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Abstract: Reasoning over long sequences of observations and actions is essential
for many robotic tasks. Yet, learning effective long-context policies from demon-
strations remains challenging. As context length increases, training becomes in-
creasingly expensive due to rising memory demands, and policy performance of-
ten degrades as a result of spurious correlations. Recent methods typically sidestep
these issues by truncating context length, discarding historical information that
may be critical for subsequent decisions. In this paper, we propose an alternative
approach that explicitly regularizes the retention of past information. We first re-
visit the copycat problem in imitation learning and identify an opposite challenge
in recent diffusion policies: rather than over-relying on prior actions, they often
fail to capture essential dependencies between past and future actions. To address
this, we introduce Past-Token Prediction (PTP), an auxiliary task in which the
policy learns to predict past action tokens alongside future ones. This regulariza-
tion significantly improves temporal modeling in the policy head, with minimal
reliance on visual representations. Building on this observation, we further intro-
duce a multistage training strategy: pre-train the visual encoder with short con-
texts, and fine-tune the policy head using cached long-context embeddings. This
strategy preserves the benefits of PTP while greatly reducing memory and com-
putational overhead. Finally, we extend PTP into a self-verification mechanism at
test time, enabling the policy to score and select candidates consistent with past
actions during inference. Experiments across four real-world and six simulated
tasks demonstrate that our proposed method improves the performance of long-
context diffusion policies by 3x and accelerates policy training by more than 10x.
Videos are available at https://ptp-robot.github.io.

1 Introduction

Many robotic tasks are inherently non-Markovian: an appropriate choice of action may depend
not only on the current observation but also on past observations and actions [1-4]. For example,
consider manipulation tasks where the robot arm occludes critical parts of the scene, or multi-stage
tasks where early steps inform later strategies [5]. Likewise, past actions can prescribe a style of
execution, such as speed, curvature, or strategy, that shapes how future actions should unfold [6, 7].

Despite the importance of historical observations, learning long-context robotic policies through
imitation learning remains difficult. First, longer observation histories often introduce features that
spuriously correlate with actions in the training data. Policies that latch onto such information
may diverge from expert behavior during deployment, leading to performance degradation [8, 9].
Second, conditioning on high-dimensional image sequences imposes a rapidly growing memory
and computation burden, making end-to-end training excessively expensive at scale [4, 10].

To cope with these challenges, recent methods typically limit the amount of historical information
the policy sees — either by truncating the context length [6, 11] or by engineering past observations
into compact representations, such as selecting key frames [12] and summarizing observations [4].
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Figure 1: We propose a simple framework for learning long-context diffusion policies from human demonstra-
tions. Our method leads to 3x gains in performance while reducing the training expense by more than 10x.

While these strategies reduce memory requirement, they risk discarding information critical to sub-
sequent decisions.

In this paper, we introduce a simple and effective approach for learning long-context robot policies,
illustrated in Fig. 1. At the core of our method is to explicitly regularize the information preserved
from past observations. Specifically, we start with an analysis on the discrepancy between recent
diffusion policies and their corresponding demonstrations [3, 6]. We observe that action sequences
generated by learned policies often exhibit weaker temporal dependencies than those in expert data.
To address this, we present past-token prediction (PTP), an auxiliary task where the policy learns
to predict past actions alongside future ones. This regularizer encourages the model to attend more
effectively to past context, significantly boosting performance. Crucially, we find that the benefits
of PTP primarily emerge in the policy head for sequence modeling, rather than the visual encoder.

Building upon this analysis, we introduce a multi-stage training recipe: first, pre-train the visual
encoder in a short-context setting, where the policy learns to predict a chunk of future actions from
only a few past frames [2, 6], and subsequently fine-tune a long-context decoder that jointly predicts
past and future actions from precomputed image embeddings. This design enables the policy to
capture long-range temporal dependencies while substantially reducing memory and computational
overhead. Beyond training, we further leverage PTP as a self-verification mechanism during infer-
ence. At each time step, the policy generates multiple candidate actions and selects the one most
consistent with its previously executed actions.

