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ABSTRACT

In this study, we explore the impact of proactively injecting noise into deep learning
models, focusing particularly on image classification and domain adaptation. While
noise is typically seen as harmful, our findings reveal that, under certain conditions,
noise can beneficially influence the entropy of the system, enhancing the learning
outcomes. We employ information entropy to characterize the complexity of the
learning tasks and categorize noise into two types, positive noise (PN) and harmful
noise (HN), based on whether it helps reduce task complexity. We theoretically
prove that positive noise reduces task complexity and demonstrate the presence of
positive noise through extensive experiments on Convolutional Neural Networks
(CNNs) and Vision Transformers (ViTs). We further propose NoisyNN, an in-
novative approach to leverage positive noise. NoisyNN achieves state-of-the-art
performance on various image classification and domain adaptation tasks. Exten-
sive experiments conducted on 15 datasets, including popular image datasets and
out-of-distribution datasets, demonstrate the efficacy of our method. Our study
provides the community with a new paradigm for improving model performance.
Our code is available at https://anonymous.4open.science/r/CodeBase-56B0.

1 INTRODUCTION

Noise, commonly viewed as an obstacle in machine learning and deep learning applications, is
universal due to various factors such as environmental conditions, equipment calibration, and human
activities |(Ormiston et al.|(2020); Thulasidasan et al.|(2019). In computer vision, noise can emerge at
multiple stages. During image acquisition, for instance, camera sensors or other imaging devices may
introduce noise. This could manifest as electronic or thermal noise, leading to random variations in
pixel values or color discrepancies in the captured images [Sijbers et al.|(1996). Additionally, noise
can also be introduced during the image preprocessing phase. Operations such as image resizing,
filtering, or color space conversion are potential sources of noise |Al-Shaykh & Mersereau| (1998).
Prevailing literature typically assumes that noise adversely affects the task at hand |Sethna et al.
(2001); |Owotogbe et al.|(2019). However, is this assumption always applicable? Our work seeks to
thoroughly examine this critical question. We recognize that the vague definition of noise contributes
to the uncertainty in identifying and characterizing it. One effective way to categorize different noises
is through analysis of task complexity change (L1, [2022)). Leveraging the concept of task complexity,
we can categorize noise into two types: positive noise (PN) and harmful noise (HN). PN reduces task
complexity, whereas HN increases it, consistent with traditional views of noise.

Our work, which combines a theoretical analysis based on information theory with extensive empirical
evaluation, reveals that the simple injection of noise into deep neural networks, when done in a
principled manner; can significantly enhance model performance. This study primarily examines
three prevalent types of noise: Gaussian noise, linear transform noise, and salt-and-pepper noise.
Gaussian noise is characterized by random data fluctuations following a Gaussian distribution. Linear
transform noise involves affine elementary transformations applied to the data or embeddings. Salt-
and-pepper noise introduces random black or white pixels to images or replaces some values of
an embedding with its maximum or minimum values. We show that both Gaussian noise and
salt-and-pepper noise are harmful noise when injected into the latent features in the embedding
space, while linear transform noise can be made positive noise under proper constructions.
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Figure 1: An overview of the NoisyNN framework. Showing the unified pipeline for image classifica-
tion problems utilizing deep models such as CNNs or ViTs. The blue arrow indicates the injection of
noise into the embeddings at the chosen layer.

Additional experiments with other noises such as dropout (Srivastava et al.|[2014) further confirm the
effectiveness of our proposed approach (App Table[19).

We start by presenting a comprehensive theoretical analysis of how these three types of noise impact
deep learning models. Building on this theoretical foundation, we propose NoisyNN, a novel
method designed to enhance the deep neural network performance on Image Classification and
Domain Adaptation. We conduct extensive experiments with two prominent model families, Vision
Transformers (ViTs) and Convolutional Neural Networks (CNNs), to validate the effectiveness of
NoisyNN. Our empirical findings demonstrate the huge benefits of leveraging positive noise.

The contributions are summarized as follows:

* First, we re-examined the impact of different common noises on deep learning models. Our
theoretical and empirical findings show that certain noise can enhance model performance.

* Second, we introduce NoisyNN, an innovative approach that utilizes positive noise.
NoisyNN achieves state-of-the-art results on various image classification and domain adap-
tation tasks.

* Third, our study, along with the success of NoisyNN, prompts revisiting the role of noise in
machine learning and opens new avenues for future research in leveraging noise.

2 RELATED WORK

Positive Noise. While noise is often assumed harmful to tasks, empirical evidence also suggests
useful applications of noise (Li, 2022). In signal processing, it has been shown that random noise can
facilitate stochastic resonance, enhancing the detection of weak signalsBenzi et al.| (1981). In neuro-
science, noise has been recognized for its potential to boost brain functionality McClintock! (2002));
Mori & Kai (2002). In machine learning, the study of noise also draws a lot of interest (Kosko et al.|
2020; Minsky, 1961} Bishopl [1995; Reed et al., 1995} |Anl [1996) with various applications spanning
wide areas such as image classification (Li,2022), Natural Language Processing (NLP) (Pereira et al.|
20215 Khan et al.,|2023)), training generative adversarial networks (GANSs) (Song & Ermon| 2019
Kim et al.} |2024; |Wang et al., 2023), and finetuning large language models (Jain et al.,|2023b).
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Recent work by L1/ (2022) marks a significant advance in the theoretical understanding of different
noises. By employing information theory, they differentiate between beneficial “positive noise” and
detrimental “pure noise”, based on their impact on task complexity. However, their analysis has three
notable limitations: 1. it is confined to only the image space; 2. all experiments are conducted only
on shallow models, far from the current best practices 3. it does not answer the practical question:
how to create and leverage positive noise? Our study aims to address these limitations. We answer
the questions: Does positive noise exist for deep models? and if so, how to leverage the positive
noise? We make a significant extension to the positive-noise framework in |Li| (2022). Our work
not only confirms the presence of positive and harmful noise in embedding space but also finds that
leveraging positive noise in deeper layers of the embedding space is often more effective (see Fig[2]
b&d). Furthermore, we propose a practical approach to leverage the positive noise in deep models,
we term it “NoisyNN”. NoisyNN promises to unlock new potentials in the application of noise for
enhancing neural networks. Other lines of work includes (Kosko et al. 2020; |Adigun & Koskol
2023)), which take on an expectation maximization (EM) perspective.

Data Augmentation Data augmentation plays an important role in training deep vision models (Yang
et al.,|2023b). The general idea of data augmentation is to compose transformation operations that can
be applied to the original data x to create transformed data =’ without severely altering the semantics.
Common data augmentation range from simple techniques like random flip and crop (Krizhevsky
et al.|[2012) to more complex techniques like MixUp (Zhang et al., 2017)), CutOut (DeVries & Taylor,
2017), AutoAugment (Cubuk et al.,2019), AugMix (Hendrycks et al.,2019), RandAugment (Cubuk
et al.||2020). More comprehensive reviews can be found in (Mumuni & Mumuni,[2022). Our approach
is closely related to the research on data augmentation but stands apart due to its theoretical foundation.
Our framework provides a more controlled and principled way to augment data, setting it apart from
conventional methods, which often require substantial domain knowledge and ad-hoc design, as
noted in (Cubuk et al.| [2020). Later experiments show that our approach outperforms traditional data
augmentation techniques (App Table and is compatible with other data augmentation techniques
(App Table[T7).

Comparison with Manifold MixUp. Our NoisyNN shares some similarities with Manifold
MixUp (Verma et al.l 2019), a regularization technique designed for supervised image classifi-
cation that extends the MixUp strategy to the embedding space by linearly interpolating embedding
vectors z; (instead of images z;) along with their corresponding labels y;. However, there are several
key differences. Unlike Manifold MixUp, which aims to flatten class representations through training
on interpolated synthetic samples, our NoisyNN is grounded in a theoretical analysis of how noise
injection impacts task entropy, as introduced by (Li, 2022).

Additionally, we derived the optimal form of noise injection (Eq[20) within the linear transform noise
design space, which Manifold MixUp does not provide. Procedurally, Manifold MixUp interpolates
both embeddings and labels to generate synthetic samples, followed by training on these samples,
as its theoretical foundation relies on modifying both features and labels. In contrast, our method
perturbs only the embeddings and leaves the labels unchanged, as our theoretical analysis is based
on un-interpolated labels. Investigating whether label interpolation could be integrated into our
theoretical framework may be a promising avenue for future research. Experiments in App Table [20]
show the superior performance of NoisyNN. More comparison can be found in App [F.§]

3 METHODS

In information theory, the entropy Shannon| (2001)) of a random variable z is defined as:

H(x) — [ p(z)logp(x)dx if z is continuous n
—> . p(z )1ng( ) if x is discrete

where p(x) is the distribution of the given variable z. The mutual information of two random discrete
variables (x, y) is denoted as |Cover] (1999):

MI(z,y) =Dgr(p(z,y) || p(x) @ p(y)) )
=H(x) — H(xly)
where Dy, is the Kullback—Leibler divergence Kullback & Leibler| (1951), and p(x, y) is the joint
distribution. The conditional entropy is defined as:

H(zly) = =) p(x,y)log p(z|y) 3)
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These definitions can be extended to continuous variables by replacing the summation with integral.

