
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

NOISE-AUGMENTED DEEP NEURAL NETWORKS FOR
IMAGE CLASSIFICATION: INSIGHTS FROM INFORMA-
TION THEORY

Anonymous authors
Paper under double-blind review

ABSTRACT

In this study, we explore the impact of proactively injecting noise into deep learning
models, focusing particularly on image classification and domain adaptation. While
noise is typically seen as harmful, our findings reveal that, under certain conditions,
noise can beneficially influence the entropy of the system, enhancing the learning
outcomes. We employ information entropy to characterize the complexity of the
learning tasks and categorize noise into two types, positive noise (PN) and harmful
noise (HN), based on whether it helps reduce task complexity. We theoretically
prove that positive noise reduces task complexity and demonstrate the presence of
positive noise through extensive experiments on Convolutional Neural Networks
(CNNs) and Vision Transformers (ViTs). We further propose NoisyNN, an in-
novative approach to leverage positive noise. NoisyNN achieves state-of-the-art
performance on various image classification and domain adaptation tasks. Exten-
sive experiments conducted on 15 datasets, including popular image datasets and
out-of-distribution datasets, demonstrate the efficacy of our method. Our study
provides the community with a new paradigm for improving model performance.
Our code is available at https://anonymous.4open.science/r/CodeBase-56B0.

1 INTRODUCTION

Noise, commonly viewed as an obstacle in machine learning and deep learning applications, is
universal due to various factors such as environmental conditions, equipment calibration, and human
activities Ormiston et al. (2020); Thulasidasan et al. (2019). In computer vision, noise can emerge at
multiple stages. During image acquisition, for instance, camera sensors or other imaging devices may
introduce noise. This could manifest as electronic or thermal noise, leading to random variations in
pixel values or color discrepancies in the captured images Sijbers et al. (1996). Additionally, noise
can also be introduced during the image preprocessing phase. Operations such as image resizing,
filtering, or color space conversion are potential sources of noise Al-Shaykh & Mersereau (1998).
Prevailing literature typically assumes that noise adversely affects the task at hand Sethna et al.
(2001); Owotogbe et al. (2019). However, is this assumption always applicable? Our work seeks to
thoroughly examine this critical question. We recognize that the vague definition of noise contributes
to the uncertainty in identifying and characterizing it. One effective way to categorize different noises
is through analysis of task complexity change (Li, 2022). Leveraging the concept of task complexity,
we can categorize noise into two types: positive noise (PN) and harmful noise (HN). PN reduces task
complexity, whereas HN increases it, consistent with traditional views of noise.

Our work, which combines a theoretical analysis based on information theory with extensive empirical
evaluation, reveals that the simple injection of noise into deep neural networks, when done in a
principled manner, can significantly enhance model performance. This study primarily examines
three prevalent types of noise: Gaussian noise, linear transform noise, and salt-and-pepper noise.
Gaussian noise is characterized by random data fluctuations following a Gaussian distribution. Linear
transform noise involves affine elementary transformations applied to the data or embeddings. Salt-
and-pepper noise introduces random black or white pixels to images or replaces some values of
an embedding with its maximum or minimum values. We show that both Gaussian noise and
salt-and-pepper noise are harmful noise when injected into the latent features in the embedding
space, while linear transform noise can be made positive noise under proper constructions.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Input (Images) Predicted Classes

CNN (ResNet) ViT

Deep Model

Inject Noise

conv

pool

conv

conv

conv

conv

conv

conv

conv

conv

Average Pool

FC

..
.

Norm

Multi-Head

Attention

Norm

MLP

1×

Transformer Layer

Patch Embedding

Transformer Layer

..
.

FC

L×

Transformer Layer

Class token

FC: Fully Connected Layer

Noise

Choose a Layer

Noise

Class 1

Class 2

Class 3

Figure 1: An overview of the NoisyNN framework. Showing the unified pipeline for image classifica-
tion problems utilizing deep models such as CNNs or ViTs. The blue arrow indicates the injection of
noise into the embeddings at the chosen layer.

Additional experiments with other noises such as dropout (Srivastava et al., 2014) further confirm the
effectiveness of our proposed approach (App Table 19).

We start by presenting a comprehensive theoretical analysis of how these three types of noise impact
deep learning models. Building on this theoretical foundation, we propose NoisyNN, a novel
method designed to enhance the deep neural network performance on Image Classification and
Domain Adaptation. We conduct extensive experiments with two prominent model families, Vision
Transformers (ViTs) and Convolutional Neural Networks (CNNs), to validate the effectiveness of
NoisyNN. Our empirical findings demonstrate the huge benefits of leveraging positive noise.

The contributions are summarized as follows:

• First, we re-examined the impact of different common noises on deep learning models. Our
theoretical and empirical findings show that certain noise can enhance model performance.

• Second, we introduce NoisyNN, an innovative approach that utilizes positive noise.
NoisyNN achieves state-of-the-art results on various image classification and domain adap-
tation tasks.

• Third, our study, along with the success of NoisyNN, prompts revisiting the role of noise in
machine learning and opens new avenues for future research in leveraging noise.

2 RELATED WORK

Positive Noise. While noise is often assumed harmful to tasks, empirical evidence also suggests
useful applications of noise (Li, 2022). In signal processing, it has been shown that random noise can
facilitate stochastic resonance, enhancing the detection of weak signals Benzi et al. (1981). In neuro-
science, noise has been recognized for its potential to boost brain functionality McClintock (2002);
Mori & Kai (2002). In machine learning, the study of noise also draws a lot of interest (Kosko et al.,
2020; Minsky, 1961; Bishop, 1995; Reed et al., 1995; An, 1996) with various applications spanning
wide areas such as image classification (Li, 2022), Natural Language Processing (NLP) (Pereira et al.,
2021; Khan et al., 2023), training generative adversarial networks (GANs) (Song & Ermon, 2019;
Kim et al., 2024; Wang et al., 2023), and finetuning large language models (Jain et al., 2023b).

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

Recent work by Li (2022) marks a significant advance in the theoretical understanding of different
noises. By employing information theory, they differentiate between beneficial “positive noise” and
detrimental “pure noise”, based on their impact on task complexity. However, their analysis has three
notable limitations: 1. it is confined to only the image space; 2. all experiments are conducted only
on shallow models, far from the current best practices 3. it does not answer the practical question:
how to create and leverage positive noise? Our study aims to address these limitations. We answer
the questions: Does positive noise exist for deep models? and if so, how to leverage the positive
noise? We make a significant extension to the positive-noise framework in Li (2022). Our work
not only confirms the presence of positive and harmful noise in embedding space but also finds that
leveraging positive noise in deeper layers of the embedding space is often more effective (see Fig 2
b&d). Furthermore, we propose a practical approach to leverage the positive noise in deep models,
we term it “NoisyNN”. NoisyNN promises to unlock new potentials in the application of noise for
enhancing neural networks. Other lines of work includes (Kosko et al., 2020; Adigun & Kosko,
2023), which take on an expectation maximization (EM) perspective.

Data Augmentation Data augmentation plays an important role in training deep vision models (Yang
et al., 2023b). The general idea of data augmentation is to compose transformation operations that can
be applied to the original data x to create transformed data x′ without severely altering the semantics.
Common data augmentation range from simple techniques like random flip and crop (Krizhevsky
et al., 2012) to more complex techniques like MixUp (Zhang et al., 2017), CutOut (DeVries & Taylor,
2017), AutoAugment (Cubuk et al., 2019), AugMix (Hendrycks et al., 2019), RandAugment (Cubuk
et al., 2020). More comprehensive reviews can be found in (Mumuni & Mumuni, 2022). Our approach
is closely related to the research on data augmentation but stands apart due to its theoretical foundation.
Our framework provides a more controlled and principled way to augment data, setting it apart from
conventional methods, which often require substantial domain knowledge and ad-hoc design, as
noted in (Cubuk et al., 2020). Later experiments show that our approach outperforms traditional data
augmentation techniques (App Table 18) and is compatible with other data augmentation techniques
(App Table 17).

Comparison with Manifold MixUp. Our NoisyNN shares some similarities with Manifold
MixUp (Verma et al., 2019), a regularization technique designed for supervised image classifi-
cation that extends the MixUp strategy to the embedding space by linearly interpolating embedding
vectors zi (instead of images xi) along with their corresponding labels yi. However, there are several
key differences. Unlike Manifold MixUp, which aims to flatten class representations through training
on interpolated synthetic samples, our NoisyNN is grounded in a theoretical analysis of how noise
injection impacts task entropy, as introduced by (Li, 2022).

Additionally, we derived the optimal form of noise injection (Eq.20) within the linear transform noise
design space, which Manifold MixUp does not provide. Procedurally, Manifold MixUp interpolates
both embeddings and labels to generate synthetic samples, followed by training on these samples,
as its theoretical foundation relies on modifying both features and labels. In contrast, our method
perturbs only the embeddings and leaves the labels unchanged, as our theoretical analysis is based
on un-interpolated labels. Investigating whether label interpolation could be integrated into our
theoretical framework may be a promising avenue for future research. Experiments in App Table 20
show the superior performance of NoisyNN. More comparison can be found in App F.8.

3 METHODS

In information theory, the entropy Shannon (2001) of a random variable x is defined as:

H(x) =

{
−
∫
p(x) log p(x)dx if x is continuous

−
∑

x p(x) log p(x) if x is discrete
(1)

where p(x) is the distribution of the given variable x. The mutual information of two random discrete
variables (x, y) is denoted as Cover (1999):

MI(x, y) =DKL(p(x, y) ∥ p(x)⊗ p(y))

=H(x)−H(x|y) (2)

where DKL is the Kullback–Leibler divergence Kullback & Leibler (1951), and p(x, y) is the joint
distribution. The conditional entropy is defined as:

H(x|y) = −
∑

p(x, y) log p(x|y) (3)

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

These definitions can be extended to continuous variables by replacing the summation with integral.

Following Li (2022), we use T to denote the learning tasks of a deep model mapping from the dataset
to the corresponding labels. Leveraging principles from information theory, we can quantify the
complexity of the learning task T through information entropy H(T) Li (2022). This approach
allows us to gauge task difficulty, where lower entropy indicates an easier task, and vice versa. Denote
the noise by ϵ. The task complexity change when adding noise ϵ can then be measured (Li, 2022):

△S(T , ϵ) = H(T)−H(T |ϵ) (4)

Formally, noise that reduces task complexity, i.e., △S(T , ϵ) > 0, is defined as positive noise (PN).
Conversely, harmful noise (HN) when △S(T , ϵ) ≤ 0.

{
△S(T , ϵ) > 0 ϵ is positive noise
△S(T , ϵ) ≤ 0 ϵ is harmful noise

(5)

3.1 INFLUENCE OF DIFFERENT NOISES ON TASK ENTROPY

We provide a general framework to analyze the influence of different noises on the classification tasks
with the CNNs and ViTs backbones. The framework is depicted in Fig. 1. By injecting specific noise
under certain conditions into the embeddings of an intermediate layer, a model has the potential to
gain additional information to reduce task complexity, thereby improving its performance.

In classification problems, the dataset (X,Y) can be regarded as samples from DX ,Y , where DX ,Y is
some unknown joint distribution of data and labels from feasible space X and Y , i.e., (X,Y) ∼ DX ,Y
Shalev-Shwartz & Ben-David (2014). Hence, given a set of k data points X = {X1, X2, ..., Xk},
the label set Y = {Y1, Y2, ..., Yk} is regarded as sampling from Y ∼ DY|X . The complexity of T
on X is formulated as:

H(T ;X) = H(Y ,X)−H(X) (6)

Accordingly, injecting noise to the raw images can be formulated as follows Li (2022):{
H(T ;X + ϵ) = −

∑
Y ∈Y p(Y |X + ϵ) log p(Y |X + ϵ)

H(T ;Xϵ) = −
∑

Y ∈Y p(Y |Xϵ) log p(Y |Xϵ)
(7)

where ϵ represents additive or multiplicative noise respectively.

Here, we extend the analysis to embedding space. Given a set of k embeddings Z = {Z1, Z2, ..., Zk}
from feature extraction of the raw images X = {X1, X2, ..., Xk}, the label set Y = {Y1, Y2, ..., Yk}
can be regarded as sampling from Y ∼ DY|Z . The complexity of T on embeddings Z is:

H(T ;Z) := H(Y ,Z)−H(Z) (8)

The operation of proactively injecting noise in the latent space can be defined as:{
H(T ;Z + ϵ) := H(Y ,Z + ϵ)−H(Z)

H(T ;Zϵ) := H(Y ,Zϵ)−H(Z)
(9)

where ϵ represents additive or multiplicative noise respectively. The definition of Eq. 8 differs
from (Li, 2022), as our method injects the noise into the latent representations instead of the raw
images.

