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Abstract: Reasoning over long sequences of observations and actions is essential1

for many robotic tasks. Yet, learning effective long-context policies from demon-2

strations remains challenging. As context length increases, training becomes in-3

creasingly expensive due to rising memory demands, and policy performance of-4

ten degrades as a result of spurious correlations. Recent methods typically sidestep5

these issues by truncating context length, discarding historical information that6

may be critical for subsequent decisions. In this paper, we propose an alternative7

approach that explicitly regularizes the retention of past information. We first re-8

visit the copycat problem in imitation learning and identify an opposite challenge9

in recent diffusion policies: rather than over-relying on prior actions, they often10

fail to capture essential dependencies between past and future actions. To address11

this, we introduce Past-Token Prediction (PTP), an auxiliary task in which the12

policy learns to predict past action tokens alongside future ones. This regulariza-13

tion significantly improves temporal modeling in the policy head, with minimal14

reliance on visual representations. Building on this observation, we further intro-15

duce a multistage training strategy: pre-train the visual encoder with short con-16

texts, and fine-tune the policy head using cached long-context embeddings. This17

strategy preserves the benefits of PTP while greatly reducing memory and com-18

putational overhead. Finally, we extend PTP into a self-verification mechanism at19

test time, enabling the policy to score and select candidates consistent with past20

actions during inference. Experiments across four real-world and six simulated21

tasks demonstrate that our proposed method improves the performance of long-22

context diffusion policies by 3× and accelerates policy training by more than 10×.23

Videos are available at https://ptp-robot.github.io.24

1 Introduction25

Many robotic tasks are inherently non-Markovian: an appropriate choice of action may depend26

not only on the current observation but also on past observations and actions [1–4]. For example,27

consider manipulation tasks where the robot arm occludes critical parts of the scene, or multi-stage28

tasks where early steps inform later strategies [5]. Likewise, past actions can prescribe a style of29

execution, such as speed, curvature, or strategy, that shapes how future actions should unfold [6, 7].30

Despite the importance of historical observations, learning long-context robotic policies through31

imitation learning remains difficult. First, longer observation histories often introduce features that32

spuriously correlate with actions in the training data. Policies that latch onto such information33

may diverge from expert behavior during deployment, leading to performance degradation [8, 9].34

Second, conditioning on high-dimensional image sequences imposes a rapidly growing memory35

and computation burden, making end-to-end training excessively expensive at scale [4, 10].36

To cope with these challenges, recent methods typically limit the amount of historical information37

the policy sees – either by truncating the context length [6, 11] or by engineering past observations38

into compact representations, such as selecting key frames [12] and summarizing observations [4].39
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Figure 1: We propose a simple framework for learning long-context diffusion policies from human demonstra-
tions. Our method leads to 3× gains in performance while reducing the training expense by more than 10×.

While these strategies reduce memory requirement, they risk discarding information critical to sub-40

sequent decisions.41

In this paper, we introduce a simple and effective approach for learning long-context robot policies,42

illustrated in Fig. 1. At the core of our method is to explicitly regularize the information preserved43

from past observations. Specifically, we start with an analysis on the discrepancy between recent44

diffusion policies and their corresponding demonstrations [3, 6]. We observe that action sequences45

generated by learned policies often exhibit weaker temporal dependencies than those in expert data.46

To address this, we present past-token prediction (PTP), an auxiliary task where the policy learns47

to predict past actions alongside future ones. This regularizer encourages the model to attend more48

effectively to past context, significantly boosting performance. Crucially, we find that the benefits49

of PTP primarily emerge in the policy head for sequence modeling, rather than the visual encoder.50

