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Abstract

In the era of large-scale foundation models, fully fine-tuning pretrained networks
for each downstream task is often prohibitively resource-intensive. Prompt tuning
offers a lightweight alternative by introducing tunable prompts while keeping the
backbone frozen. However, existing visual prompt tuning methods often fail to spe-
cialize the prompts or enrich the representation space–especially when applied to
self-supervised backbones. We show that these limitations become especially pro-
nounced in challenging tasks and data-scarce settings, where effective adaptation
is most critical. In this work, we introduce VIPAMIN, a visual prompt initializa-
tion strategy that enhances adaptation of self-supervised models by (1) aligning
prompts with semantically informative regions in the embedding space, and (2)
injecting novel representational directions beyond the pretrained subspace. Despite
its simplicity–requiring only a single forward pass and lightweight operations–
VIPAMIN consistently improves performance across diverse tasks and dataset
sizes, setting a new state of the art in visual prompt tuning. Our code is available at
https://github.com/iamjaekyun/vipamin.

1 Introduction

Large-scale Vision Transformers (ViTs) have become central to modern computer vision. Tradition-
ally, adapting a pretrained model to a new downstream task involves full fine-tuning, updating all
model parameters and a task-specific head. However, as foundation models continue to scale, full
fine-tuning incurs substantial computational and memory overhead.

Prompt tuning offers a more efficient alternative by introducing a small number of trainable tokens
(prompts) while keeping the backbone frozen. Initially successful in NLP, prompt tuning has shown
strong performance in vision through Visual Prompt Tuning (VPT) [27], which rivals full fine-tuning
on many benchmarks using only a few dozen tokens [27, 36, 37, 58]. VPT has also proven effective
in more challenging settings such as test-time adaptation [47] and continual learning [26, 38, 67].

While recent theoretical work shows that prompt tokens can selectively modulate attention to empha-
size relevant inputs [48], and may serve as retrieval mechanisms for pretrained knowledge [51, 65],
these findings do not fully explain VPT’s limitations in practice–especially with self-supervised
backbones. Empirically, we identify two key failure modes in such settings: (1) prompts exhibit
near-uniform attention across tokens, lacking specialization, and (2) prompt outputs collapse into the
pretrained self-attention subspace, failing to introduce novel task-relevant features. These limitations
severely hinder VPT’s adaptability, especially under distribution shifts and in low-data regimes where
representational diversity and efficient adaptation are essential.

∗Corresponding author.

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

https://github.com/iamjaekyun/vipamin


Motivated by these findings, we introduce VIPAMIN: Visual Initialization of Prompts via Attention-
guided Matching and Injection of Novelty. VIPAMIN is a lightweight initialization scheme requiring
only a single forward pass through the model and two inexpensive matrix operations. It comprises
two components designed to address the key failure modes observed in vanilla VPT. The matching
module aligns each prompt with semantically coherent input regions, mitigating the issue of uniform
attention. The orthogonalizing module projects the prompt away from the row space of the frozen
self-attention output, introducing novel representational directions and alleviating subspace collapse.
VIPAMIN adds no additional learnable parameters, incurs minimal computational overhead, and
integrates easily into existing VPT pipelines with a one-time initialization step.

We rigorously benchmark VIPAMIN on 19 vision tasks–covering natural, specialized, and structured
recognition–using two leading self-supervised backbones (MoCo-v3 [7] and MAE [21]). Additionally,
we assess its effectiveness under data-scarce conditions on five few-shot benchmarks. Concretely,
for MoCo-v3 pretrained model, VIPAMIN achieves a 3.7% gain over full fine-tuning on tasks that
deviate significantly from the pretraining distribution (i.e., Structured), and a 4.6% gain on tasks
more closely aligned with the pretraining domain (i.e., Natural)–establishing the new state-of-the-art
performance for visual prompt tuning without introducing additional parameters, computational
latency, or memory overhead. In few-shot settings, VIPAMIN consistently outperforms the baseline
across all datasets. Our contributions are summarized as follows:

• We identify two underexplored limitations of self-supervised VPT–uniform attention and
subspace collapse–arising from the internal dynamics of the transformer architecture.

• We introduce VIPAMIN, a lightweight, non-intrusive initialization technique that addresses
these issues via attention-guided matching and orthogonal subspace injection.

• We demonstrate that VIPAMIN is readily deployable, computationally efficient, and consis-
tently enhances performance across a wide range of datasets,

Related Work VPT has shown suboptimal performance when applied to self-supervised models.
GatedPT improves visual prompting by facilitating inter-block interactions of ViT, demonstrating
effectiveness in such self-supervised settings [70]. The work on SPT, most closely related to ours,
shows that prompt representations tend to collapse onto the embedding tokens during training and
actively leverages this property by initializing prompts with downstream token prototypes to improve
VPT’s convergence [66]. iVPT enhances prompt–embedding interplay via an attentive reinforcement
module that steers prompts toward salient tokens [76], while VFPT reduces the domain gap by
modulating a subset of prompts in the frequency domain using a 2D Fast Fourier Transform [72].
Most recently, DA-VPT selects prompt membership based on the CLS token of same-class images,
optimizing the assignments via metric learning [53].

Unlike prior methods that add learnable gates (GatedPT), reinforcement blocks (iVPT), metric
learning (DA-VPT), or Fourier transforms (VFPT), VIPAMIN modifies only the initial prompt
weights–incurring zero overhead. Whereas SPT also incurs no additional cost in training, its accuracy
hinges on a costly offline clustering step that is hard to amortize, while VIPAMIN exceeds the
performance of SPT with only a couple of lightweight matrix operations.

2 Preliminaries: Roles of Prompts in Visual Prompt Tuning

We use the following notations throughout the paper. A bold lowercase character (e.g., x) denotes a
vector, while a bold uppercase character (e.g., P) denotes a matrix. The i-th row and the (i, j)-th
entry of the matrix P are represented by (P)i and (P)ij , respectively. Let (·, ·) denote column-wise
concatenation, and [·; ·] denote row-wise concatenation. Let [n] := {i|i ∈ N, 1 ≤ i ≤ n}.

ViT and VPT ViT [13] processes an input image by dividing it into a fixed number of non-
overlapping patches, each corresponding to a token in the transformer. For an image x ∈ R3×h×w

and a patch size (h′, w′), the number of resulting tokens is Ne :=
h
h′ × w

w′ +1, including the additional
‘class token’ (CLS) used in image classification. These tokens are passed through a PatchEmbed
module and added by learnable positional embeddings. We denote the resulting embedding matrix
for the Ne input tokens of a sample x as E0 = (x1, . . . ,xNe

)⊤ ∈ RNe×d.
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VPT [27] introduces a set of learnable prompts P0 = (p1, . . . ,pNp)
⊤ ∈ RNp×d prepended to the

input image tokens E0, enabling lightweight task adaptation while keeping the original ViT frozen.
The combined input to the transformer is denoted by Z0 = [P0;E0] ∈ R(Np+Ne)×d. VPT has two
common variants: VPT-Shallow, in which the prompt P0 is prepended before the first transformer
block, and VPT-Deep, which injects distinct, learnable prompts before each transformer block. In
this section, we focus on VPT-Shallow and analyze the propagation of the initial prompt P0 through
the ViT architecture. Assuming the ViT consists of L blocks, let Bi denote the operation of the i-th
block. The evolution of the prompt and input embeddings through each block is given by:

[Pi;Xi] = Bi([Pi−1;Xi−1]) ∈ R(Np+Ne)×d for i ∈ [L], (1)

where X0 = E0. Each block consists of a Multi-head Self-Attention (MSA) module followed by
a Feed-Forward Network (FFN), with Layer Normalization (LN) and residual connections. For
simplicity, we focus on a single-head Self-Attention (SA) applied to prompt-prepended input Z0:

SA(Z0) = softmax
(
Z0WQ(Z0WK)⊤√

d

)
Z0WV ∈ R(Np+Ne)×d, (2)

where WQ,WK ,WV ∈ Rd×d are the query, key, and value projection matrices, respectively. The
softmax is applied row-wise to normalize the attention weights.

To better understand the role of P0, we decompose the matrices involved. For Z0 = [P0;X0], let

Q = Z0WQ = [QP0
;QX0

]; K = Z0WK = [KP0
;KX0

]; V = Z0WV = [VP0
;VX0

].

The attention matrix S and the resulting SA output (2) can then be written as:

S = softmax
(
QK⊤
√
d

)
= softmax

(
1√
d

[
QP0

K⊤
P0

QP0
K⊤

X0

QX0
K⊤

P0
QX0

K⊤
X0

])
:=

[
SP0P0

SP0X0

SX0P0
SX0X0

]
; (3)

SA(Z0) =

[
SP0P0

SP0X0

SX0P0
SX0X0

] [
P0WV

X0WV

]
=

[
SP0P0

(P0WV ) + SP0X0
(X0WV )

SX0P0
(P0WV ) + SX0X0

(X0WV )

]
∈ R(Np+Ne)×d.

Note that in the absence of prompts P0, the self-attention output for the original input tokens X0

reduces to SA(X0) = SX0
(X0WV ) ∈ RNe×d, where SX0

denotes the attention weights computed
solely among the input tokens. Comparing this to the prompt-augmented case reveals two distinct
roles played by prompts in modifying the output of the self-attention module: (1) The prompts P0

attend to the input tokens X0, filtering, selecting, and aggregating relevant information through
SP0X0

(X0WV ), which is then passed to the next block via the prompt outputs. (2) In addition, the
prompts inject new information into the input token representations by contributing a prompt-induced
bias term SX0P0(P0WV ), thereby modifying the self-attention output for the original tokens.

Role 1: Selecting Tokens for Prompt Propagation The first Np rows of SA(Z0) correspond
to the updated prompt representations after a ViT block. As described in (1), these outputs are
propagated through the transformer in VPT-Shallow. The effectiveness of VPT hinges on the prompts’
ability to selectively aggregate and transmit informative content from the input tokens. Each row of
SP0X0(X0WV ) ∈ RNp×d forms a weighted combination of input embeddings, where the weights
are given by the attention scores in SP0X0

. Since only a subset of input tokens are typically task-
relevant, selective attention is essential for filtering noise and propagating meaningful information.