Gaussian Noise is one of the most common additive noises that appear in computer vision tasks.
The Gaussian noise is independent and stochastic, obeying the Gaussian distribution ϵ ∼ N (µ, σ2).
Injecting Gaussian noise into the embedding space, the complexity of the classification tasks is:

H(T ;Z + ϵ) = H(Y ,Z + ϵ)−H(Z) (10)

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

According to Eq. 4, the entropy change is formulated as:

△S(T , ϵ) =H(T ;Z)−H(T ;Z + ϵ)

=H(Y ,Z)−H(Z)− (H(Y ,Z + ϵ)−H(Z))

=H(Y ,Z)−H(Y ,Z + ϵ)

=
1

2
log

|ΣZ ||ΣY −ΣY ZΣ
−1
Z ΣZY |

|ΣZ+ϵ||ΣY −ΣY ZΣ
−1
Z+ϵΣZY |

=
1

2
log

1

(1 + σ2
ϵ

∑k
i=1

1
σ2
Zi

)(1 + λ
∑k

i=1
cov2(Zi,Yi)

σ2
Xi

(σ2
Zi

σ2
Yi

−cov2(Zi,Yi))
)

(11)

where λ =
σ2
ϵ

1+
∑k

i=1
1

σ2
Zi

, σ2
ϵ is the variance of the Gaussian noise, cov(Zi, Yi) is the covariance of

sample pair (Zi, Yi), σ2
Zi

and σ2
Yi

are the variance of embedding Zi and label Yi, respectively. We use
the symbol M to compare the quantity between the numerator and denominator of the logarithmic
term. If M is greater than 0, then the entropy change is greater than 0, and vice versa.

M =1− (1 + σ2
ϵ

∑k
i=1

1
σ2
Zi

)(1 + λ

k∑
i=1

cov2(Zi, Yi)

σ2
Zi
(σ2

Zi
σ2
Yi

− cov2(Zi, Yi))
)

=− σ2
ϵ

∑k
i=1

1
σ2
Zi

− σ2
ϵ

∑k
i=1

1
σ2
Zi

· λ
k∑

i=1

cov2(Zi, Yi)

σ2
Zi
(σ2

Zi
σ2
Yi

− cov2(Zi, Yi))

− λ

k∑
i=1

cov2(Zi, Yi)

σ2
Zi
(σ2

Zi
σ2
Yi

− cov2(Zi, Yi))

(12)

Since σ2
ϵ ≥ 0 and λ ≥ 0, σ2

Zi
σ2
Yi

− cov2(Zi, Yi) = σ2
Zi
σ2
Yi
(1 − ρ2ZiYi

) ≥ 0, where ρZiYi
is the

correlation coefficient between the embedding Zi and the corresponding label Yi, the sign of M is
negative. Consequently, we conclude that the injection of Gaussian noise into the embedding
space is harmful to the task. Detailed derivations can be found in App sec. B.

Salt-and-pepper Noise is a common multiplicative noise for images, causing unnatural changes such
as black pixels in bright areas or white pixels in dark areas. Injecting salt-and-pepper noise into the
embeddings, the entropy change can be formulated as:

△S(T , ϵ) =H(T ;Z)−H(T ;Zϵ)

=H(Y ,Z)−H(Z)− (H(Y ,Zϵ)−H(Z))

=H(Y ,Z)−H(Y ,Zϵ)

=−
∑
Z∈Z

∑
Y ∈Y

p(Z,Y) log p(Z,Y) +
∑
Z∈Z

∑
Y ∈Y

∑
ϵ∈E

p(Zϵ,Y) log p(Zϵ,Y)

=E
[
log

1

p(Z,Y)

]
− E

[
log

1

p(Zϵ,Y)

]
=E

[
log

1

p(Z,Y)

]
− E

[
log

1

p(Z,Y)

]
− E

[
log

1

p(ϵ)

]
=−H(ϵ)

(13)

The negative entropy change indicates an increase in task complexity, thus we conclude that salt-and-
pepper noise is harmful noise. Further details can be found in App sec. D.

Linear Transform Noise is obtained by applying an elementary transformation to the embeddings
matrix, i.e., ϵ = QZ, where Q is a linear transformation matrix. We name the Q the quality matrix
since it dictates whether the linear transform noise ϵ will be positive or harmful. For the linear
transform noise injection into the embeddings, the complexity of the task is formulated as:

H(T ;Z +QZ) = H(Y ;Z +QZ)−H(Z) (14)

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

The entropy change is then formulated as:

△S(T , QZ) =H(T ;Z)−H(T ;Z +QZ)

=H(Y ,Z)−H(Z)− (H(Y ,Z +QZ)−H(Z))

=H(Y ,Z)−H(Y ,Z +QZ)

=
1

2
log

|ΣZ ||ΣY −ΣY ZΣ
−1
Z ΣZY |

|Σ(I+Q)Z ||ΣY −ΣY ZΣ
−1
Z ΣXY |

=
1

2
log

1

|I +Q|2

=− log |I +Q|

(15)

Linear transform noise can be made positive by formulating Eq. 15 as an optimization problem:

max
Q

△S(T , QZ)

s.t. rank(I +Q) = k

[I +Q]ii ≥ [I +Q]ij , i ̸= j

∥[I +Q]i∥1 = 1

(16)

The most important step is to ensure that I +Q is full rank. The second constraint is to ensure the
diagonal elements of matrix (I +Q) are always larger than other elements of the same row, which
helps make sure that the original information from that instance predominantly informs the prediction
on an instance. Otherwise, the classifier might not be able to make accurate predictions. The third
constraint is to maintain the norm of latent representations. Further details can be found in App sec.
C. Thus linear transform noise can be made positive noise with proper construction.

3.2 NOISYNN

Building upon the theoretical analysis, we introduce NoisyNN, wherein the embeddings are injected
with positive linear transformation noises. For a deep neural network, such as CNN or ViT,
we choose an intermediate layer l and inject linear transform noise to the embeddings Z under
the constraints specified in Eq 16. In fact, many possible quality Q matrices could satisfy these
constraints, forming a design space. Here, we adopt a simple concrete construction of Q that we call
a circular shift as a working example, where each original Zi is perturbed by its neighbor Zi+1.

We can formally express the circular shift noise injection strategy as follows: Let the scalar hy-
perparameter α ∈ [0, 1] define the perturbation strength. The quality matrix of circular shift Q is
implemented as Q = α ∗ U − α ∗ I , where Ui,j = δi+1,j with δi+1,j representing the Kronecker
delta indicator Frankel (2011), and employing wrap-around (or “circular”) indexing.

Q =


−α α 0 0 0
0 −α α 0 0

0 0 −α
. . . 0

0 0 0
. . . α

α 0 0 0 −α

 (17)

4 EXPERIMENTS

We conduct extensive experiments to assess the impact of various noises on classification tasks.
Our experiments consider both CNNs and ViTs, across a wide range of model sizes, including
ResNet-18, ResNet-34, ResNet-50, and ResNet-101 for the ResNet, and ViT-Tiny (ViT-T), ViT-Small
(ViT-S), ViT-Base (ViT-B), and ViT-Large (ViT-L) for ViT. We show that these deep models benefit
from positive noise. Detailed model specifications are in App E. By default, noise is injected into
the last layer embeddings of these models and used in both the training and inference stages.
Results with noise injection at different layers are in Ablation section 5. While this work primarily
focuses on image classification and domain adaptation, we additionally explored other related

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Table 1: ResNet with different kinds of noise on ImageNet. Vanilla means the vanilla model without
noise. Accuracy is shown in percentage. Gaussian noise used here is subjected to standard normal
distribution. In this table, NoisyNN refers to ResNet injected with linear transform noise, where the
employed linear transform noise is derived in Eq. 17. The difference is shown in the bracket.

Model ResNet-18 ResNet-34 ResNet-50 ResNet-101
Vanilla 69.10 (+0.00) 73.27 (+0.00) 75.90 (+0.00) 77.84 (+0.00)

+ Gaussian Noise 67.55 (-1.55) 71.87 (-1.40) 75.57 (-0.33) 77.28 (-0.56)
+ Salt-and-pepper Noise 60.65 (-8.45) 69.83 (-3.44) 51.79 (-24.11) 60.14 (-17.70)

NoisyNN (ResNet-based) 79.62 (+10.52) 80.05 (+6.78) 81.32 (+5.42) 81.91 (+4.07)

tasks: Domain Generalization (App F.9), Text Classification (App F.10) and Object Detection
(App F.11) to assess broader applicability of NoisyNN.

Experiment Setting. The positive noise used in NoisyNN is generated via the formulation in Eq. 17.
The Gaussian noise is generated from a normal distribution with zero mean and unit variance:

ϵ ∼ N (0, 1) (18)

For salt-and-pepper noise, we use the parameter β to control the emergence probability:{
max(Z) if p < β/2

min(Z) if p > 1− β/2
(19)

where p is a probability generated by a random seed, β ∈ [0, 1), and Z is the embedding of an image.

More hyperparameter and training details are in App sec. E. To better see the effect of noise injection,
we refrain from using other data augmentation by default. Later experiments compare NoisyNN with
other data augmentation techniques (Table 18) and investigate the combination of them (Table 17).

4.1 IMAGE CLASSIFICATION RESULTS

We conduct extensive experiments on various image classification benchmarks. Here we mainly
present results on large-scale ImageNet dataset Deng et al. (2009). Additional results on Tiny-
ImageNet (Le & Yang, 2015), ImageNetV2 (Recht et al., 2019), ImageNet-A (Hendrycks et al.,
2021), ImageNet-C Hendrycks & Dietterich (2019), CIFAR-10 (Krizhevsky et al., 2009), CIFAR-100
(Krizhevsky et al., 2009) and medical imaging dataset INbreast (Moreira et al., 2012) can be found in
App Table 12, 13, 9, 10, 11 and 16. Note that NoisyNN does not incur additional computation costs
beyond a simple linear transformation in the embedding space, runtime comparison with vanilla ViT
can be found in App Table 24.

CNN Family. The experiment results of ResNets with different noises on the ImageNet dataset are
summarized in Table 1. Our NoisyNN (ResNet-based) improves the classification accuracy by a large
margin. While Gaussian and salt-and-pepper noise, which are theoretically proven to be harmful,
degrades the performance. The results confirm our analysis in sec 3.1 and show that positive noise
can effectively improve the image classification accuracy of CNN models.

ViT Family. The results of ViT with different noises on ImageNet are shown in Table 2. We can see
that our NoisyNN (ViT-based) improves classification accuracy often by a large margin compared to
vanilla ViT (e.g., more than 5% on ViT-S and ViT-B), while other noises degrade performances (even
with extensive hyperparameter search, see App Table 14, 15). This again supports our theoretical
analysis. In Table 3, we further compare NoisyNN with other prior works, such as DeiT Touvron
et al. (2021), SwinTransformer Liu et al. (2021), DaViT Ding et al. (2022), and MaxViT Tu et al.
(2022). NoisyNN has a significant advantage and achieves the new state-of-the-art result. Note that
JFT-300M and JFT-4B datasets are private and not publicly available Sun et al. (2017).

Deriving Optimal Quality Matrix. A key advantage of our framework is the ability to analytically
derive the optimal quality matrix Q, compared to many other data augmentation methods that need to
search over large hyperparameter space or need domain knowledge for ad-hoc design (Cubuk et al.,
2020).

As depicted in Equation 16, it is intriguing to explore the optimal quality matrix Q that maximizes the
entropy change while adhering to the constraints. This optimization task is equivalent to minimizing

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Table 2: ViT with different kinds of noise on ImageNet. Vanilla means the vanilla model without
injecting noise. Accuracy is shown in percentage. Gaussian noise used here is subjected to standard
normal distribution. In this table, NoisyNN refers to ViT injected with linear transform noise, where
the employed linear transform noise is derived in Eq. 17. The difference is shown in the bracket.
Note without additional data, ViT-L exhibits overfitting on ImageNet Dosovitskiy et al. (2020)
Steiner et al. (2021).

Model ViT-T ViT-S ViT-B ViT-L
Vanilla 79.34 (+0.00) 81.88 (+0.00) 84.33 (+0.00) 88.64 (+0.00)

+ Gaussian Noise 79.10 (-0.24) 81.80 (-0.08) 83.41 (-0.92) 85.92 (-2.72)
+ Salt-and-pepper Noise 78.64 (-0.70) 81.75 (-0.13) 82.40 (-1.93) 85.15 (-3.49)
NoisyNN (ViT-based) 80.69 (+1.35) 87.27 (+5.39) 89.99 (+5.66) 88.97 (+0.33)

Table 3: Comparison between NoisyNN with other ViT variants. Showing Top-1 Accuracy (%) and
standard deviation. Values for other methods are copied from original papers, some of which did not
report standard deviation. Circular Shift Q is referred to Eq. 17. Optimal Q is analytically derived in
Eq. 20. The best performance is marked in bold black.