In summary, our main contributions are twofold: (i) identify a critical discrepancy in temporal action
dependencies between learned policies and expert demonstrations (§3), (ii) propose a training and
inference method for long-context imitation learning via past-token prediction (§4). Empirically,
we validate our method on diffusion-based policies [6] across six simulation and four real-world
tasks (§5). On average, our method increases the success rate of long-context policies by 3x while
reducing training overhead by over 10 times. Notably, it enables policies to achieve 80% success on
history-critical tasks where existing methods fail entirely.

2 Related Work

Imitation Learning. Imitation learning has long served as a simple yet powerful paradigm for
robot learning [13-15]. Early approaches typically framed it as a supervised learning problem,
where the policy learns to map a given observation to the target action [16]. More recent works have
shifted toward modeling the distribution of demonstrations [2, 3, 6, 7, 17-20]. This approach has
recently achieved remarkable success towards generalist robot policies [21, 22]. However, imitation
learning remains highly susceptible to covariate shift [23-25], e.g. Ross et al. [26] and Spencer et al.
[9] characterize compounding errors in a feedback loop once the learned policy diverges from the
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demonstration manifold. This problem is exacerbated by high-dimensional visual inputs, where less
robust features might be learned due to underspecification [27]. Notably, recent works [4, 6] have
empirically found that image-conditioned specialist and generalist policies degrade with history,
leading many works to exclude history altogether [2, 22, 28-32]. Our work introduces and analyzes
a training recipe that counteracts this degradation.

Long-Context Policies. Handling long sequences of high-dimensional observations has been a
persistent challenge for robot learning. Many prior works mitigate it by discarding parts of the
past, either through regularization strategies such as adversarial objectives [24] or information bot-
tlenecks [33], or by summarizing trajectories using keyframes [12] or motion tracks [34]. Similarly,
methods like sketch synthesis [35] and visual trace prompting [4] have been explored for generalist
robot policies. These approaches often rely on assumptions about the irrelevance of specific parts
of the history, which may not hold in complex tasks. In contrast, we propose a method that directly
regularizes diffusion policies to retain information about past actions that would otherwise be lost
from historical context.

Test-Time Scaling. Recent research in language modeling, image generation, and robotics has
shown that inference-time compute may allow models to improve their performance [36-38]. Some
seek to build an additional verifier to re-rank the output samples [39—42], while others propose
to leverage the internal knowledge to improve reasoning through self-verification [43]. Our method
echoes the latter paradigm in the robotic context: our policy is trained to predict accurate past actions
before predicting the present action and can self-verify at test-time through past action accuracy.
Similarly to how it may be more compute-efficient to use test-time compute on a small LLM [44], we
show that checkpoints trained for fewer epochs or at shorter histories can approach the performance
of optimal checkpoints by using more test-time compute.

3 Preliminaries

Problem Setting. We consider the problem of imitation learning, where a robot learns to perform
complex tasks from expert demonstrations. At each time step ¢, the robot receives a visual obser-
vation o; and executes an action a;. Crucially, we assume that each observation o, contains only
partial information about the underlying state s;, but the complete information about s; can be in-
ferred from the history of observations. This setting encapsulates practical challenges commonly
encountered in robotic tasks, such as latent strategies in the demonstrations (e.g., expert preference),
temporal context (e.g., stage within a task), and perceptual limitations (e.g., visual occlusions).

Given a dataset of N expert demonstrations D = {;}}V,, where each demonstration trajectory
T; consists of a sequence of observation-action pairs, our goal is to learn a long-context pol-
icy mg(asi41|01—k.¢) that takes as input the current observation along with the history o;_x.; =
(0t—k,-..,0) over the past k time steps, and predicts the current and future actions a;.;y; =
(at, ..., ary;) spanning the next ! time steps. While increasing the context length & provides richer
historical information, the resulting long-context policies often suffer from substantial performance
declines [4, 6].

