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ABSTRACT

With the ability to learn from static datasets, Offline Reinforcement Learning (RL)
emerges as a compelling avenue for real-world applications. However, state-of-
the-art offline RL algorithms perform sub-optimally when confronted with limited
data confined to specific regions within the state space. The performance degra-
dation is attributed to the inability of offline RL algorithms to learn appropriate
actions for rare or unseen observations. This paper proposes a novel domain
knowledge-based regularization technique and adaptively refines the initial do-
main knowledge to considerably boost performance in limited data with partially
omitted states. The key insight is that the regularization term mitigates erroneous
actions for sparse samples and unobserved states covered by domain knowledge.
Empirical evaluations on standard offline RL datasets demonstrate a substantial
average performance increase compared to ensemble of domain knowledge and
existing offline RL algorithms operating on limited data.

1 INTRODUCTION

Offline RL (Ernst et al., 2005; Pru, 2023), also referred to as batch RL, is a learning approach that
focuses on extracting knowledge solely from static datasets. This class of algorithms has a wider
range of applications being particularly appealing to real-world data sets from business (Zhang &
Yu, 2021), healthcare (Liu et al., 2020), and robotics (Sinha et al., 2022). However, offline RL poses
unique challenges, including over-fitting and the need for generalization to data not present in the
dataset. To surpass the behavior policy, offline RL algorithms need to query Q values of actions
not in the dataset, causing extrapolation errors (Kumar et al., 2019). Most offline RL algorithms
address this problem by enforcing constraints that ensure that the learned policy does not deviate
too far away from the data set’s state action distribution (Fujimoto et al., 2019b; Fujimoto & Gu,
2021) or is conservative towards Out-of-Distribution (OOD) actions (Kumar et al., 2019; Kostrikov
et al., 2021). However, such approaches are designed on coherent batches (Fujimoto et al., 2019b),
which do not account for OOD states.

In many domains, such as business and healthcare, available data is scarce and often confined to
expert behaviors within a limited state space. For example, a sales recommendation system, where
historic data may not contain details about many active users and operator gives coupon of higher
value to attract sales. Learning on such limited data sets can curtail the generalization capabilities of
state-of-the-art (SOTA) offline RL algorithms, resulting in sub-optimal performance (Levine et al.,
2020a). We illustrate this limitation via Fig 1. In Fig 1a) the state action space of a simple Mountain
Car environment (Moore, 1990) is plotted for an expert dataset (Schweighofer et al., 2022) and a
partial dataset with first 10% samples from the entire dataset. Fig 1b) shows the average reward
obtained over these data sets and the average difference between the Q value of action taken by the
under-performing Conservative Q Learning (CQL) (Kumar et al., 2019) agent and the action in the
full expert dataset for unseen states. It can be observed that the performance of the offline RL agent
considerably drops. This is attributed to the critic overestimating the Q value of non-optimal actions
for states that do not occur in the dataset while training.

In numerous real-world applications, expert insights regarding the general behavior of a policy are
often accessible (Silva & Gombolay, 2021). For example, sales operators often distribute lower
discount coupons to active users to maximize profit. While these insights may not be optimal, they
serve as valuable guidelines for understanding the overall behavior of the policy. A rich literature in
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Figure 1: a) Full expert, Mountain Car dataset, and reduced dataset with first 10% samples showing
distribution of state (position, velocity) and action b) CQL agent converging to a sub-optimal policy
for reduced dataset exhibiting high Q values for actions different from actions in the expert dataset
for unseen states.

knowledge distillation (Hu et al., 2016) has shown that teacher networks trained on domain knowl-
edge can transfer knowledge to another network unaware of it. This work aims to leverage a teacher
network mimicking simple decision tree-based domain knowledge to help offline RL generalize in
limited data settings.

The paper makes the following novel contributions:

• We introduce an algorithm dubbed ExID, leveraging intuitive human obtainable expert
insights. The domain expertise is incorporated into a teacher policy, which improves offline
RL in limited-data settings through regularization.

• The teacher based on expected performance improvement of the offline policy during train-
ing, improving the teacher network beyond initial heuristics.

• We demonstrate the effectiveness of our methodology on real world sales promotion
dataset, simglucose dataset, several OpenAI gym and Minigrid environments with stan-
dard offline RL data sets and show that ExID significantly exceeds the performance when
faced with limited data.

2 RELATED WORK

This work improves offline RL learning on batches sampled from static datasets using domain ex-
pertise. One of the major concerns in offline RL is the erroneous extrapolation of OOD actions
(Fujimoto et al., 2019b). Three techniques have been studied in the literature to prevent such errors.
1) Constraining the policy to be close to the behavior policy 2) Penalizing overly optimistic Q values
(Levine et al., 2020b) 3) Learning model dynamics from data (Kidambi et al., 2020; Yu et al., 2020),
where performance highly depends on the accuracy of the learned dynamics. We discuss a few
relevant algorithms following these principles. In Batch-Constrained deep Q-learning (BCQ) (Fuji-
moto et al., 2019b) candidate actions sampled from an adversarial generative model are considered,
aiming to balance proximity to the batch while enhancing action diversity. Algorithms like Random
Ensemble Mixture Model (REM) (Agarwal et al., 2020), Ensemble-Diversified Actor-Critic (EDAC)
(An et al., 2021) and Uncertainty Weighted Actor-Critic (UWAC) (Wu et al., 2021) penalize the Q
value according to uncertainty by either using Q ensemble networks or directly weighting the loss
with uncertainty. CQL (Kumar et al., 2019) enforces regularization on Q-functions by incorporat-
ing a term that reduces Q-values for OOD actions while increasing Q-values for actions within the
expected distribution. However, these algorithms do not handle OOD actions for states not in the
static dataset and can have errors induced by changes in transition probability.
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Integration of domain knowledge in offline RL, though an important avenue, has not yet been exten-
sively explored. Domain knowledge incorporation has improved online RL with tight regret bounds
(Silva & Gombolay, 2021; Bartlett & Tewari, 2009). In offline RL, bootstrapping via blending
heuristics computed using Monte-Carlo returns with rewards has shown to outperform SOTA algo-
rithms by 9% (Geng et al., 2023). Recent works improve offline RL by incorporating a safety expert
(Verma et al., 2024) and preference query (Yang et al., 2023), contrary to our work which improves
imperfect domain knowledge. The closest to our work is Domain Knowledge guided Q learning
(DKQ) (Zhang & Yu, 2021) where domain knowledge is represented in terms of action importance
and the Q value is weighted according to importance. However, obtaining action importance in
practical scenarios is nontrivial.