Model Top1 Acc. Params. Image Res. Pretrained Dataset
ViT-B Dosovitskiy et al. (2020) 84.3 86M 224 × 224 ImageNet 21k
DeiT-B Touvron et al. (2021) 85.7 86M 224 × 224 ImageNet 21k
SwinTransformer-B Liu et al. (2021) 86.4 88M 384 × 384 ImageNet 21k
DaViT-B Ding et al. (2022) 86.9 88M 384 × 384 ImageNet 21k
MaxViT-B Tu et al. (2022) 88.8 119M 512 × 512 JFT-300M (Private)
ViT-22B Dehghani et al. (2023) 89.5 21743M 224 × 224 JFT-4B (Private)
NoisyNN (ViT-based, Circular Shift Q) 89.9±0.5 86M 224 × 224 ImageNet 21k
NoisyNN (ViT-based, Circular Shift Q) 91.3±0.4 86M 384 × 384 ImageNet 21k
NoisyNN (ViT-based, Optimal Q) 93.1±0.9 86M 224 × 224 ImageNet 21k
NoisyNN (ViT-based, Optimal Q) 94.8±1.1 86M 384 × 384 ImageNet 21k

the determinant of the matrix sum of I and Q. Here, we directly present the analytically derived
optimal quality matrix Q:

Qoptimal = diag

(
1

k + 1
− 1, . . . ,

1

k + 1
− 1

)
+

1

k + 1
1k×k (20)

where k is the training data size, and 1k×k is a matrix of ones. The corresponding upper bound of the
entropy change is:

△S(T , QoptimalZ) = (k − 1) log (k + 1) (21)

Detailed derivations are provided in the App C.1.1. We find that the upper bound of the entropy
change of injecting positive noise is determined by the number of data samples, i.e., the scale of the
dataset. The larger the dataset, the more pronounced the effect of injecting positive noise into the
embeddings.

4.2 DOMAIN ADAPTATION RESULTS

Unsupervised domain adaptation (UDA) aims to learn transferable knowledge across the source
and target domains with different distributions Pan & Yang (2009) Wei et al. (2018). Recently,
transformer-based methods achieved the state-of-the-art (SOTA) results on UDA. Here, we evaluate
NoisyNN on the widely used UDA benchmarks, including the Office Home dataset Venkateswara
et al. (2017) and the VisDA2017 dataset Peng et al. (2017). The positive noise is generated via
Eq. 17, and injected into the last layer embeddings of the models, same as sec. 4.1. More details on
the datasets and experiment settings are in App sec. G. We use the same objective function as TVT
Yang et al. (2023a), which is the first work that adopts Transformer-based architecture for UDA. The
results are shown in Table 4 and 5. Our NoisyNN (TVT-based) achieves SOTA on VisDA2017 and is
competitive on Office-Home. These results demonstrate that positive noise also works in the domain
adaptation tasks, where out-of-distribution (OOD) data exists.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Table 4: Comparison with SOTA methods on Office-Home. Above the middle black line are
methods based on CNNs, while below the middle black line are methods based on ViTs. The best
performance is marked in bold black.
Method Ar→ClAr→PrAr→ReCl→ArCl→PrCl→RePr→ArPr→ClPr→ReRe→ArRe→ClRe→PrAvg.
ResNet-50He et al. (2016) 44.9 66.3 74.3 51.8 61.9 63.6 52.4 39.1 71.2 63.8 45.9 77.2 59.4
MinEntGrandvalet & Bengio (2004) 51.0 71.9 77.1 61.2 69.1 70.1 59.3 48.7 77.0 70.4 53.0 81.0 65.8
SAFNXu et al. (2019) 52.0 71.7 76.3 64.2 69.9 71.9 63.7 51.4 77.1 70.9 57.1 81.5 67.3
CDAN+ELong et al. (2018) 54.6 74.1 78.1 63.0 72.2 74.1 61.6 52.3 79.1 72.3 57.3 82.8 68.5
DCANLi et al. (2020) 54.5 75.7 81.2 67.4 74.0 76.3 67.4 52.7 80.6 74.1 59.1 83.5 70.5
BNM Cui et al. (2020) 56.7 77.5 81.0 67.3 76.3 77.1 65.3 55.1 82.0 73.6 57.0 84.3 71.1
SHOTLiang et al. (2020) 57.1 78.1 81.5 68.0 78.2 78.1 67.4 54.9 82.2 73.3 58.8 84.3 71.8
ATDOC-NALiang et al. (2021) 58.3 78.8 82.3 69.4 78.2 78.2 67.1 56.0 82.7 72.0 58.2 85.5 72.2
ViT-BDosovitskiy et al. (2020) 54.7 83.0 87.2 77.3 83.4 85.6 74.4 50.9 87.2 79.6 54.8 88.8 75.5
TVT-BYang et al. (2023a) 74.9 86.8 89.5 82.8 88.0 88.3 79.8 71.9 90.1 85.5 74.6 90.6 83.6
CDTrans-BXu et al. (2022) 68.8 85.0 86.9 81.5 87.1 87.3 79.6 63.3 88.2 82.0 66.0 90.6 80.5
SSRT-B Sun et al. (2022) 75.2 89.0 91.1 85.1 88.3 90.0 85.0 74.2 91.3 85.7 78.6 91.8 85.4
NoisyNN (TVT-based) 78.3 90.6 91.9 87.8 92.1 91.9 85.8 78.7 93.0 88.6 80.6 93.5 87.7

Table 5: Comparison with SOTA methods on Visda2017. Above the middle line are methods based
on CNNs, while below the middle line are methods based on ViTs. The best performance is marked
in bold.
Method plane bcycl bus car horse knife mcycl person plant sktbrd train truck Avg.
ResNet-50He et al. (2016) 55.1 53.3 61.9 59.1 80.6 17.9 79.7 31.2 81.0 26.5 73.5 8.5 52.4
DANNGanin & Lempitsky (2015) 81.9 77.7 82.8 44.3 81.2 29.5 65.1 28.6 51.9 54.6 82.8 7.8 57.4
MinEntGrandvalet & Bengio (2004) 80.3 75.5 75.8 48.3 77.9 27.3 69.7 40.2 46.5 46.6 79.3 16.0 57.0
SAFNXu et al. (2019) 93.6 61.3 84.1 70.6 94.1 79.0 91.8 79.6 89.9 55.6 89.0 24.4 76.1
CDAN+ELong et al. (2018) 85.2 66.9 83.0 50.8 84.2 74.9 88.1 74.5 83.4 76.0 81.9 38.0 73.9
BNM Cui et al. (2020) 89.6 61.5 76.9 55.0 89.3 69.1 81.3 65.5 90.0 47.3 89.1 30.1 70.4
CGDMDu et al. (2021) 93.7 82.7 73.2 68.4 92.9 94.5 88.7 82.1 93.4 82.5 86.8 49.2 82.3
SHOTLiang et al. (2020) 94.3 88.5 80.1 57.3 93.1 93.1 80.7 80.3 91.5 89.1 86.3 58.2 82.9
ViT-BDosovitskiy et al. (2020) 97.7 48.1 86.6 61.6 78.1 63.4 94.7 10.3 87.7 47.7 94.4 35.5 67.1
TVT-BYang et al. (2023a) 92.9 85.6 77.5 60.5 93.6 98.2 89.4 76.4 93.6 92.0 91.7 55.7 83.9
CDTrans-BXu et al. (2022) 97.1 90.5 82.4 77.5 96.6 96.1 93.6 88.6 97.9 86.9 90.3 62.8 88.4
SSRT-B Sun et al. (2022) 98.9 87.6 89.1 84.8 98.3 98.7 96.3 81.1 94.9 97.9 94.5 43.1 88.8
NoisyNN (TVT-based) 98.8 95.5 84.8 73.7 98.5 97.2 95.1 76.5 95.9 98.4 98.3 67.2 90.0

5 ABLATION

Design Choice. We conduct a comprehensive ablation on the two critical design choices of NoisyNN:
the perturbation strength α and the layer l where the noise is injected. Results are shown in Fig. 2. We
observe that injecting positive noise into deeper layers often yields better performance. Furthermore,
within the region α < 0.5 (the constraint in Eq. 16), a larger α provides better performance, which
aligns with theoretical analysis, as a larger α induces a more substantial entropy change (Eq. 15, 17).

Table 6: Variants of ViT with different kinds of noise on TinyImageNet. Vanilla means the vanilla
model without noise. Accuracy is shown in percentage. Gaussian noise used here is subjected to
standard normal distribution. Linear transform noise used in this table is designed to be positive noise.
The difference is shown in the bracket.

Model DeiT SwinTransformer BeiT ConViT
Vanilla 85.02 (+0.00) 90.84 (+0.00) 88.64 (+0.00) 90.69 (+0.00)

+ Gaussian Noise 84.70 (-0.32) 90.34 (-0.50) 88.40 (-0.24) 90.40 (-0.29)
+ Salt-and-pepper Noise 84.03 (-1.01) 87.12 (-3.72) 42.18 (-46.46) 89.93 (-0.76)

+ Linear Transform Noise 86.50 (+1.48) 95.68 (+4.84) 91.78 (+3.14) 93.07 (+2.38)
Params. 86M 87M 86M 86M

Compatibility with Other Architectures. We also proactively inject noise into other ViT variants,
such as DeiT Touvron et al. (2021), Swin Transformer Liu et al. (2021), BEiT Bao et al. (2021), and
ConViT d’Ascoli et al. (2021). The results are reported in Table 6. As expected, these variants of
ViTs benefit from the positive noise. These additional four ViT variants are at the base scale, whose
parameters are listed in the table’s last row. For a fair comparison, we use identical experimental

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

(b) The relationship between positive noise injection layer and

top-1 accuracy, CNN family.

(c) The relationship between perturbation strength and top-1

accuracy, ViT family.

(d) The relationship between positive noise injection layer and

top-1 accuracy, ViT family.

(a) The relationship between perturbation strength and top-1

accuracy, CNN family.

Figure 2: Ablation on perturbation strength (a, c) and noise injection layer (b, d). Showing top-1
accuracy on ImageNet. The positive noise refers to the linear transform noise from 17. For parts (a)
and (c), the linear transform positive noise is injected into the last layer. Note that in (d) ViT-L has 24
layers while the other variants have 12. For visualization purpose we show the performance up to
layer 12.

settings for each kind of experiment. For example, we use the identical setting for vanilla ConViT,
ConViT with different kinds of noise. From the experimental results, we can observe that the different
variants of ViT significantly improve prediction accuracy through injecting positive noise. The
results on different scale datasets and variants of the ViT family demonstrate that positive noise can
universally improve the model performance.

Comparison with common data augmentation techniques. To compare NoisyNN with data
augmentation techniques and explore whether our proposed NoisyNN is compatible with existing
data augmentation techniques, we conduct corresponding experiments in App Table 18. The results
demonstrate that linear transform positive noise significantly outperforms the common data aug-
mentation techniques evaluated. Integrating linear transform positive noise with other common data
augmentation techniques does not substantially change performance.

6 CONCLUSION AND LIMITATION

This study theoretically and empirically explores the impacts of injecting noise into the embedding
space of deep neural networks. We show that Gaussian and salt-and-pepper noise are harmful noises
while linear transform noise can be made positive noise under proper construction and thus positively
affect deep neural networks. The results of the extensive experiments on the 15 datasets, which
include datasets with significant domain shifts, demonstrate the efficacy of our approach. Our study
provides the community with a new paradigm for improving model performance. However, the
theoretical analysis of the current study is tailored to classification tasks. While we preliminarily
explored the applicability of the NoisyNN framework for other tasks (Domain Generalization, Text
Classification, and Object Detection), more study is needed to confirm its effectiveness for those
tasks, which might entail conducting theoretical analyses and extensive empirical evaluations.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Olaoluwa Adigun and Bart Kosko. Noise-boosted recurrent backpropagation. Neurocomputing, 559:
126438, 2023.

Osama K. Al-Shaykh and Russell M. Mersereau. Lossy compression of noisy images. IEEE
Transactions on Image Processing, 7(12):1641–1652, 1998.

Guozhong An. The effects of adding noise during backpropagation training on a generalization
performance. Neural computation, 8(3):643–674, 1996.

Hangbo Bao, Li Dong, and Furu Wei. BEiT: BERT pre-training of image transformers. International
Conference on Learning Representations, 2021.

Roberto Benzi, Alfonso Sutera, and Angelo Vulpiani. The mechanism of stochastic resonance.
Journal of Physics A: mathematical and general, 14(11):L453, 1981.

Chris M Bishop. Training with noise is equivalent to tikhonov regularization. Neural computation, 7
(1):108–116, 1995.

Fabio M. Carlucci, Antonio D’Innocente, Silvia Bucci, Barbara Caputo, and Tatiana Tommasi.
Domain generalization by solving jigsaw puzzles. Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 2229–2238, 2019.

Raymond H. Chan, Chung-Wa Ho, and Mila Nikolova. Salt-and-pepper noise removal by median-
type noise detectors and detail-preserving regularization. IEEE Transactions on image processing,
14(10):1479–1485, 2005.

Thomas M. Cover. Elements of information theory. John Wiley & Sons, 1999.

Ekin D Cubuk, Barret Zoph, Dandelion Mane, Vijay Vasudevan, and Quoc V Le. Autoaugment:
Learning augmentation policies from data. Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, 2019.

