
The	object	with	the	red	bounding	box travels	a	shorter	distance	in	the	video.

Question:
Which	object	travels	a	shorter	distance	in	the	video:	the	one	with	the	red	
bounding	box	or	the	one	with	the	green	bounding	box?

ST-VLM	(Ours):
In	the	video,	the	object	annotated	with	the	green	bounding	box has	moved	a	
shorter	distance	than	the	one	annotated	with	the	red	bounding	box.

Ground	Truth:
In	the	video,	the	object	annotated	with	the	green	bounding	box has	traveled	a	
shorter	distance	than	the	object	annotated	with	the	red	bounding	box.

GPT-5:
Red	bounding	box.

(a) Traveled Distance Comparison

LLaVA-OneVision:
The	object	with	the	red	bounding	box	moves	at	a	lower	speed	in	the	video.

Question:
Which	object	moves	at	a	lower	speed	in	the	video:	the	one	with	the	red	
bounding	box	or	the	one	with	the	blue	bounding	box?

ST-VLM	(Ours):
In	the	video,	the	object	annotated	with	the	blue	bounding	box has	moved	
more	slowly	than	the	object	annotated	with	the	red	bounding	box.

Ground	Truth:
The	object	annotated	with	the	blue	bounding	boxmaintains	a	lower	speed	
compared	to	the	object	annotated	with	the	red	bounding	box.

GPT-5:
Red.

(b) Traveling Speed Comparison

LLaVA-OneVision:
Yes,	the	object	annotated	with	the	blue	bounding	box	is	heading	in	the	same	
direction as	the	object	annotated	with	the	green	bounding	box.

Question:
Is	the	object	annotated	with	the	blue	bounding	box	heading	in	the	same	
direction	as	the	object	annotated	with	the	green	bounding	box?

ST-VLM	(Ours):
No,	the	object	annotated	with	the	blue	bounding	box	is	moving	in	a	different	
direction from	the	object	annotated	with	the	green	bounding	box.

Ground	Truth:
Actually,	the object	annotated	with	the	blue	bounding	box	is	heading	in	a	
different	direction from	the	object	annotated	with	the	green	bounding	box.

GPT-5:
Yes.

(c) Movement Direction Comparison

Figure 16: Qualitative results on STKit-Bench.
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Ground	Truth:
Between	3.50	and	17.00	seconds,	the	given	
object	traveled	a	total	of	15.28	m.

Question:
Provide	the	total	distance	traveled	by	the	
object	between	3.50	and	17.00	seconds.

LLaVA-OneVision:
The	total	distance	traveled	by	the	object	between	3.50	and	17.00	seconds	is	
approximately	20	meters.

ST-VLM	(Ours):
The	distance	the	given	object	moved	from	3.50	to	17.00	seconds	is	16.24	m.

(a)

Ground	Truth:
The	given	object	has	traveled	a	total	of	
17.04	meters.

Question:
Could	you	provide	the	total	distance	the	
object	moved	throughout	the	video?

LLaVA-OneVision:
The	object	moved	a	total	distance	of	10.5	meters throughout	the	video.

ST-VLM	(Ours):
The	given	object	moved	a	total	distance	of	17.42	meters.

(b)

LLaVA-OneVision:
The	person	in	the	blue	bounding	box	is	moving	faster than	the	person	in	the	
red	bounding	box.

Question:
Identify	the	exact	speed	of	each	object	and	determine	which	object	is	moving	
faster.

ST-VLM	(Ours):
…	with	the	red	bounding	box	has	a	higher	speed of	2.84	m/s	compared	to	the	
object	annotated	with	the	blue	bounding	box,	which	has	a	speed	of	1.05	m/s.

(c)

LLaVA-OneVision:
The	cyclist	on	the	right	is	moving	slower than	the	yellow	trailer.

Question:
Which	is	moving	slower,	the	cyclist	on	the	right	or	the	yellow	trailer?

ST-VLM	(Ours):
The	yellow	trailer	is	moving	more	slowly than	the	cyclist	on	the	right.