Following Li|(2022), we use T to denote the learning tasks of a deep model mapping from the dataset
to the corresponding labels. Leveraging principles from information theory, we can quantify the
complexity of the learning task 7 through information entropy H (7) [Li| (2022). This approach
allows us to gauge task difficulty, where lower entropy indicates an easier task, and vice versa. Denote
the noise by €. The task complexity change when adding noise € can then be measured (Lil 2022):

AS(T,e) = H(T) — H(Tle) Q)

Formally, noise that reduces task complexity, i.e., AS(T, €) > 0, is defined as positive noise (PN).
Conversely, harmful noise (HN) when AS(T,€) < 0.

AS(T,e) >0 eis positive noise 5)
AS(T,e) <0 eisharmful noise (

3.1 INFLUENCE OF DIFFERENT NOISES ON TASK ENTROPY

We provide a general framework to analyze the influence of different noises on the classification tasks
with the CNNs and ViTs backbones. The framework is depicted in Fig. |1} By injecting specific noise
under certain conditions into the embeddings of an intermediate layer, a model has the potential to
gain additional information to reduce task complexity, thereby improving its performance.

In classification problems, the dataset (X, Y") can be regarded as samples from Dy y, where Dy y is
some unknown joint distribution of data and labels from feasible space X and ), i.e., (X,Y) ~ Dx y
Shalev-Shwartz & Ben-David| (2014). Hence, given a set of k data points X = {X7, Xo, ..., X},
the label set Y = {Y7, Y5, ..., Y} } is regarded as sampling from Y ~ Dy x. The complexity of T~
on X is formulated as:

H(T; X)=HY,X)—- H(X) ©6)

Accordingly, injecting noise to the raw images can be formulated as follows [Li| (2022):

H(T; X +¢€) = —ZYeyp(Y|X+e) logp(Y|X +¢€) )
H(T;Xe) =~ yeyp(Y[Xe)logp(Y|Xe)
where € represents additive or multiplicative noise respectively.

Here, we extend the analysis to embedding space. Given a set of k embeddings Z = {7, Z>, ..., Zx}
from feature extraction of the raw images X = {X1, Xo,..., Xy}, the label set Y = {Y7,Y5, ..., Vi }
can be regarded as sampling from Y ~ Dy z. The complexity of 7 on embeddings Z is:

H(T; 2) = H(Y,Z) - H(Z) ®)
The operation of proactively injecting noise in the latent space can be defined as:

H(T:Z+e¢ =H(Y,Z+¢) — H(Z) 0
H(T; Ze) = H(Y, Ze) — H(Z) ®)

where € represents additive or multiplicative noise respectively. The definition of Eq. [§] differs
from (L1, 2022), as our method injects the noise into the latent representations instead of the raw
images.

Gaussian Noise is one of the most common additive noises that appear in computer vision tasks.
The Gaussian noise is independent and stochastic, obeying the Gaussian distribution € ~ A (y, 02).
Injecting Gaussian noise into the embedding space, the complexity of the classification tasks is:

H(T;Z+¢€)=H(Y,Z+¢€)— H(Z) (10)



Under review as a conference paper at ICLR 2025

According to Eq.[4] the entropy change is formulated as:
ANS(T,e)=H(T;Z)—H(T;Z +¢€)
—H(Y,Z) - H(Z) ~ (H(Y.Z + ¢) - H(Z))
=H(Y,Z)-H(Y,Z +¢)

1y Zz]|Zy — Zyz2; Tz (11)
2 7 Zz4el[By — By 22zl Szv
1
=5 108 % % V2 (Z, .Y,
2 (1+02>, ,éi YL+ A>T, T (a%j(;ii(—covz)(Zi,m))
where A\ = ﬁ o2 is the variance of the Gaussian noise, cov(Z;, Y;) is the covariance of
"Z

sample pair (Z;,Y;), 0% 7z, and UY are the variance of embedding Z; and label Y}, respectively. We use
the symbol M to compare the quantity between the numerator and denominator of the logarithmic
term. If M is greater than 0, then the entropy change is greater than 0, and vice versa.

cov?(Z;, Y;)
M =1—(1+ 02 )L+ A o
(1+o0: Zz 1 ,TZ + ; UZ (o'Z 032/ COVQ(Zi,Yi)))
k
, ) cov?(Z;,Y;)
) e N 12
0211 021 102 ;UIUZUY—COV(Z Y3)) (12)
)\i cov? (Z:,Y;)

P 0% (0%, 0% —cov?(Z;,Y;))

Since 02 > 0 and A > 0, 0% 0%, — cov?(Z;,Y;) = 0% 0% (1 — p%y.) > 0, where pz;y; is the
correlatlon coefficient between the embedding Z; and the correspondmg label Y, the sign of M is
negative. Consequently, we conclude that the injection of Gaussian noise into the embedding
space is harmful to the task. Detailed derivations can be found in App sec.

Salt-and-pepper Noise is a common multiplicative noise for images, causing unnatural changes such
as black pixels in bright areas or white pixels in dark areas. Injecting salt-and-pepper noise into the
embeddings, the entropy change can be formulated as:

AS(T,e)=H(T;Z)— H(T; Ze)
=H(Y,Z)-H(Z)- (H(Y,Ze)— H(Z))
H(Y,Z)-H(Y,Ze)

:,Z ZP(ZvY)IngZY Z ZZp (Ze,Y)logp(Ze,Y)
ZcZ

Yey ZcZYeYeck
1 1
_E log] _E [bg}
{ p(Z,Y) p(ZeY)

logat] ] s
=—H(e

13)

The negative entropy change indicates an increase in task complexity, thus we conclude that salt-and-
pepper noise is harmful noise. Further details can be found in App sec. [D]

Linear Transform Noise is obtained by applying an elementary transformation to the embeddings
matrix, i.e., € = QZ, where @ is a linear transformation matrix. We name the () the quality matrix
since it dictates whether the linear transform noise € will be positive or harmful. For the linear
transform noise injection into the embeddings, the complexity of the task is formulated as:

H(T;Z+QZ)=H(Y;Z+QZ)—-H(Z) (14)
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The entropy change is then formulated as:
ANS(T,QZ)=H(T;Z2)-H(T; Z+QZ)
=H(Y,Z)-H(Z)-(H(Y,Z+QZ) - H(Z))
=H(Y.Z)-H(Y,Z+QZ)

zllog |Zz|‘2y — EYZzglzlzy| (15)
2 T 2urzllEy — Evz3; Exy|

Ll
2 7 |I+QP

=—log|I + Q|

Linear transform noise can be made positive by formulating Eq. [[5]as an optimization problem:
max ANS(T,QZ)

st.rank(I+Q) =k
I+Ql; 2T +Ql;,i#]
I+ QLI =1

The most important step is to ensure that [ 4 () is full rank. The second constraint is to ensure the
diagonal elements of matrix (I 4+ ) are always larger than other elements of the same row, which
helps make sure that the original information from that instance predominantly informs the prediction
on an instance. Otherwise, the classifier might not be able to make accurate predictions. The third
constraint is to maintain the norm of latent representations. Further details can be found in App sec.
[C] Thus linear transform noise can be made positive noise with proper construction.

(16)

3.2 NOISsYNN

Building upon the theoretical analysis, we introduce NoisyNN, wherein the embeddings are injected
with positive linear transformation noises. For a deep neural network, such as CNN or ViT,
we choose an intermediate layer [ and inject linear transform noise to the embeddings Z under
the constraints specified in Eq[I6] In fact, many possible quality () matrices could satisfy these
constraints, forming a design space. Here, we adopt a simple concrete construction of () that we call
a circular shift as a working example, where each original Z; is perturbed by its neighbor Z; 1.

We can formally express the circular shift noise injection strategy as follows: Let the scalar hy-
perparameter o € [0, 1] define the perturbation strength. The quality matrix of circular shift Q) is
implemented as Q = « * U — o * I, where U; ; = 0;41,; with §;11 ; representing the Kronecker
delta indicator Frankel| (2011)), and employing wrap-around (or “circular”’) indexing.

—a « 0 0 0

0 —a « 0 0

Q=10 0 -« 0 a7
0 0 0 «
«

4 EXPERIMENTS

We conduct extensive experiments to assess the impact of various noises on classification tasks.
Our experiments consider both CNNs and ViTs, across a wide range of model sizes, including
ResNet-18, ResNet-34, ResNet-50, and ResNet-101 for the ResNet, and ViT-Tiny (ViT-T), ViT-Small
(ViT-S), ViT-Base (ViT-B), and ViT-Large (ViT-L) for ViT. We show that these deep models benefit
from positive noise. Detailed model specifications are in App [El By default, noise is injected into
the last layer embeddings of these models and used in both the training and inference stages.
Results with noise injection at different layers are in Ablation section |5} While this work primarily
focuses on image classification and domain adaptation, we additionally explored other related
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Table 1: ResNet with different kinds of noise on ImageNet. Vanilla means the vanilla model without
noise. Accuracy is shown in percentage. Gaussian noise used here is subjected to standard normal
distribution. In this table, NoisyNN refers to ResNet injected with linear transform noise, where the
employed linear transform noise is derived in Eq. The difference is shown in the bracket.

Model ResNet-18 ResNet-34 ResNet-50 ResNet-101
Vanilla 69.10 (+0.00)  73.27 (+0.00)  75.90 (+0.00)  77.84 (+0.00)
+ Gaussian Noise 67.55 (-1.55) 71.87 (-1.40)  75.57 (-0.33) 77.28 (-0.56)

+ Salt-and-pepper Noise 60.65 (-8.45)  69.83 (-3.44) 51.79(-24.11) 60.14 (-17.70)
NoisyNN (ResNet-based) 79.62 (+10.52)  80.05 (+6.78) 81.32 (+5.42) 81.91 (+4.07)

tasks: Domain Generalization (App [F.9), Text Classification (App[F.10) and Object Detection
(App to assess broader applicability of NoisyNN.