Ekin D Cubuk, Barret Zoph, Jonathon Shlens, and Quoc V Le. Randaugment: Practical automated
data augmentation with a reduced search space. In Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition workshops, pp. 702–703, 2020.

Shuhao Cui, Shuhui Wang, Junbao Zhuo, Liang Li, Qingming Huang, and Qi Tian. Towards
discriminability and diversity: Batch nuclear-norm maximization under label insufficient situations.
CVPR, pp. 3941–3950, 2020.

Mostafa Dehghani, Josip Djolonga, Basil Mustafa, Piotr Padlewski, Jonathan Heek, Justin Gilmer,
Andreas Steiner, and et al. Scaling vision transformers to 22 billion parameters. arXiv preprint
arXiv:2302.05442 (2023), 2023.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Feifei Li. Imagenet: A large-scale
hierarchical image database. In IEEE conference on computer vision and pattern recognition, pp.
248–255, 2009.

Terrance DeVries and Graham W Taylor. Improved regularization of convolutional neural networks
with cutout. arXiv preprint arXiv:1708.04552, 2017.

Mingyu Ding, Bin Xiao, Noel Codella, Ping Luo, Jindong Wang, and Lu Yuan. Davit: Dual attention
vision transformers. In In Computer Vision–ECCV 2022: 17th European Conference, pp. 74–92,
2022.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit,
and Neil Houlsby. An image is worth 16x16 words: Transformers for image recognition at scale.
In arXiv preprint arXiv:2010.11929, 2020.

Zhekai Du, Jingjing Li, Hongzu Su, Lei Zhu, and Ke Lu. Cross-domain gradient discrepancy
minimization for unsupervised domain adaptation. CVPR, pp. 3937–3946, 2021.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Stéphane d’Ascoli, Hugo Touvron, Matthew L Leavitt, Ari S Morcos, Giulio Biroli, and Levent Sagun.
Convit: Improving vision transformers with soft convolutional inductive biases. In International
conference on machine learning, pp. 2286–2296. PMLR, 2021.

Theodore Frankel. The geometry of physics: an introduction. Cambridge university press, Cambridge,
2011.

Yaroslav Ganin and Victor Lempitsky. Unsupervised domain adaptation by backpropagation. ICML,
pp. 1180–1189, 2015.

Rafael C. Gonzales and Paul Wintz. Digital image processing. Addison-Wesley Longman Publishing
Co., Inc., 1987.

Yves Grandvalet and Yoshua Bengio. Semi-supervised learning by entropy minimization. NIPS, pp.
211–252, 2004.

Jintao Guo, Na Wang, Lei Qi, Yinghuan Shi, Yunsung Lee, and Sungrae Park. Aloft: A lightweight
mlp-like architecture with dynamic low-frequency transform for domain generalization. Proceed-
ings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 24132–24141,
2023.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pp. 770–778, 2016.

Dan Hendrycks and Thomas Dietterich. Benchmarking neural network robustness to common
corruptions and perturbations. arXiv preprint arXiv:1903.12261, 2019.

Dan Hendrycks, Norman Mu, Ekin D Cubuk, Barret Zoph, Justin Gilmer, and Balaji Lakshmi-
narayanan. Augmix: A simple data processing method to improve robustness and uncertainty.
arXiv preprint arXiv:1912.02781, 2019.

Dan Hendrycks, Kevin Zhao, Steven Basart, Jacob Steinhardt, and Dawn Song. Natural adversarial
examples. Proceedings of the IEEE/CVF conference on computer vision and pattern recognition,
pp. 15262–15271, 2021.

Roger A. Horn and Johnson Charles R. Matrix analysis. Cambridge university press, 2012.

Zeyi Huang, Haohan Wang, Eric P. Xing, and Dong Huang. Self-challenging improves cross-domain
generalization. Computer vision–ECCV 2020: 16th European conference, pp. 124–140, 2020.

Neel Jain, Ping-yeh Chiang, Yuxin Wen, John Kirchenbauer, Hong-Min Chu, Gowthami Somepalli,
and Brian R. Bartoldson. Neftune: Noisy embeddings improve instruction finetuning. arXiv
preprint arXiv:2310.05914, 2023a.

Neel Jain, Ping-yeh Chiang, Yuxin Wen, John Kirchenbauer, Hong-Min Chu, Gowthami Somepalli,
Brian R Bartoldson, Bhavya Kailkhura, Avi Schwarzschild, Aniruddha Saha, et al. Neftune: Noisy
embeddings improve instruction finetuning. arXiv preprint arXiv:2310.05914, 2023b.

Norman L. Johnson, Samuel Kotz, and Narayanaswamy Balakrishnan. Continuous univariate
distributions, volume 2. John wiley & sons, 1995.

Ravindran Kannan and Achim Bachem. Polynomial algorithms for computing the smith and hermite
normal forms of an integer matrix. siam Journal on Computing, 8(4):499–507, 1979.

Mohammad Aflah Khan, Neemesh Yadav, Mohit Jain, and Sanyam Goyal. The art of embedding
fusion: Optimizing hate speech detection. arXiv preprint arXiv:2306.14939, 2023.

Yeongmin Kim, Byeonghu Na, Minsang Park, JoonHo Jang, Dongjun Kim, Wanmo Kang, and Il-Chul
Moon. Training unbiased diffusion models from biased dataset. arXiv preprint arXiv:2403.01189,
2024.

Yoon Kim. Convolutional neural networks for sentence classification. EMNLP, pp. 1746–1751, 2014.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Diederik P. Kingma and Max Welling. Auto-encoding variational bayes. arXiv preprint
arXiv:1312.6114, 2013.

Bart Kosko, Kartik Audhkhasi, and Osonde Osoba. Noise can speed backpropagation learning and
deep bidirectional pretraining. Neural Networks, 129:359–384, 2020.

Kamran Kowsari, Kiana Jafari Jafari, Mojtaba Heidarysafa, Sanjana Mendu, Laura Barnes, and
Donald Brown. Text classification algorithms: A survey. Information, (4), 2019.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images. 2009.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep convolu-
tional neural networks. Advances in neural information processing systems, 25, 2012.

Solomon Kullback and Richard A. Leibler. On information and sufficiency. The annals of mathemati-
cal statistics, 22(1):79–86, 1951.

Ya Le and Xuan Yang. Tiny imagenet visual recognition challenge. CS 231N 7, (7), 2015.

Shuang Li, Chi Liu, Qiuxia Lin, Binhui Xie, Zhengming Ding, Gao Huang, and Jian Tang. Domain
conditioned adaptation network. AAAI, pp. 11386–11393, 2020.

Xuelong Li. Positive-incentive noise. IEEE Transactions on Neural Networks and Learning Systems,
2022.

Jian Liang, Dapeng Hu, and Jiashi Feng. Do we really need to access the source data? source
hypothesis transfer for unsupervised domain adaptation. ICML, pp. 6028–6039, 2020.

Jian Liang, Dapeng Hu, and Jiashi Feng. Domain adaptation with auxiliary target domain-oriented
classifier. CVPR, pp. 16632–16642, 2021.

Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr
Dollár, and C Lawrence Zitnick. Microsoft coco: Common objects in context. In Computer Vision–
ECCV 2014: 13th European Conference, Zurich, Switzerland, September 6-12, 2014, Proceedings,
Part V 13, pp. 740–755. Springer, 2014.

Pengfei Liu, Xipeng Qiu, and Xuanjing Huang. Recurrent neural network for text classification with
multi-task learning. arXiv preprint arXiv:1605.05101, 2016.

Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, and Baining Guo.
Swin transformer: Hierarchical vision transformer using shifted windows. In Proceedings of the
IEEE/CVF International Conference on Computer Vision (ICCV), 2021.

Mingsheng Long, Zhangjie Cao, Jianmin Wang, and Michael Jordan. Conditional adversarial domain
adaptation. In Advances in neural information processing systems, pp. 1645–1655, 2018.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. arXiv preprint
arXiv:1711.05101, 2017.

Marvin Marcus. Determinants of sums. The College Mathematics Journal, 2:130–135, 1990.

Peter McClintock. Can noise actually boost brain power? Physics World, 15(7), 2002.

Marvin Minsky. Steps toward artificial intelligence. Proceedings of the IRE, 49(1):8–30, 1961.

Alexander McFarlane Mood. Introduction to the Theory of Statistics. 1950.

Inês C Moreira, Igor Amaral, Inês Domingues, António Cardoso, Maria Joao Cardoso, and Jaime S
Cardoso. Inbreast: toward a full-field digital mammographic database. Academic radiology, 19(2):
236–248, 2012.

Toshio Mori and Shoichi Kai. Noise-induced entrainment and stochastic resonance in human brain
waves. Physical review letters, 88(21), 2002.

Alhassan Mumuni and Fuseini Mumuni. Data augmentation: A comprehensive survey of modern
approaches. Array, pp. 100258, 2022.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Rich Ormiston, Tri Nguyen, Michael Coughlin, Rana X. Adhikari, and Erik Katsavounidis. Noise
reduction in gravitational-wave data via deep learning. Physical Review Research, 2(3):033066,
2020.

J. S. Owotogbe, T. S. Ibiyemi, and B. A. Adu. A comprehensive review on various types of noise in
image processing. int. J. Sci. eng. res, 10(10):388–393, 2019.

Sinno Jialin Pan and Qiang Yang. A survey on transfer learning. IEEE Transactions on knowledge
and data engineering, 22(10):1345–1359, 2009.

Xingchao Peng, Ben Usman, Neela Kaushik, Judy Hoffman, Dequan Wang, and Kate Saenko. Visda:
The visual domain adaptation challenge. arXiv preprint arXiv:1710.06924, 2017.

Lis Kanashiro Pereira, Yuki Taya, and Ichiro Kobayashi. Multi-layer random perturbation training
for improving model generalization efficiently. Proceedings of the Fourth BlackboxNLP Workshop
on Analyzing and Interpreting Neural Networks for NLP, 2021.

Benjamin Recht, Rebecca Roelofs, Ludwig Schmidt, and Vaishaal Shankar. Do imagenet classifiers
generalize to imagenet? In International conference on machine learning, pp. 5389–5400, 2019.

Russell Reed, RJ Marks, and Seho Oh. Similarities of error regularization, sigmoid gain scaling,
target smoothing, and training with jitter. IEEE Transactions on Neural Networks, 6(3):529–538,
1995.

Sebastian Ruder. An overview of gradient descent optimization algorithms. arXiv preprint
arXiv:1609.04747, 2016.

Seonguk Seo, Yumin Suh, Dongwan Kim, Geeho Kim, Jongwoo Han, and Bohyung Han. Learning
to optimize domain specific normalization for domain generalization. Computer Vision–ECCV
2020: 16th European Conference, pp. 68–83, 2020.

James P. Sethna, Karin A. Dahmen, and Christopher R. Myers. Crackling noise. Nature, 410(6825):
242–250, 2001.

Shai Shalev-Shwartz and Shai Ben-David. Understanding machine learning: From theory to
algorithms. Cambridge university press, Cambridge, 2014.

Claude Elwood Shannon. A mathematical theory of communication. ACM SIGMOBILE mobile
computing and communications review, 5(1):3–55, 2001.

Jack Sherman and Winifred J. Morrison. Adjustment of an inverse matrix corresponding to changes
in the elements of a given column or a given row of the original matrix. Annals of Mathematical
Statistics, 20, 1949.

Thomas S Shores. Applied linear algebra and matrix analysis. Springer, New York, 2007.

Jan Sijbers, Paul Scheunders, Noel Bonnet, Dirk Van Dyck, and Erik Raman. Quantification and
improvement of the signal-to-noise ratio in a magnetic resonance image acquisition procedure.
Magnetic resonance imaging, 14(10):1157–1163, 1996.

Yang Song and Stefano Ermon. Generative modeling by estimating gradients of the data distribution.
Advances in neural information processing systems, 32, 2019.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov.
Dropout: a simple way to prevent neural networks from overfitting. The journal of machine
learning research, 15(1):1929–1958, 2014.

Andreas Steiner, Alexander Kolesnikov, Xiaohua Zhai, Ross Wightman, Jakob Uszkoreit, and Lucas
Beyer. How to train your vit? data, augmentation, and regularization in vision transformers. In
arXiv preprint arXiv:2106.10270, 2021.

Maryam Sultana, Muzammal Naseer, Muhammad Haris Khan, Salman Khan, and Fahad Shahbaz
Khan. Self-distilled vision transformer for domain generalization. Proceedings of the Asian
Conference on Computer Vision, pp. 3068–3085, 2022.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Baochen Sun and Kate Saenko. Deep coral: Correlation alignment for deep domain adaptation.
ECCV, pp. 443–450, 2016.

Chen Sun, Abhinav Shrivastava, Saurabh Singh, and Abhinav Gupta. Revisiting unreasonable
effectiveness of data in deep learning era. In In Proceedings of the IEEE international conference
on computer vision, pp. 843–852, 2017.