(d)

Figure 17: Qualitative results on challenging examples.
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Table 20: GPT-5-nano prompts for Traveled Distance.

traveled distance prompt = f"""You should help me to evaluate the response given the
question and the correct answer.
You need to convert the distance of the correct answer and response to meters.
The conversion factors are as follows: 1 inch = 0.0254 meters. 1 foot = 0.3048 meters. 1 centimeter
(cm) = 0.01 meters.
You should output two floats in meters, one for the answer, and one for the response.
The output should be in JSON format."""

messages = [ {"role":"system", "content":traveled distance prompt}]
for sample in fewshot samples:

messages.append({"role":"user", "content":sample[‘context’]})
messages.append({"role":"assistant", "content":sample[‘response’]})

messages.append({"role":"user", "content":‘\n’.join(query)})

Table 21: GPT-5-nano prompts for Traveling Speed.

traveling speed prompt = f"""You should help me to evaluate the response given the
question and the correct answer.
You need to convert the speed of the correct answer and response to kilometers per hour (km/h).
The conversion factors are as follows: 1 meters per second (m/s) = 3.6 kilometers per hour (km/h).
1 miles per hour (mph) = 1.60934 kilometers per hour (km/h). 1 foot per second (ft/s) = 1.09728
kilemoeters per hour (km/h).
You should output two floats in kilometers per hour (km/h), one for the answer, and one for the
response.
The output should be in JSON format."""

messages = [ {"role":"system", "content":traveling speed prompt}]
for sample in fewshot samples:

messages.append({"role":"user", "content":sample[‘context’]})
messages.append({"role":"assistant", "content":sample[‘response’]})

messages.append({"role":"user", "content":‘\n’.join(query)})

Table 22: GPT-5-nano prompts for Movement Direction.

movement direction prompt = f"""You should help me to evaluate the response given
the question and the correct answer.
You need to extract the direction of the correct answer and response.
You should output two integers in clock directions, one for the answer, and one for the response.
The output should be in JSON format."""

messages = [ {"role":"system", "content":movement direction prompt}]
for sample in fewshot samples:

messages.append({"role":"user", "content":sample[‘context’]})
messages.append({"role":"assistant", "content":sample[‘response’]})

messages.append({"role":"user", "content":‘\n’.join(query)})
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Table 23: GPT-5-nano prompts for Direction Timestamp.

direction timestamp prompt = f"""You should help me to evaluate the response given
the question and the correct answer.
You need to extract the start time and end time in seconds of the correct answer and response.
You should output four floats in seconds, one for the answer start time, one for the answer end time,
one for the response start time, and one for the response end time.
The output should be in JSON format."""

messages = [ {"role":"system", "content":direction timestamp prompt}]
for sample in fewshot samples:

messages.append({"role":"user", "content":sample[‘context’]})
messages.append({"role":"assistant", "content":sample[‘response’]})

messages.append({"role":"user", "content":‘\n’.join(query)})

Table 24: GPT-5-nano prompts for Traveled Distance Comparison.

distance comparison prompt = f"""You should help me to evaluate the response given
the question and the correct answer.
To mark a response, you should output a single integer between 0 and 1.
1 means that the response perfectly matches the answer.
0 means that the response is completely different from the answer.
The output should be in JSON format."""

messages = [ {"role":"system", "content":distance comparison prompt}]
for sample in fewshot samples:

messages.append({"role":"user", "content":sample[‘context’]})
messages.append({"role":"assistant", "content":sample[‘response’]})

messages.append({"role":"user", "content":‘\n’.join(query)})

Table 25: GPT-5-nano prompts for Traveling Speed Comparison.

speed comparison prompt = f"""You should help me to evaluate the response given the
question and the correct answer.
To mark a response, you should output a single integer between 0 and 1.
1 means that the response perfectly matches the answer.
0 means that the response is completely different from the answer.
The output should be in JSON format."""

messages = [ {"role":"system", "content":speed comparison prompt}]
for sample in fewshot samples:

messages.append({"role":"user", "content":sample[‘context’]})
messages.append({"role":"assistant", "content":sample[‘response’]})

messages.append({"role":"user", "content":‘\n’.join(query)})
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Table 26: GPT-5-nano prompts for Movement Direction Comparison.

direction comparison prompt = f"""You should help me to evaluate the response given
the question and the correct answer.
To mark a response, you should output a single integer between 0 and 1.
1 means that the response perfectly matches the answer.
0 means that the response is completely different from the answer.
The output should be in JSON format."""

messages = [ {"role":"system", "content":direction comparison prompt}]
for sample in fewshot samples:

messages.append({"role":"user", "content":sample[‘context’]})
messages.append({"role":"assistant", "content":sample[‘response’]})

messages.append({"role":"user", "content":‘\n’.join(query)})
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Table 27: QA templates for Traveled Distance.

traveled distance common prompt = f"""The video lasts for [SECONDS] seconds,
and [FRAMES] frames are uniformly sampled from it. These frames are located at [SEC-
OND1]s,[SECOND2]s,[SECOND3]s, ... . Please answer the following questions related to this
video.