3 PRELIMINARIES

A DRL setting is represented by a Markov Decision Process (MDP) formalized as (S,A, T, r, ρ0, γ).
Here, S denotes the state space, A signifies the action space, T (s′|s, a) represents the transition
probability distribution, r : S × A → R is the reward function, ρ0 represents the initial state
distribution, and γ ∈ (0, 1] is the discount factor. The primary objective of any DRL algorithm is to
identify an optimal policy π(a|s) that maximizes Est,at [

∑∞
t=0 γ

tr(st, at)] where, s0 ∼ d0(.), at ∼
π(.|st), and s′ ∼ T (.|st, at). Deep Q networks (DQNs) (Mnih et al., 2015) learn this objective by
minimizing the Bellman residual (Qθ(s, a)−BπθQθ(s, a))

2 whereBπθQθ(s, a) = Es′∼T [r(s, a)+
γEa′∼πθ(.|s′)[Qθ′(s

′, a′)]] where θ′ is target network. The policy πθ chooses actions that maximize
the Q value maxa′∈AQθ(s

′, a′). However, in offline RL where transitions are sampled from a pre-
collected dataset B, the chosen action a′ may exhibit a bias towards OOD actions with inaccurately
high Q-values. To handle the erroneous propagation from OOD actions, CQL (Kumar et al., 2020)
learns conservative Q values by penalizing OOD actions. The CQL loss for critic network is given
by

Lcql(θ) = min
Q

α Es∼B[log
∑
a

exp(Qθ(s, a))−

Ea∼B|s[Qθ(s, a)]] +
1

2
Es,a,s′∼B[Qθ −Qθ′ ]2 (1)

Eq. 1 encourages the policy to be close to the actions seen in the dataset. However, CQL works
on the assumption of coherent batches, i.e., if (s, a, s′) ∈ B, then s′ ∈ B. There is no provision
for handling OOD actions for s /∈ B, which can lead to policy failure when data is limited. In the
next sections, we present ExID, a domain knowledge-based approach to improve performance in
data-scarce scenarios.

4 PROBLEM SETTING AND METHODOLOGY

In our problem setting, the RL agent learns the policy on a limited dataset with rare and unseen
demonstrations. We define the characteristics of this dataset as follows:
Definition 4.1. Let B be the original offline reinforcement learning buffer, represented as a multiset
of transitions (s, a, s′). Each transition (s, a, s′) appears a certain number of times in B, which we
denote as NB(s, a, s

′).

The reduced buffer Br is a sub-multiset of B, such that the number of occurrences of any transition
(s, a, s′) in Br, denoted NBr (s, a, s

′), satisfies:

NBr
(s, a, s′) ≤ NB(s, a, s

′).

We observe, performingQ−Learning by sampling from a limited buffer Br may not converge to an
optimal policy for the MDP MB representing the full buffer. This can be shown as a special case of
(Theorem 1,(Fujimoto et al., 2019b)) as pB(s′|s, a) ̸= pBr

(s′|s, a) and no Q updates for (s, a) /∈ Br
leading to sub-optimal policy. Please refer to the App. B for analysis and example.

We assume that a set of common-sense rules in the form of domain knowledge, denoted as D, is
available. This domain knowledge defines a hierarchical mapping from states to actions (S →

3
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Figure 2: Overview of the proposed methodology (a) Training a teacher policy network with domain
knowledge and synthetic data (b) Updating the offline RL critic network with teacher network

A), structured as decision nodes. Each decision node Tηi has constraint ϕηi that determines its
branching, a Boolean indicator µηi selects the branch (↙ or ↘) to follow based on whether the
constraint ϕηi is satisfied.

Action =

{
aηi if leaf
µηiTηi↙(s) + (1− µηi)Tηi↘(s) o/w

µηi(s) =

{
1 if s |= ϕηi
0 o/w (2)

We assume that D gives heuristically reasonable actions for s |= D and SD ∩ SBr
̸= ∅ where

SD, SBr
are the state coverage of D and Br.

Training Teacher: An overview of our methodology is depicted in Fig 2. We first construct a
trainable actor network πωt parameterized by ω from D, Fig 2 step 1. For training πωt synthetic
data Ŝ is generated by sampling states from a uniform random distribution over state boundaries
B(s), Ŝ = U(B(S)). Note that this does not represent the true state distribution and may have
state combinations that will never occur. We train πωt using behavior cloning where state ŝ ∼ Ŝ is
checked with root decision node in Eq. 2. A random action is chosen if ŝ does not satisfy decision
node Tη0 or leaf action is absent. If ŝ satisfies a Tηi , Tηi is traversed and action aηi is returned from
the leaf node. This is illustrated in Fig 2 (a). We term the pre-trained actor network πωt as the teacher
policy.

Regularizing Critic: We now introduce Algo 1 (App C) to train an offline RL agent on Br. Algo 1
takes Br and pretrained πωt as input. The algorithm uses two hyper-parameters, warm start parameter
k and mixing parameter λ. A critic network Qθs with Monte-Carlo (MC) dropout and target network
Qθ

′

s are initialized. ExID is divided into two phases. In the first phase, we aim to warm start the critic
network Qθs with actions from πωt as shown in Fig 2b( i). However, this must be done selectively
as the teacher’s policy is random around the states that do not satisfy domain knowledge. In each
iteration, we first check the states sampled from a mini-batch of Br with D. For the states which
satisfy D we compute the teacher action πωt (s) and critic’s action argmaxa(Q

θ
s(s, a)) and collect it

in lists at, as, Algo 1 lines 4-10. Our main objective is to keep actions chosen by the critic network
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for s |= D close to the teacher’s policy. To achieve this, we introduce a regularization term:

Lr(θ) = Es∼Br∧s|=D︸ ︷︷ ︸
states matching domain rule

[Qθs(s, as)−Qθs(s, at)]2︸ ︷︷ ︸
Q regularizer

(3)

Eq 3 incentivizes the critic to increase Q values for actions from πωt and decreases Q values for other
actions when argmaxa(Q

θ
s(s, a)) ̸= πωt (s) for states that satisfy domain knowledge. Note that Eq 3

will only be 0 when argmaxa(Q
θ
s(s, a)) = πωt (s) for s |= D. It is also set to 0 for s ̸|= D. However,

since πωt mimicking heuristic rules is sub-optimal, it is also important to incorporate learning from
the data. The final loss is a combination of Eq. 1 and Eq. 3 with a mixing parameter λ ∈ [0, 1]:

L(θ) = Lcql(θ) + λEs∼Br∧s|=D[Q
θ
s(s, as)−Qθs(s, at)]2 (4)

The choice of λ and the warm start parameter k depends on the quality of D. In the case of perfect
domain knowledge, λ would be set to 1, and setting λ to 0 would lead to the vanilla CQL loss.
Mixing both the losses allows the critic to learn both from the data in Br and knowledge in D.