Building upon this analysis, we introduce a multi-stage training recipe: first, pre-train the visual51

encoder in a short-context setting, where the policy learns to predict a chunk of future actions from52

only a few past frames [2, 6], and subsequently fine-tune a long-context decoder that jointly predicts53

past and future actions from precomputed image embeddings. This design enables the policy to54

capture long-range temporal dependencies while substantially reducing memory and computational55

overhead. Beyond training, we further leverage PTP as a self-verification mechanism during infer-56

ence. At each time step, the policy generates multiple candidate actions and selects the one most57

consistent with its previously executed actions.58

In summary, our main contributions are twofold: (i) identify a critical discrepancy in temporal action59

dependencies between learned policies and expert demonstrations (§3), (ii) propose a training and60

inference method for long-context imitation learning via past-token prediction (§4). Empirically,61

we validate our method on diffusion-based policies [6] across six simulation and four real-world62

tasks (§5). On average, our method increases the success rate of long-context policies by 3× while63

reducing training overhead by over 10 times. Notably, it enables policies to achieve 80% success on64

history-critical tasks where existing methods fail entirely.65

2 Related Work66

Imitation Learning. Imitation learning has long served as a simple yet powerful paradigm for67

robot learning [13–15]. Early approaches typically framed it as a supervised learning problem,68

where the policy learns to map a given observation to the target action [16]. More recent works have69

shifted toward modeling the distribution of demonstrations [2, 3, 6, 7, 17–20]. This approach has70

recently achieved remarkable success towards generalist robot policies [21, 22]. However, imitation71

learning remains highly susceptible to covariate shift [23–25], e.g. Ross et al. [26] and Spencer et al.72

[9] characterize compounding errors in a feedback loop once the learned policy diverges from the73
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demonstration manifold. This problem is exacerbated by high-dimensional visual inputs, where less74

robust features might be learned due to underspecification [27]. Notably, recent works [4, 6] have75

empirically found that image-conditioned specialist and generalist policies degrade with history,76

leading many works to exclude history altogether [2, 22, 28–32]. Our work introduces and analyzes77

a training recipe that counteracts this degradation.78

Long-Context Policies. Handling long sequences of high-dimensional observations has been a79

persistent challenge for robot learning. Many prior works mitigate it by discarding parts of the80

past, either through regularization strategies such as adversarial objectives [24] or information bot-81

tlenecks [33], or by summarizing trajectories using keyframes [12] or motion tracks [34]. Similarly,82

methods like sketch synthesis [35] and visual trace prompting [4] have been explored for generalist83

robot policies. These approaches often rely on assumptions about the irrelevance of specific parts84

of the history, which may not hold in complex tasks. In contrast, we propose a method that directly85

regularizes diffusion policies to retain information about past actions that would otherwise be lost86

from historical context.87

Test-Time Scaling. Recent research in language modeling, image generation, and robotics has88

shown that inference-time compute may allow models to improve their performance [36–38]. Some89

seek to build an additional verifier to re-rank the output samples [39–42], while others propose90

to leverage the internal knowledge to improve reasoning through self-verification [43]. Our method91

echoes the latter paradigm in the robotic context: our policy is trained to predict accurate past actions92

before predicting the present action and can self-verify at test-time through past action accuracy.93

Similarly to how it may be more compute-efficient to use test-time compute on a small LLM [44], we94

show that checkpoints trained for fewer epochs or at shorter histories can approach the performance95

of optimal checkpoints by using more test-time compute.96

3 Preliminaries97

Problem Setting. We consider the problem of imitation learning, where a robot learns to perform98

complex tasks from expert demonstrations. At each time step t, the robot receives a visual obser-99

vation ot and executes an action at. Crucially, we assume that each observation ot contains only100

partial information about the underlying state st, but the complete information about st can be in-101

ferred from the history of observations. This setting encapsulates practical challenges commonly102

encountered in robotic tasks, such as latent strategies in the demonstrations (e.g., expert preference),103

temporal context (e.g., stage within a task), and perceptual limitations (e.g., visual occlusions).104

Given a dataset of N expert demonstrations D = {τi}Ni=1, where each demonstration trajectory105

τi consists of a sequence of observation-action pairs, our goal is to learn a long-context pol-106

icy πθ(at:t+l|ot−k:t) that takes as input the current observation along with the history ot−k:t =107

(ot−k, . . . , ot) over the past k time steps, and predicts the current and future actions at:t+l =108

