
GRASS : Scalable Data Attribution with
Gradient Sparsification and Sparse Projection

Pingbang Hu1 Joseph Melkonian2 Weijing Tang3 Han Zhao1 Jiaqi W. Ma1

1University of Illinois Urbana-Champaign 2Womp Labs 3Carnegie Mellon University
{pbb,hanzhao,jiaqima}@illinois.edu joe@womplabs.ai weijingt@andrew.cmu.edu

Abstract

Gradient-based data attribution methods, such as influence functions, are critical
for understanding the impact of individual training samples without requiring
repeated model retraining. However, their scalability is often limited by the high
computational and memory costs associated with per-sample gradient computation.
In this work, we propose GRASS, a novel gradient compression algorithm and
its variants FACTGRASS for linear layers specifically, that explicitly leverage
the inherent sparsity of per-sample gradients to achieve sub-linear space and
time complexity. Extensive experiments demonstrate the effectiveness of our
approach, achieving substantial speedups while preserving data influence fidelity.
In particular, FACTGRASS achieves up to 165% faster throughput on billion-scale
models compared to the previous state-of-the-art baselines.†

1 Introduction

Data attribution [Deng et al., 2025] aims to measure the impact of individual training samples on a
machine learning model and has been widely applied to data-centric problems in modern AI, such as
data curation [Koh and Liang, 2017], fact tracing [Lin et al., 2024], and data compensation [Deng et al.,
2024b]. There are two major categories of data attribution methods, gradient-based and retraining-
based [Hammoudeh and Lowd, 2024]. The former category, such as influence functions [Koh and
Liang, 2017] and its variants, has gained increasing popularity in large-scale applications as it does
not require costly model retraining. One common feature of gradient-based methods is their reliance
on the per-sample gradient—the gradient of the loss with respect to model parameters for each
individual data point—to capture the local sensitivity of the model with respect to each training
sample, providing a fine-grained understanding of data influence.

However, gradient-based methods still face significant scalability challenges for very large models,
such as large language models (LLMs). Specifically, computing and storing per-sample gradients for
a model with n training samples and p parameters requires O(np) memory and compute, creating a
severe bottleneck for large-scale models. To address this, recent work has explored compressing these
high-dimensional gradients into lower-dimensional representations, reducing memory requirements
to O(nk) for a target compression dimension k ≪ p [Wojnowicz et al., 2016, Park et al., 2023,
Choe et al., 2024]. However, this compression often introduces additional computational overhead,
as the most common approach—random matrix projection with the Johnson-Lindenstrauss (JL)
guarantee—requires dense matrix multiplications, resulting in an overall time complexity of O(nkp).

To overcome these limitations, more specialized approaches have been proposed. For example,
the fast Johnson-Lindenstrauss transform (FJLT) used in TRAK’s official implementation [Park
et al., 2023] exploits structured random matrices, reducing the projection time to O((p+ k) log p)
per sample. Alternatively, recent work by Choe et al. [2024] proposed LOGRA that leverages the

†Our code is publicly available at https://github.com/TRAIS-Lab/GraSS.

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

https://github.com/TRAIS-Lab/GraSS

Kronecker product structure of gradients in linear layers, reducing projection time to O(
√
pk) for

each data via a factorized matrix approach. However, these methods are often designed for general
inputs and do not fully exploit the unique sparsity structures present in per-sample gradients.

In this paper, we push the boundaries of these state-of-the-art (SOTA) gradient compression meth-
ods by proposing a novel, two-stage gradient compression algorithm called GRASS (Gradient
Sparsification and Sparse-projection), that achieves sub-linear space and time complexity by explic-
itly leveraging the inherent sparsity of per-sample gradients. Our contributions are as follows:

1. We identify two critical sparsity properties in per-sample gradients and leverage these to develop
a gradient compression algorithm, GRASS, that reduces both space and time complexity from
O(pk) to O(k′), where k′ is a tunable hyperparameter in the range [k, p].

2. We further derive a practically efficient variant of GRASS for linear layers, FACTGRASS
(Factorized GRASS), which exploits the gradient structures for linear layers, similarly achieving
a time and space complexity of O(k′) without the need to ever materialize the full gradients.

3. Through extensive experiments, we demonstrate that our approach achieves several orders of
magnitude speedup compared to previous SOTA while maintaining competitive performance
on standard evaluation metrics. In particular, on billion-scale language models and datasets,
FACTGRASS is up to 165% faster in terms of compression throughput compared to LOGRA.

2 Preliminary

We begin by introducing the influence function and its practical implementation as our running
example of gradient-based data attribution methods. We then demonstrate how random projection can
be integrated with the influence function. We note that the proposed compression methods naturally
extend to other gradient-based approaches that share similar low-level computations. Examples in-
clude TRAK [Park et al., 2023], SGD-Influence [Hara et al., 2019], and Data Value Embedding [Wang
et al., 2025]. A more detailed discussion of related work is provided in Section A.1.

2.1 Influence function

Given a dataset D = {zi ∈ Rd}ni=1, consider a model parametrized by θ̂ ∈ Rp that this trained
on the dataset D with a loss function ℓ : Rd × Rp → R via empirical risk minimization: θ̂ =
argminθ∈Rp

1
n

∑n
i=1 ℓ(zi; θ). Under this setup, the influence function [Koh and Liang, 2017] can

be theoretically derived; essentially, it gives an estimation on every training data zi’s “influence”
I(zi, ztest) of the test loss ℓ(ztest; θ̂) of a given test data ztest when zi is removed from D as

I(zi, ztest) := ∇θℓ(ztest; θ̂)
⊤H−1

θ̂
∇θℓ(zi; θ̂),

where Hθ̂ = 1
n

∑n
i=1 ∇2

θℓ(zi, θ̂) is the empirical Hessian. As Hθ̂ ∈ Rp×p and computing it requires
higher-order differentiation for every training data, several approximation algorithms aim to mitigate
this. One famous approximation is the Fisher information matrix (FIM) [Fisher, 1922] approximation
Hθ̂ ≈ Ez[∇θℓ(z; θ̂)∇θℓ(z; θ̂)

⊤], which is exact for model trained with the negative log-likelihood
objective. Since FIM only involves the first-order gradient, which is also needed in the other parts of
the calculation of influence I, and hence is a popular and efficient approximation. Given this, people
realize that an efficient way to compute the influence function is to divide the computation into two
stages [Lin et al., 2024, Choe et al., 2024]:

1. Cache stage: 1.) compute all per-sample gradients gi := gzi := ∇θℓ(zi; θ̂), 2.) construct the FIM
Fθ̂

:= 1
n

∑n
i=1 gig

⊤
i , 3.) perform inverse FIM-vector-product (iFVP) via g̃i := F−1

θ̂
gi for all zi’s.

2. Attribute stage: For a query data ztest, 1.) compute its per-sample gradient gtest := ∇θℓ(ztest; θ̂),
2.) compute all-pair-inner-product between gtest and {g̃i}ni=1 as I(zi, ztest) = ⟨gtest, g̃i⟩ for all zi’s.

The bottleneck of this pipeline is the cache stage, since the problem for the attribute stage is the
well-studied vector inner product search, where numerous optimization techniques have been studied
in the vector database community. On the other hand, iFVP remains a challenging task due to the
matrix inversion of quadratic model size, where in most cases, even materializing FIM is infeasible.

2

2.2 Random projection

Despite multiple attempts to accelerate influence function from various angles, one of the most naive
and simple strategies, RANDOM [Wojnowicz et al., 2016, Schioppa et al., 2022, Park et al., 2023],
remains practically relevant and achieves SOTA attribution results. RANDOM leverages sketching
(random projection) techniques by replacing each per-sample gradient gi ∈ Rp with ĝi := Pgi ∈ Rk,
where P ∈ Rk×p is a random projection matrix for some k ≪ p. This subsequently leads to the
projected FIM approximation F̂θ̂

:= PFθ̂P
⊤ = Ez[(ĝz · (ĝz)⊤)] ∈ Rk×k, i.e., a restriction of Fθ̂

to the subspace spanned by the columns of P . The theoretical merits of RANDOM largely come
from the well-known Johnson-Lindenstrauss lemma [Johnson, 1984], which states that for P drawn
appropriately, e.g., Pij

i.i.d.∼ N (0, 1) or U({±1}) for all i, j,1 with high probability, the pair-wise
distance ∥gi − gj∥ between any two gi and gj will be preserved up to 1± ϵ factor after the projection,
whenever k = O(ϵ−2 logn). While this does not fully justify whether the inner product between a
projected per-test-sample gradient ĝtest and the “conditioned” projected per-train-sample gradient˜̂gi := (F̂θ̂)

−1ĝi will be preserved (see Section A.2 for an in-depth discussion), RANDOM remains to
be one of the strongest baselines to date and is practically appealing due to its simplicity.2

Computational-wise, RANDOM accelerates iFVP significantly as the matrix inversion complexity
scales down from O(p2) to O(k2). In terms of the projection overhead, the matrix-based projection
method requires O(kp) overhead per projection. TRAK [Park et al., 2023] leverages the fast Johnson-
Lindenstrauss transform (FJLT) [Ailon and Chazelle, 2009, Fandina et al., 2023] that has a similar
theoretical guarantee as the random matrix-based projection to achieve a speed up of O((p+k) log p).
Another line of work by Choe et al. [2024] called LOGRA exploits the gradient structure of linear
layers and factorizes the projection accordingly, reducing the problem size quadratically. With suitable
hyper-parameter choice, the computational complexity goes down from O(klpl) to O(

√
klpl), where

kl and pl now refer to the projection dimension and number of model parameters of one (lth) linear
layer. This sets the SOTA efficiency and attribution quality to date.