Experiment Setting. The positive noise used in NoisyNN is generated via the formulation in Eq.
The Gaussian noise is generated from a normal distribution with zero mean and unit variance:

e ~N(0,1) (18)
For salt-and-pepper noise, we use the parameter S to control the emergence probability:

max(Z) ifp<p/2
{min(Z) ifp>1-p/2

where p is a probability generated by a random seed, 5 € [0, 1), and Z is the embedding of an image.

(19)

More hyperparameter and training details are in App sec. [E] To better see the effect of noise injection,
we refrain from using other data augmentation by default. Later experiments compare NoisyNN with
other data augmentation techniques (Table[I8)) and investigate the combination of them (Table[T7).

4.1 IMAGE CLASSIFICATION RESULTS

We conduct extensive experiments on various image classification benchmarks. Here we mainly
present results on large-scale ImageNet dataset Deng et al.| (2009). Additional results on Tiny-
ImageNet (Le & Yang, 2015), ImageNetV2 (Recht et al., [2019), ImageNet-A (Hendrycks et al.|
2021)), ImageNet-C Hendrycks & Dietterich|(2019), CIFAR-10 (Krizhevsky et al.,|2009), CIFAR-100
(Krizhevsky et al.,|2009) and medical imaging dataset INbreast (Moreira et al.,2012) can be found in
App Table[I2] [13] [0} [I0 [TT]and[T6] Note that NoisyNN does not incur additional computation costs
beyond a simple linear transformation in the embedding space, runtime comparison with vanilla ViT
can be found in App Table [24]

CNN Family. The experiment results of ResNets with different noises on the ImageNet dataset are
summarized in Table[T} Our NoisyNN (ResNet-based) improves the classification accuracy by a large
margin. While Gaussian and salt-and-pepper noise, which are theoretically proven to be harmful,
degrades the performance. The results confirm our analysis in sec[3.1]and show that positive noise
can effectively improve the image classification accuracy of CNN models.

ViT Family. The results of ViT with different noises on ImageNet are shown in Table[2] We can see
that our NoisyNN (ViT-based) improves classification accuracy often by a large margin compared to
vanilla ViT (e.g., more than 5% on ViT-S and ViT-B), while other noises degrade performances (even
with extensive hyperparameter search, see App Table[I4] [T5)). This again supports our theoretical
analysis. In Table (3| we further compare NoisyNN with other prior works, such as DeiT Touvron
et al.[(2021), SwinTransformer Liu et al.| (2021), DaViT |Ding et al.| (2022), and MaxViT Tu et al.
(2022). NoisyNN has a significant advantage and achieves the new state-of-the-art result. Note that
JFT-300M and JFT-4B datasets are private and not publicly available Sun et al.| (2017).

Deriving Optimal Quality Matrix. A key advantage of our framework is the ability to analytically
derive the optimal quality matrix ), compared to many other data augmentation methods that need to
search over large hyperparameter space or need domain knowledge for ad-hoc design (Cubuk et al.,
2020).

As depicted in Equation[I6] it is intriguing to explore the optimal quality matrix () that maximizes the
entropy change while adhering to the constraints. This optimization task is equivalent to minimizing
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Table 2: ViT with different kinds of noise on ImageNet. Vanilla means the vanilla model without
injecting noise. Accuracy is shown in percentage. Gaussian noise used here is subjected to standard
normal distribution. In this table, NoisyNN refers to ViT injected with linear transform noise, where
the employed linear transform noise is derived in Eq. The difference is shown in the bracket.
Note without additional data, ViT-L exhibits overfitting on ImageNet Dosovitskiy et al.| (2020)
Steiner et al.| (2021).

Model VIiT-T ViT-S ViT-B ViT-L
Vanilla 79.34 (+0.00)  81.88 (+0.00) 84.33 (+0.00) 88.64 (+0.00)
+ Gaussian Noise 79.10 (-0.24)  81.80(-0.08)  83.41 (-0.92) 8592 (-2.72)
+ Salt-and-pepper Noise ~ 78.64 (-0.70)  81.75 (-0.13)  82.40(-1.93)  85.15 (-3.49)
NoisyNN (ViT-based)  80.69 (+1.35) 87.27 (+5.39) 89.99 (+5.66) 88.97 (+0.33)

Table 3: Comparison between NoisyNN with other ViT variants. Showing Top-1 Accuracy (%) and
standard deviation. Values for other methods are copied from original papers, some of which did not
report standard deviation. Circular Shift Q is referred to Eq. Optimal Q is analytically derived in
Eq.[20] The best performance is marked in bold black.

Model Topl Acc. Params. Image Res. Pretrained Dataset
ViT-B|Dosovitskiy et al.[(2020) 84.3 86M 224 x 224 ImageNet 21k
DeiT-B [Touvron et al.|(2021) 85.7 86M 224 x 224 ImageNet 21k
SwinTransformer-B |Liu et al.|(2021) 86.4 88M 384 x 384 ImageNet 21k
DaViT-B [Ding et al.|(2022) 86.9 88M 384 x 384 ImageNet 21k
MaxViT-B [Tu et al.|(2022) 88.8 119M 512 x 512 JFT-300M (Private)
ViT-22B |Dehghani et al.|(2023) 89.5 21743M 224 x 224 JFT-4B (Private)
NoisyNN (ViT-based, Circular Shift Q)  89.9+0.5 86M 224 x 224 ImageNet 21k
NoisyNN (ViT-based, Circular Shift Q) 91.3+0.4 86M 384 x 384 ImageNet 21k
NoisyNN (ViT-based, Optimal Q) 93.1+0.9 86M 224 x 224 ImageNet 21k
NoisyNN (ViT-based, Optimal Q) 94.8+1.1 86M 384 x 384 ImageNet 21k

the determinant of the matrix sum of I and (). Here, we directly present the analytically derived
optimal quality matrix Q:

1

1
- 1. = 20
k+1 U k41 (20)

. 1
Qoptimal = diag ( 1) + mlkxk
where k is the training data size, and 1« is a matrix of ones. The corresponding upper bound of the
entropy change is:

AS(Ta Qoptimalz) = (k - 1) 10g (k + 1)

Detailed derivations are provided in the App[C.I.1] We find that the upper bound of the entropy
change of injecting positive noise is determined by the number of data samples, i.e., the scale of the
dataset. The larger the dataset, the more pronounced the effect of injecting positive noise into the
embeddings.

21

4.2 DOMAIN ADAPTATION RESULTS

Unsupervised domain adaptation (UDA) aims to learn transferable knowledge across the source
and target domains with different distributions |[Pan & Yang (2009) |Wei et al.| (2018). Recently,
transformer-based methods achieved the state-of-the-art (SOTA) results on UDA. Here, we evaluate
NoisyNN on the widely used UDA benchmarks, including the Office Home dataset|Venkateswara
et al.| (2017) and the VisDA2017 dataset |Peng et al.| (2017). The positive noise is generated via
Eq. and injected into the last layer embeddings of the models, same as sec.[d.1] More details on
the datasets and experiment settings are in App sec. |Gl We use the same objective function as TVT
Yang et al.|(2023a), which is the first work that adopts Transformer-based architecture for UDA. The
results are shown in Table[dand[5] Our NoisyNN (TVT-based) achieves SOTA on VisDA2017 and is
competitive on Office-Home. These results demonstrate that positive noise also works in the domain
adaptation tasks, where out-of-distribution (OOD) data exists.



Under review as a conference paper at ICLR 2025

Table 4: Comparison with SOTA methods on Office-Home. Above the middle black line are
methods based on CNNs, while below the middle black line are methods based on ViTs. The best
performance is marked in bold black.

Method Ar—ClAr—PrAr—ReCl—ArCl-PrCl-RePr—ArPr—CIPr—ReRe—ArRe—~CIRe—PrAvg.
ResNet-50He et al.[(2016) 449 663 743 51.8 619 63.6 524 39.1 712 63.8 459 772 594
MinEn(Grandvalet & Bengio|(2004) 51.0 71.9 77.1 612 69.1 70.1 59.3 487 77.0 704 53.0 81.0 65.8
SAFNXu et al.|(2019) 520 71.7 763 642 699 719 63.7 514 77.1 709 57.1 815 673
CDAN+ELong et al.|(2018) 546 741 781 63.0 722 741 61.6 523 79.1 723 573 82.8 68.5
DCANLI et al.|(2020) 545 757 812 674 740 763 674 527 80.6 74.1 59.1 83.5 70.5
BNM Cui et al.|(2020) 56.7 775 81.0 673 763 77.1 653 55.1 82.0 73.6 57.0 84.3 71.1
SHOT|Liang et al.|(2020) 57.1 78.1 81.5 68.0 782 78.1 674 549 822 733 58.8 843 71.8
ATDOC-NALiang et al.|(2021) 583 78.8 823 69.4 782 782 67.1 56.0 82.7 72.0 58.2 85.5 72.2
ViT-BDosovitskiy et al.[(2020) 547 83.0 872 773 834 856 744 509 872 79.6 54.8 88.8 75.5
TVT-BYang et al.|(2023a) 749 86.8 89.5 82.8 88.0 883 79.8 71.9 90.1 855 74.6 90.6 83.6
CDTrans-BXu et al.|(2022) 68.8 85.0 869 815 87.1 87.3 79.6 63.3 88.2 82.0 66.0 90.6 80.5
SSRT-B [Sun et al.|(2022) 752 89.0 91.1 85.1 88.3 90.0 85.0 742 913 85.7 78.6 91.8 854
NoisyNN (TVT-based) 783 90.6 919 87.8 92.1 919 85.8 78.7 93.0 88.6 80.6 93.5 87.7

Table 5: Comparison with SOTA methods on Visda2017. Above the middle line are methods based
on CNNs, while below the middle line are methods based on ViTs. The best performance is marked

in bold.
Method plane bcycl bus car horse knife mcycl person plant sktbrd train truck Avg.