(at, . . . , at+l) spanning the next l time steps. While increasing the context length k provides richer109

historical information, the resulting long-context policies often suffer from substantial performance110

declines [4, 6].111

Practical Challenges. One central challenge in long-context imitation learning arises from the112

prevalence of spurious features in observation history. As context length increases, the model is113

exposed to a growing set of input features, some of which correlate with but do not causally in-114

fluence the expert actions. Policies relying on these spurious features in observation history may115

reach high prediction accuracy within the training distribution but generalize poorly during deploy-116

ment [8]. One notable manifestation is the copycat behavior [24], where the learned policy simply117

mimics previous actions as predictions for future ones, ignoring current state observations. Does118

this phenomenon persist in modern imitation learning methods?119

To understand this, we evaluate temporal action dependencies by measuring how predictable the120

current action is from prior actions alone. Specifically, given a set of demonstrations, we first train121

long-context policies with varying observation history lengths. We then collect policy rollouts and122
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Figure 2: Comparison of regression-
based and diffusion-based policies in
temporal action dependency, normal-
ized by that in demonstrations.
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Figure 3: Illustration of past-token prediction. The policy head is
trained to jointly predict both past and future action tokens, encour-
aging the model to capture the temporal dependencies that are oth-
erwise lost between past and future actions.

train a simple two-layer MLP ϕ(at|at−1) to predict the current action based solely on the previous123

action. We measure the mean-squared error ϵπ of the MLP predictor on holdout rollouts and sim-124

ilarly obtain ϵπ∗ for expert demonstrations. Following [24, 45], we define the action predictability125

ratio as ϵπ∗/ϵπ . Intuitively, a ratio greater than 1 indicates an over-reliance on previous actions (i.e.,126

copycat behavior), while a ratio less than 1 indicates weaker-than-expert action dependency.127

Fig. 6 shows the action predictability ratios for classical regression-based policies and modern128

diffusion-based policies [6] across three simulation tasks. Interestingly, the two approaches ex-129

hibit opposite failure modes: The regression-based policies indeed exhibit high action predictability,130

even exceeding that of the expert demonstrations. In contrast, modern diffusion-based policies yield131

predictability ratios significantly below 1, indicating a surprising underuse of past action informa-132

tion despite conditioning on long observation histories. Ideally, an effective imitator should not only133

learn to accurately predict expert actions in the training set, but also reach a similar level of temporal134

action dependencies in its rollouts. We will next introduce a method designed to explicitly bridge135

this gap.136

4 Method137

In this section, we introduce a long-context imitation learning method, aiming to improve both138

policy performance and training efficiency. We will first describe a simple but crucial auxiliary task139

to enhance temporal dependencies in sequential decision-making (§4.1). We will then present a140

multi-stage training recipe that preserves the benefit of this auxiliary task while reducing memory141

consumption (§4.2). Finally, we will introduce an inference technique that leverages the auxiliary142

task to effectively self-verify sampled predictions at test time (§4.3).143

4.1 Past-Token Prediction144

One common design choice in imitation learning is next-token prediction, where the policy predicts145

only the immediate next action token at each time step. To better capture temporal dependencies,146

recent methods have extended this to predict a chunk of future action tokens [2, 6]. However, as147

shown in §3, this design alone remains insufficient for modeling the critical dependencies between148

past and future decisions.149

We address this issue through Past-Token Prediction (PTP), an auxiliary objective that tasks the pol-150

icy to predict past action tokens alongside future ones. Formally, given a sequence of observations151

ot−k:t, the policy is trained to jointly predict the action tokens from the past time step t − k to the152

upcoming time step t+ l:153

ât−k:t+l = πθ(ot−k:t). (1)
As illustrated in Fig. 3, this objective expands the prediction window in both temporal directions,154

explicitly encouraging the policy to preserve information about past actions from the history context.155
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4.2 Memory-Efficient Training with PTP156

Recent imitation learning approaches typically train visuomotor policies end-to-end, jointly opti-157

mizing both the visual encoder and the policy head. However, this strategy incurs memory costs that158

grow linearly with context length, making it prohibitively expensive to train long-context policies.159

To address this, we propose a multi-stage training recipe that decouples visual representa-160

tion learning from policy optimization. Our training process consists of three specific stages:161
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Figure 4: Overview of multistage training with embed-
ding caching. As PTP acts on the decoder, caching em-
beddings substantially improves inference speed without
sacrificing performance. We use a visual encoder from a
short-range policy with low validation loss to compute the
embeddings of the images in the buffer and cache them in
the buffer. With the cached embeddings we can train the
long-horizon policy much faster. At test time we take the
original encoder.