3 GRASS: Gradient Sparsification and Sparse projection

In this section, we first explore two key sparsity properties in per-sample gradients (Sections 3.1
and 3.2) and propose efficient compression methods for each. Combining them, we present GRASS
and its variant FACTGRASS (Section 3.3), which beat the previous SOTA data attribution algorithms.

3.1 Per-sample gradient sparsity

Modern deep learning models often induce highly sparse per-sample gradients, especially when
using popular activation functions like ReLU [Nair and Hinton, 2010]. To see this, consider the
gradient of the first read-in linear layer with weight W ∈ Rdout×din

with din = d and ReLU activations.
Then given a sample z ∈ Rd, the output is h = ReLU(Wz). Since ReLU(x) = max(0, x) sets all
negative pre-activations to zero, naturally creating sparse activations. This sparsity propagates to the
gradient computations via the chain rule, resulting in gradients with numerous zero entries. This is
not unique to ReLU and extends to many other activation functions that exhibit similar behavior.

Remark 3.1. Such sparsity is unique to per-sample gradients: for mini-batch gradients
∑

i∈B gi/|B|,
the sparsity pattern differs for individual gi and will be destroyed when adding together.

Given the inherently sparse nature of these gradients, it is natural to consider other compression
methods that can effectively exploit this input sparsity. Traditional dense random projection methods
struggle to leverage sparse inputs without incurring significant overhead. Although FJLT is often
more efficient, its algorithmic structure also prevents it from effectively exploiting sparsity patterns.

Sparse Johnson-Lindenstrauss Transform. A natural candidate for efficient gradient projection
is the sparse Johnson-Lindenstrauss transform (SJLT) [Dasgupta et al., 2010, Kane and Nelson,
2014], which significantly reduces the computational cost by sparsifying the projection matrix. To
understand SJLT, it is useful to revisit the standard matrix-based projection approach, which relies

1We omit the normalization factor (in this case, 1/
√
k) to keep the presentation clean.

2We follow the same notational convention in the rest of the paper: ·̂ denotes compression, ·̃ denotes (FIM)
precondition, and ˜̂· denotes the compression and then (compressed FIM) precondition.

3

on matrix-vector multiplication. Given a projection matrix P ∈ Rk×p and an input vector g ∈ Rp

to be projected, the product Pg can be computed as ĝ = Pg =
∑p

j=1 g(j)P:j , where the jth term
represents the jth column P:j of P scaled by the jth entry g(j) of g. In the case of a dense Rademacher
projection matrix (entries being ±1), this requires O(pk) computation for both constructing g(j)P:j

and summing them. This dense projection process is illustrated in Figure 1.

k×p

p

P g

. . .
...

= × + · · ·+

P:1×g(1) P:p×g(p)

k

ĝ

× × =×

× = =+···+

Figure 1: Dense Rademacher projection.

k×p

p

P g

. . .
...

= × + · · ·+

P:1×g(1) P:p×g(p)

k

ĝ

× × =

1 −1

×

× = =+···+

Figure 2: Sparse Rademacher projection (s = 1).

g ĝ

×1
×− 1

k

p

...

Figure 3: SJLT with s = 1.

From this perspective, the SJLT arises naturally: by “zeroing” out
the projection matrix P , we significantly reduce the required com-
putation, as illustrated in Figure 2. Specifically, Dasgupta et al.
[2010] and Kane and Nelson [2014] demonstrated that retaining
only s = oϵ(k) out of the k possible non-zero entries for each
column of the projection matrix still preserves the essential proper-
ties required by the Johnson-Lindenstrauss lemma. This approach,
which we denote as SJLTk(·), reduces both the time and space
complexity to O(ps), where s = oϵ(k) is much smaller than k.

An equivalent way to view the computation of SJLT is shown in
Figure 3, where we initialize ĝ to be a zero vector and sequentially
scan through g, with each g(j) for j ∈ [p] chooses s many random
j′ ∈ [k] to either add on or subtract from the corresponding ĝ(j′).
It is immediate that if the input is itself sparse, the complexity can be further reduced. Specifically,
for a dense matrix projection, the complexity becomes O(k nnz(g)), and for SJLT, this drops to
O(snnz(g)), where nnz(g) := ∥g∥0 denotes the number of non-zero entries in g. We highlight g in
red in Figure 3 to signify that the computational complexity of SJLT scales with the size of g.

10 3

10 2

Pr
oj

ec
tio

n
Ti

m
e

(s
)

102 103 104

k

10 2

10 1

Re
la

tiv
e

Er
ro

r

Gaussian SJLT (PyTorch) SJLT (CUDA)

Figure 4: Benchmark of differ-
ent projection methods with p =
131,072 under several sparsity
levels (distinguished by opacity).
Relative error is w.r.t. pair-wise
distance preservation.

Implementation of SJLT. Despite these theoretical advantages,
practical implementations of SJLT face critical performance chal-
lenges, such as thread contention and irregular memory access
patterns. While the latter overhead is due to the nature of SJLT,
the former occurs because multiple threads may attempt to write
to the same entry in the output vector ĝ, causing race conditions
that degrade performance, especially when the target dimension
k is small. These are especially critical when implementing in
general-purpose libraries like PyTorch. Moreover, the default
matrix multiplication algorithms in PyTorch are highly hardware-
optimized (e.g., cache-friendly memory layouts and fused multiply-
accumulate instructions), in practice often outperforming any sim-
ilar multiplication algorithms when the problem size is small.

To address these issues, we developed a SJLT CUDA kernel3 that
optimizes the memory access patterns and minimizes thread con-
tention to better exploit the underlying hardware capabilities. This
kernel significantly reduces the overhead compared to its PyTorch
implementation counterpart, resulting in substantial performance
gains. As shown in Figure 4, for SJLT with s = 1, our CUDA
implementation outperforms the highly optimized dense matrix

multiplications for small projection problem sizes, while retaining the speedup of SJLT w.r.t. input
sparsity. In contrast, dense Gaussian projections exhibit a clear dependency on k while neglecting
the input sparsity, making them less efficient in such cases. In practice, we set s = 1 to optimize for
speed while enjoying a strong empirical guarantee for small relative error, as seen in Figure 4.

3The code is publicly available at https://github.com/TRAIS-Lab/sjlt.

4

https://github.com/TRAIS-Lab/sjlt

To summarize, the complexity of SJLT 1.) scales with the input sparsity, and 2.) is independent of
the target dimension k, both of which are critical for efficient gradient compression. Specifically,
1.) per-sample gradients are naturally sparse, and 2.) larger k generally improves the fidelity of data
attribution, which is more desirable. These make SJLT a natural fit for gradient compression.

3.2 Effective parameter sparsity

While SJLT effectively reduces the computational overhead and takes advantage of the sparsity
structure of the input, it still scales linearly with the potentially large input dimensionality p. We now
explore a more aggressive compression that achieves sub-linear complexity by directly exploiting the
inherent effective parameter sparsity in neural networks. We term this approach as sparsification.

Random Mask. Modern deep learning models often exhibit a high degree of parameter redun-
dancy, where only a small fraction of the weights significantly contribute to the model’s final
performance [Han et al., 2016, Frankle and Carbin, 2019]. In a similar vein, the distributed training
community has observed that the majority of gradient updates are redundant, allowing for substantial
compression without a significant impact on model accuracy [Lin et al., 2018, Aji and Heafield, 2017].
This suggests that many parameters can be safely ignored without substantial loss in accuracy. In-
spired by this observation, a simple yet surprisingly effective sparsification algorithm, Random Mask,
randomly selects a small subset from the p input dimensions to form a compressed representation.

g ĝ

×1

k

p

...

Figure 5: Mask.

Formally, the Random Mask (RMk(·)) involves selecting a random
subset of k dimensions from the original p-dimensional gradient
vector, effectively extracting a length-k sub-vector. This can also
be viewed as a random projection onto the standard basis of a
randomly chosen k-dimensional Euclidean subspace, i.e., ĝ = Mg
where M ∈ Rk×p is a sparse binary selection matrix with exactly
one (non-repetitive) non-zero entry per row, corresponding to the
randomly chosen dimensions. This is illustrated in Figure 5.

At first glance, RMk may seem overly aggressive, as it discards
a substantial amount of information. However, empirical evidence
suggests that this method can still yield non-trivial attribution
performance, especially when the underlying gradient distribution
is sparse or when the model is over-parameterized. Moreover, the
extreme simplicity of this approach makes it highly efficient, with a computational cost of just O(k),
achieving a sub-linear complexity w.r.t. p. We highlight ĝ in red in Figure 5 to signify that the
computational complexity of Random Mask scales with the size of ĝ.

