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ABSTRACT

Deep neural networks (DNNs) are vulnerable to backdoor attacks, where adver-
saries embed a hidden backdoor trigger during the training process for malicious
prediction manipulation. These attacks pose great threats to the applications of
DNNs under the real-world machine learning as a service (MLaaS) setting, where
the deployed model is fully black-box while the users can only query and obtain
its predictions. Currently, there are many existing defenses to reduce backdoor
threats. However, almost all of them cannot be adopted in MLaaS scenarios since
they require getting access to or even modifying the suspicious models. In this
paper, we propose a simple yet effective black-box input-level backdoor detec-
tion, called SCALE-UP, which requires only the predicted labels to alleviate this
problem. Specifically, we identify and filter malicious testing samples by analyz-
ing their prediction consistency during the pixel-wise amplification process. Our
defense is motivated by an intriguing observation (dubbed scaled prediction con-
sistency) that the predictions of poisoned samples are significantly more consistent
compared to those of benign ones when amplifying all pixel values. Besides, we
also provide theoretical foundations to explain this phenomenon. Extensive ex-
periments are conducted on benchmark datasets, verifying the effectiveness and
efficiency of our defense and its resistance to potential adaptive attacks. Our codes
are available at https://github.com/JunfengGo/SCALE-UP.

1 INTRODUCTION

Deep neural networks (DNNs) have been deployed in a wide range of mission-critical applications,
such as autonomous driving (Kong et al., 2020; Grigorescu et al., 2020; Wen & Jo, 2022), face
recognition (Tang & Li, 2004; Li et al., 2015; Yang et al., 2021), and object detection (Zhao et al.,
2019; Zou et al., 2019; Wang et al., 2021). In general, training state-of-the-art DNNs usually requires
extensive computational resources and training samples. Accordingly, in real-world applications,
developers and users may directly exploit third-party pre-trained DNNs instead of training their new
models. This is what we called machine learning as a service (MLaaS).

However, recent studies (Gu et al., 2019; Goldblum et al., 2022; Li et al., 2022a) revealed that DNNs
can be compromised by embedding adversary-specified hidden backdoors during the training pro-
cess, posing threatening security risks to MLaaS. The adversaries can activate embedded backdoors
in the attacked models to maliciously manipulate their predictions whenever the pre-defined trigger
pattern appears. Users are hard to identify these attacks under the MLaaS setting since attacked
DNNs behave normally on benign samples.

*The first two authors contributed equally to this paper.
†This work was done when Junfeng Guo and Hanqing Guo interned in Samsung Research America.
‡Corresponding Author: Xun Chen (e-mail: xun.chen@samsung.com).
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Figure 1: An illustration of the black-box input-level backdoor detection.

To reduce backdoor threats, there are many different types of defenses, such as model repairing
(Li et al., 2021b; Wu & Wang, 2021; Zeng et al., 2022), poison suppression (Du et al., 2020; Li
et al., 2021a; Huang et al., 2022), and backdoor detection (Xiang et al., 2022; Liu et al., 2022;
Guo et al., 2022c;d). However, most of these defenses were designed under the white-box setting,
requiring accessing or even modifying model weights. Accordingly, users cannot adopt them in
MLaaS scenarios. Currently, there are also a few model-level (Huang et al., 2020; Dong et al., 2021;
Guo et al., 2022c) and input-level (Li et al., 2021c; Qiu et al., 2021; Gao et al., 2021) black-box
backdoor defenses where users can only access final predictions. However, these defenses have
some implicit assumptions of backdoor triggers (e.g., a small static patch), leading to being easily
bypassed by advanced backdoor attacks (Nguyen & Tran, 2021; Li et al., 2021d). Their failures raise
an intriguing question: what are the fundamental differences between poisoned and benign samples
that can be exploited to design universal black-box backdoor detection?

In this paper, we focus on the black-box input-level backdoor detection, where we intend to iden-
tify whether a given suspicious input is malicious based on predictions of the deployed model (as
shown in Fig. 1). This detection is practical in many real-world applications since it can serve as
the ‘firewall’ helping to block and trace back malicious samples in MLaaS scenarios. However, this
problem is challenging since defenders have limited model information and no prior knowledge of
the attack. Specifically, we first explore the pixel-wise amplification effects on benign and poisoned
samples, motivated by the understanding that increasing trigger values does not hinder or even im-
prove the attack success rate of attacked models (as preliminarily suggested in (Li et al., 2021c)).
We demonstrate that the predictions of attacked images generated by both classical and advanced
attacks are significantly more consistent compared to those of benign ones when amplifying all pixel
values. We refer to this intriguing phenomenon as scaled prediction consistency. In particular, we
also provide theoretical insights to explain this phenomenon. After that, based on these findings, we
propose a simple yet effective method, dubbed scaled prediction consistency analysis (SCALE-UP),
under both data-free and data-limited settings. Specifically, under the data-free setting, the SCALE-
UP examines each suspicious sample by measuring its scaled prediction consistency (SPC) value,
which is the proportion of labels of scaled images that are consistent with that of the input image.
The larger the SPC value, the more likely this input is malicious. Under the data-limited setting, we
assume that defenders have a few benign samples from each class, based on which we can reduce
the side effects of class differences to further improve our SCALE-UP.

In conclusion, our main contributions are four-fold. 1) We reveal an intriguing phenomenon (i.e.,
scaled prediction consistency) that the predictions of attacked images are significantly more consis-
tent compared to those of benign ones when amplifying all pixel values. 2) We provide theoretical
insights trying to explain the phenomenon of scaled prediction consistency. 3) Based on our findings,
we propose a simple yet effective black-box input-level backdoor detection (dubbed ‘SCALE-UP’)
under both data-free and data-limited settings. 4) We conduct extensive experiments on benchmark
datasets, verifying the effectiveness of our method and its resistance to potential adaptive attacks.

2 RELATED WORK

2.1 BACKDOOR ATTACK

Backdoor attacks (Gu et al., 2019; Li et al., 2022a; Hayase & Oh, 2023) compromise DNNs by
contaminating the training process through injecting poisoned samples. These samples are crafted
by adding adversary-specified trigger patterns into the selected benign samples. Backdoor attacks
are stealthy since the attacked models behave normally on benign samples and the adversaries only
need to craft a few poisoned samples. Accordingly, they introduce serious risks to DNN-based
applications. In general, existing attacks can be roughly divided into two main categories based on
the trigger property, including 1) patch-based attacks and 2) non-patch-based attacks, as follows:
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Patch-based Backdoor Attacks. (Gu et al., 2019) proposed the first backdoor attack, which was
called BadNets. Specifically, BadNets randomly selected and modified a few benign training sam-
ples by stamping the trigger patch and changing their label with a pre-defined target label. The
generated poisoned samples associated with the remaining benign samples will be released to users
to train their models. After that, (Chen et al., 2017) first discussed the attack stealthiness and intro-
duced trigger transparency, where they suggested that poisoned images should be indistinguishable
compared with their benign version to evade human inspection. (Turner et al., 2019) argued that
making trigger patches invisible is not stealthy enough since the ground-truth labels of poisoned
samples are different from the target label. They designed the first clean-label backdoor attack
where adversaries can only poison samples from the target class. Recently, (Li et al., 2021c) pro-
posed the first physical backdoor attack, where the location and appearance of the trigger contained
in the digitized test samples may be different from that of the one used for training.