Practical Challenges. One central challenge in long-context imitation learning arises from the
prevalence of spurious features in observation history. As context length increases, the model is
exposed to a growing set of input features, some of which correlate with but do not causally in-
fluence the expert actions. Policies relying on these spurious features in observation history may
reach high prediction accuracy within the training distribution but generalize poorly during deploy-
ment [8]. One notable manifestation is the copycat behavior [24], where the learned policy simply
mimics previous actions as predictions for future ones, ignoring current state observations. Does
this phenomenon persist in modern imitation learning methods?

To understand this, we evaluate temporal action dependencies by measuring how predictable the
current action is from prior actions alone. Specifically, given a set of demonstrations, we first train
long-context policies with varying observation history lengths. We then collect policy rollouts and
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Figure 2: Comparison of regression-  Figure 3: Illustration of past-token prediction. The policy head is
based and diffusion-based policies in  trained to jointly predict both past and future action tokens, encour-
temporal action dependency, normal-  aging the model to capture the temporal dependencies that are oth-
ized by that in demonstrations. erwise lost between past and future actions.

train a simple two-layer MLP ¢(a¢|a;—1) to predict the current action based solely on the previous
action. We measure the mean-squared error €, of the MLP predictor on holdout rollouts and sim-
ilarly obtain €.« for expert demonstrations. Following [24, 45], we define the action predictability
ratio as €.+ /€. Intuitively, a ratio greater than 1 indicates an over-reliance on previous actions (i.e.,
copycat behavior), while a ratio less than 1 indicates weaker-than-expert action dependency.

Fig. 6 shows the action predictability ratios for classical regression-based policies and modern
diffusion-based policies [6] across three simulation tasks. Interestingly, the two approaches ex-
hibit opposite failure modes: The regression-based policies indeed exhibit high action predictability,
even exceeding that of the expert demonstrations. In contrast, modern diffusion-based policies yield
predictability ratios significantly below 1, indicating a surprising underuse of past action informa-
tion despite conditioning on long observation histories. 1deally, an effective imitator should not only
learn to accurately predict expert actions in the training set, but also reach a similar level of temporal
action dependencies in its rollouts. We will next introduce a method designed to explicitly bridge
this gap.

4 Method

In this section, we introduce a long-context imitation learning method, aiming to improve both
policy performance and training efficiency. We will first describe a simple but crucial auxiliary task
to enhance temporal dependencies in sequential decision-making (§4.1). We will then present a
multi-stage training recipe that preserves the benefit of this auxiliary task while reducing memory
consumption (§4.2). Finally, we will introduce an inference technique that leverages the auxiliary
task to effectively self-verify sampled predictions at test time (§4.3).

4.1 Past-Token Prediction

One common design choice in imitation learning is next-token prediction, where the policy predicts
only the immediate next action token at each time step. To better capture temporal dependencies,
recent methods have extended this to predict a chunk of future action tokens [2, 6]. However, as
shown in §3, this design alone remains insufficient for modeling the critical dependencies between
past and future decisions.

We address this issue through Past-Token Prediction (PTP), an auxiliary objective that tasks the pol-
icy to predict past action tokens alongside future ones. Formally, given a sequence of observations
0,1, the policy is trained to jointly predict the action tokens from the past time step ¢t — k to the
upcoming time step ¢t + :

&t ptr1 = To(Or—:t)- (1)
As illustrated in Fig. 3, this objective expands the prediction window in both temporal directions,
explicitly encouraging the policy to preserve information about past actions from the history context.
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4.2 Memory-Efficient Training with PTP

Recent imitation learning approaches typically train visuomotor policies end-to-end, jointly opti-
mizing both the visual encoder and the policy head. However, this strategy incurs memory costs that
grow linearly with context length, making it prohibitively expensive to train long-context policies.