Selective Mask. Building on the idea of Random Mask, we introduce a more structured approach,
Selective Mask (SMk(·)), which aims to selectively retain the most important parameters based on
a simple, yet effective, data-driven optimization. Inspired by recent work on identifying influential
model parameters [He et al., 2025], Selective Mask introduces a small but meaningful optimization
overhead to improve the fidelity of the compressed representation. Formally, given a training set
{zi}ni=1, we define the selective masking problem as the following unconstrained optimization task:

S∗ = argmax
S∈Rp

Eztest

[
corr

(
(⟨gi, gztest⟩)ni=1, (⟨ĝi, ĝztest⟩)ni=1

)]
− λ∥σ(S)∥1, (1)

where ĝi = σ(S) ⊙ gi ∈ Rp is the (soft-)masked gi, ⊙ denotes the element-wise product, and
σ(·) ∈ (0, 1) is the sigmoid function. The first term of the objective encourages the average
correlation between the original and masked gradients’ GRADDOT attribution scores [Charpiat et al.,
2019], a widely used and computationally efficient approximation of the influence function. The
second term, an ℓ1 regularization penalty, promotes sparsity by pushing σ(S) towards a binary mask.

Once the optimal S∗ is obtained after solving Eq. (1), the final binary mask M ∈ {0, 1}k×p can
be extracted by thresholding the sigmoid outputs with k =

∑p
j=1 1σ(S∗)j≥0.5 is the number of

selected dimensions. Formally, one can obtain the explicit mask matrix M via solving ⟨M:j , 1k⟩ =
1σ(S∗)j≥0.5, but the actual implementation is simply an index extraction for all j for 1σ(S∗)j≥0.5.

This formulation avoids the exponential complexity of directly optimizing over discrete binary masks,
as the continuous nature of S allows for efficient, first-order gradient-based optimization. While it
incurs a one-time overhead for solving Eq.(1), this method provides a more principled approach to

5

mask selection by directly targeting a widely used surrogate data attribution score, making it a natural
extension of Random Mask. We use MASKk to refer to either RMk or SMk for convenience.

3.3 GRASS & FACTGRASS: Multi-stage compression

We now formally introduce GRASS and FACTGRASS, an integration of the proposed approaches by
combining the sparse projection (Section 3.1) and also sparsification techniques (Section 3.2).

3.3.1 GRASS: Sparsify first, sparse projection next

Recall that the time complexity of SJLT with s = 1 is O(p) where p is the input dimension, while for
both sparsification techniques are O(k) where k is the target sparsification dimension. A natural idea
is to employ a two-stage compression: Given an input g and target compression dimension k ≪ p,

1. Sparsification: sparsify the input g to a sub-vector g′ of dimension k′ with k < k′ ≪ p.

2. Sparse projection: then apply SJLT to g′ to get the compression ĝ with target dimension k.

p

k′

×1
×− 1

...

g

k

ĝ

MASKk′

SJLTk

...g′

Figure 6: GRASS.

We term this simple per-sample gradient compression
method Gradient Sparsification and Sparse projection
(GRASS), which is illustrated in Figure 6. This leads to
a sub-linear time complexity O(k′ + k′) = O(k′) to the
input dimension p, since the runtime of SJLT depends only
on its input dimension, which is now sparsified to k′ from
p. In the extreme cases when k′ = p, GRASS reduces
to vanilla SJLT; while when k′ = k, GRASS reduces to
sparsification. Notation-wise, we write SJLTk ◦ MASKk′ .

Intuitively, k′ as a hyperparameter balances the computa-
tional complexity and attribution performance: after select-
ing k′ coordinates of g to form g′, subsequent application
of SJLT will compress g′ down to the target dimension
without losing the pair-wise distance information.

3.3.2 FACTGRASS: Exploiting layer-wise gradient factorization structure

In addition to FIM approximation, influence function on large-scale models often leverages the layer-
wise independence assumption by approximating FIM as a block-diagonal matrix, ignoring parameter
interactions across layers. Specifically, this approach decomposes the FIM as diag{Fθ̂1

, · · · , Fθ̂L
} for

an L-layer neural network, where each block Fθ̂l
corresponds to the lth layer’s parameters θ̂l, defined

as Fθ̂l
= Ez[∇θlℓ(z; θ̂)∇θlℓ(z; θ̂)

⊤]. By writing gi,l := ∇θlℓ(zi; θ̂), iFVP computation can now be
done layer-wise as g̃i,l = F−1

θ̂l
gi,l. Furthermore, coupling this trick with gradient compression, i.e.,

consider compressing gi,l to ĝi,l, which subsequently forms F̂θ̂l
, we now compute ˜̂gi,l := F̂−1

θ̂l
ĝi,l.

However, this renders a critical challenge for GRASS to demonstrate practical speedup via a direct
application of each of these layer-wise compression sub-problems, since SJLT suffers from small
problem sizes (Section 3.1). Specifically, if each layer has roughly the same number of parameters,
the compression problem size is reduced from p×k to p/L×k/L each if the compression dimension
is allocated uniformly. Moreover, recent techniques such as LOGRA [Choe et al., 2024] further reduce
the compression problem size of each layer-wise compression via gradient factorization, making it
even more difficult to integrate GRASS with these SOTA methods to achieve a further speedup.

This motivates the need for a specialized adaptation of GRASS that can effectively exploit a similar
gradient factorization structure. To this end, we propose FACTGRASS, which explicitly incorporates
this factorization structure to achieve even greater efficiency in gradient compression.

Recap on LOGRA. To motivate and understand the practical difficulties we must avoid, we first
introduce LOGRA. Formally, LOGRA exploits the factorized structure of linear layer’s gradients. For
full generality, consider a sequential input zi ∈ Rd×T of length T to the model and the corresponding
input zin

i,l ∈ Rdin
l ×T and output (pre-activations) zout

i,l ∈ Rdout
l ×T of the lth linear layer with a weight

6

Wl =

Forward Pass Backward Pass

ĝi,l

P in
l

P out
l

din
l

kout
l

kin
l

⊗

zin
i,l Dzout

i,l

Wl

dout
l

=Dzin
i,l

zout
i,l

Figure 7: LOGRA for one linear layer. Note that the application of vec(·) on ĝi,l is omitted.

matrix Wl ∈ Rdout
l ×din

l such that zout
i,l = Wlz

in
i,l. Then the gradient of the lth linear layer is given by

∂ℓ(zi; θ̂)

∂Wl
=

∂ℓ(zi; θ̂)

∂zout
i,l

∂zout
i,l

∂Wl
=

∂ℓ(zi; θ̂)

∂zout
i,l

zin
i,l

⊤ ⇐⇒ vec(DWl) =

T∑
t=1

(zin
i,l):t ⊗D(zout

i,l):t, (2)

where we write ∇vℓ(zi; θ̂) as Dv for any v. LOGRA then leverages this Kronecker-product structure
of vec(DWl) by assuming the projection matrix Pl for this layer has a factorized structure, i.e.,

Pl vec(DWl) := (P in
l ⊗ P out

l) vec(DWl) =

T∑
t=1

(P in
l (zin

i,l):t)⊗ (P out
l D(zout

i,l):t), (3)

where P in
l ∈ Rkin

l ×din
l , P out

l ∈ Rkout
l ×dout

l , and Pl = P in
l ⊗ P out

l ∈ R(kin
l k

out
l)×(din

l d
out
l). Naturally, we let

kl := kin
l × kout

l and pl := din
l × dout

l to be the compression dimension and number of parameters
for the lth linear layer, respectively. Hence, Pl ∈ Rkl×pl as we expect, with p =

∑L
l=1 pl and

k =
∑L

l=1 kl. The computation of Pl vec(DWl) of LOGRA is illustrated in Figure 7, where:

• forward pass on zi and backward pass on ℓ(zi; θ̂) give zin
i,l and Dzout

i,l for each of the lth linear layer;

• only two smaller projection problems of size kin
l ×din

l and kout
l ×dout

l are needed for each sequential
index, instead of to project the entire gradient, which is of size (kin

l k
out
l)× (din

l d
out
l) = kl × pl;

• in addition, the actual gradient of the layer is never materialized (which will require computing
Eq.(2), O(Tpl)), only the projected gradient is materialized at the end (which takes O(Tkl)).

Notation-wise, as P in
l and P out

l are default to Gaussian projection [Choe et al., 2024], we write
LOGRA as GAUSSkin

l ⊗kout
l

, where ⊗ indicates that the projection is done in a factorized manner. We
see that overall, assuming din

l ≈ dout
l ≈ √

pl, choosing kin
l ≈ kout

l ≈
√
kl results in a speedup from

O(klpl) to O(
√
klpl) per projection (i.e., per input and per sequential index) for the lth layer.