Non-patch-based Backdoor Attacks. Different from classical attacks whose trigger pattern is a
small patch, recent advanced methods exploited non-patch-based triggers trying to bypass backdoor
defenses. For example, (Zhao et al., 2020a) exploited full-image size targeted universal adversar-
ial perturbation (Moosavi-Dezfooli et al., 2017) as the trigger pattern to design a more effective
clean-label backdoor attack. (Nguyen & Tran, 2021) adopted image warping as the backdoor trig-
ger, which deforms the whole image while preserving image content. Recently, (Li et al., 2021d)
proposed the first poison-only sample-specific trigger patterns, inspired by the DNN-based image
steganography (Tancik et al., 2020). This attack broke the fundamental assumption (i.e., the trigger
is sample-agnostic) of most existing defenses and therefore could easily bypass them.

2.2 BACKDOOR DEFENSE

Currently, there are many backdoor defenses to alleviate backdoor threats. In general, existing meth-
ods can be roughly divided into two main categories based on the defender’s capacities, including
1) white-box defenses and 2) black-box defenses, as follows:

White-box Backdoor Defenses. In these approaches, defenders need to obtain the source files of
suspicious models. The most typical white-box defenses are model repairing, aiming at removing
hidden backdoors in the attacked DNNs. For example, (Liu et al., 2018a; Wu & Wang, 2021)
proposed to remove backdoors based on model pruning; (Li et al., 2021b; Xia et al., 2022) adopted
model distillation to eliminate hidden backdoors. There are also other types of white-box defenses,
such as poison suppression (Du et al., 2020; Li et al., 2021a; Huang et al., 2022) and trigger reversion
(Wang et al., 2019; Hu et al., 2022; Tao et al., 2022). However, users cannot use them under the
machine learning as a service (MLaaS) setting, where they can only obtain model predictions.

Black-box Backdoor Defenses. In these methods, defenders can only query the (deployed) model
and obtain its predictions. Currently, there are two main types of black-box defenses, including 1)
model-level defenses (Huang et al., 2020; Dong et al., 2021; Guo et al., 2022c) and 2) input-level
defenses (Li et al., 2021c; Qiu et al., 2021; Gao et al., 2021). Specifically, the former ones intend
to identify whether the (deployed) suspicious model is attacked while the latter ones detect whether
a given suspicious input is malicious. In this paper, we focus on the input-level black-box defense
since it can serve as the ‘firewall’ helping to block and trace back malicious samples in MLaaS
scenarios. However, as we will demonstrate in our experiments, existing input-level defenses can
be easily bypassed by advanced backdoor attacks since they have some strong implicit assumptions
of backdoor triggers. How to design effective black-box input-level backdoor detectors is still an
important open question and worth further exploration.

3 THE PHENOMENON OF SCALED PREDICTION CONSISTENCY

In this section, we explore the prediction behaviors of benign and poisoned samples generated by
attacked DNNs since it is the cornerstone for designing black-box input-level backdoor defense.
Before illustrating our key observations, we first review the general process of backdoor attacks.

The Main Pipeline of Backdoor Attacks. Let D = {(xi, yi)}Ni=1 represent a unmodified be-
nign training set and C : X → Y is the deployed DNN, where xi ∈ X = [0, 1]C×W×H is the
image, yi ∈ Y = {1, . . . ,K} is its label, and K is the number of different labels. The back-
door adversaries will select some benign samples (i.e., Ds) to generate their modified version
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Figure 2: The average confidence (i.e., average probabilities on the originally predicted label) of
benign and poisoned samples w.r.t. pixel-wise multiplications under benign and attacked models.

by Dm = {(x′, yt)|x′ = x+ g(x), (x, y) ∈ Ds}, where yt is an adversary-specified target label
and g(·) is a pre-defined poison generator. For example, g(x) = m ⊙ (t − x) in BadNets (Gu
et al., 2019) and blended attack (Chen et al., 2017), where ⊙ represents the element-wise product,
m ∈ [0, 1]C×W×H is a transparency mask, and t ∈ X is the trigger pattern. Given Nb benign sam-
ples and Np poisoned samples, the backdoor adversaries will train the attacked DNN f(·;θ) based
on the following optimization process (with loss L):

min
θ

Nb∑
i=1

L(f(xi;θ), yi) +

Np∑
j=1

L(f(x′
j ;θ), yt). (1)

As preliminarily demonstrated in (Li et al., 2021c), increasing the pixel value of backdoor triggers
does not hinder or even improve the attack success rate. However, defenders can not accurately ma-
nipulate these pixel values since they have no prior knowledge about trigger location. Accordingly,
we explore what will happen if we scale up all pixel values of benign and poisoned images.

Settings. In this section, we adopt BadNets (Gu et al., 2019)) and ISSBA (Li et al., 2021d) as the
example for our discussion. They are representative of patch-based and non-patch-based backdoor
attacks, respectively. We conduct experiments on the CIFAR-10 dataset (Krizhevsky, 2009) with
ResNet (He et al., 2016). For both attacks, we inject a large number of poisoned samples to ensure
a high attack success rate (≥ 99%). For each benign and poisoned image, we gradually enlarge
its pixel values with multiplication. We calculate the average confidence defined as the average
probabilities of samples on the originally predicted label. In particular, we select the label predicted
upon the original sample as the originally predicted label for each varied sample and constrain all
pixel values within [0, 1] during the multiplication process. More details are in our appendix.

Results. As shown in Figure 2, the average confidence scores of both benign and poisoned samples
decrease during the multiplication process under the benign model. In other words, the predictions
of modified benign and poisoned samples are changed during this process. In contrast, poisoned
and benign samples have significantly distinctive behaviors under attacked models. Specifically, the
average confidence of benign samples decreases whereas that of poisoned samples is relatively stable
with the increase of multiplication times. We call this phenomenon as scaled prediction consistency.