To address this, we propose a multi-stage training recipe that decouples visual representa-
tion learning from policy optimization. Our training process consists of three specific stages:

1. Encoder Training: We first train the

visual encoder with a short observation freim st Y 24 embodimgs oh,,.g history policy
context but a long prediction horizon, P @@} @ A W)
encouraging 1t to extract representations . o :
that retain information critical for pre- — = ;I
dicting [ subsequent steps. “ Lf we REYE
2. Feature Caching: We then freeze the (=) s :
encoder and precompute embeddings L % L e EL

for all frames in the training set. This
caching step eliminates redundant com- Figure 4: Overview of multistage training with embed-
putation during policy training. ding caching. As PTP acts on the decoder, caching em-
beddings substantially improves inference speed without
3. Policy Training: Finally, we train the sacrificing performance. We use a visual encoder from a
policy head conditioned on long-context short-range policy with low validation loss to compute the
observations represented by the cached embeddings of the images in the buffer and cache them in
the buffer. With the cached embeddings we can train the
long-horizon policy much faster. At test time we take the
original encoder.

embeddings. This enables the policy to
model long-range dependencies without
repeatedly processing visual inputs.

As shown in Fig. 4, this multistage training approach retains a computational footprint similar to
short-context training while enabling efficient scaling to longer observation contexts. In Appendix
A.1, we show in more detail how the features of a short-history policy are sufficient to support strong
long-context performance.

4.3 Test-Time Verification with PTP

Another common challenge in recent diffu- brevious i @
sion policies lies in the robustness of sam- Actions M% - “
pled predictions. Often, not all samples are (3 (3 orgmin ‘
equally good at capturing the critical tem- “ T M - “ ®—-q

poral dependencies. Recent work has ex- o @
%% - %

plored re-ranking sampled predictions based Sample N chunks
Figure 5: Test-time verification. Multiple action se-

on consistency with past predictions [7]. of actions
However, when the previous prediction for
future actions 1? suboptimal, e.g. becal}se of quences are sampled from the same observation, and the
unexpected environmental changes, this ap- policy selects the sequence that is most consistent com-
proach may propagate errors rather than cor- pared to ground-truth previous actions.

rect them.

To address this shortcoming, we cast Past-Token Prediction as a self-verification mechanism during
deployment. At each inference step, we sample a batch of B candidate action sequences:

A= {51(1)’_”751(B)}7 a0 ~ T9(0—kit), 2)
where each sampled candidate al = (At—fye -y atH)(i) includes both reconstructed past actions
and predicted future actions. Since the first £ — 1 actions have already been executed, we use them

as a ground-truth reference and select the candidate whose reconstructed past actions best match the

executed ones:
t—1

a* = arg min § lar — ar|? 3)
aceA
T=t—k
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Figure 8: Effect of feature caching.
Caching speeds up training by over
5x without hurting performance.
On complex tasks like Tool Hang,
long-context policies fail to per-
form even after two days without
caching.

As illustrated in Fig. 5, this sample selection procedure is fully parallelizable on GPU devices,
enabling self-verification of temporal action dependencies with minimal computational overhead.

5 Experiments

In this section, we evaluate the proposed method for learning long-context diffusion policies. We
seek to answer the following questions regarding policy performance and training efficiency:

1. How effectively does PTP mitigate the lack of temporal action dependencies shown in §3?

2. How well do the resulting policies perform on tasks that require history-aware decision-making?
3. To what extent does the proposed multi-stage training recipe accelerate policy learning?

4. Could PTP verification further mitigate deficiencies in temporal dependencies at test time?

5. Finally, how do these findings generalize to history-critical tasks in the real world?

To this end, we evaluate our method on the modern diffusion-based policy [6], in comparison with
the classical regression-based policy. By default, both policies receive visual and proprioceptive
observations from the past 16 time steps as conditional input. We compare policies trained with
PTP against two baselines: no-history policies that take only the current and past single frame as
input, and no-PTP policies that are trained without PTP. Unless otherwise specified, all policies are
trained using the multistage recipe with feature caching and evaluated under a single-sample infer-
ence setting. The effect of test-time verification is evaluated separately across multiple checkpoints
under varying sample budgets. Additional results are presented in Appendix A, with implementation
details provided in Appendix B.