162
1. Encoder Training: We first train the163

visual encoder with a short observation164

context but a long prediction horizon,165

encouraging it to extract representations166

that retain information critical for pre-167

dicting l subsequent steps.168

2. Feature Caching: We then freeze the169

encoder and precompute embeddings170

for all frames in the training set. This171

caching step eliminates redundant com-172

putation during policy training.173

3. Policy Training: Finally, we train the174

policy head conditioned on long-context175

observations represented by the cached176

embeddings. This enables the policy to177

model long-range dependencies without178

repeatedly processing visual inputs.179

As shown in Fig. 4, this multistage training approach retains a computational footprint similar to180

short-context training while enabling efficient scaling to longer observation contexts. In Appendix181

A.1, we show in more detail how the features of a short-history policy are sufficient to support strong182

long-context performance.183

4.3 Test-Time Verification with PTP184
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Figure 5: Test-time verification. Multiple action se-
quences are sampled from the same observation, and the
policy selects the sequence that is most consistent com-
pared to ground-truth previous actions.

Another common challenge in recent diffu-185

sion policies lies in the robustness of sam-186

pled predictions. Often, not all samples are187

equally good at capturing the critical tem-188

poral dependencies. Recent work has ex-189

plored re-ranking sampled predictions based190

on consistency with past predictions [7].191

However, when the previous prediction for192

future actions is suboptimal, e.g. because of193

unexpected environmental changes, this ap-194

proach may propagate errors rather than cor-195

rect them.196

To address this shortcoming, we cast Past-Token Prediction as a self-verification mechanism during197

deployment. At each inference step, we sample a batch of B candidate action sequences:198

A = {â(1), . . . , â(B)}, â(i) ∼ πθ(ot−k:t), (2)
where each sampled candidate â(i) = (at−k, . . . , at+l)

(i) includes both reconstructed past actions199

and predicted future actions. Since the first k − 1 actions have already been executed, we use them200

as a ground-truth reference and select the candidate whose reconstructed past actions best match the201

executed ones:202

â∗ = argmin
â∈A

t−1∑
τ=t−k

∥âτ − aτ∥2 (3)
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Figure 8: Effect of feature caching.
Caching speeds up training by over
5× without hurting performance.
On complex tasks like Tool Hang,
long-context policies fail to per-
form even after two days without
caching.

As illustrated in Fig. 5, this sample selection procedure is fully parallelizable on GPU devices,203

enabling self-verification of temporal action dependencies with minimal computational overhead.204

5 Experiments205

In this section, we evaluate the proposed method for learning long-context diffusion policies. We206

seek to answer the following questions regarding policy performance and training efficiency:207

1. How effectively does PTP mitigate the lack of temporal action dependencies shown in §3?208

2. How well do the resulting policies perform on tasks that require history-aware decision-making?209

3. To what extent does the proposed multi-stage training recipe accelerate policy learning?210

4. Could PTP verification further mitigate deficiencies in temporal dependencies at test time?211

5. Finally, how do these findings generalize to history-critical tasks in the real world?212

To this end, we evaluate our method on the modern diffusion-based policy [6], in comparison with213

the classical regression-based policy. By default, both policies receive visual and proprioceptive214

observations from the past 16 time steps as conditional input. We compare policies trained with215