Tao Sun, Cheng Lu, Tianshuo Zhang, and Harbin Ling. Safe self-refinement for transformer-based
domain adaptation. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 7191–7200, 2022.

Sunil Thulasidasan, Tanmoy Bhattacharya, Jeff Bilmes, Gopinath Chennupati, and Jamal Mohd-Yusof.
Combating label noise in deep learning using abstention. In arXiv preprint arXiv:1905.10964,
2019.

Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco Massa, Alexandre Sablayrolles, and Hervé
Jégou. Training data-efficient image transformers & distillation through attention. In International
conference on machine learning, pp. 10347–10357, 2021.

Zhengzhong Tu, Hossein Talebi, Han Zhang, Feng Yang, Peyman Milanfar, Alan Bovik, and Yinxiao
Li. Maxvit: Multi-axis vision transformer. In In Computer Vision–ECCV 2022: 17th European
Conference, pp. 459–479, 2022.

Aaron Van Den Oord and Oriol Vinyals. Neural discrete representation learning. In Advances in
neural information processing systems, 2017.

Hemanth Venkateswara, Jose Eusebio, Shayok Chakraborty, and Sethuraman Panchanathan. Deep
hashing network for unsupervised domain adaptation. CVPR, pp. 5018–5027, 2017.

Vikas Verma, Alex Lamb, Christopher Beckham, Amir Najafi, Ioannis Mitliagkas, David Lopez-Paz,
and Yoshua Bengio. Manifold mixup: Better representations by interpolating hidden states. In
International conference on machine learning, pp. 6438–6447. PMLR, 2019.

Riccardo Volpi, Hongseok Namkoong, Ozan Sener, John C. Duchi, Vittorio Murino, and Silvio
Savarese. Generalizing to unseen domains via adversarial data augmentation. Advances in neural
information processing systems, 2018.

Zhendong Wang, Huangjie Zheng, Pengcheng He, Weizhu Chen, and Mingyuan Zhou. Diffusion-
GAN: Training GANs with diffusion. In The Eleventh International Conference on Learning
Representations, 2023. URL https://openreview.net/forum?id=HZf7UbpWHuA.

Ying Wei, Yu Zhang, Junzhou Huang, and Qiang Yang. Transfer learning via learning to transfer.
ICML, pp. 5085–5094, 2018.

M. A. Woodbury. Inverting modified matrices. Statistical Research Group, Memorandum Report 42,
1950.

Ruijia Xu, Guanbin Li, Jihan Yang, and Liang Lin. Larger norm more transferable: An adaptive
feature norm approach for unsupervised domain adaptation. ICCV, pp. 1426–1435, 2019.

Tongkun Xu, Weihua Chen, Fan Wang, Hao Li, and Rong Jin. Cdtrans: Cross-domain transformer
for unsupervised domain adaptation. ICLR, pp. 520–530, 2022.

Jinyu Yang, Jingjing Liu, Ning Xu, and Junzhou Huang. Tvt: Transferable vision transformer for
unsupervised domain adaptation. WACV, pp. 520–530, 2023a.

Suorong Yang, Weikang Xiao, Mengcheng Zhang, Suhan Guo, Jian Zhao, and Furao Shen. Image
data augmentation for deep learning: A survey. arXiv preprint arXiv:2204.08610, 2023b.

Hongyi Zhang, Moustapha Cisse, Yann N Dauphin, and David Lopez-Paz. mixup: Beyond empirical
risk minimization. arXiv preprint arXiv:1710.09412, 2017.

Hongyuan Zhang, Sida Huang, and Xuelong Li. Variational positive-incentive noise: How noise
benefits models. arXiv preprint arXiv:2306.07651, 2023.

15

https://openreview.net/forum?id=HZf7UbpWHuA

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Supplementary Material

In this supplement, we provide:

• Sec. A: Theoretical Foundations of Task Entropy
• Sec. B: The Impact of Gaussian Noise on Task Entropy
• Sec. C: The Impact of Linear Transform Noise on Task Entropy
• Sec. D: The Impact of Salt-and-Pepper Noise on Task Entropy
• Sec. E: Implementation Details
• Sec. F: Additional Experiments

A THEORETICAL FOUNDATIONS OF TASK ENTROPY

This section provides the theoretical foundations of task entropy, quantifying the complexity of
learning tasks. The concept of task entropy was first proposed for the image level and formulated
as Li (2022):

H(T ;X) = −
∑
Y ∈Y

p(Y |X) log p(Y |X) (22)

The image X in the dataset are supposed to be independent of each other, as are the labels Y .
However, X and Y are not independent because of the correlation between a data sample X and
its corresponding label Y . Essentially, the task entropy is the entropy of p(Y |X). Following the
principle of task entropy, compelling evidence suggests that diminishing task complexity via reducing
information entropy can enhance overall model performance Li (2022); Jain et al. (2023a); Zhang
et al. (2023).

Inspired by the concept of task entropy at the image level, we explore its extension to the latent space.
The task entropy from the perspective of embeddings is defined as:

H(T ;Z) := H(Y ,Z)−H(Z) (23)

where Z are the embeddings of the images X . Here, we assume that the embedding Z and
the vectorized label Y follow a multivariate normal distribution. We can transform the unknown
distributions of Z and Y to approximately conform to normality by utilizing existing techniques
such as reparameterization tricks Kingma & Welling (2013); Van Den Oord & Vinyals (2017). After
approximate transformation, the distribution of Z and Y can be expressed as:

Z ∼ N (µZ ,ΣZ),Y ∼ N (µY ,ΣY) (24)

where

µZ = E[Z] = (E[Z1],E[Z2], ...,E[Zk]])
T

µY = E[Y] = (E[Y1],E[Y2], ...,E[Yk]])
T

ΣZ = E[(Z − µZ)(Z − µZ)
T]

ΣY = E[(Y − µY)(Y − µY)T]

(25)

k is the number of samples in the dataset, and T represents the transpose of the matrix.

Then the conditional distribution of Y given Z is also normally distributed Mood (1950); Johnson
et al. (1995), which can be formulated as:

Y |Z ∼ N (E(Y |Z = Z), var(Y |Z = Z)) (26)

where E(Y |Z = Z) is the mean of the label set Y given a sample Z = Z from the embeddings, and
var(Y |Z = Z) is the variance of Y given a sample from the embeddings. The conditional mean
E[(Y |Z = Z)] and conditional variance var(Y |Z = Z) can be calculated as:

µY |Z=Z = E[(Y |Z = Z)] = µY +ΣY ZΣ
−1
Z (Z − µZ) (27)

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

ΣY |Z=Z = var(Y |Z = Z) = ΣY −ΣY XΣ−1
Z ΣZY (28)

where ΣY Z and ΣZY are the cross-covariance matrices between Y and Z, and between Z and Y ,
respectively, and Σ−1

Z denotes the inverse of the covariance matrix of Z.

Now, we shall obtain the task entropy:

H(T ;Z) =−
∑
Y ∈Y

p(Y |Z) log p(Y |Z)

=− E[log p(Y |Z)]

=− E[log[(2π)−k/2|ΣZ |−1/2 exp(−1

2
(Y |Z − µY |Z)

TΣ−1
Y |Z(Y |Z − µY |Z))]]

=
k

2
(1 + log(2π)) +

1

2
log |ΣY |Z |

(29)

Therefore, for a specific set of embeddings, we can find that the task entropy is only related to the
variance of the Y |Z.

As we proactively inject different kinds of noises into the latent space, the task entropy with noise
injection is defined as :{

H(T ;Z + ϵ) := H(Y ;Z + ϵ)−H(Z) ϵ is additive noise
H(T ;Zϵ) := H(Y ;Zϵ)−H(Z) ϵ is multiplicative noise

(30)

Equation 30 diverges from the conventional definition of conditional entropy as our method introduces
noise into the latent representations instead of the original images. The noises examined in this study
are classified into additive and multiplicative categories. In the subsequent sections, we analyze the
changes in task entropy resulting from the injection of common noises into the embeddings.

B THE IMPACT OF GAUSSIAN NOISE ON TASK ENTROPY

We begin by examining the impact of Gaussian noise on task entropy from the perspective of latent
space.

B.1 INJECT GAUSSIAN NOISE INTO EMBEDDINGS

In this case, the task complexity is formulated as:

H(T ;Z + ϵ) = H(Y ;Z + ϵ)−H(Z). (31)

Take advantage of the definition of task entropy, thus, the entropy change of injecting Gaussian noise
in the latent space can be formulated as:

△S(T , ϵ) =H(T ;Z)−H(T ;Z + ϵ)

=H(Y ;Z)−H(Z)− (H(Y ;Z + ϵ)−H(Z))

=H(Y ;Z)−H(Y ;Z + ϵ)

=
1

2
log |ΣY |Z |+

1

2
log |ΣZ | −

1

2
log |ΣY |Z+ϵ| −

1

2
log |ΣZ+ϵ|

=
1

2
log

|ΣZ ||ΣY |Z |
|ΣZ+ϵ||ΣY |Z+ϵ|

=
1

2
log

|ΣZ ||ΣY −ΣY ZΣ
−1
Z ΣZY |

|ΣZ+ϵ||ΣY −ΣY ZΣ
−1
Z+ϵΣZY |

(32)

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

where ΣY |Z+ϵ = ΣY −ΣY (Z+ϵ)Σ
−1
Z+ϵΣ(Z+ϵ)Y . Since the Gaussian noise is independent of Z

and Y , we have ΣY (Z+ϵ) = Σ(Z+ϵ)Y = ΣY Z . The corresponding proof is:

Σ(Z+ϵ)Y =E [(Z + ϵ)− µZ+ϵ]E [Y − µY]

=E [(Z + ϵ)Y]− µY E [(Z + ϵ)]− µZ+ϵE [Y] + µY µZ+ϵ

=E [(Z + ϵ)Y]− µY E [(Z + ϵ)]

=E [ZY] + E [ϵY]− µY µZ − µY µϵ

=E [ZY]− µY µZ

=ΣZY

(33)

Obviously, △S(T , ϵ) > 0 if
|ΣZ ||ΣY |Z |

|ΣZ+ϵ||ΣY |Z+ϵ|
> 1

△S(T , ϵ) ≤ 0 if
|ΣZ ||ΣY |Z |

|ΣZ+ϵ||ΣY |Z+ϵ|
≤ 1

(34)

To find the relationship between |ΣZ ||ΣY |Z | and |ΣZ+ϵ||ΣY |Z+ϵ|, we need to determine the
subterms in each of them. As we mentioned in the previous section, the embeddings of the images
are independent of each other, and so are the labels.

ΣY =E[(Y − µY)(Y − µY)T]

=E[Y Y T]− µY µT
Y

=diag(σ2
Y1
, ..., σ2

Yk
)

(35)

where {
E [YiYj]− µYiµYj = 0, i ̸= j
E [YiYj]− µYiµYj = σ2

Yi
, i = j

(36)

The same procedure can be applied to ΣY (Z+ϵ) and ΣZ+ϵ. Therefore, We can obtain that ΣY =

diag(σ2
Y1
, ..., σ2

Yk
),

ΣY (Z+ϵ) = diag(cov(Y1, X1 + ϵ), ..., cov(Yk, Xk + ϵ)) (37)
and ΣZ+ϵ is:

ΣZ+ϵ =


σ2
Z1

+ σ2
ϵ σ2

ϵ ... σ2
ϵ σ2

ϵ

σ2
ϵ σ2

Z2
+ σ2

ϵ ... σ2
ϵ σ2

ϵ
...

...
...

...
σ2
ϵ σ2

ϵ ... σ2
Zk−1

+ σ2
ϵ σ2

ϵ

σ2
ϵ σ2

ϵ ... σ2
ϵ σ2

Zk
+ σ2

ϵ


=diag(σ2

Z1
, ..., σ2

Zk
)Ik + σ2

ϵ1k

(38)

where Ik is a k × k identity matrix and 1k is a all ones k × k matrix. We use U to repre-
sent diag(σ2

Z1
, ..., σ2

Zk
)Ik, and u to represent a all ones vector [1, ..., 1]T . Thanks to the Sher-

man–Morrison Formula Sherman & Morrison (1949) and Woodbury Formula Woodbury (1950), we
can obtain the inverse of ΣZ+ϵ as:

Σ−1
Z+ϵ =(U + σ2

ϵuu
T)−1

=U−1 − σ2
ϵ

1 + σ2
ϵu

TU−1u
U−1uuTU−1

=U−1 − σ2
ϵ

1 +
∑k

i=1
1

σ2
Zi

U−11kU
−1

=λ



1
λσ2

Z1

− 1
σ4
Z1

− 1
σ2
Z1

σ2
Z2

... − 1
σ2
Z1

σ2
Zk−1

− 1
σ2
Z1

σ2
Zk

− 1
σ2
Z2

σ2
Z1

1
λσ2

Z2

− 1
σ4
Z2

... − 1
σ2
Z2

σ2
Zk−1

− 1
σ2
Z2

σ2
Zk

...
...

...
...