Bottlenecks of integrating GRASS with LOGRA. One can change the (dense) Gaussian pro-
jection used in LOGRA to other compression methods, e.g., SJLT, Mask, or GRASS, resulting in
MASKkin

l ⊗kout
l

, SJLTkin
l ⊗kout

l
, and GRASSkin

l ⊗kout
l

, respectively. However, a trivial integration with
GRASS will not lead to a practical speed up compared to LOGRA since each compression problem
size is now reduced, making GRASS slower than Gaussian projection due to the practical imple-
mentation overhead of one of its algorithmic components, SJLT, as shown in Figure 4. This small
projection problem size regime makes a direct integration of GRASS with LOGRA challenging.

A natural idea to mitigate this issue is to apply SJLT to a moderate dimension by not factorizing
the projection: by first constructing the gradients of the layer via Eq.(2), we can perform GRASS
on a much larger problem size (pl × kl) rather than the two smaller problems (roughly

√
pl ×

√
kl).

However, this results in another bottleneck: materializing the gradients explicitly blows up the space
and time complexity to O(pl), which is slower than LOGRA, defeating the whole purpose.

Factorized GRASS . To bypass the bottlenecks, we propose Factorized GRASS (FACTGRASS),
a variant of GRASS that exploits the Kronecker-product structure. Specifically, given a target
compression dimension kl = kin

l × kout
l ≪ pl for the lth layer, after a forward pass on zi and a

backward pass on ℓ(zi; θ̂) to get zin
i,l and Dzout

i,l , FACTGRASS operates in three stages (Figure 8):

7

Backward Pass

SJLTkl

ĝi,l

MASKkin
l
′

MASKkout
l

′

⊗
kin
l
′

kout
l

′

kin
l × kout

l

Wl =

Forward Pass
din
l

zin
i,l Dzout

i,l

Wl

dout
l

=Dzin
i,l

g′i,l

zout
i,l

Figure 8: FACTGRASS for one linear layer. Note that the output of SJLT is a vector in practice.

1. Sparsification: sparsify both zin
i,l and Dzout

i,l to an intermediate dimension kin
l
′ and kout

l
′, where

kin
l ≤ kin

l
′ ≪ din

l and kout
l ≤ kout

l
′ ≪ dout

l , respectively;

2. Reconstruction: construct the “sparsified gradient” g′i,l of dimension k′l := kin
l
′ × kout

l
′ via Eq.(3),

i.e., Kronecker product between the sparsified zin
i,l and the sparsified Dzout

i,l ;

3. Sparse projection: apply SJLT to g′i,l to get the compressed ĝi,l with target dimension kl.

Intuitively, FACTGRASS resolves the two bottlenecks by 1.) avoid reconstructing the full gradient via
sparsification, and 2.) avoid small problem size for SJLT via reconstruction. In terms of complexity,
sparsification takes O(kin

l
′
) and O(kout

l
′
) respectively, and reconstruction takes O(k′l) where k′l :=

kin
l
′ × kout

l
′ for performing the Kronecker product between two vectors of size kin

l
′ and kout

l
′, finally

sparse projection also takes O(k′l), giving an overall time and space complexity of O(k′l).

Notation-wise, we write FACTGRASS as SJLTkl
◦ MASKkin

l
′⊗kout

l
′ , where we use ⊗ to indicate that

the sparsification is done in a factorized manner. The following summarizes the complexity of our
proposed methods (GRASS and FACTGRASS), as well as other baselines we have mentioned:

General Linear Layer
Sparsification Sparse Projection GRASS Baselines FACTGRASS LOGRA (Baseline)

Compression MASKk SJLTk SJLTk ◦ MASKk′ GAUSSk FJLTk SJLTkl
◦ MASKkin

l
′⊗kout

l
′ GAUSSkin

l ⊗kout
l

Complexity O(k) O(p) O(k′) O(pk) O((p+ k) log p) O(k′l) per-layer O(
√
plkl) per-layer

In particular, compared to LOGRA, by writing k′l ∈ [kl, pl] as k′l = ckl for some blow-up factor
c ≥ 1, FACTGRASS is theoretically faster than LOGRA if k′l ≤

√
klpl, or equivalently, c ≤

√
pl/kl.

In practice, this is easy to satisfy: for instance, consider a linear layer of size pl = 4096× 4096 with
kl = 64× 64. In this case, for any blow-up factor c ≤ 64, FACTGRASS is faster than LOGRA.

With k′ :=
∑L

l=1 k
′
l, FACTGRASS overall takes O(k′) per compression, same as GRASS without

ever materializing the full gradient. We summarize both GRASS and FACTGRASS in Theorem 3.2:

Theorem 3.2. There is a sub-linear compression algorithm with a complexity of O(k′) per sample,
where k < k′ ≪ p. Moreover, this extends to linear layers, where gradients are never materialized.

We conclude by noting that much of the recent gradient-based data attribution literature could benefit
from per-sample gradient compression, underscoring the broad applicability of our methods.

4 Experiment

In this section, we evaluate the effectiveness of GRASS and FACTGRASS in terms of accuracy and
efficiency. Specifically, in Section 4.1, we first perform the standard counterfactual evaluations to
quantitatively study the data valuation accuracy of GRASS and FACTGRASS on small-scale setups.
Then, we scale FACTGRASS to a billion-scale model and billion-token dataset, where we investigate
the qualitative accuracy and memory/compute efficiency in Section 4.2. Further experimental details,
such as hyperparameters and compute resources, can be found in Section B.1.

8

4.1 Quantitative accuracy via counterfactual evaluation

We assess the quantitative accuracy of data attribution algorithms using the widely adopted linear
datamodeling score (LDS) [Park et al., 2023], a counterfactual evaluation method. While LDS relies
on the additivity assumption, which is known to be imperfect [Hu et al., 2024], it remains a valuable
evaluation metric for data attribution. All the quantitative experiments are conducted on one NVIDIA
A40 GPU with 48 GB memory, and other details can be found in Section B.2.
GRASS with TRAK. We apply GRASS on one of the SOTA data attribution algorithms (in terms of
attribution quality), TRAK [Park et al., 2023], with the implementation from the dattri library [Deng
et al., 2024a]. To validate the effectiveness of our sparsification and sparse projection methods, we
conduct an ablation study on a simple 3-layer MLP trained on MNIST [LeCun, 1998]. As shown in
Table 1(a), even a standalone Random Mask achieves non-trivial LDS results, while Selective Mask
improves the performance further. Additionally, the sparse projection SJLT significantly outperforms
baselines like FJLT and Gaussian projection in both efficiency and LDS accuracy.

We evaluate GRASS on more complex models: 1.) ResNet9 [He et al., 2016] with CI-
FAR2 [Krizhevsky and Hinton, 2009], and 2.) Music Transformer [Huang et al., 2019] with MAE-
STRO [Hawthorne et al., 2019]. Results in Tables 1(b) and 1(c) demonstrate that while sparsification
methods are highly efficient, they often fall short in LDS performance. In contrast, sparse projection
methods achieve competitive LDS scores but typically incur higher projection costs, though they still
outperform the baseline4 FJLT by a large margin. Notably, GRASS strikes a balance between these
extremes, achieving competitive LDS scores at a fraction of the computational cost.
FACTGRASS with Influence Function on Linear Layers. We next evaluate FACTGRASS with
layer-wise block-diagonal FIM influence functions for linear layers. We consider a small language
model, GPT2-small [Radford et al., 2019] fine-tuned on the WikiText dataset [Merity et al., 2016],
to enable LDS evaluation. The results are presented in Table 1(d), where kl indicates the target
compression dimension for each linear layer. We further set kin

l = kout
l =

√
kl for simplicity. As

discussed in Section 3.3.2, replacing the Gaussian projection matrices in LOGRA with SJLT most
likely will result in an efficiency degradation, although it achieves a competitive LDS. On the other
hand, standalone sparsification achieves competitive LDS results with minimal compression overhead,
highlighting its potential as an efficient alternative in overparametrized models. Finally, FACTGRASS
not only maintains the LDS performance of SJLT but also significantly improves computational
efficiency, achieving up to a 250% speedup over the most efficient SOTA baseline LOGRA.

Table 1: Quantitative evaluation results with different gradient compression methods.

(a) LDS and compression wall-time for MLP with MNIST on TRAK.

Sparsification Sparse Projection Baselines

RMk SMk SJLTk FJLTk GAUSSk
k 2048 4096 8192 2048 4096 8192 2048 4096 8192 2048 4096 8192 2048 4096 8192

LDS 0.3803 0.4054 0.4318 0.3882 0.4163 0.4373 0.4171 0.4280 0.4357 0.4146 0.4359 0.4347 0.4101 0.4253 0.4346
Time (s) 0.1517 0.1458 0.1501 0.1354 0.1346 0.1487 0.4919 0.5172 0.4754 0.8997 1.4341 2.4387 3.0806 5.5421 10.8355

(b) LDS and compression wall-time for ResNet9 with CIFAR2 on TRAK.