Updating Teacher: Given a reasonable warm start, the critic is expected to give higher Q values
for optimal actions for s ∈ D ∩ Br as it learns from data. We aim to leverage this knowledge to
enhance the initial teacher policy πωt trained on heuristic domain knowledge. For s ∼ B and s |= D,
we calculate the average Q-values over actions suggested by the critic and the teacher, and compare
them as outlined in Algo 1 line 11 referring to Cond. 6. For brevity Es∼Br∧s|=D is written as E.

If E(Qθs(s, as)) > E(Qθs(s, at)) , this indicates that the critic expects a higher average return from
its action than from the teacher’s action. In such cases, we can use the critic’s action to update πωt ,
thereby improving the teacher policy over the domain D. However, solely relying on the critic’s
Q-values can be misleading, as high Q-values may appear for out-of-distribution (OOD) actions. To
prevent the teacher from being updated by OOD actions, we measure the average uncertainty of the
Q-values for both the critic and teacher actions.

Uncertainty has been shown to be a good metric for OOD action detection by (Wu et al., 2021;
An et al., 2021). A well-established methodology to capture uncertainty is predictive variance,
which takes inspiration from Bayesian formulation for the critic function and aims to maximize
p(θ|X,Y ) = p(Y |X, θ)p(θ)/p(Y |X), where X = (s, a) and Y represents the true Q value of
the states. However, p(Y |X) is generally intractable we approximate it using Monte Carlo (MC)
dropout, which involves including dropout before every layer of the critic network and using it
during inference (Gal & Ghahramani, 2016).

Following (Wu et al., 2021), we measure the uncertainty of prediction using Eq 5.

V arT [Q(s, a)] ≈ 1

T

T∑
t=1

[Q(s, a)− Q̄(s, a)]2 (5)

Eq 5 estimates the variance of Q valueQ(s, a) for an action a using T forward passes on theQθs(s, a)
with dropout where Q̄(s, a) represents the predictive mean. We then check the average uncertainty
of Q-values for actions chosen by the critic and teacher policies over states in the batch that match
the domain knowledge. The teacher network is updated using the critic’s action only if the critic’s
policy has a higher expected Q-value than the teacher’s and the uncertainty of this action is lower
than that of the teacher’s action. If E(V arTQθs(sr, as)) < E(V arTQθs(sr, at)) , it suggests that the
critic’s actions are learned from expert data in the buffer and are not OOD samples. The condition
is summarized in cond. 6:

E(Qθs(sr, as)) > E(Qθs(sr, at))∧
E(V arTQθs(sr, as)) < E(V arTQθs(sr, at)) (6)

We update the teacher with cross-entropy described in Eq 7:

L(ω) = −
∑
s|=D

(πωt (s)log(πs(s))) (7)
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where, πs(s, a) = eQ(s,a)∑
a′ Q(s,a′) . When the critic’s policy is better than the teacher’s policy, Lr(θ) is

set to 0 Algo 1 Lines 11 to 13. Finally, the critic network is updated using calculated lossL(θ) Algo 1
Lines 17-18. We study the theoretical implications of using domain knowledge based regularization
with simplified assumptions in App. A.

Furthermore, we extend this to continuous domain by using the regularization in Eq 4 during critic
(Qθs) training for continuous domain and using actions from actor network (πs) for cross entropy
loss in Eq 7.

5 EMPIRICAL EVALUATIONS

We investigate the following through our empirical evaluations: 1. Does ExID perform better than
combining D and offline RL algos on different environments with datasets exhibiting rare and OOD
states Sec 5.2? 2. Does ExID generalize to OOD states covered by D Sec 5.4? 3. What is the effect
of varying k, λ and updating πωt Sec 5.5? 4. How does performance vary with the quality of D Sec
5.6?

5.1 EXPERIMENTAL SETTING

We evaluate our methodology on open-AI gym (Brockman et al., 2016), MiniGrid (Chevalier-
Boisvert et al., 2023), real sales promotion (SP) (Qin et al., 2022) and sim-glucose (Gao, 2024)
offline data sets. All our data sets are generated using standard methodologies defined in
(Schweighofer et al., 2022; 2021) except SP which is generated by human operators. All experi-
ments have been conducted on a Ubuntu 22.04.2 LTS system with 1 NVIDIA K80 GPU, 4 CPUs,
and 61GiB RAM. App. G notes the hyperparameter values and network architectures.

Dataset: We experiment on three types of data sets. Expert Data-set (Fu et al., 2020; Gulcehre
et al., 2021; Kumar et al., 2020) generated using an optimal policy without any exploration with high
trajectory quality but low state action coverage. Replay Data-set (Agarwal et al., 2020; Fujimoto
et al., 2019b) generated from a policy while training it online, exhibiting a mixture of multiple
behavioral policies with high trajectory quality and state action coverage. Noisy Data-set (Fujimoto
et al., 2019a;b; Kumar et al., 2020; Gulcehre et al., 2021) generated using an optimal policy that
also selects random actions with ϵ greedy strategy where ϵ = 0.2 having low trajectory quality and
high state action coverage. Additionally we also experiment on human generated dataset for sales
promotion task and simglucose task.

Baselines: We do comparative studies on 10 baselines for OpenAI gym datasets. The first baseline
simply checks the conditions ofD and applies corresponding actions in execution. The performance
of this baseline shows that D is imperfect and does not achieve the optimal reward. CQL SE is
from (Verma et al., 2024) where the expert is replaced by D. The other baselines are an ensemble
of D and eight algorithms popular in the Offline RL literature for discrete environments. These
algorithms include Behavior Cloning (BC) (Pomerleau, 1991), Behaviour Value Estimation (BVE)
(Gulcehre et al., 2021), Quantile Regression DQN (QRDQN) (Dabney et al., 2018), REM, MCE,
BCQ, CQL and Critic Regularized Regression Q-Learning (CRR) (Wang et al., 2020). For a fair
comparison, we use actions from domain knowledge for states not in the buffer and actions from the
trained policy for other states to obtain the final reward. Hence, each algorithm is renamed with the
suffix D in Table 5.1.

Limiting Data: To create limited-data settings for benchmark datasets, we first extract a small per-
centage of samples from the full dataset and remove some of the samples based on state conditions.
This is done to ensure the reduced buffer satisfies the conditions defined in Def 4.1. We describe
the specific conditions of removal in the next section. Further insights and the state visualizations
for selected reduced datasets are in App I. Note : no data reduction has been performed on SP
dataset to demonstrate a real dataset exhibits characteristics of reduced buffer.