To further explain this intriguing phenomenon (i.e., scaled prediction consistency), we exploit recent
studies on neural tangent kernel (NTK) (Jacot et al., 2018) for analyzing the backdoor-infected
models inspired by (Guo et al., 2022c), as follows:

Theorem 1. Suppose the poisoned training dataset consists of Nb benign samples and Np poisoned
samples, i.i.d. sampled from uniform distribution and belonging to K classes. Assume that deep
neural network f(·; θ) be a multivariate kernel regression (RBF kernel) with the objective in Eq. (1).
For a given attacked sample x′ = (1−m)⊙x+m⊙t, we have: limNp→Nb

C(n ·x′) = yt, n ≥ 1.

In general, Theorem 1 reveals that when the amount of poisoned samples closes to the benign sam-
ples or the attacked DNN over-fits the poisoned samples, it will still constantly predict the scaled
attacked samples (i.e., n · x′) as the target label yt. Its proof can be found in Appendix A.
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Figure 3: The SPC scores of benign samples from different classes under attacked models.

4 SCALED PREDICTION CONSISTENCY ANALYSIS (SCALE-UP)

Motivated by the phenomenon of scaled prediction consistency demonstrated in the previous sec-
tion, we propose a simple yet effective black-box input-level backdoor detection, dubbed scaled
prediction consistency analysis (SCALE-UP), in this section.

4.1 PRELIMINARIES

Defender’s Goals. In general, defenders have two main goals, including effectiveness and efficiency.
Effectiveness requires that the detection method can accurately identify whether a given image is
malicious or not. Efficiency ensures that detection time is limited and therefore the deployed model
can provide final results on time after the detection and prediction process.

Threat Model. We consider backdoor detection under the black-box setting in machine learning
as a service (MLaaS) applications. Specifically, defenders can only query the third-party deployed
model and obtain its predictions. They do not have any prior information about the backdoor attack
or the model. In particular, we consider two data settings, including 1) data-free detection and 2)
data-limited detection. The former one assumes that defenders have no holding benign samples,
while the latter one allows defenders to have a few benign samples from each class. Note that we
only assume to have the predicted label instead of the predicted probability vector in our method.

4.2 DATA-FREE SCALED PREDICTION CONSISTENCY ANALYSIS

As demonstrated in Section 3, we can use the average probability on the originally predicted label
across its scaled images to determine whether a given suspicious image is malicious. In general,
the larger the probability, the more likely the sample is poisoned. However, we can only obtain
predicted labels while predicted probability vectors are inaccessible under our settings. Accordingly,
we propose to examine whether the predictions of scaled samples are consistent, as follows:

Let S denotes a defender-specified scaling set (e.g., S = {3, 5, 7, 9, 11}). For a given input image
x and the deployed classifier C, we define its scaled prediction consistency (SPC) as the proportion
of labels of scaled images that are consistent with that of the input image, i.e.,

SPC(x) =

∑
n∈S I{C(n · x) = C(x)}

|S|
, (2)

where I is the indicator function and |S| denotes the size of scaling set S. In particular, we constrain
n · x ∈ [0, 1] during the multiplication process.

Once we obtain the SPC value of suspicious input x, we can determine it is malicious based on
defender-specified threshold T . If SPC(x) > T , we deem it as a backdoor sample.

4.3 DATA-LIMITED SCALED PREDICTION CONSISTENCY ANALYSIS

In our data-free scaled prediction consistency analysis, we treat all labels equally. However, we
notice that the SPC values of benign samples under attacked models are different across classes (as
shown in Figure 3). In other words, some classes are more consistent against image scaling com-
pared to the remaining ones. These benign samples with have high SPC values may be mistakenly
treated as malicious samples, leading to relatively low precision of our method.
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Figure 5: The demonstration of various trigger patterns of attacks used in our experiments.

In data-limited scaled prediction consistency analysis, we assume that defenders have a few benign
samples from each class. This setting has been widely used in existing backdoor defenses (Li et al.,
2021b; Guo et al., 2022c; Zeng et al., 2022). In this paper, we propose to exploit a set of statics sum-
mary (i.e., mean µ and standard deviation σ) of these local benign samples to alleviate this problem,
inspired by (Ioffe & Szegedy, 2015). We first estimate the statics summary for SPC values on sam-
ples from different classes, based on which to normalize the SPC value of suspicious input images
according to their predicted labels. Specifically, for each class i, we calculate its corresponding
mean µi and standard deviation σi based on samples Xi belonging to class i, as follows:

µi = Ex∈Xi
[SPC(x)], σi =

√
Ex∈Xi

[(x− µi)2]. (3)

In the detection process, given a suspicious image x and the deployed model C, we normalize the
SPC value generated by data-free SCALE-UP based on its predicted label ŷ ≜ C(x), as follows:

NSPC(x) ≜ SPC(x)− µŷ

σŷ
. (4)

Besides, for a more stable and effective performance, we automatically balance two terms in Eq. (4)
to make their values at the same level. The main pipeline of our method is summarized in Figure 4.

5 EXPERIMENTS

5.1 MAIN SETTINGS

Dataset and DNN Selection. Following the settings in existing backdoor defenses, we conduct
experiments on CIFAR-10 (Krizhevsky, 2009) and (Tiny) ImageNet (Russakovsky et al., 2015)
datasets with ResNet (He et al., 2016). Please find more detailed information in our appendix.

Attack Baselines. In this paper, we evaluate our methods under six representative attacks, includ-
ing 1) BadNets (Gu et al., 2019), 2) label consistent backdoor attack (dubbed ‘Label-Consistent’)
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Table 1: The performance (AUROC) on the CIFAR-10 dataset. Among all different methods, the
best result is marked in boldface while the value with underline denotes the second-best result. The
failed cases (i.e., AUROC < 0.55) are marked in red. Note that STRIP require obtaining predicted
probability vectors while other methods only need the predicted labels.

Attack→
Defense↓ BadNets Label-Consistent PhysicalBA TUAP WaNet ISSBA Average

STRIP 0.989 0.941 0.971 0.671 0.475 0.498 0.758
ShrinkPad 0.951 0.957 0.631 0.869 0.531 0.513 0.742

DeepSweep 0.967 0.921 0.946 0.743 0.506 0.729 0.802
Frequency 0.891 0.889 0.881 0.851 0.461 0.497 0.745

Ours (data-free) 0.971 0.947 0.969 0.816 0.918 0.945 0.928
Ours (data-limited) 0.971 0.954 0.970 0.830 0.925 0.945 0.933

Table 2: The performance (AUROC) on the Tiny ImageNet dataset. Among all different methods,
the best result is marked in boldface while the value with underline denotes the second-best result.
The failed cases (i.e., AUROC < 0.55) are marked in red. Note that STRIP require obtaining
predicted probability vectors while other methods only need the predicted labels.