Role 2: Injecting Semantic Bias into Attention Outputs Prompts also modulate the output of
input tokens by introducing a prompt-induced bias. The updated self-attention output for input tokens
(the last Ne rows of SA(Z0)) is given by:

SX0P0(P0WV ) + SX0X0(X0WV ) = SX0P0(P0WV ) + diag(1Ne − SX0P01Np)SA(X0), (4)

where SA(X0) is the self-attention output without prompts. This shows that prompts inject a linear
bias into the attention output, potentially shifting representations toward task-relevant semantics
[25, 51]. In the next section, we empirically evaluate whether VPT effectively fulfills these two
roles–semantic token selection and semantic bias injection–especially in challenging downstream
tasks and settings.
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Figure 1: (a) Nineteen VTAB-1k tasks ordered by a proxy for task similarity to the pretraining
dataset, measured by the relative accuracy ratio of linear probing compared to full fine-tuning (LP
ratio). Representative images from four datasets—dSprites/loc, smallNORB/azi, Caltech101, and
Sun397—are shown to the right. (b) Relative accuracy ratio of VPT compared to full fine-tuning
(VPT ratio) across 19 VTAB datasets, sorted by the LP ratio. (c) Accuracy comparison of VPT
between training with the full dataset and few-shot learning (8 images per class), evaluated on the
CUB-200-2011 dataset using supervised and self-supervised (MoCo-v3) pretrained weights.

3 Motivation

To evaluate whether prompt tuning effectively leverages its two core mechanisms–semantic token
selection and semantic bias injection–we focus on two settings where these capabilities are especially
critical: (i) distribution-shifted tasks, where the downstream task diverges significantly from the pre-
training domain, making both semantic alignment and the injection of novel task-specific information
essential; and (ii) few-shot scenarios, where limited labeled examples demand that prompts focus
attention on informative regions and introduce meaningful biases to enable rapid adaptation.

For distribution-shifted tasks, we assess VPT’s performance across the 19 classification tasks in
the VTAB-1k benchmark [73], which includes Natural (photographic), Specialized (e.g., medical
or satellite), and Structured (geometric reasoning) categories. Following prior work [33, 42], we
order the tasks by similarity to the pretraining distribution (ImageNet [10]), using the performance
ratio between linear probing and full fine-tuning (LP/FT) as a proxy: larger ratios indicate stronger
alignment, while smaller ratios suggest greater divergence. Figure 1(a) shows the resulting task
ordering, from most dissimilar (dSprites/loc) to most similar (Sun397).

Figure 1(b) reports the relative performance of VPT compared to full fine-tuning, measured as
(AccVPT − Accfull)/Accfull, across the ordered tasks. The results show that VPT performs strongly
on the top 30% most similar tasks (averaging +7.6%) but suffers sharp performance degradation on
the bottom 30% most dissimilar tasks (averaging -34.6%), where greater representational shifts are
required. This highlights VPT’s limited adaptability under distribution shift.

In the few-shot setting, we compare VPT’s performance with 8 training samples per class against
full-data VPT on the CUB-200-2011 dataset [59], using both supervised [13] and MoCo-v3 [7]
self-supervised pretrained backbones. As shown in Figure 1(c), few-shot VPT underperforms its
full-data counterpart in both cases: the supervised backbone incurs a modest drop of 9.5%, while the
self-supervised backbone suffers a much larger drop of 40.72%. This pronounced decline highlights
the challenge of few-shot adaptation, especially for self-supervised models.

Together, these results reveal that VPT struggles to adapt in settings where its core mechanisms–
focused attention and representational enrichment–are most essential. In the following section, we
quantitatively analyze VPT’s behavior with respect to semantic token selection and bias injection,
and demonstrate that its failures in these challenging scenarios stem from underutilization of these
mechanisms. This motivates a closer investigation into how to better activate and enhance these roles.

Prompts Fail to Specialize To evaluate whether prompts attend to meaningful input tokens, we
examine the attention matrix SP0X0 ∈ RNp×Ne from (3), which encodes the attention weights from
each prompt to the input tokens. Since identifying truly semantic tokens would require additional
supervision (e.g., segmentation labels), we instead use the concentration of attention as a proxy for
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Figure 2: Failure modes of VPT. (a) Prompt attention entropy of the fully trained model for each
VTAB dataset, sorted by its LP ratio. The topmost blue line represents the maximum prompt attention
entropy attainable, ln(Ne). (b) Subspace projection energy of P0WV onto SA(X0), tracked during
training on dSprites/loc (the most dissimilar task). Both figures are the training results of MoCo-v3
pretrained model.

specialization. For each prompt pi, we compute the entropy of its normalized attention distribution:

H(pi) = −
Ne∑
j=1

(SP0X0)ij
Si

ln

(
(SP0X0)ij

Si

)
, Si =

Ne∑
k=1

(SP0X0
)ik (5)

where (SP0X0
)ij ∝ exp

(
p⊤
i WQW

⊤
Kxj/

√
d
)

. This quantity is upper bounded by ln(Ne); lower
values indicate more concentrated (i.e., specialized) attention.

Figure 2(a) reports the average prompt attention entropy across all prompts for each VTAB-1k task,
computed from 256 randomly selected training images and extracted from the final ViT layer. We
observe that VPT consistently yields near-maximal entropy across tasks, regardless of their similarity
to the pretraining distribution. This indicates that VPT fails to specialize prompt attention and instead
distributes focus uniformly over all input tokens. While such broad attention may suffice for tasks
closely aligned with the pretraining domain, it limits adaptability in more dissimilar tasks, where
selective attention is needed to suppress irrelevant features and amplify task-specific signals.

Prompts Fail to Inject Novel Semantic Bias To evaluate whether prompts introduce novel repre-
sentational directions into the embedding space, we examine the relationship between P0WV

and SA(X0). As indicated in (4), P0WV contributes a prompt-dependent bias to the self-
attention output. However, if the row space of P0WV is contained within that of SA(X0)–i.e.,
span((P0WV )

⊤) ⊆ span(SA(X0)
⊤)–then prompts fail to expand the representation space beyond

what is already captured by the frozen backbone. To quantify this, we compute the projection energy,
which measures the fraction of prompt signal contained within the pretrained self-attention subspace.
Given A = (P0WV )

⊤ and B = (SA(X0))
⊤, we define:

ProjectionEnergy(A→ B) =
∥PBA∥2F
∥A∥2F

, where PB = B(B⊤B)−1B⊤. (6)

A value near 1 indicates that prompts contribute little to new representational directions, while a
lower value suggests successful injection of orthogonal information. Figure 2(b) plots the projection
energy of P0WV onto SA(X0) during training on dSprites/loc–the most dissimilar task in VTAB-1k.
VPT converges to a projection energy near 1, revealing that the prompt output collapses into the
frozen subspace and fails to provide novel signals needed for adaptation.

Together, these findings show that VPT fails to specialize attention or introduce task-specific semantic
bias–capabilities that are particularly critical for distribution-shifted and few-shot settings. To
overcome these limitations, we introduce VIPAMIN: Visual Initialization of Prompts via Attention-
guided Matching and Injection of Novelty. VIPAMIN initializes prompts by aligning them with
semantically relevant input embeddings while injecting directions orthogonal to the frozen subspace.
As shown in Figures 2(a) and 2(b) (red curves), VIPAMIN produces lower attention entropy and
projection energy on dissimilar tasks, enabling more effective adaptation in challenging scenarios.
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4 Methodology: VIPAMIN

We propose VIPAMIN, a novel initialization method for visual prompt tuning that enables prompts to
(1) specialize their attention and (2) inject novel representational directions beyond the pretrained
subspace. VIPAMIN consists of two complementary modules: Matching module, which addresses
the issue of uniform attention by aligning each prompt with semantically coherent input tokens
from the downstream task, thereby promoting specialization over meaningful local regions; and the
Orthogonalizing module, which prevents representational collapse by projecting prompts away from
the pretrained embedding subspace, facilitating the injection of task-specific information.

Matching Module: Prompt Specialization via Semantically Coherent Token Matching The
matching module encourages each prompt to focus on semantically coherent local regions from its
initialization, with controllable locality. A key challenge is identifying such coherent regions without
external supervision (e.g., segmentation labels). To address this, we leverage a pretrained ViT and
extract the embedding matrix Ebatch

0 ∈ RB×(Np+Ne)×d by passing B downstream training images
through the frozen model. After mean pooling across the batch, we obtain E0 ∈ RNe×d.

Next, for each randomly sampled prompt pi ∈ Rd (initialized using Xavier uniform [17]), we project
both the prompt and the mean-pooled input embeddings into the key subspace WK ∈ Rd×d of the
first transformer block. We then compute cosine similarity between the projected prompt and each
input token, and select the top-k most aligned tokens:

{αj}kj=1 = TopKIndices(cos(p⊤
i WK ,E0WK), k) (7)

where TopKIndices(·, k) returns the indices of the top-k values. In ViT-B/16, each token covers
only 0.5% of the image, so semantically coherent regions typically span multiple tokens, which
tend to cluster in the key space. This makes it likely that the top-k tokens share similar semantics.
Additional in-depth discussion is available in Appendix I.3.

Figure 3: Coherence of embeddings in key space.
For an image of a bakery, we show matched tokens
for two randomly sampled prompts by highlighting the
top-k indices (k = 60) in red.

Figure 3 shows an example where two ran-
domly sampled prompts select distinct token
groups. Each group focuses on different se-
mantically coherent components of the im-
age (e.g., display racks, top/bottom shelves
of bread), confirming that random prompts
select diverse yet meaningful regions.

The initialization vector for each prompt is
obtained by averaging its matched token em-
beddings:

pavg
i ←

1

k

k∑
j=1

(E0)αj
. (8)

This encourages each prompt to focus on a
coherent semantic region. The hyperparam-
eter k controls the locality of this focus. With a sufficient number of prompts (Np), their union ensures
broad coverage of salient image regions. This matching-based initialization is fully unsupervised and
requires no additional annotation.

Orthogonalizing Module: Injecting Novel Representational Bias While the matching module
initializes prompts by directly leveraging existing semantic clusters in the embedding space, this
alone may be insufficient for tasks that diverge significantly from the pretraining distribution. In such
cases, prompts initialized solely from existing embeddings may cause the self-attention output in
(4) to collapse into the subspace of SA(E0), limiting representational diversity. To mitigate this, we
introduce an orthogonal component into each prompt that lies outside the row space of SA(E0).

Specifically, we compute the SVD of SA(E0) = UΣV⊤, where V spans the row subspace of
SA(E0). We then project a random prompt pi through the value matrix WV , remove its projection
onto the subspace, and reverse-map it back via the pseudoinverse of WV :

porth
i ← (I−VV⊤)(piWV )(WV )

†. (9)
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Table 1: Fine-tuning results for VTAB-1k benchmarks with pretrained ViT-B/16. The best and second-
best results are highlighted in bold and underline, resp. Per-task results available in Appendix F.