5.2 PERFORMANCE ACROSS DIFFERENT DATASETS

Our results for OpenAI gym environments are summarized in Table 5.1 and Minigrid in Table 4
(App E). We observe the performance of offline RL algorithms degrades substantially when part
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Table 1: Average reward [↑] obtained during online evaluation over 3 seeds on openAI gym envs

ENV
DATA

DATA
TYPE

D QRDQN
D

REM
D

BVE
D

CRR
D

MCE
D

BC
D

BCQ
D

CQL
D

CQL
SE

CQL
(FULL)

EXID
(OURS)

MOUNTAIN
CAR

EXPERT

-159.9
±

52.28

-168.2
±

33.71

-147.7
±

21.54

-175.36
±

25.16

-157.2
±

39.09

-152
±

37.41

-181.38
±

28.60

-172.9
±

27.5

-167.49
±

12.3

-161.33
±

18.57

-128.63
±

10.94

-125.5
±

2.60

REPLAY
-137.14

±
39.27

-136.26
±

40.15

-152.0
±

35.06

-137.23
±

42.79

-139.91
±

40.01

-137.26
±

43.04

-136.29
±

36.15

-140.38
±

33.58

-150.67
±

16.68

-135.4
±

3.74

-105.79
±

11.38

NOISY
-141.61

±
33.04

-134.99
±

32.60

-173.95
±

39.60

-178.99
±

23.58

-168.69
±

38.78

-140.0
±

28.5

-144.52
±

43.04

-179.8
±

29.99

-126.96
±

17.84

-107.06
±

12.73

-109.9
±

13.45

CART
POLE

EXPERT

57.0
±

5.35

33.23
±

3.17

41.31
±

8.76

16.16
±

9.41

15.24
±

5.62

16.1
±

4.4

225.76
±

74.39

165.36
±

15.01

121.8
±

14.0

155.78
±

26.47

364.1
±

22.15

307.18
±

137.72

REPLAY
149.09

±
14.05

180.70
±

62.79

11.1
±

2.13

11.24
±

2.71

9.16
±

0.25

144.43
±

2.41

144.76
±

6.04

131.97
±

23.23

113.37
±

5.88

250.02
±

55.02

340.26
±

30.58

NOISY
161
±

6.40

15.33
±

0.58

11.53
±

3.77

13.68
±

7.49

10.66
±

2.04

68.4
±

14.67

63.53
±

14.08

92.6
±

22.05

92.6
±

22.05

93.72
±

37.79

228.61
±

38.64

LUNAR
LANDER

EXPERT

52.48
±

26.51

5.14
±

25.10

-184.84
±

26.45

-681.67
±

34.86

8.79
±

25.38

19.71
±

10.52

38.40
±

23.21

-45.99
±

30.47

65.43
±

71.37

53.22
±

78.85

167.74
±

29.4

161.34
±

17.10

REPLAY
-444.20

±
12.20

-556.81
±

21.39

-572
±

27.93

-131.21
±

31.97

-115.23
±

18.16

136.63
±

12.40

111.47
±

54.67

61.83
±

45.57

87.70
±

18.20

187.72
±

25.62

156.03
±

56.67

NOISY
-4.81
±

97.28

21.41
±

14.71

28.65
±

12.26

-158.27
±

7.71

-50.47
±

15.78

98.62
±

28.01

101.59
±

30.83

5.01
±

128.63

40.35
±

65.72

111
±

52.32

163.57
±

49.24

of the data is not seen and trajectory ratios change. For these cases with only 10% partial data,
ExID surpasses the performance by at least 27% in the presence of reasonable domain knowledge.
The proposed method performs strongest on the replay dataset where the contribution of Lr(θ) is
significant due to state coverage, and the teacher learns from high-quality trajectories. Environment
details are described in the App. E. All domain knowledge trees are shown in the App. E Fig 10.
We describe limiting data conditions and domain knowledge specific to the environment as follows:

Mountain Car Environment: (Moore, 1990) We use simple, intuitive domain knowledge in this
environment shown in the App. E Fig 10 (c), which represents taking a left action when the car is at
the bottom of the valley with low velocity to gain momentum; otherwise, taking the right action to
drive the car up. Fig 6 (c) shows the state action pairs this rule generates on states sampled from a
uniform random distribution over the state boundaries. It can be observed that the states of D cover
part of the missing data in Fig 1 (a). For limiting datasets, we remove states with position > -0.8.
The performance of CQLD and ExID are shown in Fig 3 (a),(b) where ExID surpasses CQLD for
all three datasets.

Cart-pole Environment: For this environment, we use domain knowledge from (Silva & Gombo-
lay, 2021), which aims to move in the direction opposite to the lean of the pole, keeping the cart
close enough to the center. If the cart is close to an edge, the domain knowledge attempts to account
for the cart’s velocity and recenter the cart. The full tree is given in the App. E Fig 10 (a). We
remove states with cart velocity > -1.5 to create the reduced buffer.

Lunar-Lander Environment: We borrow the decision nodes from (Silva et al., 2020) and get
actions from a sub-optimal policy trained online with an average reward of 52.48. The full set of
decision nodes is shown in the App. E Fig 10 (b). D focuses on keeping the lander balanced when
the lander is above ground. When the lander is near the surface, D focuses on keeping the y velocity
lower. To create the reduced datasets, we remove data of lander angle < -0.04.

Mini-Grid Environments: For our experiments, we choose two environments: Random Dynamic
Obstacles 6X6 and LavaGapS 7X7. We use intuitive domain knowledge which avoids crashing into
obstacles in front, left, or right of agent ref. App. E Fig 10 (d), (e). We remove states with obstacles
on the right for creating limited data settings. Due to limitation of space we report the results of the
best-performing algorithms on the replay dataset in Table 4 (App E).
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Figure 3: Performance of (a) CQL and (b) EXID on all datasets for Mountain Car during online
evaluation (c) Evaluation curves for the sales promotion dataset

5.3 CASE STUDY ON REAL HUMAN GENERATED SALES PROMOTION (SP) AND
SIM-GLUCOSE DATASET

SP dataset and environment (Qin et al., 2022) simulates a real-world sales promotion platform. The
number of coupons and the discount the user received will affect his behavior. A higher discount will
promote the sales, but the cost will also increase. The goal for the platform operator is to maximize
the total profit. The horizon of the dataset is 50 days for the training and 30 days for the test.
Domain knowledge ((Qin et al., 2022), App A] : Active users can be given more coupons with lower
discount to maximize profit. We model this as ordernumber > 60 ∧ Avgfee > 0.8 =⇒ [5, 0.95]
where action 1 is number of coupons range [0,5] and action 2 is coupon value (discount value
= (1-coupon value)) range [0.6,0.95]. The dataset exhibits the properties in Def 4.1 as first 50
days of sales does not contain many active users (20.32%) depicting scarcity. The domain rule is
imperfect as coupon value and number depend on multiple factors such as user purchase history and
behavior. As illustrated in the table 2 and Fig 3 (c) the intuitive domain rule enhances performance
by 10.49% in the real dataset. Comparison with other popular offline RL baselines are provided
in App D. The simglucose (Gao, 2024) dataset is obtained from Type 1 diabetes simulation with
domain knowledge: 1. The basal insulin is based on the insulin amount to keep the blood glucose in
the steady state when there is no (meal) disturbance.