Attack→
Defense↓ BadNets Label-Consistent PhysicalBA TUAP WaNet ISSBA Average

STRIP 0.959 0.939 0.959 0.638 0.501 0.471 0.745
ShrinkPad 0.871 0.938 0.672 0.866 0.498 0.492 0.737

DeepSweep 0.951 0.930 0.939 0.759 0.503 0.714 0.799
Frequency 0.864 0.859 0.864 0.837 0.428 0.540 0.732

Ours (data-free) 0.936 0.904 0.939 0.763 0.943 0.948 0.905
Ours (data-limited) 0.947 0.911 0.939 0.763 0.946 0.949 0.909

(Turner et al., 2019), 3) physical backdoor attack (dubbed ‘PhysicalBA’) (Li et al., 2021c), 4) clean-
label backdoor attack with targeted universal adversarial perturbation (dubbed ‘TUAP’) (Zhao et al.,
2020a), 5) WaNet (Nguyen & Tran, 2021), and 6) ISSBA (Li et al., 2021d). They are the rep-
resentative of patch-based and non-patch-based backdoor attacks under different settings. For each
attack, we randomly select the target label and inject sufficient poisoned samples to ensure the attack
success rate ≥ 98% while preserving the overall model performance. We implement these attacks
based on the open-sourced backdoor toolbox (Li et al., 2023). We demonstrate the trigger patterns
of adopted attacks for Tiny ImageNet in Figure 5. More detailed settings are in the appendix.

Defense Baselines. In this paper, we focus on the backdoor detection under the black-box setting
where defenders can only query the deployed model and obtain its predicted label. Accordingly, we
compare our methods to ShrinkPad (Li et al., 2021c), DeepSweep (Qiu et al., 2021), and artifacts
detection in the frequency domain (dubbed ‘Frequency’) (Zeng et al., 2021). We also compare our
methods to STRIP (Gao et al., 2021) that requires additional requirement (i.e., obtaining predict
probability vectors). We assume that defenders have 100 benign samples per class under the data-
limited setting. Please find more defense details in our appendix.

Settings for Evaluation Datasets. Following the previous work (Lee et al., 2018), we use a posi-
tive (i.e., attacked) and a negative (i.e., benign) dataset to evaluate each defense. Specifically, the
positive dataset contains the attacked testset and its augmented version, while the negative dataset
contains a benign testset and its augmented version. The augmented datasets are created by adding
small random noise to their original version. The noise magnitude is set to 0.05. In particular, adding
these random noises will not significantly affect the attack success rate and the benign accuracy of
deployed models. The introduction of the augmented datasets is to prevent evaluated defenses from
over-fitting the benign or the poisoned testsets.

Evaluation Metrics. Following existing detection-based backdoor defenses (Gao et al., 2021; Guo
et al., 2022c), we adopt the area under receiver operating curve (AUROC) (Fawcett, 2006) to evaluate
defense effectiveness, while use the inference time for evaluating efficiency. In general, the higher
the AUROC and the lower the inference time, the better the backdoor detection.

7



Published as a conference paper at ICLR 2023

5.2 MAIN RESULTS
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Figure 6: The inference time
on the CIFAR-10 dataset.

As shown in Table 1-2, all baseline detection methods fail in de-
fending against some evaluated attacks. Specifically, they have rel-
atively low AUROC in detecting advanced non-patch-based attacks
(i.e., WaNet and ISSBA). This failure is mostly because these de-
fenses have some implicit assumptions (e.g., the trigger pattern is
sample-agnostic or static) about the attack, which are not necessar-
ily true in practice. In contrast, our methods reach promising per-
formance in all cases on both datasets. For example, the AUROC of
our data-limited SCALE-UP is 0.5 greater than all baseline defenses
in detecting WaNet on the Tiny ImageNet dataset. Even under the
classical patch-based attacks (i.e., BadNets, Label-Consistent, and
PhysicalBA), the effectiveness of our methods is on par with or bet-
ter than all baseline defenses. Our methods are even better than STRIP, which requires obtaining
predicted probability vectors instead of predicted labels. We also provide the ROC curves of de-
fenses against all attacks in Appendix N. These results verify the effectiveness of our defenses.

Besides, we also calculate the inference time of all defenses under the same computational facili-
ties. In particular, we calculate the inference time of methods requiring to obtain the predictions of
multiple images by feeding them simultaneously (in a data batch) into the deployed model instead
of predicting them one by one. Besides, we only report the inference time of our SCALE-UP under
the data-limited setting, since both of them have very similar running times. As shown in Figure
6, our method requires fewer inference times compared to almost all baseline defenses. The only
exception is ShrinkPad, whereas its effectiveness is significantly lower than that of our method. Our
detection is approximately 5% slower compared with the standard inference process without any
defense. These results show the efficiency of our SCALE-UP detection.

5.3 DISCUSSION

In this section, we discuss whether our method is still effective under different (adversarial) settings.

5.3.1 DEFENDING AGAINST ATTACKS WITH LARGER TRIGGER SIZES

Recent studies (Qiu et al., 2021) revealed that some defenses (e.g., ShrinkPad) may fail in detecting
samples with a relatively large trigger size. In this part, we use two patch-based attacks (e.g.,
BadNets and PhysicalBA) on the Tiny ImageNet dataset for discussion. As shown in Figure 7(a),
our methods have high AUROC values (> 0.93) across different trigger sizes under both data-
free and data-limited settings, although there are some mild fluctuations. These results verify the
resistance of our SCALE-UP detection to adaptive attacks with large trigger patterns.

5.3.2 THE RESISTANCE TO POTENTIAL ADAPTIVE ATTACKS

Most recently, (Qi et al., 2023) demonstrated that reducing the poisoning rate is a simple yet effective
method to design adaptive attacks for detection-based defenses, since it can reduce the differences
between benign and poisoned samples. Motivated by this finding, we first explore whether our
SCALE-UP methods are still effective in defending against attacks with low poisoning rates. We
adopt BadNets on the CIFAR-10 dataset as an example for our discussions. In particular, we re-
port the results of all poisoned testing samples and those that can be predicted as the target label,
respectively. We design this setting since attacked models may still correctly predict many poisoned
samples even if they contain trigger patterns when the poisoning rate is relatively low.

As shown in Figure 7(b), the attack success rate (ASR) increases with the increase of the poison-
ing rate. Our method can still correctly detect poisoned samples that can successfully attack the
deployed model even when the poisoning rate is set to 0.4% where the ASR is lower than 70%. In
these cases, the AUROC > 0.95. Besides, our method can still reach promising performance (AU-
ROC > 0.8) in detecting all poisoned samples. These results verify the resistance of our defense to
adaptive attacks with low poisoning rates, where attacked models don’t over-fit backdoor triggers.
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Figure 7: The results of additional experiments in our discussion. (a) The performance of our
methods under attacks with different trigger sizes. (b) The attack performance and the defense
effectiveness on all poisoned testing samples and those that can successfully attack the deployed
model. (c) The effectiveness of adaptive and vanilla backdoor attacks on poisoned samples with
random noise under different magnitudes.