MoCo-v3 pretrained ViT-B/16

Method Natural Specialized Structured Mean

Full 71.95 84.72 51.98 66.23
VPT 67.34 82.26 37.55 57.94
GateVPT 74.84 83.38 49.10 65.80
SPT 74.47 83.93 55.16 68.33
VIPAMIN 76.75 84.14 56.68 69.86

MAE pretrained ViT-B/16

Method Natural Specialized Structured Mean

Full 59.31 79.68 53.82 61.28
VPT 39.96 69.65 27.50 40.96
GateVPT 47.61 76.86 36.80 49.22
SPT 62.53 80.90 53.46 62.58
VIPAMIN 62.60 79.96 57.47 64.09

Each final prompt is a weighted combination of the matched (semantic) and orthogonal components:

pVIPAMIN
i ← (1− λ)pavg

i + λporth
i , (10)

where λ ∈ [0, 1] controls the strength of orthogonalization. This hybrid strategy enables prompts to
both specialize on meaningful regions and expand into new representational directions. Empirically,
higher λ values are beneficial for tasks that are semantically distant from the pretraining domain.

5 Experiments

5.1 Experiment Setup

Datasets and Models We evaluate our method on two image classification benchmarks: Visual
Task Adaptation Benchmark (VTAB-1k) [73] and Fine-Grained Visual Categorization (FGVC). To
assess performance under varying degrees of distribution shift from pretraining, we use VTAB-1k,
which comprises 19 visual classification tasks grouped into three categories: Natural; consisting
of everyday images captured with standard cameras, Specialized; containing images taken using
domain-specific equipment, and Structured; involving tasks that require geometric understanding.
For few-shot evaluation, we construct k-shot settings by sampling the training set of five FGVC
datasets: CUB-200-2011 [59], NABirds [56], Stanford Dogs [30], Stanford Cars [15], and Oxford
Flowers [46]. While these datasets are relatively easier under full supervision compared to VTAB-1k,
they effectively reveal the limitations of self-supervised VPT in data-scarce regimes, as illustrated in
Figure 1(c). Additional benchmark details are provided in Appendix D.

We use ViT-B/16 as the backbone model unless otherwise specified. Our method is evaluated using
two widely adopted self-supervised pretrained backbones: Momentum Contrast v3 (MoCo-v3) [7],
and Masked Autoencoders (MAE) [21]. More experimental details are reported in Appendix D.

Baselines We use VPT [27] and SPT [66] as our main baselines. VPT initializes prompts randomly
using Xavier uniform initialization [18]. SPT performs K-means clustering on reshaped input tokens
E′

0 ∈ RBNe×d extracted from E0 ∈ RB×Ne×d, and uses the resulting Np centroids as prompt
initializations. Due to the high computational cost of clustering in SPT (e.g., ∼27 days on CUB-
200-2011), we instead adopt a low-cost variant that randomly samples Np tokens from E′

0, which
matches SPT’s reported accuracy (Table 4(b) in [66]). We refer to this variant as SPT/rand. For
SPT/rand, we use the full training set to obtain E0, while VIPAMIN uses only a random mini-batch
of size 256. In the FGVC few-shot experiment, both SPT/rand and VIPAMIN sample their respective
batches from the combined training set and validation set.

5.2 Main Result

Table 1 presents the performance of VIPAMIN, baseline visual prompt tuning methods, and full
fine-tuning (Full) across the 19 VTAB-1k tasks, grouped into Natural, Specialized, and Structured
categories. Across both MoCo-v3 and MAE pretrained backbones, VIPAMIN achieves the highest
average accuracy. Notably, it delivers substantial improvements on Structured tasks, outperforming
VPT by +19.13 % (MoCo-v3) and +29.97 % (MAE), demonstrating its effectiveness in tasks requiring
spatial or relational reasoning. Importantly, these gains do not come at the expense of performance on
simpler tasks: VIPAMIN also achieves the best or comparable results on the Natural category under
both backbones, confirming its broad generalization. For MAE, VIPAMIN is the first prompt-based
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Table 2: Few-shot accuracy (%) for k-shot classification across five FGVC datasets averaged over
three independent runs; the final column in each block is the mean accuracy of the five datasets.

Method k = 1 k = 2 k = 4 k = 8

CUB Birds Flowers Dogs Cars Mean CUB Birds Flowers Dogs Cars Mean CUB Birds Flowers Dogs Cars Mean CUB Birds Flowers Dogs Cars Mean

VPT 15.7 7.7 31.4 31.2 4.7 18.1 15.6 11.7 59.0 45.4 6.4 27.6 31.4 14.3 66.2 36.8 9.9 31.7 37.3 17.2 77.8 62.8 13.5 41.7

SPT/rand 17.2 11.7 48.9 35.5 5.3 23.7 29.8 22.5 70.4 49.0 10.9 36.5 51.7 40.5 84.6 59.8 21.7 51.7 66.6 55.0 92.9 69.1 43.8 65.5

VIPAMIN 20.1 12.6 52.8 37.5 5.7 25.8 36.0 23.1 71.6 49.4 11.1 38.2 53.7 41.0 85.1 60.3 21.9 52.4 68.6 55.1 94.3 70.0 43.8 66.4

method to surpass full fine-tuning across all VTAB-1k categories. While it performs strongly on
MoCo-v3 as well, it falls slightly short in the Specialized group.

Table 2 presents k-shot classification results on five fine-grained benchmarks for k ∈ {1, 2, 4, 8}.
VIPAMIN consistently achieves the best performance across all settings. In terms of mean accuracy,
VIPAMIN outperforms VPT by 7.7% at k = 1, and the margin grows to 24.7% at k = 8. While
the gains over the SPT/rand baseline are more modest (1–2%), they remain consistent, underscoring
VIPAMIN’s superior adaptability in data-scarce regimes.

5.3 Scalability Analysis

Table 3: Fine-tuning results for VTAB-1k bench-
marks with MoCo-v3 pretrained ViT-B/16. Spe-
cialized tasks are abbreviated as Spec.

Method Natural Spec Structured Mean
Full 71.95 84.72 51.98 66.23

Linear Probing [24] 67.46 81.08 30.33 54.69
Partial-1 [71] 72.31 84.58 47.89 64.61
Bias [52] 72.89 81.14 53.43 66.43
Adapter [4] 74.19 82.66 47.69 64.82

VPT-Deep [27] 70.27 83.04 42.38 61.22
E2VPT [20] 76.47 87.28 54.91 69.67
SPT-Deep [66] 76.20 84.95 58.36 70.53
iVPT [76] 76.12 84.51 57.88 70.21
DA-VPT [53] 74.24 83.21 55.23 69.13
VFPT [72] 77.47 85.76 58.74 71.33
VIPAMIN-Deep 77.68 84.79 58.80 71.23

Extension to VPT-Deep While our primary
analysis has focused on the non-intrusive VPT-
Shallow–where prompts are prepended before
the first transformer block and propagates–we
also evaluate our main ideas on VPT-Deep vari-
ant. In VPT-Deep, a separate prompt Pl is
prepended to the token sequence at each block:
Bl+1([Pl;Xl]) for l ∈ [L − 1]. Since each
prompt operates only within its corresponding
block, the token-selection dynamics that are crit-
ical in VPT-Shallow are less prominent. How-
ever, we hypothesize that prompt-subspace col-
lapse can still occur independently within each
block’s local prompt space (see Appendix I.5
for further discussion).

In VIPAMIN-Deep, we apply the modules to
each block’s input Xl, using a fixed prompt
length of 20. We compare VIPAMIN-Deep
against established PEFT methods such as
Adapter [4] and Bias Tuning [52], as well as
more intrusive approaches that require architectural changes, including E2VPT [20] and iVPT [76]
(see Appendix C.1 for a detailed breakdown of the overhead). As shown in Table 3, VIPAMIN-Deep
outperforms full fine-tuning across all three VTAB-1k categories, demonstrating strong adaptability.
It also surpasses the best-known prompt initialization baseline, SPT-Deep. While VFPT slightly out-
performs VIPAMIN-Deep in mean accuracy, our method achieves competitive performance without
architectural modifications, showing its simplicity and generality.

Scaling Model and Prompt Length A key limitation of VPT is its reduced performance with larger
backbones, where increased complexity hinders optimization [27]. A similar trend appears with
longer prompts, where added tokens often fail to improve representation [31]. As shown in Fig. 4 (a,
b), VIPAMIN mitigates both issues, maintaining stable convergence even with ViT-H/14, where VPT
fails. Furthermore, VIPAMIN is the only method that consistently benefits from increased prompt
length, with the performance gap widening as prompt capacity grows. This scalability advantage
stems from its semantic bias injection, which enables more effective use of additional prompts.
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Figure 4: (a) MAE-pretrained ViT-B/L/H are evaluated on Oxford Flowers102 from FGVC. (b) We
assess the effect of prompt length in MoCo-v3 on CIFAR-100. (c) We evaluate the performance of
VIPAMIN on MAE across VTAB-1k, varying the hyperparameters k and λ. Datasets are ordered by
LP ratio from lowest to highest. We select the learning rate that yields the highest validation accuracy
and normalize the resulting top-1 accuracy to the [0, 1] range for each dataset (column-wise). A rough
trend of the best-performing hyperparameter combinations is indicated by the red arrow.

5.4 Ablation Study and Further Analysis

Role of k and λ VIPAMIN introduces two key hyperparameters: k in (7), which specifies the
number of tokens to which each prompt attends, and λ in (10), which controls the degree of orthogonal
bias injected into the prompt initialization. Figure 4 (c) clarifies the roles of k and λ. For tasks
that exhibit significant distributional shift, smaller k and larger λ yield the best performance. This
suggests that such tasks benefit from more localized attention and stronger orthogonalization, which
together enable the model to focus on task-specific features not captured by the pretrained backbone.
In contrast, tasks more closely aligned with the pretraining distribution tend to favor larger k and
smaller λ, indicating that broader attention and greater reliance on pretrained representations are
advantageous.

Table 4: Ablation study on the two modules in
VIPAMIN, using MoCo-v3 pretrained models eval-
uated on the VTAB-1k benchmark.