(meal = 0) =⇒ basal = u2ss (pmol/L*kg)× body weight (kg)/6000 (U/min)

2. The bolus amount is computed based on the current glucose level, the target glucose level, the
patient’s correction factor, and the patient’s carbohydrate ratio.

(meal > 0) =⇒ bolus =
(

carbohydrate
carbohydrate ratio

)
+

(
current glucose− target glucose

correction factor

)
/time

Table 2: Results on human-generated Sales Promotion and SimGlucose datasets
Dataset D CQL + D CQLSE EXID MOPO

Sales
Promotion

654.68 ± 20.06 722.06 ± 71.40 727.03 ± 49.56 802.91 ± 41.69 404.48 ±
7.39

Sim
Glucose

17.53 ± 3.02 21.79 ± 3.60 24.28 ± 2.45 30.82 ± 3.95 34.64±28.13

5.4 GENERALIZATION TO OOD STATES AND CONTRIBUTION OF Lr(θ)

In Fig 4 (a), (b), we plotQθs(s, aexpert)−Qθs(s, aθ) for CQL and EXID policies for different datasets
of Mountain-Car environments. Action aexpert is obtained from the full expert dataset where posi-
tion > −0.8. We observe that the Q value for actions of CQL policy diverges from the expert policy
actions with high values for the states not in the reduced buffer, whereas ExID stays close to the
expert actions for the unseen states. This empirically shows generalization to OOD states not in the
dataset but covered by domain knowledge. In Fig 4 (d), we plot the contribution by Lr(θ) during
the training and observe the contribution is higher for replay data sets with more state coverage.
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Figure 4: Q value difference between CQL and EXID for expert and policy action on states not
present in the buffer for a) expert b) noisy in log scale c) contribution of Lr(θ)

Figure 5: (a) Effect of different λ on the performance of ExID on Lunar Lander (b) Effect of different
k on the performance of EXID on Lunar Lander (c) Performance of EXID with teacher update, no
teacher update, and just warm start on Cart-pole.

5.5 PERFORMANCE ON VARYING λ, k, AND ABLATION OF πωt

We study the effect of varying λ on the algorithm for the given domain knowledge. We empirically
observe setting a high or a low λ can yield sub-optimal performance, and λ = 0.5 generally yields
good performance. In Fig 5 (a), we show this effect for LunarLander. Plots for other environments
are in the App. H Fig 11. For k we observe setting the warm start parameter to 0 yields a sub-optimal
policy, as the critic may update πωt without completely learning from it. The starting performance
increases with an increase in k as shown in Fig 5 (b) for LunarLander. k = 30 works best according
to empirical evaluations. Plots for other environments are in the App. H Fig 12. We show two
ablations for Cart-pole in Fig 5 (c) with no teacher update after the warm start and no inclusion of
Lr(θ) after the warm start. The warm start in this environment is set to 30 episodes. Fig 5 c) shows
without teacher updated, the sub-optimal teacher drags down the performance of the policy beyond
the warm start, exhibiting the necessity of πωt update. Also, the student converges to a sub-optimal
policy if no Lr(θ) is included beyond the warm start.

Figure 6: (a) D with different average rewards (b) Performance effect on Lunar-lander (c) State
distribution generated for training the teacher network for mountain-car
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5.6 EFFECT OF VARYING D QUALITY

We show the effect of choosing policies asD with different average rewards for Lunar-Lander expert
data in Fig 6 (a) and (b). Rule 1 is optimal and has almost the same effect as Rule 3, which is the D
used in our experiments exhibiting that updating a sub-optimalD can lead to equivalent performance
as optimal D. Using a rule with high uncertainty, as Rule 2, induces high uncertainty in the learned
policy but performs slightly better than the baseline. Rule 4, which has a lower average reward,
also causes gains on average performance with slower convergence. Finally, Rule 5, with very bad
actions, affects policy performance adversely and leads to a performance lower than baseline CQL.

6 CONCLUSION AND LIMITATION

In this paper, we study the effect of limited and partial data on offline RL and observe that the
performance of SOTA offline RL algorithms is sub-optimal in such settings. The paper proposes a
methodology to handle offline RL’s performance degradation using domain insights. We incorporate
a regularization loss in the CQL training using a teacher policy and refine the initial teacher policy
while training. We show that incorporating reasonable domain knowledge in offline RL enhances
performance, achieving a performance close to full data. However, this method is limited by the
quality of the domain knowledge and the overlap between domain knowledge states and reduced
buffer data. In the future, the authors would like to improve on capturing domain knowledge into
the policy network without dependence on data and enhancing the method to work with more general
forms of domain knowledge.
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A THEORETICAL IMPLICATIONS WITH SIMPLIFIED ASSUMPTIONS

Notations

For any deterministic policy π the performance return is formulated as η(π) =
Eτ∼π[

∑∞
t=0 γ

tr(st, at)]

For any policy π, ρπ is the (unormalized) discounted visitation frequency given by ρπ(s) =∑∞
t=0 γ

tP (st = s) where s0 ∼ ρ0(s0) and the trajectory (s0, s1, . . . ) is sampled from the pol-
icy π and ρπ(s) ∈ [0, 1

1−γ ]. ρ̄π(s) = sup{ρπ(s), s ∈ S} ∈ [ 1
|Sπ|(1−γ) ,

1
(1−γ) ]

We denote the regularized policy learned by ExID on Br as π̂ and the unregularized policy as πu.

Lemmas

We introduce the following Lemma required for our theoretical analysis.

Lemma A.1. ((Yang et al., 2023)) Given two policies π1 and π2

η(π1)− η(π2) =
∫
s∈S

ρπ1
(s)(Q∗(s, π1(s)− V ∗(s))ds−

∫
s∈S

ρπ2
(s)(Q∗(s, π2(s)− V ∗(s))ds

Proof. Please refer to Lemma A.1 Eq 17 in (Yang et al., 2023)

Proposition A.2. Denote π̂ as the policy learned by ExID, πu as any offline RL policy learned on
Br and optimal Q function as Q∗ and V function as V ∗. Then it holds that

η(π̂)− η(πu) ≥ Es∼O|πu
[V ∗(s)−Q∗(s, πu(s))]− ρ̄π̂α

Proof. According to (Kakade & Langford, 2002) performance improvement between two policies
if given by

η(π1) = η(π2) + Eτ∼π1

[ ∞∑
t=0

γtQπ2
(st, at)− Vπ2

(st)

]
(8)

Replacing π1 by π̂ and π2 by πu and by following Lemma A.1

η(π̂)− η(πu) =
∫
s∈S

ρπ̂(s)(Q
∗(s, π̂(s))− V ∗(s))ds−

∫
s∈S

ρπu
(s)(Q∗(s, πu(s))− V ∗(s))ds

(9)