− 1
σ2
Zk−1

σ2
Z1

− 1
σ2
Zk−1

σ2
Z2

... 1
λσ2

Zk−1

− 1
σ4
Zk−1

− 1
σ2
Zk−1

σ2
Zk

− 1
σ2
Zk

σ2
Z1

− 1
σ2
Zk

σ2
Z2

... − 1
σ2
Zk

σ2
Zk−1

1
λσ2

Zk

− 1
σ4
Zk



(39)

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

where U−1 = diag((σ2
Z1
)−1, ..., (σ2

Zk
)−1) and λ =

σ2
ϵ

1+
∑k

i=1
1

σ2
Zi

.

Therefore, substitute Equation 39 into |ΣY −ΣY (Z+ϵ)Σ
−1
Z+ϵΣ(Z+ϵ)Y |, we can obtain:

|ΣY −ΣY (Z+ϵ)Σ
−1
Z+ϵΣ(Z+ϵ)Y |

=

∣∣∣∣∣∣∣
σ

2
Y1

... 0
...

. . .
...

0 ... σ2
Yk

−

cov(Y1, Z1 + ϵ) ... 0
...

. . .
...

0 ... cov(Yk, Zk + ϵ)

Σ−1
Z+ϵ

cov(Y1, Z1 + ϵ) ... 0
...

. . .
...

0 ... cov(Yk, Zk + ϵ)


∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣


σ2
Y1

− cov2(Y1, Z1 + ϵ)(1
σ2
Z1

− λ
σ4
Z1

) ... cov(Y1, Z1 + ϵ)cov(Yk, Zk + ϵ) λ
σ2
Z1

σ2
Zk

...
...

cov(Yk, Zk + ϵ)cov(Y1, Z1 + ϵ) λ
σ2
Zk

σ2
Z1

... σ2
Yk

− cov2(Yk, Zk + ϵ)(1
σ2
Zk

− λ
σ4
Zk

)


∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣

σ2
Y1

− 1
σ2
Z1

cov2(Y1, Z1)

. . .
σ2
Yk

− 1
σ2
Zk

cov2(Yk, Zk)

+ λ


1

σ4
Z1

cov2(Y1, Z1) ... 1
σ2
Z1

σ2
Zk

cov(Y1, Z1)cov(Yk, Zk)

...
...

1
σ2
Zk

σ2
Z1

cov(Yk, Zk)cov(Y1, Z1) ... 1
σ4
Zk

cov2(Yk, Zk)


∣∣∣∣∣∣∣∣

(40)

We use the notation v =
[

1
σ2
Z1

cov(Y1, Z1) · · · 1
σ2
Zk

cov(Yk, Zk)
]T

, and V =

diag(1
σ2
Z1

cov2(Y1, Z1), · · · , 1
σ2
Zk

cov2(Yk, Zk)). And utilize the rule of determinants of sums Marcus

(1990), then we have:

|ΣY −ΣY (Z+ϵ)Σ
−1
Z+ϵΣ(Z+ϵ)Y | =|(ΣY − V) + λvvT |

=|ΣY V |+ λvT (ΣY − V)
∗
v

(41)

where (ΣY − V)∗ is the adjoint of the matrix (ΣY − V). For simplicity, we can rewrite
|ΣY −ΣY (Z+ϵ)Σ

−1
Z+ϵΣ(Z+ϵ)Y | as:

|ΣY −ΣY (Z+ϵ)Σ
−1
Z+ϵΣ(Z+ϵ)Y |

=

k∏
i=1

(σ2
Yi

− cov2(Yi, Zi)
1

σ2
Zi

) + Ω
(42)

where Ω = λvT (ΣY − V)
∗
v. The specific value of Ω can be obtained as:

Ω = λ
[

1
σ2
Z1

cov(Y1, Z1) · · · 1
σ2
Zk

cov(Yk, Zk)
]V11

. . .
Vkk




1
σ2
Z1

cov(Y1, Z1)

...
1

σ2
Zk

cov(Yk, Zk)

 (43)

where the elements Vii, i ∈ [1, k] are minors of the matrix and expressed as:

Vii =

k∏
j=1,j ̸=i

[
σ2
Yj

− 1

σ2
Zj

cov2(Zj , Yj)

]
(44)

After some necessary steps, Equation 43 is reduced to:

Ω =λ

k∑
i=1

1
σ4
Zi

cov2(Yi, Zi)
∏k

j=1(σ
2
Yj

− cov2(Yj , Zj)
1

σ2
Zj

)

(σ2
Yi

− cov2(Yi, Zi)
1

σ2
Zi

)

=λ

k∏
i=1

(σ2
Yi

− cov2(Yi, Zi)
1

σ2
Zi

) ·
k∑

i=1

cov2(Zi, Yi)

σ2
Zi
(σ2

Zi
σ2
Yi

− cov2(Zi, Yi))

(45)

Substitute Equation 45 into Equation 42, we can get:

|ΣY −ΣY (Z+ϵ)Σ
−1
Z+ϵΣ(Z+ϵ)Y |

=

k∏
i=1

(σ2
Yi

− cov2(Yi, Zi)
1

σ2
Zi

) · (1 + λ

k∑
i=1

cov2(Zi, Yi)

σ2
Zi
(σ2

Zi
σ2
Yi

− cov2(Zi, Yi))
)

(46)

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Accordingly, |ΣY −ΣY ZΣ
−1
Z ΣZY | is:

|ΣY −ΣY ZΣ
−1
Z ΣZY | =

k∏
i=1

(σ2
Yi

− 1

σ2
Zi

cov2(Zi, Yi)) (47)

As a result, |ΣY |Z+ϵ|
|ΣY |Z | is expressed as:

|ΣY |Z |
|ΣY |Z+ϵ|

=

∏k
i=1(σ

2
Yi

− 1
σ2
Zi

cov2(Zi, Yi))∏k
i=1(σ

2
Yi

− cov2(Yi, Zi)
1

σ2
Zi

) · (1 + λ
∑k

i=1
cov2(Zi,Yi)

σ2
Zi

(σ2
Zi

σ2
Yi

−cov2(Zi,Yi))
)

(48)

Combine Equations 48 and 38 together, the entropy change is expressed as:

△S(T , ϵ) =
1

2
log

1

(1 + σ2
ϵ

∑k
i=1

1
σ2
Zi

)(1 + λ
∑k

i=1
cov2(Zi,Yi)

σ2
Zi

(σ2
Zi

σ2
Yi

−cov2(Zi,Yi))
) (49)

It is difficult to tell that Equation 49 is greater or smaller than 0 directly. But one thing for sure is
that when there is no Gaussian noise, Equation 49 equals 0. However, we can use another way to
compare the numerator and denominator in Equation 49. Instead, we use the symbol M to compare
the numerator and denominator using subtraction. Let:

M =1− (1 + σ2
ϵ

∑k
i=1

1
σ2
Zi

)(1 + λ

k∑
i=1

cov2(Zi, Yi)

σ2
Zi
(σ2

Zi
σ2
Yi

− cov2(Zi, Yi))
) (50)

Obviously, the variance σ2
ϵ of the Gaussian noise control the result of M , while the mean µϵ has no

influence. When σϵ approaching 0, we have:
lim
σ2
ϵ→0

M = 0 (51)

To determine if Gaussian noise can be positive noise, we need to determine whether the entropy
change is large or smaller than 0. {

△S(T , ϵ) > 0 if M > 0
△S(T , ϵ) ≤ 0 ifM ≤ 0

(52)

From the above equations, the sign of the entropy change is determined by the statistical properties
of the embeddings and labels. Since ϵ2 ≥ 0, λ ≥ 0 and

∑k
i=1

1
σ2
Zi

≥ 0, we need to have a deep dive

into the residual part, i.e.,
k∑

i=1

cov2(Zi, Yi)

σ2
Zi
(σ2

Zi
σ2
Yi

− cov2(Zi, Yi))
=

k∑
i=1

cov2(Zi, Yi)

σ4
Zi
σ2
Yi
(1− ρ2ZiYi

)
(53)

where ρZiYi
is the correlation coefficient, and ρ2ZiYi

∈ [0, 1]. Eq. 53 is greater than 0, As a result, the
sign of the entropy change in the Gaussian noise case is negative. We can conclude that Gaussian
noise added to the latent space is harmful to the task.

B.2 ADD GAUSSIAN NOISE TO RAW IMAGES

Assuming that the pixels of the raw images follow a Gaussian distribution. The variation of task
complexity by adding Gaussian noise to raw images can be formulated as:

△S(T , ϵ) =H(T ;X)−H(T ;X + ϵ)

=
1

2
log |ΣY |X | − 1

2
log |ΣY |X+ϵ|

=
1

2
log

|ΣY |X |
|ΣY |X+ϵ|

=
1

2
log

|ΣY −ΣY XΣ−1
X ΣXY |

|ΣY −ΣY (X+ϵ)Σ
−1
X+ϵΣ(X+ϵ)Y |

=
1

2
log

|ΣY −ΣY XΣ−1
X ΣXY |

|ΣY −ΣY XΣ−1
X+ϵΣXY |

(54)

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

Borrow the equations from the case of Gaussian noise added to the latent space, we have:

△S(T , ϵ) =
1

2
log

1

1 + λ
∑k

i=1
cov2(Xi,Yi)

σ2
Xi

(σ2
Xi

σ2
Yi

−cov2(Xi,Yi))

(55)

Clearly, the introduction of Gaussian noise to each pixel in the original images has a detrimental
impact on the task. Note that some studies have empirically shown that adding Gaussian noise to
partial pixels of input images may be beneficial to the learning task Li (2022); Zhang et al. (2023).

C IMPACT OF LINEAR TRANSFORM NOISE ON TASK ENTROPY

In our work, concerning the image level perspective, ”linear transform noise” denotes an image that
is perturbed by another image or a combination of other images. From the viewpoint of embeddings,
”linear transform noise” refers to an embedding perturbed by another embedding or the combination
of other embeddings.

C.1 INJECT LINEAR TRANSFORM NOISE INTO EMBEDDINGS

The entropy change of injecting linear transform noise into embeddings can be formulated as:
△S(T , QZ) =H(T ;Z)−H(T ;Z +QZ)

=H(Y ;Z)−H(Z)− (H(Y ;Z +QZ)−H(Z))

=H(Y ;Z)−H(Y ;Z +QZ)

=
1

2
log

|ΣZ ||ΣY −ΣY ZΣ
−1
Z ΣZY |

|Σ(I+Q)Z ||ΣY −ΣY ZΣ
−1
Z ΣZY |

=
1

2
log

1

|I +Q|2

=− log |I +Q|

(56)

Since we want the entropy change to be greater than 0, we can formulate Equation 56 as an optimiza-
tion problem:

max
Q

△S(T , QZ)

s.t. rank(I +Q) = k

[I +Q]ii ≥ [I +Q]ij , i ̸= j

∥[I +Q]i∥1 = 1

(57)

The key to determining whether the linear transform is positive noise or not lies in the matrix of Q.
The most important step is to ensure that I +Q is invertible, which is |(I +Q)| ≠ 0. For this, we
need to investigate what leads I+Q to be rank-deficient. The second constraint is to make the trained
classifier get enough information about a specific embedding of an image and correctly predict the
corresponding label. For instance, when an embedding Z1 is perturbed by another embedding Z2,
the classifier predominantly relies on the information from Z1 to predict the label Y1. Conversely,
if the perturbed embedding Z2 takes precedence, the classifier struggles to accurately predict the
label Y1 and is more likely to predict it as label Y2. The third constraint is the normalization of latent
representations.

Rank Deficiency Cases To avoid causing a rank deficiency of I + Q, we need to figure out the
conditions that lead to rank deficiency. Here we show a simple case causing the rank deficiency.
When the matrix Q is a backward identity matrix Horn & R. (2012),

Qi,j =

{
1, i+ j = k + 1
0, i+ j ̸= k + 1

(58)

i.e.,

Q =


0 0 ... 0 0 1
0 0 ... 0 1 0
...

...
...

...
...

0 1 ... 0 0 0
1 0 ... 0 0 0

 (59)

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

then (I +Q) will be:

I +Q =


1 0 ... 0 0 1
0 1 ... 0 1 0
...

...
...

...
...

0 1 ... 0 1 0
1 0 ... 0 0 1

 (60)

Thus, I + Q will be rank-deficient when Q is a backward identity. In fact, when the following
constraints are satisfied, the I +Q will be rank-deficient:

HermiteForm(I +Q)i = 0, ∃i ∈ [1, k] (61)

where index i is the row index, in this paper, the row index starts from 1, and HermiteForm is the
Hermite normal form Kannan & Bachem (1979).

Full Rank Cases Except for the rank deficiency cases, I +Q has full rank and is invertible. Since Q
is a row equivalent to the identity matrix, we need to introduce the three types of elementary row
operations as follows Shores (2007).

▷ 1 Row Swap Exchange rows.
Row swap here allows exchanging any number of rows. This is slightly different from the
original one that only allows any two-row exchange since following the original row swap
will lead to a rank deficiency. When the Q is derived from I with Row Swap, it will break
the third constraint. Therefore, Row Swap merely is considered harmful and would degrade
the performance of deep models.