There is an object annotated with a [COLOR] bounding box in the video. """

traveled distance questions = [

“What is the total distance traveled by the given object in the video?”,
“Can you calculate the total distance covered by the object in the video?”,
“Tell me the overall distance the object has traveled in the video.”,
“Could you provide the total distance the object moved throughout the video?”,
“How much distance did the object travel during the entire video?”,
“Measure the distance the object traveled throughout the video.”,
“What is the total distance traveled by a given object from [START] seconds to
[END] seconds?”,
“Can you calculate the total distance the object traveled between [START] sec-
onds and [END] seconds?”,
“Tell me how far the object moved from [START] seconds to [END] seconds.”,
“Could you measure the total distance the object covered between [START]
and [END] seconds?”,
“How much distance did the object travel during the period from [START] to
[END] seconds?”,
“Provide the total distance traveled by the object between [START] and [END]
seconds.”

]

traveled distance answers = [

“The total distance traveled by the given object is [DISTANCE].”,
“The given object’s traveled distance is [DISTANCE].”,
“The given object has traveled a total of [DISTANCE].”,
“The entire distance the given object traveled amounts to [DISTANCE].”,
“The given object moved a total distance of [DISTANCE].”,
“The distance traveled by the given object from [START] to [END] seconds is
[DISTANCE].”,
“The given object traveled [DISTANCE] between [START] and [END] sec-
onds.”,
“From [START] to [END] seconds, the given object moved a distance of [DIS-
TANCE].”,
“The distance the given object moved from [START] to [END] seconds is [DIS-
TANCE].”,
“Between [START] and [END] seconds, the given object traveled a total of
[DISTANCE].”

]
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Table 28: QA templates for Traveling Speed.

traveling speed common prompt = f"""The video lasts for [SECONDS] seconds,
and [FRAMES] frames are uniformly sampled from it. These frames are located at [SEC-
OND1]s,[SECOND2]s,[SECOND3]s, ... . Please answer the following questions related to this
video.

There is an object annotated with a [COLOR] bounding box in the video. """

traveling speed questions = [

“What is the average speed of the given object in the video?”,
“Calculate the average speed of the object in the video.”,
“Tell me the object’s average speed throughout the video.”,
“Could you provide the average velocity of the object throughout the video?”,
“What is the object’s average speed during the video?”,
“Can you measure the average speed for the object in the entire video?”,
“What is the average speed of the given object from [START] seconds to [END]
seconds?”,
“Can you calculate the average speed of the object between [START] and
[END] seconds?”,
“Tell me the object’s average speed from [START] to [END] seconds.”,
“Could you provide the average velocity of the object during the time period
from [START] to [END] seconds?”,
“What is the average speed of the object between [START] and [END] sec-
onds?”,
“Measure the object’s average velocity during the interval from [START] to
[END] seconds?”

]

traveling speed answers = [

“The average speed of the given object is [SPEED] throughout the video.”,
“The object’s average speed across the entire video is [SPEED].”,
“Throughout the video, the object moves at an average speed of [SPEED].”,
“The given object maintains an average speed of [SPEED] during the entire
video.”,
“The average velocity of the given object throughout the video is [SPEED].”,
“The average speed of the given object from [START] to [END] seconds is
[SPEED].”,
“The object’s average speed between [START] and [END] seconds is
[SPEED].”,
“From [START] to [END] seconds, the object moves at an average speed of
[SPEED].”,
“The given object has an average velocity of [SPEED] during the time period
from [START] to [END] seconds.”,
“The object’s average speed from [START] to [END] seconds is [SPEED].”

]
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Table 29: QA templates for Movement Direction.

movement direction common prompt = f"""The video lasts for [SECONDS] seconds,
and [FRAMES] frames are uniformly sampled from it. These frames are located at [SEC-
OND1]s,[SECOND2]s,[SECOND3]s, ... . Please answer the following questions related to this
video.

There is an object annotated with a [COLOR] bounding box in the video. """

movement direction questions = [

“In which direction does the object move at the end of the video?”,
“What direction does the object travel at the end of the video?”,
“At the end of the video, in which direction does the object move?”,
“Describe the direction of the object moving at the end of the video.”,
“Provide the direction of the object moving at the end of the video.”