=

∫
s∈S

ρπu(s)(V
∗(s)−Q∗(s, πu(s)))ds−

∫
s∈S

ρπ̂(s)(V
∗(s)−Q∗(s, π̂(s)))ds (10)

Dividing the state space into in dataset domain states (I) and OOD states (O). The

(11)[∫
s∈I

ρπu(s)(V
∗(s)−Q∗(s, πu(s)))ds−

∫
s∈I

ρπ̂(s)(V
∗(s)−Q∗(s, π̂(s)))ds

]
︸ ︷︷ ︸

a

+

[∫
s∈O

ρπu
(s)(V ∗(s)−Q∗(s, πu(s)))ds−

∫
s∈O

ρπ̂(s)(V
∗(s)−Q∗(s, π̂(s)))ds

]
︸ ︷︷ ︸

b

(12)
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Since the regularization loss facilitates visitation to OOD states via knowledge distillation we
assume ρπ̂ = ρπu

−∆i for s ∈ i and ρπ̂ = ρπu
+∆o for s ∈ o where ∆i ∈ [0, ρπu(s)] and

∆o ∈ [0, 1
1−γ − ρπu(s)]

a =

∫
s∈I

ρπu(s)(V
∗(s)−Q∗(s, πu(s)))ds−

∫
s∈I

(ρπu −∆i)(s)(V
∗(s)−Q∗(s, π̂(s)))ds (13)

=

∫
s∈I

ρπu
(s)(Q∗(s, π̂(s))−Q∗(s, πu(s)))ds+

∫
s∈I

∆i(s)(V
∗(s)−Q∗(s, π̂(s)))ds (14)

Under assumption in distribution action can be learned from the dataset due to conservatism of
offline RL (Q∗(s, π̂(s))−Q∗(s, πu(s))) ≈ 0, a ≥ 0

b =

∫
s∈O

ρπu
(s)(V ∗(s)−Q∗(s, πu(s)))ds−

∫
s∈O

(ρπu
+∆o)(s)(V

∗(s)−Q∗(s, π̂(s)))ds

(15)

≥
∫
s∈O

ρπu
(s)(V ∗(s)−Q∗(s, πu(s)))ds−

∫
s∈O

ρπ̂(s)(V
∗(s)−Q∗(s, π̂(s)))ds (16)

≥ Es∼O|πu
[V ∗(s)−Q∗(s, πu(s))]− Es∼O|π̂[V

∗(s)−Q∗(s, π̂(s))] (17)

Further loosening the lower bound

= Es∼O|πu
[V ∗(s)−Q∗(s, πu(s))]− ρ̄π̂

∫
s∈O

ρπ̂
ρ̄π̂

(V ∗(s)−Q∗(s, π̂(s)))ds (18)

≥ Es∼O|πu
[V ∗(s)−Q∗(s, πu(s))]− ρ̄π̂

∫
s∈O

(V ∗(s)−Q∗(s, π̂(s)))ds (19)

Combining Eq 14, 17 and 19, and denoting α = Es∼O[V ∗(s)−Q∗(s, π̂(s))]

η(π̂)− η(πu) ≥ Es∼O|πu
[V ∗(s)−Q∗(s, πu(s))]− ρ̄π̂α (20)

Hence, Proposition A.2 follows Q.E.D
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B MISSING EXAMPLES

Performing Q − Learning by sampling from a reduced batch Br may not converge to an optimal
policy for the MDP MB representing the full buffer.

Example (Theorem 1,(Fujimoto et al., 2019b)) defines MDP MB of B from same state action space
of the original MDP M with transition probabilities pB(s′|s, a) = N(s,a,s′)∑

s̃N(s,a,s̃) where N(s, a, s′) is
the number of times (s, a, s′) occurs in B and an terminal state sinit. It states pB(sinit|s, a) = 1
when

∑
s̃N(s, a, s̃) = 0. This happens when transitions of some s′ of (s, a, s′) are missing from

the buffer, which may occur in Br when Br ⊂ B. r(sinit, s, a) is initialized to Q(s, a). We assume
that a policy learned on reduced dataset Br converges to optimal value function and disprove it using
the following counterexample:

Figure 7: Example MDP, sampled buffer MDP and reduced buffer with Q tables

Figure 8: We hypothesize the suboptimal perfor-
mance of offline RL for limited data can be ad-
dressed via domain knowledge via action regular-
ization and knowledge distillation.

We take a simple MDP illustrated in Fig 7 with
3 states and 2 actions (0,1). The reward of each
action is marked along the transition. The sam-
pled MDP is constructed the following sam-
ples (1,0,2)-2,(1,1,2)-3, (2,0,3)-3, and (2,1,3)-
2 and the reduced buffer MDP with samples
(1,0,2)-2 and (1,1,2)-1. The probabilities are
marked along the transition. It is easy to see
that the policy learned under the reduced MDP
converges to a nonoptimal policy after one step
of the Q table update with Q(s, a) = r(s, a) +
p(s′|s, a)∗maxa′(Q(s′, a′)). This happens be-
cause of transition probability shift on reducing
samples pB(s′|s, a) ̸= pBr (s

′|s, a) and no Q
updates for (s, a) /∈ Br.
Our methodology addresses these issues as fol-
lows:

• For s ∈ D ∩ Br better actions are
enforced through regularization using
πωt even when the transition probabil-
ities are low for optimal transitions.

• Incorporating regularization distills
the teacher’s knowledge in the critic-
enhancing generalization.

A visualization is shown in Fig 8.
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C ALGORITHM

The pseudo code of the algorithm is described in Algo 1.

Algorithm 1 Pseudo code for EXID
1: Input: Reduced buffer Br, Initial teacher network πωt , Training steps N , Warm-up steps k, Soft

update τ , hyperparameters: λ, α
2: Initialize Critic with MC dropout and Target Critic Qθs, Q

θ′

s
3: for n← 1 to N do
4: Sample mini-batch b of transitions (s, a, r, s′) ∼ Br at = [], as = [], sr = []
5: for s ∈ b do
6: if s |= D and πωt (s) ̸= argmaxa(Q

θ
s(s, a)) then

7: at.append(π
ω
t (s))

8: as.append(argmaxa(Q
θ
s(s, a)))

9: sr.append(s)
10: end if
11: end for
12: if n > k∧ Cond. 6 then
13: Update πωt (s) using Eq 7
14: Lr(θ) = 0
15: else
16: Calculate Lr(θ) using Eq 3
17: end if
18: Calculate L(θ) using Eq 4
19: Update Qθs with L(θ) and softy update Qθ