▷ 2 Scalar Multiplication Multiply any row by a constant β. This breaks the fourth constraint,
thus degrading the performance of deep models.

▷ 3 Row Sum Add a multiple of one row to another row. Then the matrix I +Q would be like:

I +Q =


1

.
.

.
1

+


1

. β
.

.
1



=


2

. β
.

.
2


(62)

where β can be at a random position beside the diagonal. As we can see from the simple
example, Row Sum breaks the fourth constraint and makes entropy change smaller than 0.

From the above discussion, none of the single elementary row operations can guarantee positive
effects on deep models.

However, if we combine the elementary row operations, it is possible to make the entropy change
greater than 0 as well as satisfy the constraints. For example, we combine the Row Sum and Scalar
Multiplication to generate the Q:

I +Q =


1

.
.

.
1

+


−0.5 0.5

. .
. .

. 0.5
0.5 −0.5



=


0.5 0.5

. .
. .

. 0.5
0.5 0.5


(63)

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

In this case, △S(T , QZ) > 0 when Q = −0.5I . The constraints are satisfied. This is just a simple
case of adding linear transform noise that benefits deep models. Actually, there exists a design space
of Q that within the design space, deep models can reduce task entropy by injecting linear transform
noise into the embeddings. To this end, we demonstrate that linear transform can be positive noise.

From the discussion in this section, we can draw conclusions that Linear Transform Noise can be
positive under certain conditions, while Gaussian Noise and Salt-and-pepper Noise are harmful
noise. From the above analysis, the conditions that satisfy positive noise form a design space.
Exploring the design space of positive noise is an important topic for future work.

C.1.1 OPTIMAL QUALITY MATRIX OF LINEAR TRANSFORM NOISE

The optimal quality matrix should maximize the entropy change and therefore theoretically define
the minimized task complexity. The optimization problem as formulated in Equation 16 is:

max
Q

− log |I +Q|

s.t. rank(I +Q) = k

Q ∼ I

[I +Q]ii ≥ [I +Q]ij , i ̸= j

∥[I +Q]i∥1 = 1

(64)

Maximizing the entropy change is to minimize the determinant of the matrix sum of I and Q. A
simple but straight way is to design the matrix Q that makes the elements in I +Q equal, i.e.,

I +Q =

1/k · · · 1/k
... · · ·

...
1/k · · · 1/k

 (65)

The determinant of the above equation is 0, but it breaks the first constraint of rank(I +Q) = k.
However, by adding a small constant into the diagonal, and minus another constant by other elements,
we can get:

I +Q =


1/k + c1 · · · 1/k − c2

1/k − c2
. . .

...
...

. . . 1/k − c2
1/k − c2 · · · 1/k − c2 1/k + c1

 (66)

Under the constraints, we can obtain the two constants that fulfill the requirements:

c1 =
k − 1

k(k + 1)
, c2 =

1

k(k + 1)
(67)

Therefore, the corresponding Q is:

Qoptimal = diag

(
1

k + 1
− 1, . . . ,

1

k + 1
− 1

)
+

1

k + 1
1k×k (68)

and the corresponding I +Q is:

I +Q =


2/(k + 1) · · · 1/(k + 1)

1/(k + 1)
. . .

...
...

. . . 1/(k + 1)
1/(k + 1) · · · 1/(k + 1) 2/(k + 1)

 (69)

As a result, the determinant of optimal I +Q can be obtained by following the identical procedure as
Equation 41:

|I +Q| = 1

(k + 1)k−1
(70)

The upper boundary of entropy change of linear transform noise is determined:

△S(T , QZ)upper = (k − 1) log (k + 1) (71)

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

C.2 ADD LINEAR TRANSFORM NOISE TO RAW IMAGES

In this case, the task entropy with linear transform noise can be formulated as:

H(T ;X +QX) =−
∑
Y ∈Y

p(Y |X +QX) log p(Y |X +QX)

=−
∑
Y ∈Y

p(Y |(I +Q)X) log p(Y |(I +Q)X)
(72)

where I is an identity matrix, and Q is derived from I using elementary row operations. Assuming
that the pixels of the raw images follow a Gaussian distribution. The conditional distribution of Y
given X +QX is also multivariate subjected to the normal distribution, which can be formulated as:

Y |(I +Q)X ∼ N (E(Y |(I +Q)X), var(Y |(I +Q)X)) (73)
Since the linear transform matrix is invertible, applying the linear transform to X does not alter the
distribution of the X . It is straightforward to obtain:

µY |(I+Q)X = µY +ΣY XΣ−1
X (I +Q)−1((I +Q)X − (I +Q)µX) (74)

Σ(Y |(I+Q)X) = ΣY −ΣY XΣ−1
X ΣXY (75)

Thus, the variation of task entropy adding linear transform noise can be formulated as:
△S(T , QX) =H(T ;X)−H(T ;X +QX)

=
1

2
log |ΣY |X | − 1

2
log |ΣY |X+QX |

=
1

2
log

|ΣY |X |
|ΣY |X+QX |

=
1

2
log

|ΣY −ΣY XΣ−1
X ΣXY |

|ΣY −ΣY XΣ−1
X ΣXY |

=0

(76)

The entropy change of 0 indicates that the implementation of linear transformation to the raw images
could not help reduce the complexity of the task.

D INFLUENCE OF SALT-AND-PEPPER NOISE ON TASK ENTROPY

Salt-and-pepper noise is a common type of noise that can occur in images due to various factors,
such as signal transmission errors, faulty sensors, or other environmental factors Chan et al. (2005).
Salt-and-pepper noise is often considered to be an independent process because it is a type of random
noise that affects individual pixels in an image independently of each other Gonzales & Wintz (1987).

D.1 INJECT SALT-AND-PEPPER NOISE INTO EMBEDDINGS

The entropy change of injecting salt-and-pepper noise can be formulated as:
△S(T , QZ) =H(T ;Z)−H(T ;Zϵ)

=H(Y ;Z)−H(Z)− (H(Y ;Zϵ)−H(Z))

=H(Y ;Z)−H(Y ;Zϵ)

=−
∑
Z∈Z

∑
Y ∈Y

p(Z,Y) log p(Z,Y) +
∑
Z∈Z

∑
Y ∈Y

∑
ϵ∈E

p(Zϵ,Y) log p(Zϵ,Y)

=E
[
log

1

p(Z,Y)

]
− E

[
log

1

p(Zϵ,Y)

]
=E

[
log

1

p(Z,Y)

]
− E

[
log

1

p(Z,Y)

]
− E

[
log

1

p(ϵ)

]
=− E

[
log

1

p(ϵ)

]
=−H(ϵ)

(77)

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

Table 7: Details of ResNet Models. The columns ”18-layer”, ”34-layer”, ”50-layer”, and ”101-layer”
show the specifications of ResNet-18, ResNet-34, ResNet-50, and ResNet-101, separately.

Layer name Output size 18-layer 34-layer 50-layer 101-layer
conv1 112 × 112 7 × 7, 64, stride 2

3 × 3, max pool, stride 2

conv2 x 56 × 56
[
3× 3 64
3× 3 64

]
× 2

[
3× 3 64
3× 3 64

]
× 3

[
1× 1 64
3× 3 64
1× 1 256

]
× 3

[
1× 1 64
3× 3 64
1× 1 256

]
× 3

conv3 x 28 × 28
[
3× 3 128
3× 3 128

]
× 2

[
3× 3 128
3× 3 128

]
× 4

[
1× 1 128
3× 3 128
1× 1 512

]
× 4

[
1× 1 128
3× 3 128
1× 1 512

]
× 4

conv4 x 14 × 14
[
3× 3 256
3× 3 256

]
× 2

[
3× 3 256
3× 3 256

]
× 6

[
1× 1 256
3× 3 256
1× 1 1024

]
× 6

[
1× 1 256
3× 3 256
1× 1 1024

]
× 23

conv5 x 7 × 7
[
3× 3 512
3× 3 512

]
× 2

[
3× 3 512
3× 3 512

]
× 3

[
1× 1 512
3× 3 512
1× 1 2048

]
× 3

[
1× 1 512
3× 3 512
1× 1 2048

]
× 3

1 × 1 average pool, 1000-d fc, softmax
Params 11M 22M 26M 45M

The entropy change is smaller than 0, therefore, the salt-and-pepper is a pure detrimental noise to the
learning task.

D.2 ADD SALT-AND-PEPPER NOISE TO RAW IMAGES

The task entropy with salt-and-pepper noise is rewritten as:

H(T ;Xϵ) =−
∑
Y ∈Y

p(Y |Xϵ) log p(Y |Xϵ) (78)

Since ϵ is independent of X and Y , the above equation can be expanded as:

H(T ;Xϵ) =−
∑
Y ∈Y

p(Y ,Xϵ)

p(X)p(ϵ)
log

p(Y ,Xϵ)

p(X)p(ϵ)

=−
∑
Y ∈Y

p(Y ,X)p(ϵ)

p(X)p(ϵ)
log

p(Y ,X)p(ϵ)

p(X)p(ϵ)

=−
∑
Y ∈Y

p(Y |X) log p(Y |X)

(79)

where

p(Xϵ,Y) =p(Xϵ|Y)p(Y)

=p(X|Y)p(ϵ|Y)p(Y)

=p(X|Y)p(ϵ)p(Y)

=p(X,Y)p(ϵ)

(80)

Therefore, the entropy change with salt-and-pepper noise is:

△S(T , QX) = H(T ;X)−H(T ;Xϵ) = 0 (81)

Salt-and-pepper noise can not help reduce the complexity of the task, and therefore, it is considered a
type of pure detrimental noise.

E EXPERIMENTAL SETTING

In this section, we present the implementation details. The noise was added during both the train-
ing and inference stages. Model details of the models are shown in Table 7 and 8. Pre-trained
models on ImageNet-21K are used. We train all ResNet and ViT-based models using AdamW
optimizer Loshchilov & Hutter (2017). We set the learning rate of each parameter group using a

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

Table 8: Details of ViT Models. Each row shows the specifications of a kind of ViT model. ViT-T,
ViT-S, ViT-B, and ViT-L represent ViT Tiny, ViT Small, ViT Base, and ViT Large, separately.

ViT Model Layers Hidden size MLP size Heads Params
ViT-T 12 192 768 3 5.7M
ViT-S 12 384 1536 6 22M
ViT-B 12 768 3072 12 86M
ViT-L 24 1024 4096 16 307M

Table 9: Top 1 accuracy on ImageNet V2 with positive linear transform noise.
Model Top1 Acc. Params. Image Res. Pretrained Dataset
ViT-B 72.6 86M 224 × 224 ImageNet 21k

NoisyNN (ViT-B based) 82.2 86M 224 × 224 ImageNet 21k
NoisyNN (ViT-B based) 84.8 86M 384 × 384 ImageNet 21k

cosine annealing schedule with a minimum of 1e− 7. Data are resized and then normalized before
passing into the model.

CNN (ResNet) Setting The training epoch is set to 100. We initialized the learning rate as 0 and
linearly increase it to 0.001 after 10 warmup steps. All the experiments of CNNs are trained on
a single Tesla V100 GPU with 32 GB. The batch size for ResNet18, ResNet34, ResNet50, and
ResNet101 are 1024, 512, 256, and 128, respectively.

ViT and Variants Setting All the experiments of ViT and its variants are trained on a single machine
with 8 Tesla V100 GPUs. For vanilla ViTs, including ViT-T, ViT-S, ViT-B, and ViT-L, the training
epoch is set to 50 and the input patch size is 16× 16. We initialized the learning rate as 0 and linearly
increase it to 0.0001 after 10 warmup steps. We then decrease it by the cosine decay strategy. For
experiments on the variants of ViT, the training epoch is set to 100 and the learning rate is set to
0.0005 with 10 warmup steps.

F MORE EXPERIMENT RESULTS

F.1 IMAGENETV2 RESULTS

Table 9 shows additional results on ImageNetV2. We tested the positive linear transformation noise
on ImageNetV2, and these results demonstrate the superiority of our proposed methods.

F.2 IMAGENET-A RESULTS

Table 10 shows additional results on ImageNet-A. We further tested the positive linear transformation
noise on ImageNet-A, which exhibits a significant domain shift compared to the validation set of
ImageNet-1k. The results demonstrate the robustness of our method to domain shift. We also
calculate the confusion matrices of our method and ViT-B on ImageNet-A, which are presented in
Fig. 3 and 4, respectively.

Table 10: Top 1 accuracy on ImageNet-A with positive linear transform noise.
Model Top1 Acc. Params. Image Res. Pretrained Dataset
ViT-B 27.4 86M 224 × 224 ImageNet 21k

NoisyNN (ViT-B based) 34.1 86M 224 × 224 ImageNet 21k
NoisyNN (ViT-B based) 38.3 86M 384 × 384 ImageNet 21k

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

F.3 IMAGENET-C RESULTS

Table 11 shows additional results on ImageNet-C. ImageNet-C exhibits various forms of domain shift
in comparison to the validation set of ImageNet-1k. The results further demonstrate the robustness of
our method to such domain shifts.