]

movement direction answers = [

“The given object is heading toward the [CLOCK] o’clock direction at the end
of the video.”,
“The object moves in the direction of [CLOCK] o’clock at the end of the
video.”,
“At the end of the video, the object is heading toward the [CLOCK] o’clock
direction.”,
“The object is traveling toward the [CLOCK] o’clock direction at the end of
the video.”,
“At the end of the video, the object moves toward the [CLOCK] o’clock direc-
tion.”

]
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Table 30: QA templates for Direction Timestamp.

direction timestamp common prompt = f"""The video lasts for [SECONDS] seconds,
and [FRAMES] frames are uniformly sampled from it. These frames are located at [SEC-
OND1]s,[SECOND2]s,[SECOND3]s, ... . Please answer the following questions related to this
video.

There is an object annotated with a [COLOR] bounding box in the video. """

direction timestamp questions = [

“Describe the timestamp when the object moves in the [CLOCK] o’clock di-
rection.”,
“Can you provide the moment when the object moves in the [CLOCK] o’clock
direction?”,
“Explain the time at which the object heads toward the [CLOCK] o’clock di-
rection.”,
“At what timestamp does the object start moving in the [CLOCK] o’clock di-
rection?”,
“When does the object begin traveling in the [CLOCK] o’clock direction?”

]

direction timestamp answers = [

“The given object is heading toward the [CLOCK] o’clock direction from
[START] to [END] seconds.”,
“The object moves in the direction of [CLOCK] o’clock between [START] and
[END] seconds.”,
“From [START] to [END] seconds, the object is heading toward the [CLOCK]
o’clock direction.”,
“The object is traveling toward the [CLOCK] o’clock direction during the time
period from [START] to [END] seconds.”,
“Between [START] and [END] seconds, the object moves toward the [CLOCK]
o’clock direction.”

]
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Table 31: Question templates for Traveled Distance Comparison.

traveled distance comparison common prompt = f"""The video lasts for [SEC-
ONDS] seconds, and [FRAMES] frames are uniformly sampled from it. These frames are located
at [SECOND1]s,[SECOND2]s,[SECOND3]s, ... . Please answer the following questions related to
this video.

There are two objects annotated with [COLOR1] and [COLOR2] bounding boxes in the video. """

traveled distance comparison positive questions = [

“Which object travels a greater distance in the video: the one with the
[COLOR1] bounding box or the one with the [COLOR2] bounding box?”,
“Which object moves farther throughout the video, the object annotated with
the [COLOR1] bounding box or the [COLOR2] bounding box?”,
“Which object covers more distance in the video: the one annotated with the
[COLOR1] bounding box or the [COLOR2] bounding box?”,
“Between the objects annotated with the [COLOR1] and [COLOR2] bounding
boxes, which one moves a longer distance throughout the video?”,
“Between the two objects, one annotated with the [COLOR1] bounding box
and the other annotated with the [COLOR2] bounding box, which one moves
farther during the entire video?”,
“Which object, the one annotated with the [COLOR1] bounding box or the
[COLOR2] bounding box, has a greater travel distance in the video?”

]

traveled distance comparison negative questions = [

“Which object travels a shorter distance in the video: the one with the
[COLOR1] bounding box or the one with the [COLOR2] bounding box?”,
“Which object moves a shorter distance throughout the video, the object anno-
tated with the [COLOR1] bounding box or the [COLOR2] bounding box?”,
“Which object covers less distance in the video: the one annotated with the
[COLOR1] bounding box or the [COLOR2] bounding box?”,
“Between the objects annotated with the [COLOR1] and [COLOR2] bounding
boxes, which one moves a shorter distance throughout the video?”,
“Between the two objects, one annotated with the [COLOR1] bounding box
and the other annotated with the [COLOR2] bounding box, which one moves
less during the entire video?”,
“Which object, the one annotated with the [COLOR1] bounding box or the
[COLOR2] bounding box, has a shorter travel distance in the video?”