′

s and τ
20: end for

D COMPARISON WITH ADDITIONAL CONTINUOUS DOMAIN BASELINES FOR
SP TASK

In this section we compare with additional popular continuous domain baselines. Our experiments
show popular offline RL algorithms suffer from generalization to OOD states a problem that can be
alleviated by inclusion of reasonable domain knowledge. The baselines are:
Strategically Conservative Q-Learning (SCQ) (Shimizu et al., 2024): SCQ uses a Conditional
Variational Autoencoder network to distinguish between OOD actions that are easy or hard to es-
timate and penalizing the Q values accordingly resulting in a less conservative estimate of action
values.
Adaptive Advantage-Guided Policy Regularization for Offline Reinforcement Learning
(Liu et al., 2024): A2PR trains a VAE similar to SCQ to identify high advantage
that differ from those present in the dataset. The VAE is trained with log pψ(a|s) ≥
Eqϕ(z|a, s) [⊮f(A(s, a)) > ϵA log pψ(a|z, s)] − KL [qϕ(z|a, s) ∥ p(z|s)] where s ∈ Br. This
method does not estimate actions for s /∈ Br which ExID does via knowledge distillation.
Constrained policy optimization with explicit behavior density for offline reinforcement learn-
ing (Zhang et al., 2024): CPED uses a flow-GAN model to explicitly estimate the density of be-
havior policy. This facilitates choosing different actions which are safe for the for states in dataset.
The flow GAN model is trained on the dataset generated by behavior policy and does not account
for the states outside the dataset.
MOPO: Model-based Offline Policy Optimization (Yu et al., 2020): Model based RL methods
in the offline RL setting have been proven to perform better as they aim at learning the model dy-
namics from the data. These methods then learn on a MDP based on the dynamics with the reward
function penalized by an estimate of the model’s error. While these methods have outperformed
model free methods in settings where the underlying dynamics is viable to learn from data, our ex-
periments show learning true dynamics under limited data is a harder task. Limited or biased data
can lead to errors in learnt model dynamics. Since the performance of these class of algorithms de-
pend on the learnt dynamics MOPO suboptimal in the Sales Promotion task. However, we observe
MOPO outperforms EXID in the sim-glucose task. We conjecture this is because glucose-insulin
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dynamics often involve smooth and predictable transitions which MOPO can leverage effectively.
However, our method is primarily designed to address the generalization gap of offline model free
RL methods.

In summary all these methods except model based RL methods (which depend on the learned dy-
namics) do not employ any action correction mechanism for OOD states outside the dataset leading
to performance degradation in case of limited data. As a result these algorithms perform almost
similarly on sales promotion dataset. ExID distills knowledge for OOD states from domain knowl-
edge leading to performance enhancement over the baseline methods. The results are summarized
in table.

Environment SCQ A2PR CPED EXID
SP 708.44± 52.19 712± 32.09 715± 47.31 827.76± 43.79

Table 3: Performance comparison with other continuous domain baselines in the SP environment.

E ENVIRONMENTS AND DOMAIN KNOWLEDGE TREES

Figure 9: Graphical visualizations of environments used in the experiments. These environ-
ments are a) MountainCar-v0 b) CartPole-v1 c) LunarLander-v2 d) MiniGrid-LavaGapS7-v0
e) MiniGrid-Dynamic-Obstacles-Random-6x6-v0

The graphical visualization of each environment is depicted in Fig 9. The choice of environment
in this paper depended on two factors: a) Pre-existing standard methods of generating offline RL
datasets. b) Possibility of creating intuitive decision tree-based domain knowledge. All datasets
have been created via (Schweighofer et al., 2021). We explain the environments in detail as follows:

Mountain-car Environment: This environment Fig 9 a) has two state variables, position and ve-
locity, and three discrete actions: left push, right push, and no action (Moore, 1990). The goal is to
drive a car up a valley to reach the flag. This environment is challenging for offline RL because of
sparse rewards, which are only obtained on reaching the flag.

Cart-pole Environment The environment Fig 9 b) has 4 states and 2 actions representing left force
and right force. The objective is to balance a pole on a moving cart.

18
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Lunar-Lander Environment: The task is to land a lunar rover between two flags Fig 9 c) by
observing 8 states and applying one of 4 actions.

Minigrid Environments: Mini-grid (Chevalier-Boisvert et al., 2023) is an environment suite con-
taining 2D grid-worlds with goal oriented tasks. As explained in the main text, we experiment
using MiniGrid-LavaGapS7-v0 and MiniGrid-Dynamic-Obstacles-Random-6x6-v0 from this envi-
ronment suite is shown in Fig 9 d) and e). In MiniGrid-LavaGapS7-v0, the agent has to avoid Lava
and pass through the gap to reach the goal. Dynamic obstacles are similar; however, the agent can
start at a random position and has to avoid dynamically moving balls to reach the goal. The en-
vironment has image observation with 3 channels (OBJECT ID, COLOR ID, STATE). Following
(Schweighofer et al., 2021) experiments, we flatten the image to an array of 98 observations and
restrict action space to three actions: Turn left, Turn Right, and Move forward. The results of min-
igrid environment are reported in Table 4. Since this environment uses a semantic map from image
observation, we collect states from a fixed policy with random actions to generate the teacher’s state
distribution. CQL on the full dataset achieves the average reward of 0.92±0.1 for DynamicObstacles
and 0.53± 0.01 for LavaGapS.

The domain knowledge trees for all the environments are shown in Fig 10. The cart pole domain
knowledge tree Fig 10 a) is taken from (Silva & Gombolay, 2021) (Fig 7). The Lunar Lander
decision nodes Fig 10 b) have been taken from (Silva et al., 2020) (Fig4). For the mini-grid environ-
ments, we construct intuitive decision trees shown in Fig 10 d) and Fig 10 e). Positions 52, 40, and
68 represent positions front, right, and left of the agent. Value 0.2 represents a wall, 0.9 represents
Lava, and 0.6 represents a ball. We check positions 52, 40, and 68 for these obstacles and choose
the recommended actions as domain knowledge.