Sparsification Sparse Projection GRASS Baseline

RMk SMk SJLTk SJLTk ◦ RM4kmax
SJLTk ◦ SM4kmax

FJLTk

k 2048 4096 8192 2048 4096 8192 2048 4096 8192 2048 4096 8192 2048 4096 8192 2048 4096 8192

LDS 0.3690 0.4116 0.4236 0.3709 0.4020 0.4292 0.4131 0.4499 0.4747 0.4123 0.4357 0.4545 0.4104 0.4374 0.4581 0.4157 0.4497 0.4753
Time (s) 0.1026 0.1074 0.1296 0.1032 0.0879 0.1134 12.3590 12.2393 17.4836 0.3652 0.3648 0.3993 0.3054 0.2954 0.2911 31.5491 48.1669 81.9322

(c) LDS and compression wall-time for MusicTransformer with MAESTRO on TRAK.

Sparsification Sparse Projection GRASS Baseline

RMk SMk SJLTk SJLTk ◦ RM4kmax
SJLTk ◦ SM4kmax

FJLTk

k 2048 4096 8192 2048 4096 8192 2048 4096 8192 2048 4096 8192 2048 4096 8192 2048 4096 8192

LDS 0.2773 0.2857 0.3194 0.2662 0.3273 0.3733 0.3062 0.3533 0.3861 0.2826 0.3378 0.3755 0.2539 0.3283 0.3657 0.2907 0.3585 0.4011
Time (s) 0.5341 0.5067 0.5179 0.3800 0.3971 0.4345 21.6460 21.1881 21.3192 0.7620 0.7532 0.7433 0.7487 0.7507 0.7495 100.8136 156.0613 269.9093

(d) LDS and compression wall-time for GPT2-small with WikiText on (block-diagonal FIM) influence function.

Sparsification Sparse Projection FACTGRASS LOGRA (Baseline)

RMkin
l ⊗kout

l
SMkin

l ⊗kout
l

SJLTkin
l ⊗kout

l
SJLTkl

◦ RM2kin
l ⊗2kout

l
SJLTkl

◦ SM2kin
l ⊗2kout

l
GAUSSkin

l ⊗kout
l

kl 256 1024 4096 256 1024 4096 256 1024 4096 256 1024 4096 256 1024 4096 256 1024 4096

LDS 0.1034 0.1479 0.2391 0.0997 0.1617 0.2267 0.1240 0.1897 0.2389 0.1126 0.1784 0.2360 0.1102 0.1860 0.2380 0.1188 0.1818 0.2338
Time (s) 5.4933 5.3643 5.6385 5.8603 6.0436 5.8272 132.5404 133.4029 136.5163 6.5790 7.4161 6.3075 7.3443 8.5750 6.3330 20.4839 20.9835 22.2157

4We omit GAUSSk since the projection matrices for these two models are too large to fit in the GPU memory.

9

4.2 Scaling up to billion-size model

To evaluate the practical utility of FACTGRASS in attributing billion-scale models and datasets, we
consider Llama-3.1-8B-Instruct [Meta AI, 2024] with a random 1B-token subset of the OpenWebText
dataset [Gokaslan et al., 2019], and apply FACTGRASS (specifically, SJLTkl

◦ RM2kin
l ⊗2kout

l
) with

layer-wise block-diagonal FIM influence function for linear layers. The experiment is conducted with
one NVIDIA H200 GPU with 96 GB of memory, and more details can be found in Section B.3.

Efficiency. We measure the efficiency through the throughputs for FACTGRASS and LOGRA.
Table 2 shows the throughput of 1.) compress steps: compute the projected gradients from inputs and
gradients of pre-activation, and the overall 2.) cache stage: compute and save the projected gradients.

Table 2: Throughput (tokens per second) for Llama-3.1-8B-Instruct.

Compress Cache
kl 256 1024 4096 256 1024 4096

LOGRA 27,292 27,255 26,863 7,307 7,478 7,367
FACTGRASS 72,218 72,684 73,811 8,584 8,594 8,681

We see that FACTGRASS
significantly improves com-
pute efficiency compared
to the previous SOTA, LO-
GRA. In terms of com-
pression steps, we achieve
a 160% faster throughput
compared to LOGRA, which subsequently improves the overall caching throughput by around
17%. We note that the memory usages are similar in both cases: we set the batch to be 7 that
maximizes the usage of memory bandwidth for both LOGRA and FACTGRASS.

Qualitative Accuracy. We next assess the qualitative alignment between the outputs generated
by LLMs and the influential data identified by FACTGRASS with kl = 4096. Since naive influence
functions often highlight outlier data (e.g., error messages, ASCII codes, or repetitive words) with
disproportionately high gradient norms [Choe et al., 2024], we filter these cases and select the
most contextually relevant samples from the top-10 influential data identified by FACTGRASS. A
representative example is presented in Figure 9. Given the simple prompt, “To improve data privacy,”
FACTGRASS identifies a paragraph discussing journalist jailings, including references to privacy
policies on various news websites. This content closely aligns with the generated outputs from the
model, demonstrating the qualitative accuracy of FACTGRASS in capturing relevant data influences.

To improve data privacy,

To improve data privacy, the European Union has implemented the
General Data Protection Regulation (GDPR). ...
Data Protection Principles
The GDPR sets out six data protection principles...
• Lawfulness, fairness, and transparency: Businesses must process

personal data in a way that is lawful, fair, and transparent. ...
• Storage limitation: Businesses must not store personal data for

longer than necessary. ...
Data Subject Rights
The GDPR gives individuals a range of rights when it comes to their
personal data. These rights include:
• Right to access: Individuals have the right to access their per-

sonal data and obtain information about how it is being processed.
...

• Right to erasure: Individuals have the right to have their personal
data deleted if it is no longer necessary for the purposes for which
it was collected. ...

Influential Data
...
The fact of registration and authorization of users on Sputnik web-
sites via users’ account or accounts on social networks indicates
acceptance of these rules.
Users are obliged abide by national and international laws. ... The
administration has the right to delete comments made in languages
other than the language of the majority of the websites ...
...
• violates privacy, distributes personal data of third parties without

their consent or violates privacy of correspondence; ...
• pursues commercial objectives, contains improper advertising un-

lawful political advertisement or links to other online resources ...
The administration has the right to block a user’s access to the page
or delete a user’s account without notice if the user is in violation
of these rules or if behavior indicating said violation is detected.
If the moderators deem it possible to restore the account/unlock
access, it will be done. In the case of repeated violations of the rules
above resulting in a second block of a user account, access cannot
be restored. ...

Figure 9: Qualitative accuracy of data attribution with FACTGRASS on Llama-3.1-8B-Instruct.

5 Conclusion

In this paper, we proposed GRASS, a novel gradient compression algorithm that leverages the
inherent sparsity of per-sample gradients to reduce memory and computational overhead significantly.
Building on this, we introduced FACTGRASS, a variant GRASS that further exploits the gradient
structure of linear layers, achieving substantial practical speedups by avoiding ever materializing the
full gradient that is both theoretically and practically faster than the previous SOTA baselines.

Our extensive experiments demonstrate that GRASS and FACTGRASS consistently outperform
existing approaches in both efficiency and scalability, particularly on billion-scale language models.

10

Acknowledgment

This work is supported in part by a NAIRR Pilot grant NAIRR240134. WT is partially supported by
NSF DMS grant No. 2412853, and HZ was partially supported by an NSF IIS grant No. 2416897, an
NSF CAREER Award No. 2442290 and a Google Research Scholar Award. We also thank Xueshen
Liu from the University of Michigan for his invaluable discussion in improving the efficiency of
our library’s practical implementation. The views and conclusions expressed herein are those of the
authors and do not necessarily reflect the official policies or positions of the supporting companies or
government agencies.

Broader impacts

This paper presents work whose goal is to advance the efficiency of data attribution algorithms. As
there are many socially important applications of data attribution, with the fact that the present SOTA
reliable data attribution methods do not scale well to commercial-size LLMs, there are many potential
societal consequences of our work. However, none of which we feel must be specifically highlighted
here.

References

N. Agarwal, B. Bullins, and E. Hazan. Second-order stochastic optimization for machine learning in
linear time. Journal of Machine Learning Research, 18(116):1–40, 2017.

N. Ailon and B. Chazelle. The fast johnson–lindenstrauss transform and approximate nearest
neighbors. SIAM Journal on computing, 39(1):302–322, 2009.

A. F. Aji and K. Heafield. Sparse communication for distributed gradient descent. In M. Palmer,
R. Hwa, and S. Riedel, editors, Proceedings of the 2017 Conference on Empirical Methods in
Natural Language Processing, pages 440–445, Copenhagen, Denmark, Sept. 2017. Association for
Computational Linguistics. doi: 10.18653/v1/D17-1045. URL https://aclanthology.org/
D17-1045/.

W. E. Arnoldi. The principle of minimized iterations in the solution of the matrix eigenvalue problem.
Quarterly of applied mathematics, 9(1):17–29, 1951.

G. Charpiat, N. Girard, L. Felardos, and Y. Tarabalka. Input similarity from the neural network
perspective. Advances in Neural Information Processing Systems, 32, 2019.

H. Chen, S. F. Sultan, Y. Tian, M. Chen, and S. Skiena. Fast and accurate network embeddings
via very sparse random projection. In Proceedings of the 28th ACM international conference on
information and knowledge management, pages 399–408, 2019.