]
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Table 32: Answer templates for Traveled Distance Comparison.

traveled distance comparison positive answers = [

“The object annotated with the [COLOR1] bounding box has traveled a greater
distance than the object annotated with the [COLOR2] bounding box through-
out the video.”,
“In the video, the object annotated with the [COLOR1] bounding box has
moved a greater distance than the one annotated with the [COLOR2] bound-
ing box.”,
“The object annotated with the [COLOR1] bounding box covers more distance
throughout the video compared to the object annotated with the [COLOR2]
bounding box.”,
“During the entire video, the distance traveled by the object annotated with the
[COLOR1] bounding box is greater than that of the object annotated with the
[COLOR2] bounding box.”,
“In the video, the object annotated with the [COLOR1] bounding box has trav-
eled farther than the object annotated with the [COLOR2] bounding box.”

]

traveled distance comparison negative answers = [

“The object annotated with the [COLOR1] bounding box has traveled a shorter
distance than the object annotated with the [COLOR2] bounding box through-
out the video.”,
“In the video, the object annotated with the [COLOR1] bounding box has
moved a shorter distance than the one annotated with the [COLOR2] bound-
ing box.”,
“The object annotated with the [COLOR1] bounding box covers less distance
throughout the video compared to the object annotated with the [COLOR2]
bounding box.”,
“During the entire video, the distance traveled by the object annotated with
the [COLOR1] bounding box is less than that of the object annotated with the
[COLOR2] bounding box.”,
“In the video, the object annotated with the [COLOR1] bounding box has trav-
eled a shorter distance than the object annotated with the [COLOR2] bounding
box.”

]
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Table 33: Question templates for Traveling Speed Comparison.

traveling speed comparison common prompt = f"""The video lasts for [SEC-
ONDS] seconds, and [FRAMES] frames are uniformly sampled from it. These frames are located
at [SECOND1]s,[SECOND2]s,[SECOND3]s, ... . Please answer the following questions related to
this video.

There are two objects annotated with [COLOR1] and [COLOR2] bounding boxes in the video. """

traveling speed comparison positive questions = [

“Which object moves at a higher speed in the video: the one with the
[COLOR1] bounding box or the one with the [COLOR2] bounding box?”,
“Which object moves faster throughout the video, the object annotated with the
[COLOR1] bounding box or the [COLOR2] bounding box?”,
“Which object maintains a greater speed in the video: the one annotated with
the [COLOR1] bounding box or the [COLOR2] bounding box?”,
“Between the objects annotated with the [COLOR1] and [COLOR2] bounding
boxes, which one moves at a higher speed throughout the video?”,
“Between the two objects, one annotated with the [COLOR1] bounding box
and the other with the [COLOR2] bounding box, which one has a higher speed
during the entire video?”,
“Which object, the one annotated with the [COLOR1] bounding box or the
[COLOR2] bounding box, has a greater average speed in the video?”

]

traveling speed comparison negative questions = [

“Which object moves at a lower speed in the video: the one with the [COLOR1]
bounding box or the one with the [COLOR2] bounding box?”,
“Which object moves more slowly throughout the video, the object annotated
with the [COLOR1] bounding box or the [COLOR2] bounding box?”,
“Which object maintains a slower speed in the video: the one annotated with
the [COLOR1] bounding box or the [COLOR2] bounding box?”,
“Between the objects annotated with the [COLOR1] and [COLOR2] bounding
boxes, which one moves at a slower speed throughout the video?”,
“Between the two objects, one annotated with the [COLOR1] bounding box
and the other with the [COLOR2] bounding box, which one has a slower speed
during the entire video?”,
“Which object, the one annotated with the [COLOR1] bounding box or the
[COLOR2] bounding box, has a lower average speed in the video?”

]
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Table 34: Answer templates for Traveling Speed Comparison.

traveling speed comparison positive answers = [

“The object annotated with the [COLOR1] bounding box has moved at a faster
speed than the object annotated with the [COLOR2] bounding box throughout
the video.”,
“In the video, the object annotated with the [COLOR1] bounding box moves
faster than the one annotated with the [COLOR2] bounding box.”,
“The object annotated with the [COLOR1] bounding box maintains a higher
speed throughout the video compared to the object annotated with the
[COLOR2] bounding box.”,
“During the entire video, the speed of the object annotated with the [COLOR1]
bounding box is greater than that of the object annotated with the [COLOR2]
bounding box.”,
“In the video, the object annotated with the [COLOR1] bounding box has
moved faster than the object annotated with the [COLOR2] bounding box.”