Matching Orth Natural Spec Structured

SPT baseline 74.47 83.93 55.16
✓ 76.50 82.85 56.51
✓ ✓ 76.75 84.14 56.68

Ablation on VIPAMIN Modules We conduct
an ablation study to evaluate the contributions
of the two core components of VIPAMIN: the
matching module and the orthogonalizing mod-
ule. The results are summarized in Table 4. In-
corporating the matching module alone already
yields notable improvements over the SPT base-
line in the Natural group, indicating that seman-
tic token selection is particularly beneficial for
tasks that are well aligned to the pretraining do-
main. In contrast, tasks in the Specialized group
often require the model to acquire novel semantic representations (e.g., identifying abnormal retinal
features). Here, the orthogonalizing module proves essential by projecting the prompt away from the
pretrained embedding space, thereby enabling the injection of new, domain-specific information.

Impact of Orthogonalizing Module on Task-Aligned Representation Learning While the or-
thogonalizing module ensures that the generated prompt lies outside the pretrained subspace, it
remains an open question whether this nudging induces representations aligned with task-relevant
directions that ultimately improve classification performance. To empirically examine this, we
analyze the Last-Layer CLS Representations (LLCR)–i.e., the output embeddings of the final trans-
former block prior to the classification head. As a reference, we treat the LLCR obtained from a
fully fine-tuned model as the oracle, denoted by LLCRft. We then compare this to LLCRno-orth and
LLCRVIPAMIN, which are obtained from models trained using only the matching module and both
the matching and orthogonalizing modules, respectively. We focus on the Diabetic Retinopathy
dataset in VTAB-1k, given its clinical nature and the demand for novel domain-specific knowl-
edge. Our evaluation is two-fold: instance-level analysis and subspace-level analysis. First, at
the instance level, we compute the cosine distance between LLCRft and each of the compared
methods for every validation sample. A Wilcoxon signed-rank test [68] on the paired distances
dcos(LLCRft,LLCRno-orth)− dcos(LLCRft,LLCRVIPAMIN) yields a p-value < 2× 10−7, indicating
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that LLCRVIPAMIN is closer to the fine-tuned oracle than LLCRno-orth. Second, at the subspace level,
we assess representational similarity by viewing the span of each LLCR set as a subspace and com-
puting the Grassmannian distance [39] to LLCRft. The distance between LLCRft and LLCRno-orth is
14.56, whereas the distance between LLCRft and LLCRVIPAMIN is reduced to 14.03. These findings
suggest that the orthogonalizing module not only increases representational diversity but also actively
guides the model toward task-aligned subspaces—thereby nudging the representations in a direction
that approximates the fully fine-tuned oracle more effectively.

dSpr/loc

Sun397

VPT SPT/rand k=2 k=128Input

Figure 5: Red regions indicate their critical
role in the model’s class prediction. The
cases of k = 2 and k = 128 correspond to
VIPAMIN models trained with their respec-
tive hyperparameter, k.

Grad-CAM Inspection We analyze Grad-CAM
[54] visualizations for two datasets in VTAB-1k:
dSprites/location and Sun397, corresponding to the
lowest (most dissimilar to pretraining) and highest
(most similar) LP ratios, respectively. The results
are shown in Figure 5. In the case of VPT, we ob-
serve a uniform attention pattern, with the model
broadly attending to most image patches, regardless
of the dataset. In contrast, SPT/rand produces more
localized attention but often fails to highlight seman-
tically critical regions. For VIPAMIN, the effect of
the hyperparameter k is clearly visible when com-
paring k = 2 and k = 128. A higher k leads to
broader attention across the image, while a lower k
concentrates attention on a narrower region. Conse-
quently, for tasks that require localized attention (e.g.,
dSprites/location), setting a smaller k is advantageous.

6 Conclusion

We introduced VIPAMIN, a parameter-free initialization scheme for visual prompts in self-supervised
models that jointly aligns prompts with semantically meaningful regions and injects novel represen-
tational directions orthogonal to the frozen embedding space of vision transformers. Unlike prior
approaches that rely on auxiliary modules or architectural modifications, VIPAMIN requires only two
lightweight matrix operations, introduces no training overhead, and integrates seamlessly into existing
pipelines. Extensive experiments across 24 vision tasks, including data-scarce settings, demonstrate
consistent performance improvements.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: We clearly indicate the scope and contribution of our study in the abstract and
introduction sections.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Appendix A states the limitations of our work and possible room for improve-
ment.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [NA]

Justification: We don’t include theoretical results.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We disclose every detail of our experiment in Appendix D.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: All code and scripts necessary to reproduce our main experimental results
are published in https://github.com/iamjaekyun/vipamin. We comply with the
NeurIPS code submission guidelines.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We discuss experiment details in Appendix D.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We report the standard deviation of our method’s accuracy in Appendix F and
G. We also report the robustness of our method against randomness in Appendix I.7.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: The computational resources, including GPU specifications used in our experi-
ments, are detailed in Appendix D.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: Our research adheres to the NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: In Appendix A, we state the broader impacts of this work.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
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• If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: This work does not release any models or datasets with a high risk of misuse.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: All the datasets, code, and models used are properly credited.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
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• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: We provide the complete implementation of VIPAMIN, including compre-
hensive documentation and hyperparameter configurations, as part of the supplementary
materials.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: Human subjects are not involved in our research.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: Human subjects are not involved in our research

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: LLM is not involved in the core methods.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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Appendix Overview
The appendix section includes additional experimental results and discussions of our NeurIPS
2025 submission: VIPAMIN: Visual Prompt Initialization via Embedding Selection and Subspace
Expansion, summarized as follows:

• Section A discusses limitations and broader impact
• Section B reviews related works in depth
• Section C presents the VIPAMIN algorithm and an overhead analysis
• Section D elaborates experimental setup
• Section E justifies the use of SPT/rand baseline
• Section F reports full VTAB-1k results
• Section G reports full FGVC few-shot results
• Section H studies adaptability of VIPAMIN, such as generalization across models, scales,

and modality
• Section I provides further analyses, including GradCAM visualization, feature-selection

ablations, hyperparameter roles, and analysis on supervised VPT

A Limitations and Broader Impact

Limitations While our method demonstrates significant improvements for self-supervised visual
prompt tuning (VPT), several important questions remain open for future investigation. (1) Can
the principles behind VIPAMIN generalize to other modalities, such as text or multimodal settings?
(2) What are the fundamental representational differences between supervised and self-supervised
pretrained models, and how do these differences affect prompt behavior? (3) Is there a principled
approach for selecting the hyperparameters introduced in VIPAMIN (e.g., k, λ), to reduce reliance
on empirical tuning? Addressing these questions would enhance the applicability and theoretical
understanding of prompt-based adaptation in broader contexts.

Broader Impact This work contributes to the advancement of parameter-efficient transfer learning
by improving the reliability and adaptability of visual prompt tuning, particularly in self-supervised
settings. By addressing key failure modes–namely, uniform attention and representational collapse–
our method enhances the utility of VPT under distribution shift and in data-constrained regimes.
These improvements may facilitate broader adoption of foundation models in domains where full
fine-tuning is computationally prohibitive or impractical.

More broadly, the VPT paradigm represents a shift toward more sustainable and accessible AI. By
decoupling task adaptation from full model retraining, prompt tuning can significantly reduce the
computational and environmental costs associated with deploying large-scale vision models. This has
the potential to democratize the use of powerful pretrained models, enabling resource-constrained
institutions to more effectively leverage state-of-the-art vision systems.

B Related Works

B.1 Detailed Review of Related Works

Theoretical Foundations of Prompt Tuning While prompt tuning has shown strong empirical
performance, its underlying mechanisms remain incompletely understood. Recent theoretical work
suggests that, under simplified conditions, gradient descent on prompt tokens can selectively modulate
attention–amplifying focus on label-relevant tokens while suppressing noise [48]. Other studies
underscore the expressive limitations of prompt-based methods. For example, [51, 62] argue that
methods like prefix tuning introduce low-rank output biases without modifying attention patterns
among input tokens, largely retrieving existing knowledge rather than enriching representations.

Our study extends these analyses by empirically examining self-supervised visual transformers under
realistic training conditions. We find that randomly initialized prompts, commonly used in VPT,
often fail to specialize or retrieve meaningful semantics during optimization. Moreover, the induced
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low-rank bias frequently collapses into the subspace of the frozen self-attention output–suggesting
that, in practice, prompt signals may be absorbed into the pretrained representation space, limiting
their potential to guide adaptation.

Prompt Initialization in Language and Vision Prompt tuning originated from hard prompts–
manually crafted natural language inputs–to steer pretrained language models [37]. As the field shifted
to continuous, trainable soft prompts, concerns arose around their optimization, particularly due to
slow convergence under standard gradient descent [55]. This motivated prompt initialization strategies
aimed at improving stability and performance. An early study by [36] compared Xavier-uniform
initialization [17] to alternatives using frequent word embeddings and label-token embeddings. While
these improved performance in smaller models, gains diminished with model scale. More recently,
Pretrained Prompt Tuning (PPT) [19] showed that soft prompts perform well with ample data but
struggle in few-shot settings due to poor initialization. PPT addresses this by pretraining prompts
while keeping the backbone frozen, yielding strong improvements in data-scarce regimes.

Despite progress in the language domain, prompt initialization techniques have not been thoroughly
explored in the vision domain. To our knowledge, the only prior work explicitly addressing visual
prompt initialization is Self-Prompt Tuning (SPT) [66]. SPT observes that, during training, prompt
representations tend to converge to the distribution of patch embeddings. Motivated by this, SPT
proposes initializing prompts using prototype embeddings derived from clustering patch tokens,
thereby accelerating convergence.

In contrast to SPT, our work takes a fundamentally different approach. Rather than relying solely on
clustering-based prototypes, we identify and address the two core limitations of visual prompt tuning–
uniform attention and subspace collapse. Our proposed method, VIPAMIN, not only facilitates fast
convergence and stable training through principled initialization but also enhances the representational
diversity of prompts, enabling better adaptation under challenging conditions.

Prompt Tuning in Few-Shot Learning Few-shot learning is a natural use case for prompt tuning,
especially in resource-constrained settings. While most prior studies focus on NLP and multimodal
domains [19, 35, 62, 77], they consistently report limitations in low-data regimes. PPT [19] was
among the first to identify poor performance in few-shot scenarios, attributing it to optimization
challenges, and proposed a prompt-only pretraining strategy to improve generalization.