5.1 Simulation Experiments

We first evaluate our method across six simulated tasks. Four of these are sourced from existing
benchmarks: square, tool hang, and transport from RoboMimic [1], each provided by multi-human
demonstration datasets, and Push-T from Chi et al. [6]. These tasks feature diverse strategies in
demonstrations, requiring the policy to infer and commit to consistent behaviors over time based on
historical context. In addition, we introduce two new long-horizon simulation tasks: long-horizon
square, where the robot must place and remove a square onto the peg twice before finally dropping
it in the peg; and long-horizon aloha, where one arm must pick up a block, move it to the center of
the field of view, and return it precisely to its original location. Success in these new tasks critically
depends on the ability to recall and act upon information observed earlier in the episode. Each
policy-task pair is evaluated over 100 episodes across three random seeds. We next summarize the
key findings from these simulation experiments.

Takeaway 1: PTP mitigates deficiencies in modeling temporal action dependencies. To validate
the effect of PTP on modeling temporal action dependencies, we use the same set of tasks as in §3
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Figure 9: Comparison of different policies across six simulation tasks. Unlike classical regression-based poli-
cies, modern diffusion-based policies exhibit a clear drop in performance when conditioned on historical obser-
vations. Our method achieves an average improvement of over 30% compared to no-history diffusion policies,
and over 60% compared to no-PTP diffusion policies. The gains are especially pronounced on history-critical
tasks such as long-horizon aloha and long-horizon square.

and train policies to predict a variable number of past tokens {a;—.—1,. .., d;}, where ¢ denotes
the number of actions included in the prediction target. Specifically, we compare three variants:
(1) no-PTP with ¢ = 1, equivalent to the vanilla next-token prediction baseline; (ii) half-PTP with
¢ = 8, which predicts action tokens corresponding to half the observation window; and (iii) full-
PTP with ¢ = 16. As shown in Fig. 6, PTP consistently increases the action predictability and
gets closer to that observed in the expert demonstrations. Notably, the non-PTP baseline exhibits
approximately 10x to 100x weaker action predictability ratios compared to expert behavior, whereas
full-PTP yields temporal dependencies comparable to demonstrations.

Takeaway 2: PTP significantly improves the performance of modern policies. To assess the impact
of PTP on task performance, we compare our method against the no-history and no-PTP baselines on
two classes of policies: diffusion-based versus regression-based. All models are evaluated following
the protocol from [6], with action chunking set to 8 time steps. As shown in Fig. 9, while the no-
history baseline already performs competitively on some existing tasks, PTP matches or surpasses its
performance. The advantage of PTP is particularly pronounced in long-horizon tasks: both the no-
history and no-PTP baselines struggle with success rates below 30%, whereas our method achieves
near-perfect performance on the long-horizon tasks. Averaged across all six simulation tasks, PTP
yields an average 50% improvement for diffusion-based policies when conditioned on long contexts,
and outperforms the regression counterpart by nearly 20%.

Takeaway 3: PTP-trained policies benefit from longer contexts. To further understand the role
of historical contexts, we evaluate PTP-trained diffusion-based policies conditioned on observation
histories of varying lengths, ranging from 2 to 16 time steps. As shown in Fig. 7, longer histories
generally lead to improved performance. For relatively simple tasks such as square, gains tend to
saturate beyond 4 steps; however, for more complex tasks, such as transport, long-horizon square,
and long-horizon aloha, longer contexts provide substantial performance boosts.

Takeaway 4: Embedding caching accelerates PTP training without sacrificing performance. To
assess the effectiveness of the proposed multistage training strategy, we train history-conditioned
diffusion policies with and without embedding caching for two days on the three tasks used above
(§3), evaluating checkpoints saved every 50 epochs. As shown in Fig. 8, the vanilla training recipe
without caching completes only a limited number of epochs within the time budget. In contrast,
our caching-based approach matches performance in just 20% of the training time and surpasses it
within 40% of the compute budget.