Table 11: Top 1 accuracy on ImageNet-C with positive linear transform noise.
Model Top1 Acc. Params. Image Res. Pretrained Dataset
ViT-B 53.4 86M 224 × 224 ImageNet 21k

NoisyNN (ViT-B based) 58.1 86M 224 × 224 ImageNet 21k
NoisyNN (ViT-B based) 60.5 86M 384 × 384 ImageNet 21k

F.4 TINYIMAGENET RESULTS

Results on TinyImageNet are shown in Table 12 and 13. These results further confirm our analysis
in the main paper that Gaussian Noise and Salt-and-pepper Noise are harmful noise, while Linear
Transform Noise can be made positive noise. Note that even with extensive hyperparameter search,
Gaussian noise (Table 14) and salt-and-pepper noise (Table 15) still substaintially under-perform
positive linear transform noise.

F.5 CIFAR AND INBREAST RESULTS

Results on CIFAR-10, CIFAR-100, and INbreast are shown in Table 16. Showing the effectiveness of
NoisyNN beyond ImageNet-based datasets.

F.6 COMPARISON AND COMBINATION WITH COMMON DATA AUGMENTATION TECHNIQUES

We compare our method with common data augmentation methods, and the results are presented in
Table 18. Additionally, we combine our method with data augmentations, and the corresponding
results are shown in Table 17.

F.7 COMPARISON WITH OTHER NOISES

Below in Table 19 we compare NoisyNN to other commonly seen noises including White Noise,
Uniform Noise and Dropout (Srivastava et al., 2014) on TinyImageNet.

F.8 COMPARISON WITH MANIFOLD MIXUP

Beside the key differences discussed in the main paper, other difference between NoisyNN and
Manifold MixUp include: Manifold MixUp introduces randomness in the strength of interpolation
by drawing from a probability distribution, whereas we use a fixed strength based on theoretical
guidance. Under the constraint of Eq 16, a larger α induces a more substantial entropy change in
Eq 15, as verified by Figure 2 (a) (c). Additionally, Manifold MixUp selects random mixing layers
during training, while we use a fixed layer (chosen before training and kept fixed). In our experiments,
we use the last layer, with an ablation study on the effect of choosing different layers. Below in

Table 12: ResNet with different kinds of noise on TinyImageNet. Vanilla means the vanilla model
without noise. Accuracy is shown in percentage. Gaussian noise used here is subjected to standard
normal distribution. Linear transform noise used in this table is designed to be positive noise. The
difference is shown in the bracket.

Model ResNet-18 ResNet-34 ResNet-50 ResNet-101
Vanilla 64.01 (+0.00) 67.04 (+0.00) 69.47 (+0.00) 70.66 (+0.00)

+ Gaussian Noise 63.23 (-0.78) 65.71 (-1.33) 68.17 (-1.30) 69.13 (-1.53)
+ Linear Transform Noise 73.32 (+9.31) 76.70 (+9.66) 76.88 (+7.41) 77.30 (+6.64)
+ Salt-and-pepper Noise 55.97 (-8.04) 63.52 (-3.52) 49.42 (-20.25) 53.88 (-16.78)

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

Table 13: ViT with different kinds of noise on TinyImageNet. Vanilla means the vanilla model
without injecting noise. Accuracy is shown in percentage. Gaussian noise used here is subjected to
standard normal distribution. Linear transform noise used in this table is designed to be positive noise.
The difference is shown in the bracket. Note ViT-L is overfitting on TinyImageNet Dosovitskiy
et al. (2020) Steiner et al. (2021).

Model ViT-T ViT-S ViT-B ViT-L
Vanilla 81.75 (+0.00) 86.78 (+0.00) 90.48 (+0.00) 93.32 (+0.00)

+ Gaussian Noise 80.95 (-0.80) 85.66 (-1.12) 89.61 (-0.87) 92.31 (-1.01)
+ Linear Transform Noise 82.50 (+0.75) 91.62 (+4.84) 94.92 (+4.44) 93.63 (+0.31)
+ Salt-and-pepper Noise 79.34 (-2.41) 84.66 (-2.12) 87.45 (-3.03) 83.48 (-9.84)

Table 14: Impact of Different Combinations of Mean and Standard Deviation of Gaussian Noise on
TinyImageNet Performance with ViT-S.

Gaussian Noise (Mean, STD) TinyImageNet
(0, 0.5) 86.8
(0, 1.0) 85.9

(1.0, 0.5) 86.4
(1.0, 1.0) 85.7
NoisyNN 91.6

Table 20 we compare NoisyNN to Manifold MixUp (Verma et al., 2019) and verify the design choice
of using fixed layer versus random layer during training. The results show that NoisyNN achieves
better performance. Experiments conducted on on TinyImageNet.

F.9 DOMAIN GENERALIZATION

Domain Generalization (DG) methods try to learn a robust model by training on multiple source
domains Volpi et al. (2018); Seo et al. (2020); Carlucci et al. (2019); Huang et al. (2020), while DG
methods cannot access the target domains during the training stage. To verify our method in the
application of DG tasks, we further conduct experiments on VLCS and PACS, two commonly used
datasets in the field of DG. The results are reported in Table 21. As shown in the table, compared to
competitive methods, our proposed method achieves state-of-the-art (SOTA) results on the PACS and
VLCS datasets.

F.10 TEXT CLASSIFICATION

Text classification involves categorizing text into predefined classes or labels (Kowsari et al., 2019). It
is widely used in various applications such as spam detection, sentiment analysis, topic labeling, and
document categorization. To check whether our method can be applied to a different data modality but
within the same problem of classification, we conduct experiments on two popular text classification
datasets with widely used models. The results are shown in Table 22. Equipped with our method,
TextCNN and TextRNN show a significant improvement in performance.

Table 15: Impact of Salt-and-Pepper Noise on TinyImageNet Performance with ViT-S.
Salt-and-Pepper Noise (Intensity) TinyImageNet

0.1 86.0
0.2 85.4
0.3 84.6
0.4 83.5

NoisyNN 91.6

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2025

Table 16: Comparing ViT-B with NoisyNN on CIFAR-10, CIFAR-100 and INbreast.
Model CIFAR-100 CIFAR-10 INbreast
ViT-B 91.5±0.1 98.6±0.1 90.6±0.2

NoisyNN (ViT-B based) 93.7±0.1 99.4±0.1 93.5±0.1

Table 17: Combining NoisyNN with Data Augmentation.
Method ImageNet

NoisyNN (No DA) 89.9±0.5
NoisyNN + RandomResizedCrop 89.1±0.5
NoisyNN + RandomHorizontalFlip+RandomResizedCrop 89.2±0.6
NoisyNN + RandomResizedCrop+RandAugment 89.4±0.5

Table 18: Comparing NoisyNN with Data Augmentation.
Method ImageNet

ViT-B 84.3
ViT-B+RandomFlip+Gaussian Blur 84.2
ViT-B+RandAugment 85.1
ViT-B+Linear Transformation Noise (NoisyNN) 89.9

Table 19: Comparison of NoisyNN with other noises on TinyImageNet.
ResNet18 ResNet34 ResNet50

Vanilla 64.01 67.04 69.47
White Noise 64.05 65.97 68.87
Uniform Noise 64.05 66.01 69.01
Gaussian Noise 63.23 64.71 68.17
Salt-and-pepper 55.97 63.52 49.42
Dropout 63.96 67.01 69.40
NoisyNN (ours) 73.32 76.70 76.88

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2025

NoisyViT

Figure 3: Confusion Matrix of NoisyNN (ViT-based) on ImageNet-A.

ViT

Figure 4: Confusion Matrix of ViT on ImageNet-A.

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2025

Table 20: Comparison with Manifold MixUp on TinyImageNet
ResNet18 ResNet34 ViT-S ViT-B

Vanilla 64.01 67.04 86.78 90.48
Manifold Mixup 71.83 75.28 89.87 93.21
NoisyNN (random layer) 72.29 75.88 90.02 93.76
NoisyNN (default) 73.32 76.70 91.62 94.92

Table 21: Comparison with other methods in domain generalization tasks.
Method PACS VLCS

ViT Dosovitskiy et al. (2020) (ICLR’21) 85.0 76.9
SDViT (Sultana et al., 2022) (ACCV’22) 88.9 81.9
ALOFT (Guo et al., 2023) (CVPR’23) 91.6 81.3

NoisyViT 93.1 84.4

F.11 OBJECT DETECTION

Here we explored the NoisyNN framework for object detection tasks. The preliminary experiments
in Table 23 show the promise of extending the NoisyNN framework for Object Detection tasks.
Experiments conducted on COCO dataset (Lin et al., 2014).

F.12 COMPUTATIONAL OVERHEAD

Our NoisyNN does not incur additional computation costs beyond a simple linear transformation in
the embedding space. Below in Table 24 we show the runtime comparison.

G DOMAIN ADAPTATION DETAILS

Unsupervised domain adaptation (UDA) aims to learn transferable knowledge across the source
and target domains with different distributions Pan & Yang (2009); Wei et al. (2018). There are
mainly two kinds of deep neural networks for UDA, which are CNN-based and Transformer-based
methods Sun et al. (2022); Yang et al. (2023a). Various techniques for UDA are adopted on these
backbone architectures. For example, the discrepancy techniques measure the distribution divergence
between source and target domains Long et al. (2018); Sun & Saenko (2016). Adversarial adaptation
discriminates domain-invariant and domain-specific representations by playing an adversarial game
between the feature extractor and a domain discriminator Ganin & Lempitsky (2015).

Recently, transformer-based methods achieved SOTA results on UDA, therefore, we evaluate the
ViT-B with the positive noise on widely used UDA benchmarks. Here the positive noise is the linear
transform noise identical to that used in the classification task. The positive noise is injected into the
embeddings of the last layer of the model, mirroring the same setting taken in the classification task.
The datasets include Office Home Venkateswara et al. (2017) and VisDA2017 Peng et al. (2017).
Office-Home Venkateswara et al. (2017) has 15,500 images of 65 classes from four domains: Artistic
(Ar), Clip Art (Cl), Product (Pr), and Real-world (Rw) images. VisDA2017 is a Synthetic-to-Real
object recognition dataset, with more than 0.2 million images in 12 classes. We use the ViT-B with a
16× 16 patch size, pre-trained on ImageNet. We use minibatch Stochastic Gradient Descent (SGD)
optimizer Ruder (2016) with a momentum of 0.9 as the optimizer. The batch size is set to 32. We
initialized the learning rate as 0 and linearly warm up to 0.05 after 500 training steps. The results

Table 22: Comparison with other methods in text classification tasks.
Method THUNews AGNews

TextCNN (Kim, 2014) (EMNLP’14) 90.8 89.2
NoisyTextCNN 93.4 89.3

TextRNN (Liu et al., 2016) (IJCAI’16) 90.7 87.7
NoisyTextRNN 95.5 88.1

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2025

Table 23: Object Detection with the NoisyNN framework on COCO dataset.
DETR NoisyDETR

AP 42.0 42.7
AP50 62.4 62.9
AP75 44.2 44.8
APS 20.5 21.4
APM 45.8 45.9
APL 61.1 62.0

Table 24: Runtime Comparison between NoisyViT and ViT on ImageNet.
Machine ViT NoisyViT
Nvidia TITAN, Ubuntu, Intel i7-9700K 2h43m/epoch 2h45m/epoch

are shown in Table 4 and 5. The methods above the black line are based on CNN architecture, while
those under the black line are developed from the Transformer architecture. The NoisyTVT-B, i.e.,
TVT-B with positive noise, achieves better performance than existing works. These results show that
positive noise also works in domain adaptation tasks.

32

	Introduction
	Related Work
	Methods
	Influence of Different Noises on Task Entropy
	NoisyNN

	Experiments
	Image Classification Results
	Domain Adaptation Results

	Ablation
	Conclusion and Limitation
	Theoretical Foundations of Task Entropy
	The Impact of Gaussian Noise on Task Entropy
	Inject Gaussian Noise into Embeddings
	Add Gaussian Noise to Raw Images

	Impact of Linear Transform Noise on Task Entropy
	Inject Linear Transform Noise into Embeddings
	Optimal Quality Matrix of Linear Transform Noise

	Add Linear Transform Noise to Raw Images

	Influence of Salt-and-pepper Noise on Task Entropy
	Inject Salt-and-pepper Noise into Embeddings
	Add Salt-and-pepper Noise to Raw Images

	Experimental Setting
	 More Experiment Results
	ImageNetV2 Results
	ImageNet-A Results
	ImageNet-C Results
	TinyImageNet Results
	CIFAR and INbreast Results
	Comparison and Combination with Common Data Augmentation Techniques
	Comparison with Other Noises
	Comparison with Manifold MixUp
	Domain Generalization
	Text Classification
	Object Detection
	Computational Overhead

	Domain Adaptation Details