In the vision domain, [75] similarly highlight the shortcomings of visual prompt tuning in extreme
few-shot settings (e.g., k = 1, 2), and introduce NOAH–a neural architecture search framework that
integrates multiple parameter-efficient tuning (PEFT) methods to enhance few-shot performance.

B.2 In-Depth Comparison with Related Works

Self-Prompt Tuning (SPT) The underlying intuition behind Self-Prompt Tuning (SPT) is that
the convergence of the prompt could be improved by initializing prompts using prototypical repre-
sentations of patch tokens. However, this approach does not involve token-level selection; instead,
it constructs prototypes without explicitly identifying which tokens carry semantically meaningful
information. In contrast, VIPAMIN performs token-level selection in a scalable way and further
enhances adaptation by injecting novel, orthogonal directions–an inductive bias that directly contrasts
with SPT’s prototype-based initialization. This combination proves more effective, especially under
data-scarce scenarios.

Gated Prompt Tuning In [70], the authors highlight that the expression of pretrained knowledge
differs significantly between supervised and self-supervised models. Specifically, through the lens
of deep image priors, they observe that the retention of image-specific information varies across
transformer blocks, and the distribution of task-relevant features depends on the pretraining strategy.
Our work complements these findings in two key ways. First, we identify and analyze specific failure
modes of VPT in self-supervised settings, offering a clearer view of how prompts interact with
frozen embeddings. Second, we move beyond characterizing these differences to propose a practical
method, VIPAMIN, that actively exploits the structural properties of self-supervised representations
to improve adaptation.

24



SPARC (Continual Prompt Learning) Recent work in continual learning with prompts has
proposed initializing new prompts in the orthogonal subspace of previously learned ones, thereby
facilitating adaptation to novel tasks while preserving prior knowledge. This approach, exemplified by
SPARC, seeks to mitigate catastrophic forgetting by reusing task-specific prompts and conditionally
initializing new prompts such that ⟨Pnew,Pold⟩ [26]. While this strategy bears similarity to our
orthogonal initialization, the focus of our method is fundamentally different. Rather than emphasizing
prompt reuse across tasks, we investigate the geometric relationship between prompt tokens and the
representation space, and how this interaction evolves during training. In particular, we formally
motivate the benefit of initializing prompts in the orthogonal complement of the dominant subspace
of representations, highlighting its potential to enhance adaptation by directing attention toward
underutilized directions.

Token-Coordinated Prompt Attention (TCPA) TCPA [41] addresses the limitation of shared
prompts in VPT by assigning token-specific prompts and modulating attention separately for CLS and
patch tokens. This is achieved by explicitly masking and reweighting attention patterns throughout
training. While VIPAMIN shares the motivation of improving prompt-token interaction, it takes a
different route: instead of modifying attention dynamics during training, it initializes prompts using
token clusters from the pretrained key space, ensuring semantic alignment from the outset. More
importantly, VIPAMIN explicitly mitigates prompt collapse into the representation subspace via
orthogonalization. As shown in Table 4 and Figure S3, this proves particularly advantageous for
dissimilar and few-shot tasks where prompt diversity and representational novelty are essential.

C Algorithm

Detailed algorithm description for VIPAMIN is introduced in Algorithm 1.

Algorithm 1 VIPAMIN

Input: Minibatch B, Pretrained Vision TransformerM with parameter θpre, Locality factor of
the matching module k, Relative strength of the orthogonalizing module λ, Prompt length Np,
Randomly initialized prompts Prand

0 = {prand1 , prand2 , · · · , prandNp
}

Output: Set of generated prompts P0 = {p1, p2, · · · , pNp
}

Input Preparation
Fetch self-attention weights of the first block, {WQ,WK ,WV ,bQ,bK ,bV } ⊂ θpre1

Fetch E0 := PosEmbed+ PatchEmbed(B) via feedforwarding B throughM
Fetch SA(E0)← softmax

(
(E0WQ + bQ) (E0WK + bK)

T
/
√
d
)
(E0WV + bW )

Matching Module
IndexMap = RowWiseTopKIndices(Prand

0 WK ×E0WK
T
, k)2

for i← 1 to Np do
pmatch
i ← RowWiseMean(E0[IndexMapi, :])

end for
Pmatch

0 ← (pmatch
0 ,pmatch

1 , · · · ,pmatch
Np

)T

Orthogonalizing Module
SVD Decompose SA(E0),UΣVT = SA(E0)
for i← 1 to Np do
porth
i ← (I−VVT )(prand

i WV + bV )W
†
V − bV

end for
Porth

0 ← (porth
0 ,porth

1 , · · · ,porth
Np

)T

P0 ← (1− λ)Pmatch
0 + λPorth

0
Perform prompt tuning with prompt-prepended input, [P0;E0]

1For models which don’t employ biases in the self-attention module, bQ,bK ,bV are set to zero vectors.
2A := diag

(
∥Ai∥−1

2

)
A
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Table S1: Computational overhead analysis on Flower-102. MoCo-v3 pretrained model is used to
report the accuracy.

Tuned/Total Additional FLOPs Init. GFLOPs Accuracy
VPT 0.30% 0 (17.7 GFLOPs) 0 90.2
E2VPT 0.20% < 0 0 91.3
iVPT 0.31% < 1M 0 N/A
VFPT 0.30% 5.5M 0 92.4
SPT-Deep 0.30% 0 3300 93.2
VIPAMIN-Deep 0.30% 0 1.73 94.0

C.1 Overhead Analysis

The computational overhead introduced by our method is minimal. We execute each module 5 times
using model ViT-B/16, prompt length of 100, and training batch from Resisc45. Excluding the time
required for model and dataset loading (denoted as Input Preparation in Algorithm 1), the average
wall-clock time to execute the core logic of the matching module is 3.94 seconds, with a standard
deviation of 0.06 seconds. The orthogonalizing module incurs slightly greater overhead due to its
reliance on singular value decomposition and pseudo-inverse computation; its core logic requires
9.14 seconds on average, with a standard deviation of 0.11 seconds. Importantly, this overhead is
incurred only once during initialization and is subsequently amortized over the full training process.

Continuing the comparison with other VPT-Deep variants presented in Section 5.3, we further
substantiate the superior efficiency of VIPAMIN-Deep in multiple dimensions. Table S1 shows the
result. First, VIPAMIN, along with SPT-Deep, introduces no additional parameters to be tuned and no
extra FLOPs relative to vanilla VPT. Furthermore, for one-time initialization, SPT incurs an overhead
that is orders of magnitude larger than ours. In addition, the total additional runtime of VIPAMIN
over VPT is under 30 seconds, and the memory overhead is modest–the peak GPU allocation is 2.2
GB on an NVIDIA A6000. Lastly, the seemingly superior efficiency of E2VPT is largely due to its
pruning module, which entails a two-stage training procedure. Overall, VIPAMIN-Deep delivers the
strongest accuracy-compute trade-off among the VPT-Deep variants.

D Experimental Details

Benchmark Datasets Specification In this section, we provide additional details on the benchmarks
used for evaluation: VTAB-1k and FGVC. The 19 datasets included in VTAB-1k are summarized in
Table S2. For the FGVC few-shot experiments, we sample from the training set and use the validation
set for both hyperparameter tuning and extracting embeddings for the initialization procedures of
SPT/rand and VIPAMIN. Additional benchmark specifications are also provided in Table S3.

Hyperparameter Specification Our hyperparameter settings largely follow the configuration used
in [66]. However, for self-supervised backbones, we narrow the learning rate range based on the
recommendations from [70]. The full set of hyperparameters is detailed in Table S4.

Hyperparameter Tuning and Evaluation Protocol We perform a grid search over a predefined
hyperparameter pool on the training set and select the configuration that achieves the highest validation
accuracy. The final reported performance corresponds to the average top-1 accuracy on the test set,
computed over three independent runs using the selected hyperparameters. The complete tuning pool
is provided in Table S4.

Training Configurations We use the AdamW optimizer with a batch size of 32. The learning rate
follows a cosine decay schedule with a linear warm-up period of 10 epochs, consistent with prior
work [66]. Unless otherwise specified, we use a prompt length of 100.

Reproducibility The implementation of VIPAMIN is based on PyTorch [50], with VTAB-1k
datasets loaded via TensorFlow Datasets [1], following established practices in [20, 66, 70]. All
experiments were conducted on NVIDIA A6000 GPUs with 40GB of memory.
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Table S2: Specifications of the VTAB-1k [73] benchmark.
Dataset Description # Classes Train Val Test Preprocessing

CIFAR-100 [32]

Natural

100

800/1000 200

10,000

Normalize by ImageNet Statistics

Caltech101 [14] 102 6,084
DTD [9] 47 1,880
Flowers102 [46] 102 6,149
Pets [49] 37 3,669
SVHN [45] 10 26,032
Sun397 [69] 397 21,750

Patch Camelyon [57]

Specialized

2

800/1000 200

32,768
EuroSAT [23] 10 5,400
Resisc45 [8] 45 6,300
Retinopathy [29] 5 42,670

Clevr/count [28]

Structured

8

800/1000 200

15,000
Clevr/distance [28] 6 15,000
DMLab [2] 6 22,735
KITTI/distance [16] 4 711
dSprites/location [43] 16 73,728
dSprites/orientation [43] 16 73,728
SmallNORB/azimuth [34] 18 12,150
SmallNORB/elevation [34] 9 12,150

Table S3: Specifications of the few-shot datasets from FGVC. ⋆: Due to class imbalance, the training
set size falls short of k × Class Number

Dataset Description # Classes Train size by k-shot Val Test Augmentation

k = 1 k = 2 k = 4 k = 8

CUB-200-2011 [59] Bird species recognition 200 200 400 800 1,600 600 5,794 Resize to 256× 256
→ Random crop to 224× 224
→ Horizontal flip
→ Normalize (ImageNet stats)

NABirds [56] Bird species recognition 555 555 1,110 2,220 4, 427⋆ 2,393 24,633
Oxford Flowers [46] Flower species recognition 102 102 204 408 816 1,020 6,149
Stanford Dogs [30] Dog breed recognition 120 120 240 480 960 1,200 8,580
Stanford Cars [15] Car model classification 196 196 392 784 1,568 815 8,041

E Justification on SPT/rand

Although VIPAMIN outperforms the K-Means-based SPT results reported in the original paper on
VTAB-1k, reproducing this initialization is computationally prohibitive for the full set of experiments
we conduct. As an alternative, we adopt SPT/rand, which achieves the best performance among SPT
variants according to Table 4(b) in [66]. However, as the reported results for SPT/rand are limited to
only two datasets, we compare our reproduced SPT/rand results with the original SPT accuracy on
VTAB-1k. The result can be found in Table S5.