To further evaluate the resistance of our SCALE-UP to potential adaptive methods, we evaluate it
under the worst scenario, where the backdoor adversaries are fully aware of our mechanism. Specifi-
cally, we design a strong adaptive attack by introducing an additional defense-resistant regularization
term to the vanilla attack illustrated in Eq. (1). This regularization term is used to prevent scaled
poisoned samples n · x′

j being predicted as the target label yt, as follows:

min
θ

Nb∑
i=1

L(f(xi;θ), yi) +

Np∑
j=1

L(f(x′
j ;θ), yt) +

Np∑
j=1

L(f(n · x′
j ;θ), yj). (5)

Similar to previous experiments, we adopt BadNets to design the adaptive attack on the CIFAR-10
dataset. As we expected, this method can bypass our detection resulting in a low AUROC (i.e.,
0.467). However, the adaptive attack would make the poisoned samples significantly more vul-
nerable to small random Gaussian noises. As shown in Figure 7(c), random noises with a small
magnitude (< 0.3) will significantly reduce the attack success rate of the adaptive attack, while hav-
ing minor adverse effects on the vanilla attack. In other words, defenders can easily adopt random
noises to defend against this adaptive attack. We speculate that its vulnerability is mostly because
the regularization term significantly constrains the generalization of attacked DNNs on the poisoned
samples. We will further explore its intrinsic mechanism in our future work.

5.3.3 THE EFFECTIVENESS OF SCALING PROCESS

Technically, the scaling process in our SCALE-UP detection can be regarded as a data augmentation
method generating different modified versions of the suspicious input image. It naturally raises an
intriguing question: If other augmentation methods are adopted, is our SCALE-UP detection still
effective? Since flip operations and frequency domain analysis have been adopted in (Li et al.,
2021c; Zeng et al., 2021) for defense and proved to have minor benefits to detecting advanced
backdoor attacks (Li et al., 2021d; Nguyen & Tran, 2021), we investigate the effectiveness of adding
increasing magnitudes of random noise. Due to the limitations of space, we include the detailed
experimental design and evaluation in Appendix O.

6 CONCLUSION

In this paper, we proposed a simple yet effective black-box input-level backdoor detection (dubbed
SCALE-UP) that can be used in real-world applications under the machine learning as a service
(MLaaS) setting. Our method was motivated by an intriguing new phenomenon (dubbed scaled pre-
diction consistency) that the predictions of poisoned samples are significantly more consistent com-
pared to those of benign ones when amplifying all pixel values. We also provided theoretical foun-
dations to explain this phenomenon. In particular, we designed our SCALE-UP detection method
under both data-free and data-limited settings. Extensive experiments on benchmark datasets veri-
fied the effectiveness and efficiency of our method and its resistance to potential adaptive attacks.
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ETHICS STATEMENT

DNNs have been widely and successfully adopted in many mission-critical applications. Accord-
ingly, their security is of great significance. The existence of backdoor threats raises serious con-
cerns about using third-party models under the machine learning as a service (MLaaS) setting. In
this paper, we propose a simple yet effective black-box input-level backdoor detection. Accord-
ingly, this work has no ethical issues since it does not reveal any new security risks and is purely
defensive. However, we need to notice that our methods can only be used to filter poisoned testing
samples whereas they do not reduce the intrinsic backdoor vulnerability of deployed models. Our
defense also couldn’t recover trigger patterns. People should not be too optimistic about eliminating
backdoor threats. We will further improve our method by exploring how to recover triggers.
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APPENDIX

A THE OMITTED PROOF OF THEOREM 1

Theorem 1. Suppose the poisoned training dataset consists of Nb benign samples and Np poisoned
samples, i.i.d. sampled from uniform distribution and belonging to K classes. Assume that deep
neural network f adopt RBF kernel and cross-entropy loss with the optimization objective in Eq.1.
For a given attacked sample x′ = (1−m)⊙x+m⊙t, we have: limNp→Nb

C(n ·x′) = yt, n ≥ 1.

Proof of Theorem 1: Following (Guo et al., 2022c), we have the regression solution for NTK is:

ϕt(·) =
∑Nb

i=1 K(·,xi) · yi +
∑Np

i=1 K(·,x′
i) · yt∑Nb

i=1 K(·,xi) +
∑Np

i=1 K(·,x′
i)

, (6)

where ϕt(·) ∈ R is the predictive probability output of f(·; θ) for the target class t and yi is the
corresponding one-hot label. K(x,xi) = e−2γ||x−xi||2 (γ > 0). Since the training samples are
evenly distributed, there are Nb

k benign samples belonging to yt. Without loss of generality, we
assume the target label yt = 1 while others are 0. Then the regression solution can be converted to:

ϕt(·) =
∑Nb/k

i=1 K(·,xi) +
∑Np

i=1 K(·,x′
i)∑Nb

i=1 K(·,xi) +
∑Np

i=1 K(·,x′
i)

, (7)

For a given backdoored sample x′ = (1−m)⊙ x+m⊙ t, we can simplify Eq. (7) as:

ϕt(x
′) ≥

∑Np

i=1 K(x′,x′
i)∑Nb

i=1 K(x′,xi) +
∑Np

i=1 K(x′,x′
i)
, (8)

we here remove the term
∑Nb/k

i=1 K(x′,xi). This is because x′ typically don’t belong to the target
yt and

∑Nb/k
i=1 K(x′,xi) <<

∑Np

i=1 K(x′,x′
i), otherwise the attacker has no incentive to craft

poisoned sample.