]

traveling speed comparison negative answers = [

“The object annotated with the [COLOR1] bounding box has moved at a slower
speed than the object annotated with the [COLOR2] bounding box throughout
the video.”,
“In the video, the object annotated with the [COLOR1] bounding box moves
more slowly than the one annotated with the [COLOR2] bounding box.”,
“The object annotated with the [COLOR1] bounding box maintains a lower
speed throughout the video compared to the object annotated with the
[COLOR2] bounding box.”,
“During the entire video, the speed of the object annotated with the [COLOR1]
bounding box is less than that of the object annotated with the [COLOR2]
bounding box.”,
“In the video, the object annotated with the [COLOR1] bounding box has
moved more slowly than the object annotated with the [COLOR2] bounding
box.”

]
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Table 35: Question templates for Movement Direction Comparison.

movement direction comparison common prompt = f"""The video lasts for [SEC-
ONDS] seconds, and [FRAMES] frames are uniformly sampled from it. These frames are located
at [SECOND1]s,[SECOND2]s,[SECOND3]s, ... . Please answer the following questions related to
this video.

There are two objects annotated with [COLOR1] and [COLOR2] bounding boxes in the video. """

movement direction comparison positive questions = [

“Is the object annotated with the [COLOR1] bounding box moving in the same
direction as the object annotated with the [COLOR2] bounding box in the
video?”,
“Is the object annotated with the [COLOR1] bounding box heading in the same
direction as the object annotated with the [COLOR2] bounding box throughout
the video?”,
“Are the object annotated with the [COLOR1] bounding box and the object an-
notated with the [COLOR2] bounding box moving in the same direction during
the video?”,
“In the video, does the object with the [COLOR1] bounding box move in the
same direction as the object with the [COLOR2] bounding box?”,
“Are the objects annotated with the [COLOR1] and [COLOR2] bounding boxes
traveling in the same direction during the entire video?”

]

movement direction comparison negative questions = [

“Is the object annotated with the [COLOR1] bounding box moving in a differ-
ent direction from the object annotated with the [COLOR2] bounding box in
the video?”,
“Is the object annotated with the [COLOR1] bounding box heading in a dif-
ferent direction from the object annotated with the [COLOR2] bounding box
throughout the video?”,
“Are the object annotated with the [COLOR1] bounding box and the object
annotated with the [COLOR2] bounding box moving in a different direction
during the video?”,
“In the video, does the object with the [COLOR1] bounding box move in a
different direction from the object with the [COLOR2] bounding box?”,
“Are the objects annotated with the [COLOR1] and [COLOR2] bounding boxes
traveling in different directions during the entire video?”

]
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Table 36: Answer templates for Movement Direction Comparison.

movement direction comparison true positive answers = [

“Yes, the object annotated with the [COLOR1] bounding box is moving in
the same direction as the object annotated with the [COLOR2] bounding box
throughout the video.”,
“Indeed, the object annotated with the [COLOR1] bounding box is heading in
the same direction as the object annotated with the [COLOR2] bounding box
during the entire video.”,
“Correct, the object annotated with the [COLOR1] bounding box and the object
annotated with the [COLOR2] bounding box are moving in the same direction
in the video.”

]

movement direction comparison true negative answers = [

“No, the object annotated with the [COLOR1] bounding box is moving in
the same direction as the object annotated with the [COLOR2] bounding box
throughout the video.”,
“Actually, the object annotated with the [COLOR1] bounding box is heading in
the same direction as the object annotated with the [COLOR2] bounding box
during the entire video.”,
“Incorrect, the object annotated with the [COLOR1] bounding box and the ob-
ject annotated with the [COLOR2] bounding box are moving in the same di-
rection in the video.”

]

movement direction comparison false positive answers = [

“No, the object annotated with the [COLOR1] bounding box is moving in a dif-
ferent direction from the object annotated with the [COLOR2] bounding box
throughout the video.”,
“Actually, the object annotated with the [COLOR1] bounding box is heading in
a different direction from the object annotated with the [COLOR2] bounding
box during the entire video.”,
“Incorrect, the object annotated with the [COLOR1] bounding box and the ob-
ject annotated with the [COLOR2] bounding box are moving in a different
direction in the video.”

]

movement direction comparison false negative answers = [

“Yes, the object annotated with the [COLOR1] bounding box is moving in a
different direction from the object annotated with the [COLOR2] bounding box
throughout the video.”,
“Indeed, the object annotated with the [COLOR1] bounding box is heading in
a different direction from the object annotated with the [COLOR2] bounding
box during the entire video.”,
“Correct, the object annotated with the [COLOR1] bounding box and the object
annotated with the [COLOR2] bounding box are moving in a different direction
in the video.”

]
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