We find that, with the MoCo-v3 backbone, SPT/rand performs comparably to the original SPT. In
contrast, under the MAE-pretrained backbone, SPT/rand underperforms by approximately 2% in
mean accuracy. To ensure consistency with the reported results and to maintain fidelity in baseline
comparisons, we conduct our primary experiments using the MoCo-v3 pretrained model.

F Full Results on VTAB-1k

Table S6 presents the top-1 accuracy for full fine-tuning and VIPAMIN across the 19 individual
datasets in VTAB-1k. For VIPAMIN, we report both the mean and standard deviation of top-1
accuracy, computed over three independent runs with different random seeds. When evaluated on
MoCo-v3 pretrained models, VIPAMIN (shallow or deep) outperforms full fine-tuning in 16 out of
19 tasks. For MAE-pretrained models, it outperforms full fine-tuning in 14 out of 19 tasks. While
the deep variant generally exhibits stronger performance than the shallow variant–likely due to
increased representational capacity from higher prompt dimensionality–there are a few exceptions
(e.g., Clevr/count on MAE, DMLab on MoCo-v3). Overall, these results demonstrate that VIPAMIN
remains effective even when extended to deep prompt configurations.
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Table S4: Hyperparameter tuning range
SPT/rand VIPAMIN

Batch size 32
Learning rate scheduler Cosine Decay with Linear Warmup

Total epochs 100
Prompt length 100

Optimizer AdamW
Learning rate {0.05, 0.1, 0.25, 0.5, 1.0, 2.5, 5.0}
Weight decay 0.01

k – {2, 8, 32, 128}
λ – {0.0, 0.5, 1.0}

Table S5: Per-task fine-tuning for VTAB-1k benchmarks with pretrained ViT-B/16 as backbone. Bold indicates
the better method between SPT and SPT/rand for each task.
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ViT-B with MoCo-v3 pretrained on ImageNet-1K

SPT/rand 89.8 59.3 69.2 92.7 87.9 83.7 39.7 83.2 94.6 84.5 71.3 56.4 59.5 45.0 79.9 75.7 48.4 29.7 46.5 68.3
SPT 91.0 58.1 69.6 91.1 89.4 82.2 39.9 83.6 94.7 82.0 75.4 73.3 60.6 45.7 71.4 75.0 42.1 28.0 45.2 68.3

ViT-B with MAE pretrained on ImageNet-1K

SPT/rand 83.8 25.2 57.7 72.2 71.2 76.0 20.8 77.4 91.9 73.0 73.3 73.6 61.7 40.5 75.0 72.8 44.6 27.9 33.0 60.6
SPT 87.6 29.5 61.5 77.4 80.8 77.2 23.7 84.4 93.0 70.8 75.4 73.3 55.5 44.0 73.2 70.6 48.0 27.4 35.7 62.6

G Full Results on FGVC Few-Shot Experiment

We report the full top-1 accuracy results, including standard deviations over three independent runs
with different random seeds, for our few-shot experiments on the FGVC benchmark. This includes
the shallow and deep variants of VPT, SPT/rand, and VIPAMIN across both MoCo-v3 and MAE
pretrained models. Results for the MoCo-v3 pretrained models are summarized in Table S7. Among
the 20 configurations evaluated (five datasets across four shot counts), VIPAMIN-Deep achieves the
highest accuracy in 14 cases. Moreover, when averaged across the five datasets, VIPAMIN-Deep
consistently outperforms all baselines at every shot level, underscoring its robustness and adaptability
in data-scarce regimes.

A comparable trend is observed for MAE-pretrained models, as reported in Table S8. Here, VIPAMIN-
Shallow obtains the best performance in 5 cases, while VIPAMIN-Deep achieves the highest accuracy
in 11 cases, totaling 16 out of 20. In terms of mean accuracy across datasets, VIPAMIN-Deep again
demonstrates superior performance at all shot levels.

These results collectively reinforce the effectiveness of VIPAMIN in alleviating the pronounced
performance degradation typically observed in prompt tuning on self-supervised backbones under
few-shot learning conditions. Its deep variant, in particular, exhibits consistent and substantial
improvements over existing baselines, highlighting its capability to generalize across both pretraining
paradigms and data scarcity scenarios.

H Adaptability of VIPAMIN

To examine how well our method works beyond pretrain-then-finetune image classification, we
conducted multiple experiments on VIPAMIN under challenging conditions. These experiments
included variations in model sizes, pretraining strategies, out-of-distribution generalization, and
modality.
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Table S6: Per-dataset performance comparison between Full fine-tuning result, VIPAMIN-Shallow,
and VIPAMIN-Deep on VTAB-1k with MoCo-v3 ViT-B/16 and MAE ViT-B/16, over three indepen-
dent runs. “†” indicates results reported in [66].

Dataset MoCo-v3 ViT-B/16 MAE ViT-B/16

Full† VIPAMIN
Shallow

VIPAMIN
Deep Full† VIPAMIN

Shallow
VIPAMIN

Deep

Natural
Caltech101 91.0 92.21±0.24 91.05±0.40 84.2 88.86±0.22 89.01±0.52

CIFAR-100 57.6 71.34±0.30 73.01±0.15 24.6 35.95±0.52 24.82±14.28

DTD 64.6 69.96±0.28 68.85±0.50 56.9 58.92±0.44 59.95±0.50

Flowers102 91.6 92.40±0.29 93.95±0.09 72.7 74.46±1.42 75.53±0.43

Pets 79.9 87.79±0.13 87.97±0.04 74.4 71.88±1.03 79.53±0.10

SVHN 89.8 86.53±0.06 86.83±0.24 86.6 80.04±1.09 81.83±1.80

Sun397 29.1 37.04±0.12 42.13±0.02 15.8 23.05±0.12 23.17±0.40

Specialized
Patch Camelyon 85.1 82.83±0.26 85.89±0.54 81.8 80.13±0.94 84.24±0.46

EuroSAT 96.4 96.26±0.05 96.61±0.14 94.0 92.78±0.53 93.52±2.52

Resisc45 83.1 83.07±0.24 84.80±0.16 72.3 73.26±0.12 75.23±0.33

Retinopathy 74.2 74.39±0.20 71.84±0.73 70.6 73.66±0.14 68.66±1.84

Structured
Clevr/count 55.2 69.23±0.72 74.65±0.95 67.0 73.65±0.42 70.61±3.24

Clevr/distance 56.9 59.28±0.62 63.54±0.70 59.8 57.62±0.68 56.82±3.56

DMLab 44.6 47.56±0.14 47.10±0.55 45.2 43.37±0.29 44.42±3.18

KITTI/distance 77.9 78.25±1.52 79.05±0.60 75.3 78.06±1.47 80.03±1.22

dSprites/loc 63.8 75.82±0.84 84.49±2.41 72.5 80.02±1.96 82.26±1.32

dSprites/ori 49.0 47.81±1.61 47.15±0.44 47.5 46.96±0.57 49.50±0.35

SmallNORB/azi 31.5 26.74±0.31 29.27±0.35 30.2 26.92±0.66 23.23±0.20

SmallNORB/ele 36.9 48.74±2.08 45.17±0.47 33.0 53.13±1.13 46.39±0.97

H.1 Robustness under Distribution Shift

To test whether our approach is confined to the standard pretrain-then-finetune paradigm, we evaluate
Out-of-Distribution (OOD) generalization, a stringent check of robustness beyond in-distribution
tuning. Specifically, we corrupt the CIFAR-100 test set with multiple distribution shifts and compare
against baselines. As summarized in Table S9, our method attains the best accuracy on 5 of 6
corruptions and the highest mean accuracy, improving by 4.0% over SPT/rand. These results indicate
that the benefits of our method extend beyond the pretrain-then-finetune setting, translating into
stronger performance under distribution shift.

H.2 Generalization to Self-Supervised Models and Scales

While our main paper primarily evaluates VIPAMIN using MAE and MoCo-v3 with ViT-Base and
larger models, we further investigate its adaptability across different self-supervised pretraining
paradigms and model scales. To this end, we experiment with DINO ViT-Small/16 and MAE ViT-
Tiny/16, representing the regimes of contrastive learning and masked image modeling, respectively [5,
64].

DINO distinguishes itself from MoCo-v3 by employing self-distillation via a momentum-updated
teacher, while still retaining a contrastive training structure. Notably, DINO achieves 81.5% Top-1
accuracy on ImageNet with ViT-S/16 under fine-tuning. On the other hand, MAE-Tiny, although
not included in the original MAE paper [22], has been adapted in [64], which introduces a tailored
pretraining strategy for smaller architectures. This setup yields 78.0% Top-1 accuracy on ImageNet
with ViT-Tiny.

Table S10 presents the results on VTAB-1k. For DINO ViT-Small/16, VIPAMIN outperforms full fine-
tuning for 16 out of 19 tasks, highlighting its strong adaptability to smaller architectures. However, in
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Table S7: MoCo-v3 few-shot accuracy (%) for k-shot classification across FGVC datasets over three
independent runs.

k-shot Method Mode CUB NABirds Flowers Dogs Cars Mean

1

VPT Shallow 15.67±0.34 7.68±0.35 31.42±1.15 31.18±2.41 4.74±0.10 18.14
Deep 16.87±0.06 8.96±0.39 36.51±21.74 33.87±0.05 4.60±0.15 20.16

SPT/rand Shallow 17.16±0.31 11.67±0.42 48.90±0.79 35.52±0.31 5.29±0.02 23.71
Deep 21.37±0.06 13.46±0.20 53.07±0.28 36.41±0.25 5.70±0.07 26.00

VIPAMIN Shallow 20.14±0.12 12.61±0.08 52.81±0.05 37.47±0.40 5.73±0.14 25.75
Deep 21.65±0.13 13.65±0.08 53.66±0.32 36.89±0.27 5.92±0.13 26.35

2

VPT Shallow 15.59±10.07 11.69±0.21 59.03±0.94 45.40±1.73 6.40±0.12 27.62
Deep 38.19±1.67 7.40±9.06 72.22±0.30 34.50±23.56 9.20±0.38 32.30

SPT/rand Shallow 29.83±0.32 22.54±0.48 70.44±0.22 48.97±0.19 10.90±0.05 36.54
Deep 38.65±0.16 26.13±0.10 75.00±0.29 50.15±0.00 11.78±0.09 40.34