ResNet-50He et al.[(2016) 55.1 533 619 59.1 80.6 17.9 79.7 312 81.0 26.5 73.5 85 524
DANNGanin & Lempitsky|(2015)  81.9 77.7 82.8 44.3 81.2 29.5 65.1 28.6 519 54.6 828 7.8 574

MinEn(Grandvalet & Bengio|(2004) 80.3 75.5 75.8 483 779 273 69.7 402 465 46.6 79.3 16.0 57.0

SAFNXu et al.|[(2019) 93.6 61.3 84.1 70.6 94.1 79.0 91.8 79.6 89.9 55.6 89.0 244 76.1
CDAN+ELong et al.|(2018) 852 66.9 83.0 50.8 84.2 749 88.1 745 834 76.0 81.9 38.0 73.9
BNM Clui et al.|(2020) 89.6 61.5 769 55.0 893 69.1 813 655 90.0 47.3 89.1 30.1 70.4
CGDMDu et al.|(2021) 93.7 827 73.2 684 929 945 887 82.1 934 825 86.8 49.2 823
SHOT|Liang et al.|(2020) 94.3 88.5 80.1 57.3 93.1 93.1 80.7 80.3 91.5 89.1 86.3 58.2 82.9
ViT-BDosovitskiy et al.[(2020) 97.7 48.1 86.6 61.6 78.1 63.4 947 103 87.7 47.7 94.4 355 67.1
TVT-BYang et al.|(2023a) 929 85.6 77.5 60.5 93.6 982 894 764 93.6 92.0 91.7 557 83.9
CDTrans-BXu et al.|[(2022) 97.1 90.5 824 77.5 96.6 96.1 93.6 88.6 97.9 869 90.3 62.8 88.4
SSRT-B|Sun et al.|(2022) 98.9 87.6 89.1 84.8 983 98.7 96.3 81.1 949 979 945 43.1 88.8
NoisyNN (TVT-based) 98.8 95.5 84.8 73.7 98.5 972 951 765 959 98.4 98.3 67.2 90.0

5 ABLATION

Design Choice. We conduct a comprehensive ablation on the two critical design choices of NoisyNN:
the perturbation strength « and the layer [ where the noise is injected. Results are shown in Fig. [2| We
observe that injecting positive noise into deeper layers often yields better performance. Furthermore,
within the region a < 0.5 (the constraint in Eq.[16)), a larger @ provides better performance, which
aligns with theoretical analysis, as a larger « induces a more substantial entropy change (Eq. [I5} [I7).

Table 6: Variants of ViT with different kinds of noise on TinyImageNet. Vanilla means the vanilla
model without noise. Accuracy is shown in percentage. Gaussian noise used here is subjected to
standard normal distribution. Linear transform noise used in this table is designed to be positive noise.
The difference is shown in the bracket.

Model DeiT SwinTransformer BeiT ConViT
Vanilla 85.02 (+0.00) 90.84 (+0.00) 88.64 (+0.00)  90.69 (+0.00)
+ Gaussian Noise 84.70 (-0.32) 90.34 (-0.50) 88.40 (-0.24)  90.40 (-0.29)

+ Salt-and-pepper Noise ~ 84.03 (-1.01) 87.12 (-3.72) 42.18 (-46.46)  89.93 (-0.76)
+ Linear Transform Noise  86.50 (+1.48) 95.68 (+4.84) 91.78 (+3.14)  93.07 (+2.38)

Params. 86M 87T™M 86M 86M

Compatibility with Other Architectures. We also proactively inject noise into other ViT variants,
such as DeiT [Touvron et al.| (2021), Swin Transformer|L1u et al.| (2021)), BEiT [Bao et al.|(2021), and
ConViT|d’ Ascoli et al.| (2021)). The results are reported in Table@ As expected, these variants of
ViTs benefit from the positive noise. These additional four ViT variants are at the base scale, whose
parameters are listed in the table’s last row. For a fair comparison, we use identical experimental
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Figure 2: Ablation on perturbation strength (a, c) and noise injection layer (b, d). Showing top-1
accuracy on ImageNet. The positive noise refers to the linear transform noise from For parts (a)
and (c), the linear transform positive noise is injected into the last layer. Note that in (d) ViT-L has 24
layers while the other variants have 12. For visualization purpose we show the performance up to
layer 12.

settings for each kind of experiment. For example, we use the identical setting for vanilla ConViT,
ConViT with different kinds of noise. From the experimental results, we can observe that the different
variants of ViT significantly improve prediction accuracy through injecting positive noise. The
results on different scale datasets and variants of the ViT family demonstrate that positive noise can
universally improve the model performance.

Comparison with common data augmentation techniques. To compare NoisyNN with data
augmentation techniques and explore whether our proposed NoisyNN is compatible with existing
data augmentation techniques, we conduct corresponding experiments in App Table[I8] The results
demonstrate that linear transform positive noise significantly outperforms the common data aug-
mentation techniques evaluated. Integrating linear transform positive noise with other common data
augmentation techniques does not substantially change performance.

6 CONCLUSION AND LIMITATION

This study theoretically and empirically explores the impacts of injecting noise into the embedding
space of deep neural networks. We show that Gaussian and salt-and-pepper noise are harmful noises
while linear transform noise can be made positive noise under proper construction and thus positively
affect deep neural networks. The results of the extensive experiments on the 15 datasets, which
include datasets with significant domain shifts, demonstrate the efficacy of our approach. Our study
provides the community with a new paradigm for improving model performance. However, the
theoretical analysis of the current study is tailored to classification tasks. While we preliminarily
explored the applicability of the NoisyNN framework for other tasks (Domain Generalization, Text
Classification, and Object Detection), more study is needed to confirm its effectiveness for those
tasks, which might entail conducting theoretical analyses and extensive empirical evaluations.

10
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Supplementary Material

In this supplement, we provide:

* Sec.[A} Theoretical Foundations of Task Entropy

Sec. |Bl The Impact of Gaussian Noise on Task Entropy

* Sec.[C} The Impact of Linear Transform Noise on Task Entropy
Sec. D} The Impact of Salt-and-Pepper Noise on Task Entropy
* Sec.[E} Implementation Details

Sec.[F} Additional Experiments

A THEORETICAL FOUNDATIONS OF TASK ENTROPY

This section provides the theoretical foundations of task entropy, quantifying the complexity of
learning tasks. The concept of task entropy was first proposed for the image level and formulated
as|Lil (2022):
H(T; X) == > p(Y|X)logp(Y|X) (22)
Yey

The image X in the dataset are supposed to be independent of each other, as are the labels Y.
However, X and Y are not independent because of the correlation between a data sample X and
its corresponding label Y. Essentially, the task entropy is the entropy of p(Y'|X). Following the
principle of task entropy, compelling evidence suggests that diminishing task complexity via reducing
information entropy can enhance overall model performance L1 (2022); Jain et al.|(2023a); [Zhang
et al.[(2023).

Inspired by the concept of task entropy at the image level, we explore its extension to the latent space.
The task entropy from the perspective of embeddings is defined as:

H(T:Z)=H(Y,Z)- H(Z) (23)

where Z are the embeddings of the images X. Here, we assume that the embedding Z and
the vectorized label Y follow a multivariate normal distribution. We can transform the unknown
distributions of Z and Y to approximately conform to normality by utilizing existing techniques
such as reparameterization tricks [Kingma & Welling| (2013);|Van Den Oord & Vinyals|(2017)). After
approximate transformation, the distribution of Z and Y can be expressed as:

Z ~N(pz,2z2),Y ~N(py,Zy) (24)
where

1z = E[Z] = (E[Z1),E[Z,), ..., E[Z,]))"

py = E[Y] = (EY1],E[Ya], .. E)” -

Yz=E[(Z-pz)(Z - HZ) ]

[
Sy =E[(Y — py)(Y — py)"]
k is the number of samples in the dataset, and 1" represents the transpose of the matrix.

Then the conditional distribution of Y given Z is also normally distributed Mood| (1950); Johnson
et al.|(1995)), which can be formulated as:

Y|Z ~NEY|Z = Z),var(Y|Z = Z)) (26)

where E(Y'|Z = Z) is the mean of the label set Y given a sample Z = Z from the embeddings, and
var(Y'|Z = Z) is the variance of Y given a sample from the embeddings. The conditional mean
E[(Y|Z = Z)] and conditional variance var(Y |Z = Z) can be calculated as:

pyiz=z = E(Y|Z = Z)] = py + Ty 225" (Z — pz) 27
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-1
Ey|Z:Z:UGT(Y|Z:Z):Ey—EYXzZ EZY (28)
where Yy z and X zy are the cross-covariance matrices between Y and Z, and between Z and Y,
respectively, and E;l denotes the inverse of the covariance matrix of Z.