S. K. Choe, H. Ahn, J. Bae, K. Zhao, M. Kang, Y. Chung, A. Pratapa, W. Neiswanger, E. Strubell,
T. Mitamura, et al. What is your data worth to gpt? llm-scale data valuation with influence
functions. arXiv preprint arXiv:2405.13954, 2024.

A. Dasgupta, R. Kumar, and T. Sarlós. A sparse johnson: Lindenstrauss transform. In Proceedings of
the forty-second ACM symposium on Theory of computing, pages 341–350, 2010.

J. Deng, T.-W. Li, S. Zhang, S. Liu, Y. Pan, H. Huang, X. Wang, P. Hu, X. Zhang, and J. Ma. dattri:
A library for efficient data attribution. Advances in Neural Information Processing Systems, 37:
136763–136781, 2024a.

J. Deng, S. Zhang, and J. Ma. Computational copyright: Towards a royalty model for music generative
ai, 2024b. URL https://arxiv.org/abs/2312.06646.

J. Deng, Y. Hu, P. Hu, T.-W. Li, S. Liu, J. T. Wang, D. Ley, Q. Dai, B. Huang, J. Huang, C. Jiao, H. A.
Just, Y. Pan, J. Shen, Y. Tu, W. Wang, X. Wang, S. Zhang, S. Zhang, R. Jia, H. Lakkaraju, H. Peng,
W. Tang, C. Xiong, J. Zhao, H. Tong, H. Zhao, and J. W. Ma. A survey of data attribution: Methods,
applications, and evaluation in the era of generative ai. SSRN, 2025. doi: 10.2139/ssrn.5451054.
Available at SSRN: https://ssrn.com/abstract=5451054.

11

https://aclanthology.org/D17-1045/
https://aclanthology.org/D17-1045/
https://arxiv.org/abs/2312.06646
https://ssrn.com/abstract=5451054

O. N. Fandina, M. M. Høgsgaard, and K. G. Larsen. The fast johnson-lindenstrauss transform is even
faster. In International Conference on Machine Learning, pages 9689–9715. PMLR, 2023.

R. A. Fisher. On the mathematical foundations of theoretical statistics. Philosophical transactions of
the Royal Society of London. Series A, containing papers of a mathematical or physical character,
222(594-604):309–368, 1922.

J. Frankle and M. Carbin. The lottery ticket hypothesis: Finding sparse, trainable neural networks. In
International Conference on Learning Representations, 2019. URL https://openreview.net/
forum?id=rJl-b3RcF7.

A. Gokaslan, V. Cohen, E. Pavlick, and S. Tellex. Openwebtext corpus. http://Skylion007.
github.io/OpenWebTextCorpus, 2019.

R. Grosse, J. Bae, C. Anil, N. Elhage, A. Tamkin, A. Tajdini, B. Steiner, D. Li, E. Durmus, E. Perez,
et al. Studying large language model generalization with influence functions. arXiv preprint
arXiv:2308.03296, 2023.

Z. Hammoudeh and D. Lowd. Training data influence analysis and estimation: A survey. Machine
Learning, 113(5):2351–2403, 2024.

S. Han, H. Mao, and W. J. Dally. Deep compression: Compressing deep neural networks with pruning,
trained quantization and huffman coding. International Conference on Learning Representations
(ICLR), 2016.

S. Hara, A. Nitanda, and T. Maehara. Data cleansing for models trained with sgd. In
H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett, ed-
itors, Advances in Neural Information Processing Systems, volume 32. Curran Associates,
Inc., 2019. URL https://proceedings.neurips.cc/paper_files/paper/2019/file/
5f14615696649541a025d3d0f8e0447f-Paper.pdf.

C. Hawthorne, A. Stasyuk, A. Roberts, I. Simon, C.-Z. A. Huang, S. Dieleman, E. Elsen, J. Engel, and
D. Eck. Enabling factorized piano music modeling and generation with the MAESTRO dataset. In
International Conference on Learning Representations, 2019. URL https://openreview.net/
forum?id=r1lYRjC9F7.

K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. In Proceedings
of the IEEE conference on computer vision and pattern recognition, pages 770–778, 2016.

Y. He, Y. Hu, Y. Lin, T. Zhang, and H. Zhao. Localize-and-stitch: Efficient model merging via sparse
task arithmetic. Transactions on Machine Learning Research, 2025. ISSN 2835-8856. URL
https://openreview.net/forum?id=9CWU8Oi86d.

Y. Hu, P. Hu, H. Zhao, and J. Ma. Most influential subset selection: Challenges, promises, and
beyond. Advances in Neural Information Processing Systems, 37:119778–119810, 2024.

C.-Z. A. Huang, A. Vaswani, J. Uszkoreit, I. Simon, C. Hawthorne, N. Shazeer, A. M. Dai, M. D.
Hoffman, M. Dinculescu, and D. Eck. Music transformer. In International Conference on Learning
Representations, 2019. URL https://openreview.net/forum?id=rJe4ShAcF7.

W. B. Johnson. Extensions of lipshitz mapping into hilbert space. In Conference modern analysis
and probability, 1984, pages 189–206, 1984.

D. M. Kane and J. Nelson. Sparser johnson-lindenstrauss transforms. Journal of the ACM (JACM),
61(1):1–23, 2014.

P. W. Koh and P. Liang. Understanding black-box predictions via influence functions. In International
conference on machine learning, pages 1885–1894. PMLR, 2017.

A. Krizhevsky and G. Hinton. Learning multiple layers of features from tiny images. Master’s thesis,
Department of Computer Science, University of Toronto, 2009.

12

https://openreview.net/forum?id=rJl-b3RcF7
https://openreview.net/forum?id=rJl-b3RcF7
http://Skylion007.github.io/OpenWebTextCorpus
http://Skylion007.github.io/OpenWebTextCorpus
https://proceedings.neurips.cc/paper_files/paper/2019/file/5f14615696649541a025d3d0f8e0447f-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/5f14615696649541a025d3d0f8e0447f-Paper.pdf
https://openreview.net/forum?id=r1lYRjC9F7
https://openreview.net/forum?id=r1lYRjC9F7
https://openreview.net/forum?id=9CWU8Oi86d
https://openreview.net/forum?id=rJe4ShAcF7

Y. Kwon, E. Wu, K. Wu, and J. Zou. Datainf: Efficiently estimating data influence in loRA-tuned
LLMs and diffusion models. In The Twelfth International Conference on Learning Representations,
2024. URL https://openreview.net/forum?id=9m02ib92Wz.

Y. LeCun. The mnist database of handwritten digits. http://yann. lecun. com/exdb/mnist/, 1998.

P. Li and X. Li. Oporp: One permutation+ one random projection. In Proceedings of the 29th ACM
SIGKDD Conference on Knowledge Discovery and Data Mining, pages 1303–1315, 2023.

H. Lin, J. Long, Z. Xu, and W. Zhao. Token-wise influential training data retrieval for large
language models. In L.-W. Ku, A. Martins, and V. Srikumar, editors, Proceedings of the 62nd
Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers),
pages 841–860, Bangkok, Thailand, Aug. 2024. Association for Computational Linguistics. doi:
10.18653/v1/2024.acl-long.48. URL https://aclanthology.org/2024.acl-long.48/.

Y. Lin, S. Han, H. Mao, Y. Wang, and W. J. Dally. Deep Gradient Compression: Reducing the
communication bandwidth for distributed training. In The International Conference on Learning
Representations, 2018.

F. Liu, X. Huang, Y. Chen, and J. A. Suykens. Random features for kernel approximation: A
survey on algorithms, theory, and beyond. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 44(10):7128–7148, 2021.

I. Loshchilov and F. Hutter. Decoupled weight decay regularization. In International Conference on
Learning Representations, 2019.

M. W. Mahoney. Lecture notes on randomized linear algebra. arXiv preprint arXiv:1608.04481,
2016.

J. Martens and R. Grosse. Optimizing neural networks with kronecker-factored approximate curvature.
In F. Bach and D. Blei, editors, Proceedings of the 32nd International Conference on Machine
Learning, volume 37 of Proceedings of Machine Learning Research, pages 2408–2417, Lille,
France, 07–09 Jul 2015. PMLR. URL https://proceedings.mlr.press/v37/martens15.
html.

S. Merity, C. Xiong, J. Bradbury, and R. Socher. Pointer sentinel mixture models, 2016.

Meta AI. Introducing meta llama 3: The most capable openly available llm to date, April 2024. URL
https://ai.meta.com/blog/meta-llama-3/. Accessed: 2025-05-13.

V. Nair and G. E. Hinton. Rectified linear units improve restricted boltzmann machines. In Pro-
ceedings of the 27th international conference on machine learning (ICML-10), pages 807–814,
2010.

S. M. Park, K. Georgiev, A. Ilyas, G. Leclerc, and A. Madry. Trak: Attributing model behavior at
scale. In International Conference on Machine Learning, pages 27074–27113. PMLR, 2023.

G. Pruthi, F. Liu, S. Kale, and M. Sundararajan. Estimating training data influence by tracing gradient
descent. Advances in Neural Information Processing Systems, 33:19920–19930, 2020.