Figure 10: Domain knowledge trees for a) CartPole-v1 b) LunarLander-v2 c) MountainCar-v0
d) MiniGrid-LavaGapS7-v0 e) MiniGrid-Dynamic-Obstacles-Random-6x6-v0 environments

F RELATED WORK CONTINUED

Knowledge distillation is a well-embraced technique of incorporating additional information in neu-
ral networks and has been applied to various fields like computer vision (Xie et al., 2020; Sohn
et al., 2020), natural language processing (Devlin et al., 2018; Tang et al., 2019), and recommen-
dation systems (Tang & Wang, 2018). (Hinton et al., 2015) introduced the concept of distilling
knowledge from a complex, pre-trained model (teacher) into a smaller model (student). In recent
years, researchers have explored the integration of rule-based regularization techniques within the
context of knowledge distillation. Rule regularization introduces additional constraints based on pre-

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Table 4: Average reward [↑] obtained during online evaluation over 3 seeds on Minigrid environ-
ments

ENVIRONMENT D BC
D

BCQ
D

CQL
D

EXID

MINIGRID
DYNAMIC

RANDOM6X6

0.50
±

0.08

0.59
±

0.07

0.24
±

0.22

0.14
±

0.1

0.79
±

0.07

MINIGRID
LAVAGAPS

7X7

0.27
±

0.09

0.29
±

0.11

0.26
±

0.1

0.28
±

0.12

0.46
±

0.13

defined rules, guiding the learning process of the student model (Hu et al., 2016; Yuan et al., 2020).
These techniques have shown to reduce overfitting and enhance generalization (Tang et al., 2019).
Knowledge distillation is also prevalent in the field of RL (Zheng et al., 2021) and offline RL (Tseng
et al., 2022). Contrary to prevalent teacher-student knowledge distillation techniques, our work does
not enforce parameter sharing among the networks. Through experiments, we demonstrate that a
simple regularization loss and expected performance-based updates can improve generalization to
unobserved states covered by domain knowledge. There are also no constraints on keeping the
same network structure for the teacher, paving ways for capturing the domain knowledge into more
structured networks such as Differentiable Decision Trees (DDTs).

G NETWORK ARCHITECTURE AND HYPER-PARAMETERS

We follow the network architecture and hyper-parameters proposed by (Schweighofer et al., 2021)
for all our networks, including the baseline networks. The teacher BC network πtω and Critic network
Qθs(s, a) consists of 3 linear layers, each having a hidden size of 256 neurons. The number of input
and output neurons depends on the environment’s state and action size. All layers except the last
are SELU activation functions; the final layer uses linear activation. πtω uses a softmax activation
function in the last layer for producing action probabilities. A learning rate of 0.0001 with batch size
32 and α = 0.1 is used for all environments. MC dropout probability of 0.5 and number of stochastic
passes T=10 have been used for the critic network. The uncertainty check is performed every 15
episodes after the warm start to avoid computational overhead. The hyper-parameters specific to our
algorithm for OpenAI gym are reported in Table G. The hyper-parameters specific to our algorithm
for Minigrid environments are reported in Table 6. For SalesPromotion and Simglucose tasks we
used standard hyperparameters of CORL(Tarasov et al., 2022) library with λ = 0.5 and k = 30.

Table 5: Hyperparameters for openAI gym environments
HYPERPARAM MOUNTAINCAR CARTPOLE LUNAR-

LANDER

DATA TYPE EXPERT REPLAY NOISY EXPERT REPLAY NOISY EXPERT REPLAY NOISY

λ 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5

k 30 30 30 30 30 30 30 30 30

πt
ω LR 1e5 1e5 1e5 1e2 1e2 1e2 1e4 1e4 1e4

TRAINING
STEPS

42000 36000 36000 30000 17000 17000 18000 18000 18000

H EFFECT OF k AND λ AND EVALUATION PLOTS

We empirically evaluate the effect of λ In Fig 11 and k in Fig 12. We believe these parameters
depend on the quality of D. For the given D in the environments we empirically observe, λ = 0.5
generally performs well, except for Minigrid environments where λ = 0.1 works better. Increasing
the warm start parameter k generally increases the initial performance of the policy, allowing it to
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Table 6: Hyper-parameters for Mini-grid environments for replay dataset
Environment DynamicObstRandom6x6-

v0
LavaGapS7v0

λ 0.1 0.1
k 30 30

πtω lr 1e4 1e4

training steps 5000 10000

Figure 11: Effect of λ on the performance of ExID for different environments expert datasets.

learn from the teacher. Meanwhile, no warm start adversely affects policy performance as the critic
may erroneously update the teacher. From empirical evaluation, we observe that k = 30 gives a
reasonable start to the policy. All the evaluation plots are shown in Fig 13, where it can be observed
that ExID performs better than baseline CQL.

Figure 12: Effect of k on the performance of ExID for different environments expert datasets.

21



1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

Figure 13: Evaluation plots of CQL and EXID algorithms for Cartpole, Lunar-Lander, and Minigrid
environments using different data types and seeds reported in the main paper Table 5.1.

Figure 14: (a) The effect of data reduction and removal on baseline CQL visualized on Mountain
Car Environment (b) Performance of ExID on removing different parts of the data based on nodes
of Fig 10 (c) from Mountain Car expert dataset

I DATA REDUCTION DESIGN AND DATA DISTRIBUTION VISUALIZATION OF
REDUCED DATASET

In this section, we discuss the intuition behind our data-limiting choices. We also visually represent
selected reduced datasets for the OpenAI gym environments.

Reducing transitions from the dataset: For all datasets, 10% of the data samples were extracted
from the full dataset. This experimental design choice is based on the observation shown in Fig
14 (a). Performance degrades on reducing samples to 0.1% of the dataset and reduces further on
reducing samples to 0.05% of the dataset. However, this drop is not substantial. The performance
also reduces on removing part of the dataset from the full dataset with states > −0.8. However,
the worst performance is observed when both samples are reduced and data is omitted, attributing
to accumulated errors from probability ratio shift contributing to an increase in generalization error.
Our methodology aims to address this gap in performance.
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Removing part of the state space: Due to the simplicity of the Mountain-Car environment, we
analyze the Mountain-Car expert dataset to show the effect of removing data matching state condi-
tions of the different nodes in the decision tree in Fig 10 (c). The performance for each condition
is summarised in Table 7. The most informative node in the tree is position > −0.5; removing
states matching this condition causes a performance drop in the algorithm as the domain knowledge
regularization does not contribute significant information to the policy. Similarly, removing data
with velocity < 0.01 causes a performance drop. However, both performances are higher than the
baseline CQL trained on reduced data. Based on this observation, we choose state removal condi-
tions that preserve states matching part of the information in the tree such that the regularization
term contributes substantially to the policy. Fig 15 shows the data distribution plot of 10% samples
extracted from mountain car replay and noisy data with states > −0.8 removed. Fig 16 shows visu-
alizations for 10% samples extracted from expert data with velocity > −1.5 removed. Fig 17 shows
visualizations for 10% samples extracted from expert data with lander angle < −0.04 removed.

Table 7: Performance of ExID on removing different parts of the data based on nodes of Fig 10 (c)
from Mountain Car expert dataset

Position>-0.5 Position<-0.5 Velocity>0.01 Velocity<0.01

-121.89 ± 7.69 -151 ± 13.6 -128.48 ± 11.84 -147.80 ± 5.01

Figure 15: Data distribution of reduced dataset compared to the full dataset for mountain replay and
noisy data
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Figure 16: Data distribution of reduced cart pole expert dataset compared to the full dataset

24



1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

Figure 17: Data distribution of reduced LunarLander expert dataset compared to the full dataset
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