Now, we shall obtain the task entropy:

H(T;2)=-Y_ p(Y|Z)logp(Y|Z)
Yey
= — E[logp(Y|Z)]

_ _ 1 _
= — E[log[(27) k/2|EZ| 1/2 eXP(*i(Y|Z - HY|Z)T2Y1|2(Y|Z - MY|Z))]]
k 1
:5(1 + log(27)) + 3 log |Zyz]

(29)

Therefore, for a specific set of embeddings, we can find that the task entropy is only related to the
variance of the Y| Z.

As we proactively inject different kinds of noises into the latent space, the task entropy with noise
injection is defined as :

(30)

H(T;Z+¢€)=H(Y;Z+¢)—H(Z) € is additive noise
H(T;Ze)=H(Y;Ze)— H(Z) € is multiplicative noise

Equation[30]diverges from the conventional definition of conditional entropy as our method introduces
noise into the latent representations instead of the original images. The noises examined in this study
are classified into additive and multiplicative categories. In the subsequent sections, we analyze the
changes in task entropy resulting from the injection of common noises into the embeddings.

B THE IMPACT OF GAUSSIAN NOISE ON TASK ENTROPY

We begin by examining the impact of Gaussian noise on task entropy from the perspective of latent
space.

B.1 INJECT GAUSSIAN NOISE INTO EMBEDDINGS
In this case, the task complexity is formulated as:
H(T;Z+¢€)=H(Y;Z+¢€)— H(Z). (31)

Take advantage of the definition of task entropy, thus, the entropy change of injecting Gaussian noise
in the latent space can be formulated as:

NS(T,e)=H(T;Z)—H(T;Z +¢€)

_H(Y;Z) - H(Z) ~ (H(Y; Z + €) — H(Z))

=H(Y;Z)-H(Y;Z +¢)

:}log|2y|z\ + 1log|Ez| — 1log\2y|2+5| — 110g|§]z_|_e\
2 2 2 2 (32)
1 1Xz|[Zyz|

=—log
2 |EZ+6||EY|Z+€|

1 log 22|12y — ZyzEz ' Say]
2 1Zz1e|By — Byz3,t Sy

Z+€

17
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where Yy |z = Xy — EY(Z+E)EZ_1|.€E(Z+E)Y~ Since the Gaussian noise is independent of Z
and Y, we have Xy (z4¢) = (z4e)y = Xy z. The corresponding proof is:
S(z+ey =E[(Z +€) — pz4]E[Y — py]
“E[(Z +€)Y] ~ pyE[(Z +€)] — jiz+E[Y] + py pizse
=E[(Z + €)Y] - uyE[(Z + €)]
=E[ZY]+E[€Y] — pypz — py e
=E[ZY] - pypz

=Xzy

(33)

Obviously,
. Zz||[Zyz]
AS(T,e) >0 if 7&'255“?{'2#' > 1 34
. z|l2y|z
AS(T’ 6) =0 if EziellZy izl <1
To find the relationship between |3 Z.‘|Ey| Z| and |X .Z"‘E”EY.' Ztel, we need to determine the
subterms in each of them. As we mentioned in the previous section, the embeddings of the images
are independent of each other, and so are the labels.

Sy =E[(Y — py ) (Y — py)"]

=EYY"] - pyps (35)
=diag(0¥,, ..., 0%, )
where ‘ .
E[YYj] — pyvpy; =0, i # ] (36)

The same procedure can be applied to Xy (z4) and Xz . Therefore, We can obtain that 3y =

diag(af,1 s ey af,k),

Yy (z4¢) = diag(cov(Y1, X1 +€),...,cov(Yy, X, +¢€)) (37)
and ¥z is:
0%1 + 052 052 052 052
062 a%z + U? 062 062
Szpe=| : : : a8)
2 2 2 2 2
O¢ O¢ UZk_l + O¢ O¢
o? o? o? 0%, +0?
2

=diag(o7z,, ..., O’%k)Ik + 021y,
where I is a k x k identity matrix and 1j is a all ones k£ x k matrix. We use U to repre-
sent diag(c% ,...,0%, )I1, and u to represent a all ones vector [1,...,1]”. Thanks to the Sher-
man—Morrison Formula Sherman & Morrison|(1949) and Woodbury FormulaWoodbury|(1950), we
can obtain the inverse of Xz . as:
274e =(U +oluu’)™!
2

_ g _ _
U - gty WU
1+ o2utUlu
2
_ g _ _
U ——— U ',,Uu!
1+50,
i
(11 1 R I T (39)
2 1 ) 32 32
)\UZI 77z 92192 21%Z)_1 92,92,
1 11 1
2 2 2 1 3 2 32
922,92, )‘022 %7y %22%Zp_1 92592,
=\
1 1 11 1
2 2 2 2 2 1 2 2
92,172, 92,172, )\azk 1 Zr—1 92172y,
T _ 1 1 1
22 22 .. 22 2 1
L 2,92, 212 21,9%, 1 )\O'Zk oz
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where U_1 = diag((a%l)_l, ceay (U%k)_l) and \ = m
Z

Therefore, substitute Equationinto Xy — Yy z+e)22_1|_62( Z+¢)Y|> We can obtain:

Iy — By(z+0 271 Sz 4oy

}r%,] .. 0 cov(Y1,Z1+¢€) .. 0 cov(Y1,Z1 +€) .. 0
il : : SZte : :
L0 .. o}, 0 o cov(Yi, Zi +€) 0 . cov(Yy, Zi +e€)
[ 0%, —cov?(Yy, Zy + f)(g% - G%) . cov(Yy, Zy + €)cov(Yy, Zy +€)U v
cov(Yy, Z + 5)cov(Y1 Zy + e)ﬁ ooy, —covi (Y, Zk +e)(— - U% ]
_0%,] - ;Zrcovz(Yl,Zl) Ui coxz(Yl,Zl) ﬁcov(Yth)cov(Yk,Zk)
= +A : :
af,k - écovz(Yk?Zk) ﬁcov(Yk,Zk)cov(Yl, Zy) .. écovz(Yk, Zr)
(40)
T
. 1 1
We use the notation v = {7COV<Y17 Zr) - o2 (Yi, Zy) ,and V. =
k
dlag( cov?(Y1, Z1), -, 2 cov?(Yx, Z1,)). And utilize the rule of determinants of sums Marcus
(1990), then we have:
—1 T
By — Ey (210221 Zztrov| =By = V) + Avv | @)

=2y V] + ! (By - V)'v

where (¥y — V)* is the adjoint of the matrix (¥y — V). For simplicity, we can rewrite

Sy — Sy (210271 Zztov] as:

\EY — 2y (24971 Sz 4oy |

1 (42)
H ¥ oV (Y, Zi) ) + 0
i=1 Zi
where 2 = AvT (Zy — V)" v. The specific value of €2 can be obtained as:
Vi, 7T, —+cov(Y1, Z1)
Q=2 écov()fl7 Zy) é cov(Yy, Zk)] - : (43)
1 k : .
Vick (Yx, Zx)
where the elements Vj;, i € [1, k| are minors of the matrix and expressed as:
i 1
2 2
J=1,j#i J
After some necessary steps, Equation@is reduced to:
k_ Gi-cov (K,Z)HJ 1(0% COVz(YijJ')a%Z_)
— (0% — cov Y3, Zi) =)
= ' Zi (45)
k
cov?(Z;,Y;)
=\ — cov3(Y;, Z;)
H v, — ot _ ZZ:;O' 3. (0% 03 —covi(Z;,Y)))
Substitute Equatlon@mto Equation[42] we can get:
IEY - EY(Z+e>22.1+52(2+e)¥|
k
(Z:,Y; (46)
H 2 —covi(Y;, Z;) Z cov(Z:, Yi) )

(0%, 0% —cov¥(Z;,Y))
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Accordingly, | By — Xy zX, ' Szy | is:

k
— 1
|2y-—zyzzzlzzy|:Ilwa-gfaw%zhm» (47)
i=1 Z;
As a result, % is expressed as:
k 2
‘EY|Z| B Hi:1(‘7y (Zqu)) 48)
» - k 2 20V N1 cov?(Z;,Y;)
Evizte 10, (0% mv@@&%%)ﬂ+Azlh%w%W_mﬂzyn
Combine Equations 48| and [38]together, the entropy change is expressed as:
1
AS(T’ 6) =5 IOg cov?(Z;,Y; 49
2 7 (1+o2yr, 7T, )1+ AT, 3 (03,03, (—cov2)(z,,y))) @

It is difficult to tell that Equation [49]is greater or smaller than 0 directly. But one thing for sure is
that when there is no Gaussian noise, Equation 49| equals 0. However, we can use another way to
compare the numerator and denominator in Equation[49] Instead, we use the symbol M to compare
the numerator and denominator using subtraction. Let:

cov?(Z;, Y;)
)1+ A ) (50)
"z lzl 0% (0%, 0% —cov?(Z;,Y;))

M_l_( +0221 1

Obviously, the variance O’E of the Gaussian noise control the result of M, while the mean p. has no
influence. When o, approaching 0, we have:

lim M =0 (51)

02—0

To determine if Gaussian noise can be positive noise, we need to determine whether the entropy
change is large or smaller than 0.