A. Radford, J. Wu, R. Child, D. Luan, D. Amodei, I. Sutskever, et al. Language models are
unsupervised multitask learners. OpenAI blog, 1(8):9, 2019.

A. Schioppa. Efficient sketches for training data attribution and studying the loss landscape. In
The Thirty-eighth Annual Conference on Neural Information Processing Systems, 2024. URL
https://openreview.net/forum?id=8jyCRGXOr5.

A. Schioppa, P. Zablotskaia, D. Vilar, and A. Sokolov. Scaling up influence functions. Proceedings
of the AAAI Conference on Artificial Intelligence, 36(8):8179–8186, Jun. 2022. doi: 10.1609/aaai.
v36i8.20791. URL https://ojs.aaai.org/index.php/AAAI/article/view/20791.

13

https://openreview.net/forum?id=9m02ib92Wz
https://aclanthology.org/2024.acl-long.48/
https://proceedings.mlr.press/v37/martens15.html
https://proceedings.mlr.press/v37/martens15.html
https://ai.meta.com/blog/meta-llama-3/
https://openreview.net/forum?id=8jyCRGXOr5
https://ojs.aaai.org/index.php/AAAI/article/view/20791

J. T. Wang, D. Song, J. Zou, P. Mittal, and R. Jia. Capturing the temporal dependence of training data
influence. In The Thirteenth International Conference on Learning Representations, 2025. URL
https://openreview.net/forum?id=uHLgDEgiS5.

M. Wojnowicz, B. Cruz, X. Zhao, B. Wallace, M. Wolff, J. Luan, and C. Crable. “influence sketching”:
Finding influential samples in large-scale regressions. In 2016 IEEE International Conference on
Big Data (Big Data), pages 3601–3612. IEEE, 2016.

D. P. Woodruff et al. Sketching as a tool for numerical linear algebra. Foundations and Trends® in
Theoretical Computer Science, 10(1–2):1–157, 2014.

Z. Zhang, P. Cui, H. Li, X. Wang, and W. Zhu. Billion-scale network embedding with iterative random
projection. In 2018 IEEE international conference on data mining (ICDM), pages 787–796. IEEE,
2018.

14

https://openreview.net/forum?id=uHLgDEgiS5

A Omitted details from Section 2

A.1 Related work

This section provides an in-depth discussion of gradient-based data attribution methods and their
computational advancements, offering a holistic view of the field. For a more complete overview
of other data attribution methods and their applications, we refer interested readers to the recent
survey [Deng et al., 2025].

A.1.1 Gradient-based data attribution

Gradient-based data attribution methods represent a major category for quantifying the impact of
individual training samples on a model’s behavior [Deng et al., 2025]. These techniques operate
under the principle of using the model’s local sensitivity—captured by the per-sample gradient with
respect to model parameters—to infer how a training example contributes to model predictions or
loss values.

The most influential and widely studied approach in this category is the influence function [Koh and
Liang, 2017]. Rooted in robust statistics, the influence function provides a computationally efficient,
first-order approximation of the expensive leave-one-out (LOO) retraining scenario. The core idea
is to estimate the change in a target function (such as the loss on a test point) by calculating how
the removal of a training sample perturbs the final model parameters. This estimation involves the
per-sample gradient and the inverse Hessian matrix. Recent advancements, such as TRAK [Park et al.,
2023], have been developed to improve on this classical framework.

Another family of gradient-based techniques called training dynamic methods has become popular
due to its ability to adapt to complex training scenarios that might break the influence function
assumptions. These include TracIn [Pruthi et al., 2020], SGD-Influence [Hara et al., 2019], and, more
recently, data value embedding [Wang et al., 2025]. They analyze how training samples dynamically
affect model behavior across intermediate checkpoints of the training trajectory, making them well-
suited for non-convex settings where the classical influence function approximations may be less
accurate.

All gradient-based methods ultimately rely on similar low-level computations—most notably the
inverse Hessian–vector product (iHVP)—which makes the influence function a representative example
for discussion.

A.1.2 Scaling up gradient-based data attribution

The literature on scaling up gradient-based data attribution methods, or more specifically, iHVP
computation, is extensive. In Section 2, we provided a detailed discussion of the RANDOM method,
including various random projection techniques. Additionally, in Section 3.3.2, we briefly covered
block-diagonal, layer-wise independence approximations of the Fisher information matrix (FIM),
which together represent the most popular state-of-the-art in efficient approximations of iHVP. Here,
we expand on this discussion by providing additional pointers to the broader literature on random
projection and sketching for gradient compression, as well as alternative approaches to scaling up
iHVP. This context helps clarify the positioning of our proposed methods within the larger landscape
of scalable gradient-based data attribution research, offering a more complete understanding of the
field.
Sketching and RANDOM. Random projection, or sketching, is a well-studied technique for di-
mensionality reduction, widely explored in both theoretical computer science [Woodruff et al., 2014,
Mahoney, 2016] and machine learning [Zhang et al., 2018, Liu et al., 2021, Chen et al., 2019, Li
and Li, 2023]. In the context of gradient compression, sketching plays a critical role in distributed
training, where the overhead of communicating full gradients can be a major bottleneck [Lin et al.,
2018, Aji and Heafield, 2017]. However, direct sketching is often avoided in this context, as it
can destroy important gradient information for the exact parameter correspondence of the gradient.
Instead, techniques like random dropout, which selectively transmit parts of the gradient while
preserving critical information, are more common. This is closely related to the Random Mask
approach discussed in Section 3.2.

With the rise of gradient-based attribution methods, gradient compression has also become relevant
for data attribution [Schioppa, 2024, Lin et al., 2024, Choe et al., 2024]. Among these, Schioppa

15

[2024] approaches gradient compression from a theoretical sketching perspective, refining traditional
methods like the fast Johnson-Lindenstrauss transform (FJLT) [Ailon and Chazelle, 2009, Fandina
et al., 2023] to improve computational efficiency on modern machine learning hardware such as TPUs.
Notably, only Choe et al. [2024] specifically considers the structural properties of gradients when
designing compression methods, potentially offering more accurate reconstructions with reduced
communication cost.

Input-Output Independence. Two notable extensions of the block-diagonal approximation for
empirical Hessians have emerged recently and can be further integrated with RANDOM. The first,
Kronecker-Factored Approximate Curvature (K-FAC) [Martens and Grosse, 2015], leverages the
Kronecker-factor structure of linear layers (same as Eq. (2)) by assuming independence between
the inputs and the pre-activation gradients. This independent factorization significantly reduces
the computational burden of Hessian approximations, as inverse FIM-vector product (iFVP) now
only requires two smaller inversions of the factorized matrices. Compared to LOGRA, where the
projected gradients and FIM are materialized at the end with the FIM of size k2, K-FAC now only
materializes two smaller projected inputs and gradients of the pre-activations and their corresponding
covariances. The latter two covariances are of size roughly

√
k ×

√
k, further reducing the matrix

inversion computation.

Building on this, Eigenvalue-corrected K-FAC (EK-FAC) [Grosse et al., 2023] refines this approach
by correcting the eigenvalues of the factorized covariances, improving approximation quality without
compromising efficiency. However, we note that while EK-FAC enhances the accuracy of K-FAC, it
does not offer further computational speedups.

Direct iHVP. An alternative approach to scaling influence functions involves directly estimating
the iHVP without explicitly forming or inverting the full Hessian. Unlike the two-stage methods
discussed in Section 2, which approximate the full Hessian first and then compute iHVP for each
training sample, this direct approach aims to bypass the costly inversion step, providing a more
scalable solution for large-scale models.

One such algorithm is LiSSA [Agarwal et al., 2017], initially developed for stochastic optimization
and later adapted for influence function calculations [Koh and Liang, 2017]. It approximates iHVP
through iterative stochastic updates that only involve Hessian-vector product, which is efficient to
compute. While straightforward, this method requires careful tuning of its hyperparameters to balance
accuracy and runtime.

More recently, DataInf [Kwon et al., 2024] introduced a less conventional approach by reordering the
sequence of matrix operations in the iHVP calculation. This method effectively swaps the expectation
and inversion steps, allowing per-sample gradient information to approximate the inverse directly.
However, this strategy tightly couples the iHVP estimation with the influence calculation, making it
challenging to efficiently scale to large datasets, as it requires full computation for each training and
test sample pair.

A.2 A note on Johnson-Lindenstrauss lemma

While the Johnson-Lindenstrauss lemma [Johnson, 1984] ensures that the pair-wise distance, and
hence the inner products, between gradients are approximately preserved under random i.i.d. projec-
tion, if P is not injective when restricted to the range of Fθ̂, i.e., the column rank is not kept, then Fθ̂
applied to vectors in this subspace can generate significant components orthogonal to the subspace.
In this case, the projected FIM PFθ̂P

⊤ implicitly neglects these orthogonal components, which leads
directly to approximation errors [Schioppa et al., 2022]. Several potential strategies to mitigate this
issue have been explored, focusing on how to construct the projection matrix P . One popular strategy
is to first approximate the top-k eigenvectors of Fθ̂ using classical algorithms such as PCA [Choe
et al., 2024] and Arnoldi iteration [Schioppa et al., 2022, Arnoldi, 1951], then used the found top-k
eigenvectors as the rows of P .