Takeaway 5: PTP verification boosts performance in challenging settings at test time. To validate
the potential of self-verification through PTP, we evaluate history-conditioned policies on three chal-
lenging tasks, including Tool Hang, Transport, and Long Square, trained under constrained compute
budgets and tested with varying sampling budgets {1, 3, 5, 10}. As shown in Fig. 10, PTP-guided
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Figure 10: Effect of PTP self-verification. Figure 11: Comparison of different policies on four real-world
Increasing sampling budgets yields a 5% tasks that critically depend on historical context. Our method
gain in challenging closed-loop settings. yields over a 55% improvement compared to baselines.

sample selection provides notable performance gains. Notably, increasing the number of sampled
candidates from 1 to 5 results in approximately 5% improvement in success rate on all these tasks.

5.2 Real-World Experiments

We next examine our method on four history-critical tasks across two robot platforms in the real
world: Franka block switch: move a block from one side to another, where history is needed to
correctly infer which side to place the block; Franka two scoops, transport two scoops to the target,
where history is needed to count scoops; Franka mug replacement and ALOHA tape replacement:
replace one mug or tape by another, where history is needed to distinguish old and new objects.
Across all tasks, we use diffusion-based policies with a context length of 16 and a chunk size of 8.
Due to different ranges of temporal dependency in these tasks, we apply task-specific subsampling
rates detailed in Appendix B.

Quantitatively, PTP outperforms baselines by over 4x in the real world. As shown in Fig. 11,
the no-history baseline is limited to an average success rate of 15% due to the absence of critical
history information. The no-PTP baseline, which simply conditions on history without PTP, yields
near-zero success on three of four tasks. In contrast, our method achieves an average 70% success
rate. Notably, on Tape Replacement, one of the most challenging tasks across the board, our method
achieves 80% success, while the two baselines fail entirely.

Qualitatively, PTP-trained long-context policies excel at both high-level and low-level memory.
As shown in the videos', the two baselines exhibit distinct failure modes: the no-history policies
often fail at high-level decision-making, such as replacing the wrong object or miscounting scoops,
whereas the no-PTP baseline struggles with low-level motor control, such as unsuccessful grasps and
inaccurate placements. In comparison, policies trained with our method demonstrate improvement
in both high-level planning and low-level control, resulting in more coherent and reliable behavior
across tasks.

6 Conclusion

We have presented Past Token Prediction (PTP), a simple yet effective auxiliary objective for learn-
ing history-conditioned diffusion policies from demonstrations. We have shown that PTP can ef-
fectively strengthen temporal action dependencies that are often lost in recent diffusion policies. In
addition, we have introduced a multistage training strategy and a self-verification mechanism that
allow for effective use of PTP during both training and inference. Extensive experiments across ten
manipulation tasks in both simulations and the real world demonstrate its advantages in efficiency
and effectiveness.

Vidoes at https://ptp-robot.github.io/
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7 Limitations and Discussion.

Our work has focused on extending context length specifically for diffusion policies, motivated
by their growing prevalence in the robot learning community. Nevertheless, the effectiveness of
our method may generalize to other classes of modern policies as well. In fact, concurrently with
our work, Vuong et al. [46] observes similar challenges in tokenization-based policies. Extending
our approach to such settings, and more broadly, designing action tokenizers that better preserve
temporal structure, can be an exciting avenue for future research.

Another practical challenge our method faces is inference overhead. While we have shown that
caching and reusing visual embeddings can substantially reduce memory consumption and speed
up policy training, inference overhead remains a practical bottleneck for closed-loop operations. To
make inference time manageable, we followed common practices from recent literature by down-
sampling observation history and extending action chunk. However, these adjustments are known
to compromise policy reactivity. Designing strategies to further accelerate inference—particularly
given the growing scale of VLA models—could be another fruitful direction for future research.
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