When Np close to Nb, which implies that the poisoning rate close to 50%, the attacker can achieve
the optimal attack efficacy (Liu et al., 2018b; Gu et al., 2019; Li et al., 2021d). Given K(x,xi) =

e−2γ||x−xi||2 (γ > 0), if Np = Nb, we have:

ϕt(n · x′) =

∑Np

i=1 K(n · x′,x′
i)∑Nb

i=1 K(n · x′,xi) +
∑Np

i=1 K(n · x′,x′
i)
. (9)

If n = 1, we can easily obtain that:

Np∑
i=1

e−2γ||(1−m)⊙(x−xi)||2 − e−2γ||(1−m)⊙(x−xi)+m⊙(t−xi)||2 (10)

=

Np∑
i=1

e−2γ||(1−m)⊙(x−xi)||2(1− e−2γ||m⊙(t−xi)||2) > 0. (11)

Since the internal term (1 − e−2γ||m⊙(t−xi)||2) can be always larger than 0, thus it is clear that
f(x′) = yt, which is also consistent with the practice.
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However, when n > 1, to compare
∑Np

i=1 K(n · x′,x′
i) and

∑Nb

i=1 K(n · x′,xi), we have:

No∑
i=1

K(n · x′,x′
i)−

Nb∑
i=1

K(n · x′,xi) (12)

=

Nb∑
i=1

e−2γ||(1−m)⊙(n·x−xi)+m⊙(n−1)t||2 − e−2γ||(1−m)⊙(n·x−xi)+m⊙(n·t−xi)||2 (13)

=

Nb∑
i=1

e−2γ||(1−m)⊙(n·x−xi)+m⊙(n−1)t||2(1− e−2γ(||m⊙(n·t−xi)||2−||m⊙(n−1)t)||2)). (14)

(15)

Regarding the internal term ||m⊙ (n · t− xi)||2 − ||m⊙ (n− 1)t)||2, we have:

||m⊙ (n · t− xi)||2 − ||m⊙ (n− 1)t)||2 (16)

=
∑

j,k∈ trigger

||(n− 1) · tj,k + (tj,k − xi,j,k)||2 − ||(n− 1) · tj,k||2 (17)

=
∑

j,k∈ trigger

δ2i,j,k + 2(n− 1) · δi,j,ktj,k, (18)

where δi,j,k is the pixel-level residue between the trigger and benign samples. We assume that the
δi,j,ktj,k close to a zero mean for inputs, thus we can rewrite Eq.(12) as follows:

Np∑
i=1

K(n · x′,x′
i)−

Nb∑
i=1

K(n · x′,xi) (19)

≈
Np∑
i=1

e−2γ||(1−m)⊙(n·x−xi)+m⊙(n−1)t||2(1− e−2γ
∑

j,k∈trigger δ2i,j,k) (20)

> 0. (21)

Put Eq. (19) and Eq. (9) together, we know that ϕt(n · x′) ≥ 0.5, as Np → Nb, we have:

lim
Np→Nb

C(n · x′
t) = yt, n ≥ 1.

□

B THE DETAILED CONFIGURATIONS OF THE EMPIRICAL STUDY

We adopt BadNets (Gu et al., 2019)) and ISSBA (Li et al., 2021d) as the example for our discussion.
They are the representative of patch-based and non-patch-based backdoor attacks, respectively. We
conduct experiments on the CIFAR-10 dataset (Krizhevsky, 2009) with ResNet-34 (He et al., 2016).
For both attacks, we inject a large number of poisoned samples to ensure a high attack success rate
(≥ 99%). For each benign and poisoned image, we gradually enlarge its pixel values with multipli-
cation. We calculate the averaged confidence defined as the averaged probabilities of samples on the
originally predicted label. In particular, we select the label predicted upon the original sample as the
originally predicted label for each varied sample and constrain all pixel values within [0, 1] during
the multiplication process. In particular, we follow previous works (Gu et al., 2019; Li et al., 2021d)
to implement the backdoor attacks. Specifically, the trigger for BadNets is a 4× 4 square consisting
of random pixel values; the trigger of ISSBA is generated via DNN-based image steganography
(Tancik et al., 2020). Both attacks are implemented via BackdoorBox (Li et al., 2023).
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Table 3: Detailed information about the adopted datasets.
Dataset # Classes Image Size # Training Images

CIFAR-10 10 3× 32× 32 50,000
Tiny ImageNet 200 3× 64× 64 1,000,000

C THE DETAILS FOR TRAINING ATTACKED MODELS

We train backdoor-infected models using BackdoorBox (Li et al., 2023). We set the training epoch
as 200 and the poisoning rate as 5− 10% for each attack to ensure a high attack success rate. In par-
ticular, except for PhysicalBA, we don’t involve additional data augmentation in training infected
models as we want to better reveal the properties of various backdoor approaches. For each in-
fected model, we randomly select infected labels to ensure their predictions on benign inputs are
similar to the benign models, which ensures the stealthiness of backdoor attacks. Regarding the
data-limited scenario and ablation study, we intentionally affect multiple labels to ensure the in-
fected models similar to benign models except for the Trojan behaviors. Specifically, we inject less
amount(≤ 5%) of poisoned samples to affect labels other than the target label. This is because previ-
ous work (Guo et al., 2022c) found that certain dense backdoor attacks (e.g., ISSBA, WaNet) would
make the infected DNNs sensitive to noisy or out-of-distribution samples on CIFAR-10 dataset. Ac-
cordingly,they are less stealthy and are easy to be detected during the sampling process of the data-
limited setting and settings of our ablation study. As such, in these settings, to evaluate SCALE-UP
in a rather practical scenario, we train infected DNNs to have similar behaviors on noisy samples as
the benign DNNs. The details for each dataset are included in Table 3.

C.1 THE ACCURACY AND ATTACK SUCCESS RATE (ASR) FOR EVALUATED MODELS

The accuracy and ASR for the evaluated models for each task in included in Table 4.

Table 4: The BA and ASR for the evaluated models on each dataset.

Task↓ Model→ Infected Model Normal Model AccuracyBA ASR
CIFAR-10 ≥ 90.04% ≥ 97.7% ≥ 92.31%

Tiny ImageNet ≥ 36.98% ≥ 97.22% ≥ 40.11%

Table 5: The performance of six defense baselines against partial backdoor attacks
Task↓ Attack → STRIP ShrinkPad Frequency DeepSweep Ours (data-free) Ours (data-limited)

CIFAR-10 0.617 0.949 0.891 0.967 0.971 0.971
Tiny ImageNet 0.601 0.868 0.861 0.951 0.936 0.971

D THE DETAILED CONFIGURATIONS FOR BASELINE DEFENSES

• STRIP: We implement STRIP following their official open-sourced codes*.

• ShrinkPad: We implement ShrinkPad following their official open-sourced codes†.

• Frequeny: We implement Frequency approach following their official codes‡.

• DeepSweep: We implement DeepSweep using Scipy package to remove the high-
frequency noise and use torchvision.transforms and keras.preprocess
packages to conduct transformation to inputs. Notably, we don’t apply finetune pro-
cess within DeepSweep since we only focus on the black-box detection scenarios.

*https://github.com/garrisongys/STRIP.git
†https://github.com/THUYimingLi/BackdoorBox.git
‡https://github.com/YiZeng623/frequency-backdoor.git

16

https://github.com/garrisongys/STRIP.git
https://github.com/THUYimingLi/BackdoorBox.git
https://github.com/YiZeng623/frequency-backdoor.git


Published as a conference paper at ICLR 2023

0 10 20 30 40 50 60

0

10

20

30

40

50

60

(a) Trigger I
0 10 20 30 40 50 60

0

10

20

30

40

50

60

(b) Trigger II

0 10 20 30 40 50 60

0

10

20

30

40

50

60

(c) Trigger III

Figure 8: The demonstration of dynamic triggers.