B Omitted details from Section 4

In this section, we provide further experimental details that we omitted in Section 4.

16

B.1 Details of models, datasets, and computing resources

We summarize all the models and datasets used in the experiments in Table 3.

Table 3: Model details used in the experiments.

Models Datasets (License) Task Parameter Size Train Samples Test Samples Sequential Length
MLP MNIST (CC BY-SA 3.0) Image Classification 0.11M 5,000 500 1

ResNet9 CIFAR2 (MIT) Image Classification 4.83M 5,000 500 1
Music Transformer MAESTRO (CC BY-NC-SA 4.0) Music Generation 13.3M 5,000 178 1

GPT2-small WikiText (CC BY-SA 3.0) Text Generation 124M 4,656 481 512
Llama-3.1-8B-Instruct OpenWebText (CC0-1.0) Text Generation 8B 976,562 NA 1024

All the experiments in quantitative analysis are conducted on Intel(R) Xeon(R) Gold 6338 CPU
@ 2.00GHz with a single Nvidia A40 GPU with 48 GB memory. On the other hand, the qualitative
analysis experiment is conducted on the VISTA5 cluster with one Grace Hopper (GH) node, where
each GH node has one H200 GPU with 96 GB of HBM3 memory and one Grace CPU with 116 GB
of LPDDR memory.

B.2 Details of quantitative analysis

Model Training. For MLP, ResNet9, and Music Transformer, we utilize pretrained models from
the dattri library [Deng et al., 2024a, Appendix C]. For GPT2-small, we fine-tune the model on the
WikiText dataset using the AdamW optimizer [Loshchilov and Hutter, 2019] with a learning rate of
5× 10−5 and no weight decay, training for 3 epochs.

Linear Datamodeling Score (LDS). We measure LDS using 50 data subsets, each containing
half of the original training set. For each subset, models are trained independently using the
hyperparameters described above. For a more comprehensive explanation of the LDS evaluation, we
refer readers to Park et al. [2023].

Data Attribution. For MLP on MNIST, ResNet9 on CIFAR2, and Music Transformer on MAE-
STRO, we use TRAK [Park et al., 2023] with 10, 10, and 5 independently trained checkpoints,
respectively, as the backbone data attribution algorithm to evaluate different gradient compression
methods. For GPT2-small fine-tuned on WikiText, we employ a layer-wise block-diagonal FIM
approximation for linear layers as the backbone data attribution method.

We remark that one of the important hyperparameters that requires careful attention is the damp-
ing term used for the Hessian/FIM inverse. We pick the damping λ for each setting (each
model/dataset/compression method combination) via cross-validation grid search for LDS over
λ ∈ {10−7, 10−6, 10−5, 10−4, 10−3, 10−2, 10−1, 1, 10, 102} on 10% of the test dataset, and evalu-
ate the overall LDS result on the remaining 90% of the test dataset.

B.3 Details of qualitative analysis

Model and Dataset. For Llama-3.1-8B-Instruct, we directly load the pretrained model without
fine-tuning. As for the attribution dataset, while we do not have access to the massive 15T-token
pre-training dataset used by Llama-3.1-8B-Instruct, we anticipate that it will contain most of the
OpenWebText dataset due to its high quality and popularity.

B.4 Practical implementation

Finally, we provide some remarks on the practical implementation of our proposed algorithms.

B.4.1 SJLT implementation

A naive implementation of SJLT is straightforward: we first sample random indices cor-
responding to each input dimension along with their associated signs, and then perform a
torch.Tensor.index_add_() operation, which carries out the core computation of SJLT (Fig-
ure 2). This operation implicitly uses atomic addition, which can lead to race conditions and slow

5See https://docs.tacc.utexas.edu/hpc/vista/.

17

https://docs.tacc.utexas.edu/hpc/vista/

down computation when the parallelization is not done carefully and the target compression dimension
k is small relative to the input dimension p.6

In contrast, our CUDA kernel implementation adopts a key optimization: we parallelize the computa-
tion by dividing the input dimension across different threads. This strategy reduces race conditions
caused by atomic additions at each step.

B.4.2 Selective Mask

We discuss several practical considerations and tips for solving Eq.(1) in the context of Selective
Mask.

Ensuring Exact k. Since the sparsity of the mask arises from ℓ1 regularization, it is generally not
possible to guarantee that the final S∗ contains exactly k active indices (i.e., entries greater than 0.5).
A simple workaround is to select the top-k indices based on their sigmoid values—i.e., adaptively
setting the activation threshold to ensure exactly k active indices. However, this method may yield
suboptimal masks if the resulting values are far from binary, potentially degrading performance.

To address this issue, we increase the regularization strength and introduce an inverse-temperature
term by replacing S with S/T , where T decreases as training progresses. As T approaches zero,
σ(S/T) becomes more binary-like, promoting a “hard” mask. That said, empirical results show
that careful tuning of the regularization parameter λ, combined with top-k selection, can yield
performance comparable to the inverse-temperature approach.

Linear Layer. For linear layers, we can derive a factorized Selective Mask by decomposing the
gradients according to Eq.(2). Specifically, following the notation established in Section 3.3.2, for
the lth linear layer, we can reformulate Eq.(1) as:

argmax
Sin
l ∈Rdin

l

Sout
l ∈Rdout

l

Eztest

[
corr

(
(⟨zin

i,l ⊗ zout
i,l , z

in
test,l ⊗ zout

test,l⟩)ni=1, (⟨ẑin
i,l ⊗ ẑout

i,l , ẑ
in
test,l ⊗ ẑout

test,l⟩)ni=1

)]

− λ(∥σ(Sin
l)∥1 + ∥σ(Sout

l)∥1),

where zin
i,l ∈ Rdin

l denotes the input feature of the lth linear layer from zi, zout
i,l ∈ Rdout

l denotes the
gradient of its pre-activation of the lth linear layer, and ẑin

i,l = σ(Sin
l)⊙ zin

i,l, ẑ
out
i,l = σ(Sout

l)⊙ zout
i,l are

the (soft-)masked variants. Computationally, we leverage the Kronecker product structure to simplify
inner product calculations; for example:

⟨zin
i,l ⊗ zout

i,l , z
in
test,l ⊗ zout

test,l⟩ = ⟨zin
i,l, z

in
test,l⟩ · ⟨zout

i,l , z
out
test,l⟩.

As a result, training with the Selective Mask does not require computing full layer-wise gradients,
providing similar computational and memory efficiency as in FACTGRASS.

6A significant slowdown was previously observed when k was extremely small, e.g., k = 32. However, with
recent updates to PyTorch, this issue has been resolved, leading to consistent runtimes across different values of
k, as shown in Figure 4.

18

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The main efficiency claim is justified both theoretically in Section 3.3 and
empirically in Section 4.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: The limitations of one of the proposed methods, GRASS is discussed in detail
in Section 3.3.2 (with a solution), and the contribution’s (SJLT CUDA kernel) limitation is
also discussed in Section 3.1.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

19

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
Justification: All the computational complexity claims are carefully proven and explained.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: Yes. All the important hyperparameters that can be used to reproduce the results
are provided, together with highly optimized implementations for each of the baselines in
the source code.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

20

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: All the code, environment, and the setup guidelines that are required to
reproduce the results are provided.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We have included a detailed setup of the model training in Section B, even
though it is not crucial to understand the contribution of the paper.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [No]

Justification: Our main qualitative evaluation experiments on LDS are expensive to run;
hence, currently, the confidence intervals for LDS are lacking. However, in terms of the
main contribution, runtime is calculated over a long run (across the entire experiment), and
hence we believe it is accurate enough and justifies the significance.

Guidelines:

• The answer NA means that the paper does not include experiments.

21

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: The information on the computer resources is reported in Section B.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: Every author of this submission has reviewed the code of ethics guidelines and
confirms compliance.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: Broader impacts is discussed after Section 5 as an additional material.

22

https://neurips.cc/public/EthicsGuidelines

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [Yes]

Justification: The paper poses no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We properly cite the datasets and include their licenses in Section B.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.

23

• For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: The paper does not release new assets.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

24

paperswithcode.com/datasets

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The core method development does not involve any usage of LLMs.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

25

https://neurips.cc/Conferences/2025/LLM

	Introduction
	Preliminary
	Influence function
	Random projection

	GraSS: Gradient Sparsification and Sparse projection
	Per-sample gradient sparsity
	Effective parameter sparsity
	GraSS & FactGraSS: Multi-stage compression
	GraSS: Sparsify first, sparse projection next
	FactGraSS: Exploiting layer-wise gradient factorization structure

	Experiment
	Quantitative accuracy via counterfactual evaluation
	Scaling up to billion-size model

	Conclusion
	Omitted details from Section 2
	Related work
	Gradient-based data attribution
	Scaling up gradient-based data attribution

	A note on Johnson-Lindenstrauss lemma

	Omitted details from Section 4
	Details of models, datasets, and computing resources
	Details of quantitative analysis
	Details of qualitative analysis
	Practical implementation
	SJLT implementation
	Selective Mask