PTP against two baselines: no-history policies that take only the current and past single frame as216

input, and no-PTP policies that are trained without PTP. Unless otherwise specified, all policies are217

trained using the multistage recipe with feature caching and evaluated under a single-sample infer-218

ence setting. The effect of test-time verification is evaluated separately across multiple checkpoints219

under varying sample budgets. Additional results are presented in Appendix A, with implementation220

details provided in Appendix B.221

5.1 Simulation Experiments222

We first evaluate our method across six simulated tasks. Four of these are sourced from existing223

benchmarks: square, tool hang, and transport from RoboMimic [1], each provided by multi-human224

demonstration datasets, and Push-T from Chi et al. [6]. These tasks feature diverse strategies in225

demonstrations, requiring the policy to infer and commit to consistent behaviors over time based on226

historical context. In addition, we introduce two new long-horizon simulation tasks: long-horizon227

square, where the robot must place and remove a square onto the peg twice before finally dropping228

it in the peg; and long-horizon aloha, where one arm must pick up a block, move it to the center of229

the field of view, and return it precisely to its original location. Success in these new tasks critically230

depends on the ability to recall and act upon information observed earlier in the episode. Each231

policy-task pair is evaluated over 100 episodes across three random seeds. We next summarize the232

key findings from these simulation experiments.233

Takeaway 1: PTP mitigates deficiencies in modeling temporal action dependencies. To validate234

the effect of PTP on modeling temporal action dependencies, we use the same set of tasks as in §3235
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Figure 9: Comparison of different policies across six simulation tasks. Unlike classical regression-based poli-
cies, modern diffusion-based policies exhibit a clear drop in performance when conditioned on historical obser-
vations. Our method achieves an average improvement of over 30% compared to no-history diffusion policies,
and over 60% compared to no-PTP diffusion policies. The gains are especially pronounced on history-critical
tasks such as long-horizon aloha and long-horizon square.

and train policies to predict a variable number of past tokens {ât−c−1, . . . , ât}, where c denotes236

the number of actions included in the prediction target. Specifically, we compare three variants:237

(i) no-PTP with c = 1, equivalent to the vanilla next-token prediction baseline; (ii) half-PTP with238

c = 8, which predicts action tokens corresponding to half the observation window; and (iii) full-239

PTP with c = 16. As shown in Fig. 6, PTP consistently increases the action predictability and240

gets closer to that observed in the expert demonstrations. Notably, the non-PTP baseline exhibits241

approximately 10× to 100× weaker action predictability ratios compared to expert behavior, whereas242

full-PTP yields temporal dependencies comparable to demonstrations.243

Takeaway 2: PTP significantly improves the performance of modern policies. To assess the impact244

of PTP on task performance, we compare our method against the no-history and no-PTP baselines on245

two classes of policies: diffusion-based versus regression-based. All models are evaluated following246

the protocol from [6], with action chunking set to 8 time steps. As shown in Fig. 9, while the no-247

history baseline already performs competitively on some existing tasks, PTP matches or surpasses its248

performance. The advantage of PTP is particularly pronounced in long-horizon tasks: both the no-249

history and no-PTP baselines struggle with success rates below 30%, whereas our method achieves250

near-perfect performance on the long-horizon tasks. Averaged across all six simulation tasks, PTP251

yields an average 50% improvement for diffusion-based policies when conditioned on long contexts,252

and outperforms the regression counterpart by nearly 20%.253

Takeaway 3: PTP-trained policies benefit from longer contexts. To further understand the role254

of historical contexts, we evaluate PTP-trained diffusion-based policies conditioned on observation255

histories of varying lengths, ranging from 2 to 16 time steps. As shown in Fig. 7, longer histories256

generally lead to improved performance. For relatively simple tasks such as square, gains tend to257

saturate beyond 4 steps; however, for more complex tasks, such as transport, long-horizon square,258

and long-horizon aloha, longer contexts provide substantial performance boosts.259

Takeaway 4: Embedding caching accelerates PTP training without sacrificing performance. To260

assess the effectiveness of the proposed multistage training strategy, we train history-conditioned261

diffusion policies with and without embedding caching for two days on the three tasks used above262