E THE DESCRIPTIONS FOR MAIN EVALUATION METRIC

• The receiver operating curve (ROC) shows the trade-off between detection the success rate
for poisoned samples and detection error rate for benign samples across different decision
thresholds T under infected-DNNs.

• Inference Time: we implement each approach under the platform with one NVIDIA GPU
1080 Ti and a Intel(R) Xeon(R) CPU E5-2650 v4 @ 2.20GHz with batch size = 1. We test
the inference time of each approach with an average of 1,000 runs.

F SETTINGS FOR MEASURING THE INFERENCE TIME

Since we focus on defending against backdoor attacks in the inference phase, we here measure the
inference time by:

• Identifying whether the input sample is poisoned or not.
• If the input is a benign sample, we next should use the target model to predict it.

For STRIP, ShrinkPad, DeepSweep, and SCALE-UP, we leverage the target model’s prediction on
the (augmented) inputs for defense purpose, which means the input can be identified and predicted
at the same time. As for Frequency, which leverages a secondary neural network to predict the
frequency domain of each given input. However, if the input is identified as benign, the target DNNs
should also deliver prediction on it. We here assume the benign and poisoned samples have equal
possibilities. Therefore, we calculate the inference time for Frequency as follows:

time = TIME(Frequency(input)) + 0.5 · TIME(DNN(input)). (22)

While for other approaches, we measure their inference time via:

time = TIME(DNN((Augumented) INPUT))). (23)

In particular, we calculate the inference time of methods required to obtain the predictions of multi-
ple images by feeding them simultaneously (in a batch) into the deployed model instead of predicting
them one by one. This approach is feasible since defenders can easily and efficiently obtain all of
them before feeding them into the deployed model.

G PERFORMANCE UNDER MULTIPLE-BACKDOOR TRIGGERS WITHIN A
SINGLE INFECTED LABEL
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Figure 10: The performance
of SCALE-UP for multiple
infected labels.

Consistent with (Guo et al., 2022c; Wang et al., 2019), we also eval-
uate the efficacy of SCALE-UP under a more challenging scenario
where multiple backdoors are embedded within a single target la-
bel. We randomly select a label as the infected label and inject
various types of poisoned samples in the training phase. We inject
arbitrary amounts of poison samples for each backdoor trigger to
ensure the attack efficacy ASR ≥ 99%. The demonstrations for
used backdoor triggers are shown in Figure 8. Under such consid-
ered scenario, we evaluate our SCALE-UP on CIFAR-10 and Tiny
ImageNet datasets using ResNet-34.

17



Published as a conference paper at ICLR 2023

1 2 3 4 5

Number of injected triggers

0.9600

0.9625

0.9650

0.9675

0.9700

0.9725

0.9750

D
et

ec
tio

n
Pe

rfo
rm

an
ce

(A
U

R
O

C
)

Data-free
Data-limited

(a) CIFAR-10

1 2 3 4 5

Number of injected triggers

0.9375

0.9400

0.9425

0.9450

0.9475

0.9500

D
et

ec
tio

n
Pe

rfo
rm

an
ce

(A
U

R
O

C
)

Data-free
Data-limited

(b) TinyImageNet

Figure 9: The average results for multiple triggers within a single label.

As shown in Figure 9, SCALE-UP performs resilient to the increas-
ing number of injected backdoor triggers. This may be caused by
infected models already generalized for backdoor triggers.

H THE PERFORMANCE AGAINST MULTIPLE INFECTED LABELS

We also test SCALE-UP under the scenario where the suspicious model has multiple infected labels.
Under this scenario, we test SCALE-UP on CIFAR-10. This is because models on Tiny ImageNet
would be prone to multiple infected labels, as reported by (Guo et al., 2022c), affecting more than
14% labels can make the accuracy significantly drop≥ 3%. We implement BadNets as backdoor
attacks, the trigger size is 4 × 4. The results are shown in Figure 10. These results show that
affecting multiple infected labels could slightly reduce the performance of SCALE-UP. Besides, the
data-limited scenario performs better than the data-free scenario. However, even with 100% labels
are infected, SCALE-UP can still perform effectively with AUROC ≥ 0.883.

I IMPACTS FOR THE NUMBER OF COEFFICIENTS

We test SCALE-UP on six attacks with varying n. We here use ResNet-34 on TinyImageNet for
evaluation. As shown in Figure 11, we find that the performance of SCALE-UP increases along with
n increasing. Moreover, we find that SCALE-UP performs more sensitive on n for the TUAP attack
compared with other attack techniques. Moreover, we find that SCALE-UP performs similarly
sensitive on n in both data-limited and data-free settings. In most settings, with n ≥ 11 SCALE-UP
can achieve optimal performance on six different attacks.

J IMPACT FOR THE SIZE OF LOCAL SAMPLES

We also test the sensitivity of SCALE-UP on the size of local samples per label under the data-
limited setting. We test SCALE-UP on Tiny ImageNet using ResNet-34 against six attacks. The
results are shown in Figure 12. We can see that with the size of local samples increases, the perfor-
mance of SCALE-UP improves and achieves optimal performance when the size ≥ 100.

K PERFORMANCE UNDER SOURCE-LABEL-SPECIFIC BACKDOOR SCENARIOS

The Source-label-specific (Partial) backdoor scenarios is that the backdoor attacks can perform ef-
fectively when it applies to images of a certain specific class. Such a scenario makes backdoor
attacks very hard to detect (Wang et al., 2019; Gao et al., 2021), thus the attacker may have a great
incentive to implement such a backdoor attack in the real world. Therefore, we evaluate SCALE-UP
under such a practical scenario and compare SCALE-UP with previous work. We test SCALE-UP
using ResNet-34 on CIFAR-10 and Tiny ImageNet. As shown in Table 5, we find that most defense
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Figure 11: The impact for the coefficients n.

approaches perform resilient against the partial backdoor attack except STRIP (Gao et al., 2021).
This is because STRIP assumes the trigger can perform effectively across various images. Under
this scenario, SCALE-UP can outperform all baseline defenses.