VIPAMIN Shallow 35.97±0.43 23.14±0.28 71.62±0.21 49.39±0.12 11.06±0.07 38.24
Deep 38.53±0.19 26.92±0.09 75.42±0.09 50.86±0.19 12.05±0.11 40.76

4

VPT Shallow 31.35±0.65 14.29±0.04 66.20±0.10 36.81±25.02 9.88±0.14 31.71
Deep 57.71±0.17 29.28±0.56 83.69±1.09 63.06±0.15 8.98±7.87 48.54

SPT/rand Shallow 51.73±0.74 40.46±0.13 84.64±0.07 59.84±0.26 21.66±0.15 51.67
Deep 58.10±0.22 44.81±0.18 84.48±1.33 60.74±0.12 24.12±0.07 54.45

VIPAMIN Shallow 53.65±0.74 40.96±0.09 85.19±0.14 60.25±0.15 21.88±0.11 52.39
Deep 58.01±0.12 44.92±0.05 85.79±1.27 61.27±0.17 25.55±0.05 55.11

8

VPT Shallow 37.25±0.22 17.22±0.14 77.79±0.39 62.79±0.23 13.46±0.40 41.70
Deep 62.78±0.75 31.24±0.15 89.48±0.01 55.95±15.50 26.33±15.97 53.16

SPT/rand Shallow 66.58±0.27 54.96±0.21 92.90±0.04 69.14±0.07 43.80±0.32 65.48
Deep 70.11±0.13 58.40±0.11 94.92±0.21 70.25±0.08 48.64±0.32 68.46

VIPAMIN Shallow 68.55±0.22 55.12±0.06 94.34±0.08 70.03±0.00 43.83±0.13 66.37
Deep 69.63±0.14 58.68±0.09 95.51±0.15 69.66±0.24 51.01±0.28 68.90

Table S8: MAE Few-shot accuracy (%) for k-shot classification across FGVC datasets over three
independent runs.

k-shot Method Mode CUB NABirds Flowers Dogs Cars Mean

1

VPT Shallow 2.28±0.06 0.80±0.02 13.26±1.51 1.08±0.13 0.96±0.13 3.68
Deep 2.03±0.08 0.78±0.01 12.59±1.10 2.55±0.22 1.61±0.09 3.91

SPT/rand Shallow 3.65±0.04 1.67±0.04 30.04±0.29 7.27±0.24 2.90±0.08 9.91
Deep 4.07±0.09 2.15±0.10 29.10±0.72 10.21±0.09 2.79±0.09 9.66

VIPAMIN Shallow 4.16±0.21 1.90±0.18 30.56±0.15 8.29±0.03 2.95±0.09 9.97
Deep 4.55±0.08 2.21±0.07 30.35±0.45 11.32±0.26 2.83±0.10 10.65

2

VPT Shallow 3.80±0.28 2.26±0.23 28.16±4.51 8.40±1.77 3.30±0.22 9.58
Deep 3.64±0.06 2.40±0.08 32.17±0.51 6.21±0.75 3.62±0.05 9.61

SPT/rand Shallow 6.19±0.25 4.40±0.11 46.02±0.91 16.43±0.32 5.54±0.13 15.72
Deep 7.38±0.30 4.70±0.07 46.38±0.41 23.28±0.29 5.21±0.37 17.39

VIPAMIN Shallow 7.85±0.49 4.84±0.34 46.53±1.65 17.40±0.21 5.21±0.25 16.37
Deep 8.30±0.16 4.61±0.12 48.43±0.50 23.57±0.34 5.84±0.10 18.15

4

VPT Shallow 9.12±0.91 5.22±0.16 46.70±0.44 23.28±0.46 4.84±0.46 17.43
Deep 12.77±0.52 11.13±0.23 54.19±1.56 18.30±4.88 8.12±0.48 20.10

SPT/rand Shallow 17.32±0.51 13.19±0.29 67.42±0.13 31.21±0.37 8.74±0.18 27.18
Deep 18.91±0.48 14.38±0.31 66.99±0.44 39.45±0.23 9.37±0.37 29.82

VIPAMIN Shallow 18.82±0.32 14.49±0.29 67.32±0.91 35.29±0.68 8.77±0.04 28.14
Deep 17.99±0.28 14.28±0.32 69.20±0.12 38.93±0.44 9.78±0.18 30.04

8

VPT Shallow 14.53±1.35 10.70±0.73 63.03±0.91 28.68±15.84 8.31±0.40 25.45
Deep 18.80±3.90 22.71±12.45 76.63±0.89 16.00±5.20 20.31±0.30 30.49

SPT/rand Shallow 37.31±0.70 31.30±0.20 80.72±0.48 49.48±0.12 25.42±0.89 44.05
Deep 40.50±0.12 36.12±0.43 82.61±0.59 53.66±0.11 25.60±0.34 47.30

VIPAMIN Shallow 37.55±0.78 31.77±0.38 82.05±0.57 53.21±0.55 28.54±0.39 46.22
Deep 39.22±0.81 34.22±0.36 84.11±0.21 53.98±0.38 27.13±0.09 47.33

the case of the smallest model, MAE ViT-Tiny/16, VIPAMIN falls short of full fine-tuning. While
VIPAMIN still achieves substantial improvements over VPT on MAE ViT-Tiny/16 (as shown later in
Figure S1), its relative underperformance in this low-capacity regime remains an open question.

We hypothesize that the limited embedding dimensionality–for instance, only 16 dimensions per head
in the 12-head ViT-Tiny/16 model–restricts representational flexibility. In such settings, the injection
of prompt tokens may dilute critical interactions among patch embeddings, ultimately leading to
suboptimal performance.
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Table S9: OOD Generalization test on CIFAR-100. Used ViT-B model pretrained by MoCo-v3.
Brightness Contrast Rotation Gaussian Shot Speckle Mean

VPT 36.2 20.9 6.80 13.2 21.4 25.5 20.6
SPT/rand 65.5 47.2 16.8 20.2 37.0 44.5 38.5
VIPAMIN 71.4 57.5 18.7 19.8 39.9 48.8 42.5

Furthermore, we investigate the extension of VIPAMIN to hierarchical transformers–vision backbones
that build multi-scale features via staged downsampling (a pyramid of token resolutions) rather
than a single, fixed-resolution sequence. This structure enhances efficiency and is standard in
tasks such as object detection [44]. We instantiate this with HiViT [74], selected for its explicit
pairing of hierarchical transformers with masked-image modeling (MIM) pretraining. Unlike typical
hierarchical ViTs, HiViT drops the windowed attention and patch merging stage. As shown in
Table S11, VIPAMIN outperforms baselines on 12 of 19 tasks, demonstrating effective transfer to
hierarchical backbones and highlighting its adaptability.

Table S10: Per-dataset performance comparison between Full fine-tuning and VIPAMIN(-Shallow)
on VTAB-1k with DINO ViT-Small/16 and MAE ViT-Tiny/16, over three independent runs. For full
fine-tuning, we search learning rate from [0.0001, 0.0005, 0.001, 0.005] following [27].

Dataset DINO ViT-Small/16 MAE ViT-Tiny/16
Full VIPAMIN Full VIPAMIN

Natural
Caltech101 73.41±1.32 83.01±1.50 61.42±1.37 51.69±0.33
CIFAR-100 26.32±2.88 51.13±0.93 17.51±1.26 16.09±0.10
DTD 54.24±0.82 60.44±0.55 38.58±0.63 31.22±0.23
Flowers102 80.20±1.68 84.28±0.70 55.78±1.69 46.60±0.82
Pets 72.37±1.54 82.24±0.57 29.82±1.09 21.19±0.59
SVHN 84.32±0.68 58.85±27.32 84.29±0.57 69.30±1.21
Sun397 14.98±1.02 28.81±0.40 7.56±0.36 8.73±0.23

Specialized
Patch Camelyon 84.04±2.47 78.06±1.97 78.69±1.09 75.51±0.83
EuroSAT 95.61±0.51 92.61±0.44 92.17±0.20 88.57±0.38
Resisc45 77.30±0.70 75.44±0.62 61.96±0.26 53.39±0.48
Retinopathy 72.65±0.75 73.36±0.24 70.98±0.65 71.81±0.42

Structured
Clevr/count 43.31±0.99 70.73±0.50 62.67±1.68 62.21±0.43
Clevr/distance 49.42±0.70 52.70±0.80 61.51±0.46 60.40±1.29
DMLab 43.30±0.52 44.49±0.57 40.96±0.78 37.19±0.80
KITTI/distance 77.68±0.86 70.37±0.57 71.82±2.12 65.07±2.20
dSprites/loc 46.48±1.24 73.85±0.45 78.88±0.36 76.11±0.79
dSprites/ori 37.24±0.28 40.92±2.24 37.03±0.37 34.17±0.95
SmallNORB/azi 24.82±1.63 20.98±0.09 27.44±0.84 23.25±0.57
SmallNORB/ele 29.60±0.92 34.42±0.65 40.21±1.07 45.21±0.52

H.3 Transferability to Language Tasks

While our motivation in the main paper is limited to visual tasks, we also test our method in the
language domain. We apply our method to BERT-Large [11] on the SuperGLUE benchmark [61]
to test generality across modality and scale. SuperGLUE is an extensive benchmark including the
following tasks–natural language inference (RTE, CB), coreference resolution (WSC), sentence
completion (COPA), word sense disambiguation (WiC), and question answering (MultiRC, ReCoRD,
BoolQ). As shown in Table S12, our method outperforms both P-Tuning v2 [40] and full fine-tuning,
two of the strongest baselines in the language domain. This is an intriguing result, as it suggests that
our motivation regarding selective token attention and the injection of new knowledge can naturally
extend to the language domain as well.
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Table S11: Per-dataset performance comparison between baselines and VIPAMIN(-Shallow) on
VTAB-1k with HiViT, over three independent runs.