(§3), evaluating checkpoints saved every 50 epochs. As shown in Fig. 8, the vanilla training recipe263

without caching completes only a limited number of epochs within the time budget. In contrast,264

our caching-based approach matches performance in just 20% of the training time and surpasses it265

within 40% of the compute budget.266

Takeaway 5: PTP verification boosts performance in challenging settings at test time. To validate267

the potential of self-verification through PTP, we evaluate history-conditioned policies on three chal-268

lenging tasks, including Tool Hang, Transport, and Long Square, trained under constrained compute269

budgets and tested with varying sampling budgets {1, 3, 5, 10}. As shown in Fig. 10, PTP-guided270
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Figure 11: Comparison of different policies on four real-world
tasks that critically depend on historical context. Our method
yields over a 55% improvement compared to baselines.

sample selection provides notable performance gains. Notably, increasing the number of sampled271

candidates from 1 to 5 results in approximately 5% improvement in success rate on all these tasks.272

5.2 Real-World Experiments273

We next examine our method on four history-critical tasks across two robot platforms in the real274

world: Franka block switch: move a block from one side to another, where history is needed to275

correctly infer which side to place the block; Franka two scoops, transport two scoops to the target,276

where history is needed to count scoops; Franka mug replacement and ALOHA tape replacement:277

replace one mug or tape by another, where history is needed to distinguish old and new objects.278

Across all tasks, we use diffusion-based policies with a context length of 16 and a chunk size of 8.279

Due to different ranges of temporal dependency in these tasks, we apply task-specific subsampling280

rates detailed in Appendix B.281

Quantitatively, PTP outperforms baselines by over 4× in the real world. As shown in Fig. 11,282

the no-history baseline is limited to an average success rate of 15% due to the absence of critical283

history information. The no-PTP baseline, which simply conditions on history without PTP, yields284

near-zero success on three of four tasks. In contrast, our method achieves an average 70% success285

rate. Notably, on Tape Replacement, one of the most challenging tasks across the board, our method286

achieves 80% success, while the two baselines fail entirely.287

Qualitatively, PTP-trained long-context policies excel at both high-level and low-level memory.288

As shown in the videos1, the two baselines exhibit distinct failure modes: the no-history policies289

often fail at high-level decision-making, such as replacing the wrong object or miscounting scoops,290

whereas the no-PTP baseline struggles with low-level motor control, such as unsuccessful grasps and291

inaccurate placements. In comparison, policies trained with our method demonstrate improvement292

in both high-level planning and low-level control, resulting in more coherent and reliable behavior293

across tasks.294

6 Conclusion295

We have presented Past Token Prediction (PTP), a simple yet effective auxiliary objective for learn-296

ing history-conditioned diffusion policies from demonstrations. We have shown that PTP can ef-297

fectively strengthen temporal action dependencies that are often lost in recent diffusion policies. In298

addition, we have introduced a multistage training strategy and a self-verification mechanism that299

allow for effective use of PTP during both training and inference. Extensive experiments across ten300

manipulation tasks in both simulations and the real world demonstrate its advantages in efficiency301

and effectiveness.302

1Vidoes at https://ptp-robot.github.io/
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7 Limitations and Discussion.303

Our work has focused on extending context length specifically for diffusion policies, motivated304

by their growing prevalence in the robot learning community. Nevertheless, the effectiveness of305

our method may generalize to other classes of modern policies as well. In fact, concurrently with306

our work, Vuong et al. [46] observes similar challenges in tokenization-based policies. Extending307

our approach to such settings, and more broadly, designing action tokenizers that better preserve308

temporal structure, can be an exciting avenue for future research.309

Another practical challenge our method faces is inference overhead. While we have shown that310

caching and reusing visual embeddings can substantially reduce memory consumption and speed311

up policy training, inference overhead remains a practical bottleneck for closed-loop operations. To312

make inference time manageable, we followed common practices from recent literature by down-313

sampling observation history and extending action chunk. However, these adjustments are known314

to compromise policy reactivity. Designing strategies to further accelerate inference—particularly315

given the growing scale of VLA models—could be another fruitful direction for future research.316
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