L THE ROBUSTNESS OF SCALE-UP

Since SCALE-UP is an inference-phase backdoor defense approach, it is necessary to investigate
the robustness of SCALE-UP on benign and poisoned samples. Following previous work (Du et al.,
2020), we evaluate the robustness of our approach by testing different magnitudes of noisy inputs.
Notably, we test SCALE-UP on benign and poisoned samples, respectively, which is because they
exhibit different robustness under random noise as we show in Section 5.3.3. Moreover, the mag-
nitudes of added random noise ensure the classification accuracy and attack success rate for benign
and poisoned samples. The results are shown in Figure 13. We test our approach using ResNet-34
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Figure 12: The impact for the size of required inputs.
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Figure 13: The robustness of SCALE-UP.

on the TinyImageNet task. The noise is randomly sampled from Gaussian distribution and we inten-
tionally filter the failed poisoned samples. We only test BadNets and PhysicalBA since only these
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Table 6: The performance (AUROC) on the Tiny ImageNet dataset under VGG-19. Among all
different methods, the best result is marked in boldface while the value with underline denotes the
second-best result. The failed cases (i.e., AUROC < 0.55) are marked in red. Note that STRIP
requires obtaining predicted probability vectors while other methods only need the predicted labels.

Attack→
Defense↓ BadNets Label-Consistent PhysicalBA TUAP WaNet ISSBA Average

STRIP 0.941 0.908 0.941 0.576 0.521 0.489 0.729
ShrinkPad 0.857 0.919 0.631 0.831 0.499 0.490 0.705

DeepSweep 0.939 0.907 0.921 0.744 0.511 0.711 0.788
Frequency 0.864 0.859 0.864 0.827 0.428 0.540 0.730

Ours (data-free) 0.936 0.846 0.907 0.858 0.893 0.767 0.868
Ours (data-limited) 0.936 0.851 0.907 0.888 0.904 0.836 0.887

Table 7: The performance (AUROC) of SCALE-UP variants with random noises on CIFAR-10 and
Tiny-ImageNet datasets. The failed cases (i.e., AUROC < 0.55) are marked in red.

Dataset↓ Attack→
Setting↓ BadNets Label Consistent PhysicalBA TUAP WaNet ISSBA Average

CIFAR-10 data-free 0.939 0.816 0.976 0.698 0.497 0.421 0.724
data-limited 0.939 0.873 0.981 0.706 0.432 0.444 0.729

Tiny ImageNet data-free 0.951 0.711 0.899 0.632 0.531 0.467 0.706
data-limited 0.951 0.761 0.899 0.644 0.534 0.501 0.706

two attacks perform robustness against random noise, as illustrated in Section 5.3.3. We find that
our approach is robust against noisy poisoned samples.

M ADDITIONAL RESULTS UNDER VGG ARCHITECTURE

In our main manuscript, we evaluate our method under the ResNet architecture. In this section,
we conduct additional experiments under VGG-19 (BN) on Tiny ImageNet, to verify that the phe-
nomenon of scaled prediction consistency is valid across different model architectures.

As shown in Figure 14, the scaled prediction consistency still holds in all cases. Specifically, the
average confidence of benign samples decreases significantly faster than that of poisoned ones with
the increase in multiplication time. Besides, as shown in Table 6, our methods are still better than
all baseline defenses. These results verify the effectiveness of our methods again.

N THE ROC CURVES OF DEFENSES

To better compare our method with baseline defenses, we also visualize the ROC curves of defenses
(as shown in Figure 15-16) under each attack on both CIFAR-10 and Tiny ImageNet in this section.

O DETAILS FOR THE EFFECTIVENESS OF SCALING PROCESS

Specifically, we design the SCALE-UP variant by replacing the scaling process with adding the same
varied magnitudes of random noise to the given inputs. As shown in Table 7, using random noises
is far less effective compared to the standard SCALE-UP methods, especially in detecting advanced
attacks (i.e., WaNet and ISSBA). We speculate that it is mostly because they adopted invisible full-
image size trigger patterns and therefore the trigger-related features are less robust. Although we
currently fail to provide theoretical analysis for the aforementioned phenomena, at least they verify
the effectiveness of our scaling process. We will further discuss it in our future work.

P POTENTIAL LIMITATIONS AND FUTURE WORK

Our work is the first black-box label-only input-level backdoor detection and early-stage defenses
under the black-box setting. Accordingly, we have to admit that our work still has some limitations.
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Figure 14: The average confidence (i.e., average probabilities on the originally predicted label) of
benign and poisoned samples w.r.t. pixel-wise multiplications under benign and attacked models
on the Tiny ImageNet dataset with VGG-19 (with batch normalization).

Firstly, our defense requires that the attacked DNNs overfit their poisoned samples. This assumption
or potential limitation is also revealed by our theoretical analysis in Section 3. In other words, if the
attack success rate of a malicious model is relatively low, the detection performance of our SCALE-
UP defense may degrade sharply. Secondly, we found that our SCALE-UP detection may fail when
defending against attacks in some cases of simple tasks (e.g., MNIST and GTSRB). We speculate
that it is mostly because attacked DNNs also overfit to benign samples due to the lack of diversity
and simplicity of the dataset, making them indistinguishable from some poisoned samples when
analyzing the scaled prediction consistency. We will further explore the latent mechanisms of these
limitations and alleviate them in our future work.

Besides, regarding another future direction of our methods, we intend to generalize and adopt them
to more settings and applications, such as continual learning (Wang et al., 2022b), non-transferable
learning (Wang et al., 2022a), federate learning (Dong et al., 2022), audio signal processing (Zhai
et al., 2021; Guo et al., 2022a;b), and visual object tracking (Li et al., 2022b). We will also evaluate
our methods under other DNN structures (e.g., ViT (Tu et al., 2022) and GCN (Zhao et al., 2020b)).
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Figure 15: The ROC curves of defenses under each attack on CIFAR-10.

23



Published as a conference paper at ICLR 2023

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

STRIP (soft-label)
ShrinkPad
Frequency
DeepSweep
SCALE-UP (data-free)
SCALE-UP (data-limited)

(a) BadNets

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

STRIP (soft-label)
ShrinkPad
Frequency
DeepSweep
SCALE-UP (data-free)
SCALE-UP (data-limited)

(b) TUAP

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

STRIP (soft-label)
ShrinkPad
Frequency
DeepSweep
SCALE-UP (data-free)
SCALE-UP (data-limited)

(c) Label-Consistent

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0
Tr

ue
 P

os
iti

ve
 R

at
e

STRIP (soft-label)
ShrinkPad
Frequency
DeepSweep
SCALE-UP (data-free)
SCALE-UP (data-limited)

(d) PhysicalBA

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

STRIP (soft-label)
ShrinkPad
Frequency
DeepSweep
SCALE-UP (data-free)
SCALE-UP (data-limited)

(e) ISSBA

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

STRIP (soft-label)
ShrinkPad
Frequency
DeepSweep
SCALE-UP (data-free)
SCALE-UP (data-limited)

(f) WaNet

Figure 16: The ROC curves of defenses under each attack on Tiny ImageNet.
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