{AﬂT@)>Oiﬂw>O (52)

AS(T,e) <0 ifM <0

From the above equations, the sign of the entropy change is determined by the statistical properties
of the embeddings and labels. Since €2 > 0, A > 0 and Zl 1 72— = 0, we need to have a deep dive

into the residual part, i.e.,

k k
cov?(Z;,Y:) Z cov?(Zi, Vi)
> - Y

— 0% (0%, 0% — cov?(Z;,Y;)) — 030y (1—p%y)

where pz.y, is the correlation coefficient, and p% 7.y, € [0, 1]. Eq. is greater than 0, As a result, the
sign of the entropy change in the Gaussian noise case is negative. We can conclude that Gaussian
noise added to the latent space is harmful to the task.

B.2 ADD GAUSSIAN NOISE TO RAW IMAGES

Assuming that the pixels of the raw images follow a Gaussian distribution. The variation of task
complexity by adding Gaussian noise to raw images can be formulated as:

AS(T,e)=H(T;X)—H(T; X +¢)

1 1
=3 log [Zy x| — 3 log [Zy|x +e

}log Sy x|

2 Iy |x +el (54)
_1 log Iy — SyxTx Sxv|

2 7 By - Sy (x40 x4 E(x4ov|

_ By — SyxEX Exv|

2 Xy — nyz}ﬂ_ezxﬂ
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Borrow the equations from the case of Gaussian noise added to the latent space, we have:

1 1
AS(T,e) = = log —
: L+A Zf:l ox (UQCOV;(X“YJ

X.0y. —COV2(Xi,YL'))

(55)

Clearly, the introduction of Gaussian noise to each pixel in the original images has a detrimental
impact on the task. Note that some studies have empirically shown that adding Gaussian noise to
partial pixels of input images may be beneficial to the learning task [Li|(2022);|Zhang et al.|(2023).

C IMPACT OF LINEAR TRANSFORM NOISE ON TASK ENTROPY

In our work, concerning the image level perspective, ’linear transform noise” denotes an image that
is perturbed by another image or a combination of other images. From the viewpoint of embeddings,
“linear transform noise” refers to an embedding perturbed by another embedding or the combination
of other embeddings.

C.1 INJECT LINEAR TRANSFORM NOISE INTO EMBEDDINGS

The entropy change of injecting linear transform noise into embeddings can be formulated as:
ANS(T,QZ)=H(T;Z)-H(T; Z+QZ)
=H(Y;Z)-H(Z)- (H(Y;Z+QZ) - H(Z))
=H(Y;Z)-H(Y;Z+QZ)

_Ligg [BzllZy = Bra¥p By ] (56)
2 T BurzllBy — ByzEy Tzy|

gL
2 7+ Q|?

=—log|I + Q|

Since we want the entropy change to be greater than 0, we can formulate Equation[56|as an optimiza-
tion problem:

max AS(T,QZ)

st.rank(I+Q) =k
I+Ql; =T +Ql;.i#j

I +elll, =1

The key to determining whether the linear transform is positive noise or not lies in the matrix of Q.
The most important step is to ensure that I + @ is invertible, which is | (I + Q)| # 0. For this, we
need to investigate what leads I + @) to be rank-deficient. The second constraint is to make the trained
classifier get enough information about a specific embedding of an image and correctly predict the
corresponding label. For instance, when an embedding Z; is perturbed by another embedding 75,
the classifier predominantly relies on the information from Z; to predict the label Y;. Conversely,
if the perturbed embedding Z5 takes precedence, the classifier struggles to accurately predict the
label Y7 and is more likely to predict it as label Y5. The third constraint is the normalization of latent
representations.

(57)

Rank Deficiency Cases To avoid causing a rank deficiency of I + (), we need to figure out the
conditions that lead to rank deficiency. Here we show a simple case causing the rank deficiency.
When the matrix () is a backward identity matrix Horn & R.|(2012),

1, i+ j=k+1
QW’_{O, i+jAk+1 (58)
ie.,
0O 0 .. 0 0 1
00 .. 010
Q= : R (39
0 1 0 0 0
1 0 0 0 O
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then (I + Q) will be:

1 0 0 0 1
01 .. 010
T+Q=1|: 1 1o (60)
01 .. 010
1 0 .. 0 0 1

Thus, I + @ will be rank-deficient when @) is a backward identity. In fact, when the following
constraints are satisfied, the I + () will be rank-deficient:

HermiteForm(I 4+ Q); =0, 3i € [1, k] (61)

where index ¢ is the row index, in this paper, the row index starts from 1, and HermiteForm is the
Hermite normal form [Kannan & Bachem|(1979).

Full Rank Cases Except for the rank deficiency cases, I + @ has full rank and is invertible. Since @
is a row equivalent to the identity matrix, we need to introduce the three types of elementary row
operations as follows [Shores| (2007).

> 1 Row Swap Exchange rows.
Row swap here allows exchanging any number of rows. This is slightly different from the
original one that only allows any two-row exchange since following the original row swap
will lead to a rank deficiency. When the () is derived from I with Row Swap, it will break
the third constraint. Therefore, Row Swap merely is considered harmful and would degrade
the performance of deep models.

> 2 Scalar Multiplication Multiply any row by a constant 3. This breaks the fourth constraint,
thus degrading the performance of deep models.

>3 Row Sum Add a multiple of one row to another row. Then the matrix I + @ would be like:

1 1

. 8
1+Q= . +

- (62)

2

where [ can be at a random position beside the diagonal. As we can see from the simple
example, Row Sum breaks the fourth constraint and makes entropy change smaller than 0.

From the above discussion, none of the single elementary row operations can guarantee positive
effects on deep models.

However, if we combine the elementary row operations, it is possible to make the entropy change
greater than 0 as well as satisfy the constraints. For example, we combine the Row Sum and Scalar
Multiplication to generate the Q:

1 —0.5 0.5
1+Q= : +
. 0.5
1 0.5 —0.5
- (63)
0.5 0.5
.05
0.5 0.5
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In this case, AS(T,QZ) > 0 when Q = —0.5]. The constraints are satisfied. This is just a simple
case of adding linear transform noise that benefits deep models. Actually, there exists a design space
of () that within the design space, deep models can reduce task entropy by injecting linear transform
noise into the embeddings. To this end, we demonstrate that linear transform can be positive noise.

From the discussion in this section, we can draw conclusions that Linear Transform Noise can be
positive under certain conditions, while Gaussian Noise and Salt-and-pepper Noise are harmful
noise. From the above analysis, the conditions that satisfy positive noise form a design space.
Exploring the design space of positive noise is an important topic for future work.

C.1.1 OPTIMAL QUALITY MATRIX OF LINEAR TRANSFORM NOISE

The optimal quality matrix should maximize the entropy change and therefore theoretically define
the minimized task complexity. The optimization problem as formulated in Equation |16]is:

mgx—log|l+ Q|
st.rank(I + Q) =k

Q~1 (64)
[I+Ql; = [I+Q]ij7i7éj
I+ QLI =1

Maximizing the entropy change is to minimize the determinant of the matrix sum of I and Q. A
simple but straight way is to design the matrix () that makes the elements in I 4+ @) equal, i.e.,

1/k - 1/k
I+Q@=1: ... (65)
1/k -+ 1/k
The determinant of the above equation is 0, but it breaks the first constraint of rank(l + Q) = k.

However, by adding a small constant into the diagonal, and minus another constant by other elements,
we can get:

1/k+e¢ - 1/k — co
I+Q= 1/]“__62 (66)
: ‘. 1/k5 — C2
]./k*CQ 1/]%‘762 1/k+01
Under the constraints, we can obtain the two constants that fulfill the requirements:
k-1 1
G k(k+ 1) €2 k(k+ 1) (67)
Therefore, the corresponding Q) is:
1 1 1
optimal = di —_— 1., — =1 —1pk 68
Qoptimal 1ag<k;+1 Pl >+k+1 kxk (68)
and the corresponding I + @ is:
2/(k+1) - 1/(k+1)
1 1 :
1+q=|YFHD (69)
: - 1/(k+1)
1/(k+1) -+ 1/(k+1) 2/(k+1)

As a result, the determinant of optimal I + () can be obtained by following the identical procedure as
Equation AT}

1
I R — 70
The upper boundary of entropy change of linear transform noise is determined:
AS(T,QZ)ypper = (k—1)1log (k+1) (@h))
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C.2 ADD LINEAR TRANSFORM NOISE TO RAW IMAGES

In this case, the task entropy with linear transform noise can be formulated as:

H(T; X +QX)=- Y p(Y|X +QX)logp(Y|X + QX)
Yey
== > (Y| +Q)X)logp(Y[(I +Q)X)
Yey
where [ is an identity matrix, and () is derived from I using elementary row operations. Assuming

that the pixels of the raw images follow a Gaussian distribution. The conditional distribution of Y’
given X + QX is also multivariate subjected to the normal distribution, which can be formulated as:

Y[l +Q)X ~NEY|I +Q)X),var(Y|(I +Q)X)) (73)

Since the linear transform matrix is invertible, applying the linear transform to X does not alter the
distribution of the X. It is straightforward to obtain:

Byirro)x = by + SyxEx T+ Q) I+ Q)X — (I +Q)ux) (74)

Svii+@)x) =By — SyxTx Exy (75)

(72)

Thus, the variation of task entropy adding linear transform noise can be formulated as:
AS(T,QX)=H(T; X)—-H(T; X +QX)
1 1
zilog [y x| — 3 log Yy x+ox|

log 1Zy x|
IZy | x+ox| (76)

_L

T2

1y Iy — SyxTx' Sxv|
2

1Ty — SyxEx Sxv|

=0
The entropy change of 0 indicates that the implementation of linear transformation to the raw images
could not help reduce the complexity of the task.