Dataset VPT SPT/rand VIPAMIN

Natural
Caltech101 88.26±0.33 88.33±0.20 88.35±0.38
CIFAR-100 40.41±0.96 40.45±1.34 41.05±0.76
DTD 59.98±0.18 60.00±0.22 60.50±0.72
Flowers102 74.65±0.78 76.44±0.08 76.33±0.68
Pets 76.71±0.22 76.91±0.41 76.47±0.07
SVHN 75.61±1.13 81.58±0.61 82.60±0.13
Sun397 22.18±0.43 22.14±0.15 22.33±0.30

Specialized
Patch Camelyon 78.44±0.36 78.40±0.36 79.52±1.10
EuroSAT 93.36±0.12 93.84±0.20 94.65±0.30
Resisc45 68.96±0.72 70.40±0.57 70.22±0.77
Retinopathy 73.80±0.05 74.44±0.21 74.28±0.37

Structured
Clevr/count 67.26±0.27 69.46±0.24 69.14±0.46
Clevr/distance 62.59±0.34 61.65±0.36 62.23±0.44
DMLab 45.12±0.27 45.36±0.50 46.16±0.31
KITTI/distance 79.93±0.93 81.62±0.46 82.23±0.29
dSprites/loc 83.72±0.72 82.94±0.52 86.49±0.46
dSprites/ori 25.79±2.78 29.32±1.88 51.44±0.88
SmallNORB/azi 21.50±1.21 24.21±0.30 22.61±0.18
SmallNORB/ele 39.53±0.48 41.20±0.32 44.02±1.42

Table S12: Per-task results for SuperGLUE development set with a pretrained BERT-Large. “†”
indicates results reported in [72].

BERT-L (335M) BoolQ CB COPA MultiRC ReCoRD RTE WiC WSC Mean

Full† 77.7 94.6 69.0 70.5 70.6 70.4 74.9 68.3 74.5
Prompt Tuning† 67.2 80.4 55.0 59.6 44.2 53.5 63.0 64.4 60.9
P-Tuning v2† 73.1 94.6 73.0 70.6 72.8 78.3 75.1 68.3 75.7
E2VPT† 74.4 80.4 77.0 65.8 71.9 78.7 74.3 67.3 73.7
VFPT† 74.8 81.2 78.1 67.8 72.9 77.2 75.3 68.4 74.5
VIPAMIN-Deep 74.6 94.6 79.0 66.4 70.6 79.1 74.3 69.2 76.0

I Further Analyses

I.1 Extensive Comparison with VPT

Continuing from Figure 1(b) of our main paper, we report the impact of VIPAMIN in terms of LP
ratio (i.e., a proxy for task similarity to the pretraining task), and how it effectively counteracts the
underperformance of vanilla VPT.

Figure S1 presents the results. Two key observations emerge. First, the underperformance of VPT on
tasks with low LP ratios is a consistent trend across different self-supervised pretraining strategies and
model scales. Second, while VIPAMIN consistently improves upon VPT across all LP ratio regimes,
its gains are particularly pronounced on tasks with lower LP ratios. This suggests that addressing
uniform attention patterns and prompt subspace collapse is crucial for enhancing the adaptability of
VPT, especially in tasks that exhibit significant distributional shifts from the pretraining domain.

I.2 GradCAM Analysis

For interpretability, we visualize the GradCAM maps of the trained models on various datasets.
Results are shown in Figure S2. Two distinct failure modes of VPT become apparent, each manifesting
differently depending on the task similarity to the pretraining distribution. For tasks that are similar
to the pretraining domain, VPT exhibits overly uniform attention across the image, failing to localize
semantically meaningful regions. In contrast, VIPAMIN produces sharper and more localized
attention maps, owing to its matching module, which encourages prompt specialization through
semantically coherent token alignment.
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Figure S1: Relative accuracy ratio of VPT and VIPAMIN compared to full fine-tuning across 19
VTAB datasets, sorted by the LP ratio. The three percentages highlighted in red at the top of the figure
denote the mean improvement of VIPAMIN over VPT within each of the three LP ratio segments–low,
medium, and high–as defined by the tertile split of the dataset ordering.

On dissimilar tasks, VPT often fails to grasp the task semantics, resulting in attention focused on
irrelevant or background regions. This suggests an inability to adaptively reconfigure the prompt
representation. VIPAMIN overcomes this limitation by explicitly injecting novel representational
directions into the prompt space via its orthogonalizing module. As a result, VIPAMIN consistently
attends to task-relevant regions, demonstrating improved interpretability and alignment with human
intuition.

Similar Tasks Dissimilar Tasks

VPT VIPAMIN VPT VIPAMIN

Figure S2: GradCAM visualization result of DINO ViT-Small/16 on various VTAB-1k datasets.

I.3 Feature Selection in Matching Module

The matching module in VIPAMIN relies on key-space refined features (Z0WK ) to compute similar-
ity between prompts and input tokens. To assess the impact of the feature type used for matching, we
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conduct an ablation study comparing various reference features extracted from the first transformer
block:

SA(Z0) = softmax

(
Z0WQ ( Z0WK )T

√
d

)
Z0WV

Z1 = B1( Z0 )

When using the attention weights (blue box) as a reference, we directly apply the softmax scores for
patch selection. For other feature options (black boxes), we compute cosine similarity to identify the
top-k tokens. As shown in Table S13, using Z0WK yields the best performance, while attention-
based selection performs the worst. This suggests that explicitly computing similarity in a shared
projected space is critical to the effectiveness of VIPAMIN.

Interestingly, this observation aligns with findings from token merging studies in vision transform-
ers [3], which aim to accelerate inference by merging redundant tokens. In that context, key vectors
(E0WK) have been shown to effectively summarize token content for measuring redundancy. Simi-
larly, our use of the key space exploits the natural clustering of semantically related tokens, enabling
more coherent and task-relevant prompt initialization.

Table S13: Ablation on feature selection. MoCo-v3 pretrained model is trained and evaluated on
Specialized tasks in VTAB-1k. Hyperparameter λ is set to zero for clarity.

Feature Mean Acc
Z0 82.36
Z0WQ 82.39
Z0WK 82.85
softmax 81.80
Z0WV 82.23
Z1 82.22

I.4 Role of Hyperparameters in VIPAMIN

Extending the analysis from Section 5.4, we investigate the functional roles of VIPAMIN’s two
core components by examining trends in optimal hyperparameter settings across tasks. VIPAMIN
introduces two key hyperparameter: k, which specifies the number of tokens to which each prompt
attends, and λ, which controls the degree of orthogonal bias injected into the prompt initialization.

Figure S3 (a) and (b) present results from VTAB-1k and FGVC benchmarks, respectively. For tasks
that exhibit significant distributional shift from the pretraining domain, smaller values of k and λ
approaching 1 yield the best performance. This suggests that such tasks benefit from more localized
attention and stronger orthogonalization, which together enable the model to focus on task-specific
features not captured by the pretrained backbone. In contrast, tasks more closely aligned with the
pretraining distribution tend to favor larger k and smaller λ, indicating that broader attention and
greater reliance on pretrained representations are advantageous.

In few-shot scenarios, similar trends are observed for λ as the number of shots increases, implying
that orthogonal bias provides useful inductive structure when prompt parameters cannot be fully
optimized due to limited supervision. While no definitive trend is observed for k in the few-shot
setting, larger values generally lead to robust performance across varying shot counts.

I.5 Extension toward VPT-Deep

Empirically, we demonstrate that VIPAMIN yields performance gains even under the VPT-Deep
variant as shown in Sec. 5.3, raising the question of whether prompt subspace collapse persists in
deeper architectures. To check this, for each transformer block l ∈ [L], with input [Pl−1;Xl−1], we
compute the projection energy, as defined in (6),

ProjectionEnergy((Pl−1W
l
V )

T → (SAl(Xl−1))
T ), (11)
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Figure S3: Effect of Hyperparameter (a) We evaluate the performance of MAE pretrained VIPAMIN
on VTAB-1k, across varying values of k, λ. Datasets are sorted by their LP ratio (i.e., the relative
closeness of linear probing to full fine-tuning performance) from lowest to highest. (b) We evaluate
the few-shot performance of MoCo-v3 pretrained VIPAMIN on NABirds. The x-axis represents the
number of shots. For both figures (a) and (b), we select the best learning rate based on peak validation
accuracy, and normalize the resulting accuracy to [0, 1] range per dataset (column). We present rough
trend line of best performing hyperparameters in red arrow.
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Figure S4: Deep projection energy trend during training dSprites/loc–the most dissimilar task.

where Wl
V denotes the value projection matrix in the l-th block and SAl(·) is the self-attention module

of l-th block. As shown in Figure S4, prompt collapse is observed only in the first layer–where the
initial shallow prompt is prepended–and does not occur in subsequent layers. This pattern suggests that
the performance improvements of VIPAMIN-Deep may be largely attributed to preventing collapse
at the initial block. However, we posit that deeper orthogonality still plays a crucial role. Through
the lens of representation oversmoothing in deep transformers, prior work [12, 63] shows that self-
attention layers reduce representational rank and act as low-pass filters; our orthogonalization module
explicitly increases the rank of self-attention outputs, counteracting this depth-wise tendency. Thus,
although Figure S4 illustrates only early-layer prompt-side collapse, deep orthogonalization likely
also mitigates oversmoothing of the attention pathway–a complementary failure mode consistent
with the prior theory.

I.6 Supervised VPT vs. Self-Supervised VPT

Our study primarily investigates visual prompt initialization for VPT in self-supervised backbones.
A natural extension is to ask whether similar failure modes–such as uniform prompt attention–also
arise in supervised VPT. Figure S5 presents a comparison of prompt attention entropy across the
19 VTAB-1k tasks (ordered by LP Ratio), contrasting VPT with self-supervised (MoCo-v3) and
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Figure S5: Comparison of prompt attention entropy (5) across VTAB-1k tasks for VPT using MoCo-
v3 (self-supervised) and supervised pretrained backbones.
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Figure S6: We conduct 10 independent training with the best performing hyperparameter and report
the distribution of test accuracy of MAE pretrained model on Resisc45 dataset.

supervised backbones. The results show that VPT with a supervised backbone consistently exhibits
lower entropy, indicating a greater tendency to focus attention on a smaller subset of tokens.

We attribute this behavior to the nature of semantic representations learned through supervised
pretraining. Prior work has shown that supervised ViTs tend to encode more class-aligned and
semantically structured features at the image level [60]. We hypothesize that, in this setting, even
randomly initialized prompts can more easily attend to meaningful regions, thereby reducing the
benefits of specialized prompt initialization techniques.

I.7 Stability Study

Prompt tuning is known to exhibit instability across random seeds, raising concerns about its repro-
ducibility [6]. One key source of variability is the order in which training data is presented during
optimization. To evaluate robustness to this factor, we conduct 10 independent runs of each method
with different data orderings while keeping all other settings fixed, including the initialization point.
As shown in Figure S6, VIPAMIN not only achieves the highest average accuracy but also exhibits
significantly lower variance, indicating improved stability across random seeds.
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