D INFLUENCE OF SALT-AND-PEPPER NOISE ON TASK ENTROPY

Salt-and-pepper noise is a common type of noise that can occur in images due to various factors,
such as signal transmission errors, faulty sensors, or other environmental factors (Chan et al.| (2005).
Salt-and-pepper noise is often considered to be an independent process because it is a type of random
noise that affects individual pixels in an image independently of each other|Gonzales & Wintz (1987).

D.1 INJECT SALT-AND-PEPPER NOISE INTO EMBEDDINGS

The entropy change of injecting salt-and-pepper noise can be formulated as:
ANS(T,QZ)=H(T;Z)— H(T; Ze)
=H(Y:Z) ~ H(Z) ~ (H(Y: Ze) - H(Z))
=H(Y;Z)— H(Y; Ze)

= Z Z p(Z,Y)logp(Z,Y) + Z Z Zp(Ze,Y)logp(Ze,Y)

& oy | 2 o ] [
=~ 2 los 5]
— — Hi(e)
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Table 7: Details of ResNet Models. The columns "18-layer”, ”34-layer”, ”50-layer”, and ”101-layer”

show the specifications of ResNet-18, ResNet-34, ResNet-50, and ResNet-101, separately.

Layer name | Output size 18-layer \ 34-layer \ 50-layer \ 101-layer
convl 112 x 112 7 x 7, 64, stride 2
3 x 3, max pool, stnde 2
Tx1 Tx1
conv2.x 56 x 56 Eig gﬂ x 2 Big gﬂ x 3 {3><3 ] [3x3 }
1x1 256 1x1 256
- - - ; ITx1 128 Ix1 128
conv3_x 28 x 28 gig gg x 2 gig gg x4 | [3x3 128| x4 3x3 128| x4
i ] i ] 1x1 512 Ix1 512
- - - - Ix1 256 Ix1 256
,
convd_x 14 x 14 gig 3;’2 x 2 gig gf’g x6 | |3x3 256|x6| |3x3 256 x23
L 20 L b 1x1 1024 1x1 1024
- - - - Ix1 512 Ix1 512
convs_x 7x7 SXs k2| 5 gg «3 | 3x3 512|x3| |3x3 512
i 044 i I1x1 2048 1x1 2048
1x1 average pool, 1000-d fc, softmax
Params 11IM \ 22M \ 26M 45M

The entropy change is smaller than 0, therefore, the salt-and-pepper is a pure detrimental noise to the

learning task.

D.2 ADD SALT-AND-PEPPER NOISE TO RAW IMAGES

The task entropy with salt-and-pepper noise is rewritten as:

H(T;Xe)=— Y _ p(Y|Xe)logp(Y|Xe)
Yey

Since € is independent of X and Y, the above equation can be expanded as:

o p(Y, Xe (Y Xe)
HT: XD == 2 L3000 ' p(X)nle
Y X op P X)p(e)
“T X og 2
=~ 3" p(Y[X) logp(Y|X)
Yey
where
p(XeY) =p(Xe|Y)p(Y)
=p(X[Y)p(e[Y)p(Y)
=p(X|Y)p(e)p(Y)
=p(X,Y)p(e)
Therefore, the entropy change with salt-and-pepper noise is:
AS(T,QX)=H(T; X)—-H(T; Xe)=0

(78)

(79)

(80)

81)

Salt-and-pepper noise can not help reduce the complexity of the task, and therefore, it is considered a

type of pure detrimental noise.

E EXPERIMENTAL SETTING

In this section, we present the implementation details. The noise was added during both the train-
ing and inference stages. Model details of the models are shown in Table [7]and [§] Pre-trained
models on ImageNet-21K are used. We train all ResNet and ViT-based models using AdamW
optimizer Loshchilov & Hutter| (2017). We set the learning rate of each parameter group using a
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Table 8: Details of ViT Models. Each row shows the specifications of a kind of ViT model. ViT-T,
ViT-S, ViT-B, and ViT-L represent ViT Tiny, ViT Small, ViT Base, and ViT Large, separately.
ViT Model Layers Hiddensize MLPsize Heads Params

VIT-T 12 192 768 3 5™
ViT-S 12 384 1536 6 22M
ViT-B 12 768 3072 12 86M
ViT-L 24 1024 4096 16 307M

Table 9: Top 1 accuracy on ImageNet V2 with positive linear transform noise.

Model Topl Acc. Params. Image Res. Pretrained Dataset

ViT-B 72.6 86M 224 x 224 ImageNet 21k
NoisyNN (ViT-B based) 82.2 86M 224 x 224 ImageNet 21k
NoisyNN (ViT-B based) 84.8 86M 384 x 384 ImageNet 21k

cosine annealing schedule with a minimum of 1e — 7. Data are resized and then normalized before
passing into the model.

CNN (ResNet) Setting The training epoch is set to 100. We initialized the learning rate as 0 and
linearly increase it to 0.001 after 10 warmup steps. All the experiments of CNNs are trained on
a single Tesla V100 GPU with 32 GB. The batch size for ResNet18, ResNet34, ResNet50, and
ResNet101 are 1024, 512, 256, and 128, respectively.

ViT and Variants Setting All the experiments of ViT and its variants are trained on a single machine
with 8 Tesla V100 GPUs. For vanilla ViTs, including ViT-T, ViT-S, ViT-B, and ViT-L, the training
epoch is set to 50 and the input patch size is 16 x 16. We initialized the learning rate as 0 and linearly
increase it to 0.0001 after 10 warmup steps. We then decrease it by the cosine decay strategy. For
experiments on the variants of ViT, the training epoch is set to 100 and the learning rate is set to
0.0005 with 10 warmup steps.

F MORE EXPERIMENT RESULTS

F.1 IMAGENETV2 RESULTS

Table 0] shows additional results on ImageNetV2. We tested the positive linear transformation noise
on ImageNetV2, and these results demonstrate the superiority of our proposed methods.

F.2 IMAGENET-A RESULTS

Table[10] shows additional results on ImageNet-A. We further tested the positive linear transformation
noise on ImageNet-A, which exhibits a significant domain shift compared to the validation set of
ImageNet-1k. The results demonstrate the robustness of our method to domain shift. We also
calculate the confusion matrices of our method and ViT-B on ImageNet-A, which are presented in
Fig. Bland ] respectively.

Table 10: Top 1 accuracy on ImageNet-A with positive linear transform noise.

Model Topl Acc. Params. Image Res. Pretrained Dataset

ViT-B 27.4 86M 224 x 224 ImageNet 21k
NoisyNN (ViT-B based) 34.1 86M 224 x 224 ImageNet 21k
NoisyNN (ViT-B based) 38.3 86M 384 x 384 ImageNet 21k
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F.3 IMAGENET-C RESULTS
Table [[T]shows additional results on ImageNet-C. ImageNet-C exhibits various forms of domain shift

in comparison to the validation set of ImageNet-1k. The results further demonstrate the robustness of
our method to such domain shifts.

Table 11: Top 1 accuracy on ImageNet-C with positive linear transform noise.

Model Topl Acc. Params. Image Res. Pretrained Dataset

ViT-B 534 86M 224 x 224 ImageNet 21k
NoisyNN (ViT-B based) 58.1 86M 224 x 224 ImageNet 21k
NoisyNN (ViT-B based) 60.5 86M 384 x 384 ImageNet 21k

F.4 TINYIMAGENET RESULTS

Results on TinyImageNet are shown in Table[T2]and[I3] These results further confirm our analysis
in the main paper that Gaussian Noise and Salt-and-pepper Noise are harmful noise, while Linear
Transform Noise can be made positive noise. Note that even with extensive hyperparameter search,
Gaussian noise (Table [I4) and salt-and-pepper noise (Table [I3)) still substaintially under-perform
positive linear transform noise.

F.5 CIFAR AND INBREAST RESULTS

Results on CIFAR-10, CIFAR-100, and INbreast are shown in Table Showing the effectiveness of
NoisyNN beyond ImageNet-based datasets.

F.6 COMPARISON AND COMBINATION WITH COMMON DATA AUGMENTATION TECHNIQUES

We compare our method with common data augmentation methods, and the results are presented in
Table [I8] Additionally, we combine our method with data augmentations, and the corresponding
results are shown in Table [[7]

F.7 COMPARISON WITH OTHER NOISES

Below in Table [19| we compare NoisyNN to other commonly seen noises including White Noise,
Uniform Noise and Dropout (Srivastava et al.,|2014) on TinyImageNet.

F.8 COMPARISON WITH MANIFOLD MIxUP

Beside the key differences discussed in the main paper, other difference between NoisyNN and
Manifold MixUp include: Manifold MixUp introduces randomness in the strength of interpolation
by drawing from a probability distribution, whereas we use a fixed strength based on theoretical
guidance. Under the constraint of Eq[I6] a larger v induces a more substantial entropy change in
Eq([I5] as verified by Figure[2](a) (¢). Additionally, Manifold MixUp selects random mixing layers
during training, while we use a fixed layer (chosen before training and kept fixed). In our experiments,
we use the last layer, with an ablation study on the effect of choosing different layers. Below in

Table 12: ResNet with different kinds of noise on TinyImageNet. Vanilla means the vanilla model
without noise. Accuracy is shown in percentage. Gaussian noise used here is subjected to standard
normal distribution. Linear transform noise used in this table is designed to be positive noise. The
difference is shown in the bracket.

Model ResNet-18 ResNet-34 ResNet-50 ResNet-101
Vanilla 64.01 (+0.00) 67.04 (+0.00) 69.47 (+0.00)  70.66 (+0.00)
+ Gaussian Noise 63.23 (-0.78)  65.71 (-1.33)  68.17 (-1.30) 69.13 (-1.53)

+ Linear Transform Noise 73.32 (+9.31) 76.70 (+9.66) 76.88 (+7.41) 77.30 (+6.64)
+ Salt-and-pepper Noise ~ 55.97 (-8.04)  63.52 (-3.52) 49.42 (-20.25) 53.88 (-16.78)
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Table 13: ViT with different kinds of noise on TinyImageNet. Vanilla means the vanilla model
without injecting noise. Accuracy is shown in percentage. Gaussian noise used here is subjected to
standard normal distribution. Linear transform noise used in this table is designed to be positive noise.
The difference is shown in the bracket. Note ViT-L is overfitting on TinyImageNet |[Dosovitskiy

et al.| (2020) [Steiner et al.| (2021)).

Model VIiT-T ViT-S ViT-B ViT-L
Vanilla 81.75 (+0.00) 86.78 (+0.00) 90.48 (+0.00) 93.32 (+0.00)
+ Gaussian Noise 80.95 (-0.80) 85.66 (-1.12)  89.61 (-0.87)  92.31 (-1.01)
+ Linear Transform Noise 82.50 (+0.75) 91.62 (+4.84) 94.92 (+4.44) 93.63 (+0.31)
+ Salt-and-pepper Noise ~ 79.34 (-2.41)  84.66 (-2.12)  87.45(-3.03)  83.48 (-9.84)

Table 14: Impact of Different Combinations of Mean and Standard Deviation of Gaussian Noise on
TinyImageNet Performance with ViT-S.

Gaussian Noise (Mean, STD) | TinylmageNet
(0,0.5) 86.8
0, 1.0) 85.9
(1.0, 0.5) 86.4
(1.0, 1.0) 85.7
NoisyNN 91.6

Table 20| we compare NoisyNN to Manifold MixUp (Verma et al.,2019) and verify the design choice
of using fixed layer versus random layer during training. The results show that NoisyNN achieves
better performance. Experiments conducted on on TinylmageNet.

F.9 DOMAIN GENERALIZATION

Domain Generalization (DG) methods try to learn a robust model by training on multiple source
domains |Volpi et al.| (2018)); Seo et al.| (2020); |Carlucci et al.[(2019); Huang et al.| (2020), while DG
methods cannot access the target domains during the training stage. To verify our method in the
application of DG tasks, we further conduct experiments on VLCS and PACS, two commonly used
datasets in the field of DG. The results are reported in Table[2T} As shown in the table, compared to
competitive methods, our proposed method achieves state-of-the-art (SOTA) results on the PACS and
VLCS datasets.

F.10 TEXT CLASSIFICATION

Text classification involves categorizing text into predefined classes or labels (Kowsari et al., 2019). It
is widely used in various applications such as spam detection, sentiment analysis, topic labeling, and
document categorization. To check whether our method can be applied to a different data modality but
within the same problem of classification, we conduct experiments on two popular text classification
datasets with widely used models. The results are shown in Table 22] Equipped with our method,
TextCNN and TextRNN show a significant improvement in performance.

Table 15: Impact of Salt-and-Pepper Noise on TinyImageNet Performance with ViT-S.

Salt-and-Pepper Noise (Intensity) | TinyImageNet
0.1 86.0
0.2 85.4
0.3 84.6
0.4 83.5
NoisyNN 91.6
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Table 16: Comparing ViT-B with NoisyNN on CIFAR-10, CIFAR-100 and INbreast.
Model CIFAR-100 CIFAR-10 INbreast
ViT-B 91.5£0.1 98.6£0.1  90.6£0.2
NoisyNN (ViT-B based)  93.7£0.1 99.4+0.1  93.5+0.1

Table 17: Combining NoisyNN with Data Augmentation.

Method ImageNet
NoisyNN (No DA) 89.9+0.5
NoisyNN + RandomResizedCrop 89.1£0.5
NoisyNN + RandomHorizontalFlip+RandomResizedCrop  89.2+0.6
NoisyNN + RandomResizedCrop+RandAugment 89.4+0.5

Table 18: Comparing NoisyNN with Data Augmentation.

Method ImageNet
ViT-B 84.3
ViT-B+RandomFlip+Gaussian Blur 84.2
ViT-B+RandAugment 85.1

ViT-B+Linear Transformation Noise (NoisyNN) 89.9

Table 19: Comparison of NoisyNN with other noises on TinyImageNet.

ResNetl18 | ResNet34 | ResNet50
Vanilla 64.01 67.04 69.47
White Noise 64.05 65.97 68.87
Uniform Noise 64.05 66.01 69.01
Gaussian Noise 63.23 64.71 68.17
Salt-and-pepper 55.97 63.52 49.42
Dropout 63.96 67.01 69.40
NoisyNN (ours) 73.32 76.70 76.88
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Figure 4: Confusion Matrix of ViT on ImageNet-A.
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Table 20: Comparison with Manifold MixUp on TinyImageNet

ResNetl8 | ResNet34 | ViT-S | ViT-B
Vanilla 64.01 67.04 86.78 | 90.48
Manifold Mixup 71.83 75.28 89.87 | 93.21
NoisyNN (random layer) 72.29 75.88 90.02 | 93.76
NoisyNN (default) 73.32 76.70 91.62 | 94.92

Table 21: Comparison with other methods in domain generalization tasks.
Method PACS VLCS
ViT |Dosovitskiy et al.[(2020) (ICLR’21)  85.0 76.9
SDVIT (Sultana et al.; 2022) (ACCV’22)  88.9 81.9
ALOFT (Guo et al.,[2023) (CVPR’23) 91.6 81.3
NoisyViT 93.1 84.4

F.11 OBIJECT DETECTION

Here we explored the NoisyNN framework for object detection tasks. The preliminary experiments
in Table [23| show the promise of extending the NoisyNN framework for Object Detection tasks.
Experiments conducted on COCO dataset (Lin et al., 2014)).

F.12 COMPUTATIONAL OVERHEAD

Our NoisyNN does not incur additional computation costs beyond a simple linear transformation in
the embedding space. Below in Table [24] we show the runtime comparison.

G DOMAIN ADAPTATION DETAILS

Unsupervised domain adaptation (UDA) aims to learn transferable knowledge across the source
and target domains with different distributions [Pan & Yang| (2009); [Wei et al.| (2018). There are
mainly two kinds of deep neural networks for UDA, which are CNN-based and Transformer-based
methods |Sun et al.| (2022)); [Yang et al.[(2023a). Various techniques for UDA are adopted on these
backbone architectures. For example, the discrepancy techniques measure the distribution divergence
between source and target domains [Long et al.|(2018); |Sun & Saenko|(2016). Adversarial adaptation
discriminates domain-invariant and domain-specific representations by playing an adversarial game
between the feature extractor and a domain discriminator |Ganin & Lempitsky|(2015).

Recently, transformer-based methods achieved SOTA results on UDA, therefore, we evaluate the
ViT-B with the positive noise on widely used UDA benchmarks. Here the positive noise is the linear
transform noise identical to that used in the classification task. The positive noise is injected into the
embeddings of the last layer of the model, mirroring the same setting taken in the classification task.
The datasets include Office Home [Venkateswara et al.|(2017) and VisDA2017 Peng et al.| (2017)).
Office-Home Venkateswara et al.|(2017) has 15,500 images of 65 classes from four domains: Artistic
(Ar), Clip Art (Cl), Product (Pr), and Real-world (Rw) images. VisDA2017 is a Synthetic-to-Real
object recognition dataset, with more than 0.2 million images in 12 classes. We use the ViT-B with a
16 x 16 patch size, pre-trained on ImageNet. We use minibatch Stochastic Gradient Descent (SGD)
optimizer [Ruder| (2016) with a momentum of 0.9 as the optimizer. The batch size is set to 32. We
initialized the learning rate as 0 and linearly warm up to 0.05 after 500 training steps. The results

Table 22: Comparison with other methods in text classification tasks.

Method THUNews AGNews
TextCNN (Kim} [2014) (EMNLP’14) 90.8 89.2
NoisyTextCNN 93.4 89.3
TextRNN (Liu et al.,[2016) (IICAT 16) 90.7 87.7
NoisyTextRNN 95.5 88.1
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Table 23: Object Detection with the NoisyNN framework on COCO dataset.

DETR | NoisyDETR
AP 2.0 427
APsy | 624 62.9
APrs | 442 44.8
APs | 205 21.4
APy | 458 45.9
AP, | 61.1 62.0

Table 24: Runtime Comparison between NoisyViT and ViT on ImageNet.

Machine

NoisyViT

Nvidia TITAN, Ubuntu, Intel 17-9700K

2h43m/epoch

2h45m/epoch

are shown in Table[d]and[5] The methods above the black line are based on CNN architecture, while
those under the black line are developed from the Transformer architecture. The NoisyTVT-B, i.e.,
TVT-B with positive noise, achieves better performance than existing works. These results show that
positive noise also works in domain adaptation tasks.
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