
Under review as submission to TMLR

Meta-Learning Adaptive Loss Functions

Anonymous authors
Paper under double-blind review

Abstract

Loss function learning is a new meta-learning paradigm that aims to automate the essential
task of designing a loss function for a machine learning model. Existing techniques for loss
function learning have shown promising results, often improving a model’s training dynamics
and final inference performance. However, a significant limitation of these techniques is
that the loss functions are meta-learned in an offline fashion, where the meta-objective only
considers the very first few steps of training, which is a significantly shorter time horizon than
the one typically used for training deep neural networks. This causes significant bias towards
loss functions that perform well at the very start of training but perform poorly at the end
of training. To address this issue we propose a new loss function learning technique for
adaptively updating the loss function online after each update to the base model parameters.
The experimental results show that our proposed method consistently outperforms the cross-
entropy loss and offline loss function learning techniques on a diverse range of neural network
architectures and datasets.

1 Introduction

When applying deep neural networks to a given learning task, a significant amount of time is typically
allocated towards performing manual tuning of the hyper-parameters to achieve competitive learning perfor-
mances (Bengio, 2012). Selection of the appropriate hyper-parameters is critical for embedding the relevant
inductive biases into the learning algorithm (Gordon & Desjardins, 1995). The inductive biases control both
the set of searchable models and the learning rules used to find the final model parameters. Therefore, the
field of meta-learning (Schmidhuber, 1987; Vanschoren, 2018; Peng, 2020; Hospedales et al., 2022), as well
as the closely related field of hyper-parameter optimization (Bergstra et al., 2011; Feurer & Hutter, 2019),
aim to automate the design and selection of a suitable set of inductive biases (or a subset of them) and have
been long-standing areas of interest to the machine learning community.

One component that has only very recently been receiving attention in the meta-learning context is the loss
function. The loss function (Wang et al., 2022) is one of the most central components of any gradient-based
supervised learning system, as it determines the base learning algorithm’s learning path and the selection
of the final model (Reed & MarksII, 1999). Furthermore, in deep learning, neural networks are typically
trained through the backpropagation of gradients that originate from the loss function (Rumelhart et al.,
1986; Goodfellow et al., 2016). Given this importance, a new and emerging subfield of meta-learning referred
to as Loss Function Learning (Gonzalez & Miikkulainen, 2020b; Bechtle et al., 2021; Raymond et al., 2023;
Collet et al., 2022) aims to attempt the difficult task of inferring a highly performant loss function directly
from the given data.

Loss function learning aims to meta-learn a task-specific loss function, which yields improved performance
capabilities when utilized in training compared to handcrafted loss functions. Initial approaches to loss
function learning have shown promise at enhancing various aspects of deep neural network training, such
as improving the convergence and sample efficiency (Gonzalez & Miikkulainen, 2020b; Bechtle et al., 2021),
as well as the generalization (Gonzalez & Miikkulainen, 2021; Liu et al., 2020; Li et al., 2022; Leng et al.,
2022), and model robustness (Gao et al., 2021; 2022). However, one prevailing limitation of the existing
approaches to loss function learning is that they have thus far exclusively focused on learning a loss function
in the offline meta-learning settings.

1



Under review as submission to TMLR

0.0 0.2 0.4 0.6 0.8 1.0
Predicted Probability (y = 1)

60

40

20

0

20

40

60

Le
ar

ne
d 

Lo
ss

0.0 0.2 0.4 0.6 0.8 1.0
Predicted Probability (y = 0)

20

40

60

80

100

120

Le
ar

ne
d 

Lo
ss

0.0 0.2 0.4 0.6 0.8 1.0
Predicted Probability (y = 1)

20

0

20

40

60

Le
ar

ne
d 

Lo
ss

0.0 0.2 0.4 0.6 0.8 1.0
Predicted Probability (y = 0)

100

120

140

160

180

200

220

Le
ar

ne
d 

Lo
ss

1000080006000400020000

Figure 1: Example adaptive meta-learned loss functions generated by AdaLFL on the CIFAR-10 dataset,
where each row represents a classification loss function, and the color represents the current gradient step.

In offline loss function learning, training is prototypically partitioned into two phases. In the first phase, the
base loss function is meta-learned via iteratively updating the loss function by performing one or a few base
training steps to approximate the performance. Second, the base model is trained using the learned loss
function, which is now fixed and is used in place of the conventional handcrafted loss function. Unfortunately,
this methodology is prone to a severe short-horizon bias (Wu et al., 2018) towards loss functions which are
performant in the early stages of training but often have poor performance in the later stages.

To address the limitation of offline loss function learning, we propose a new technique for online loss function
learning called Adaptive Loss Function Learning (AdaLFL). In the proposed technique, the learned loss
function is represented as a small feed-forward neural network trained simultaneously with the base learning
model. Unlike prior methods, AdaLFL can adaptively transform both the shape and scale of the loss function
throughout the learning process to adapt to what is required at each stage of the learning process, as shown
in Figure 1. In offline loss function learning, the central goal is to improve the performance of a model by
specializing the loss function to a small set of related tasks. Online loss function learning naturally extends
this general philosophy, specializing the loss function to each individual gradient step on a single task.

1.1 Contributions

• We introduce a method for efficiently learning general-purpose adaptive loss functions using online meta-
learning, where the loss function is updated after each base model update via a one-step unrolled differ-
entiation algorithm.

• We identify and address shortcomings in the design of neural network-based loss function parameteriza-
tions, which previously caused learned loss functions to be biased toward overly flat shapes resulting in
poor training dynamics.

• Empirically we show that models trained with our method exhibit faster convergence and improved
inference performance compared to those trained with handcrafted or offline-learned loss functions.

• Finally, we analyze the learned loss functions and uncover key insights, such as implicit meta-learning,
which reveals why meta-learned loss functions consistently outperform traditional handcrafted losses.

2



Under review as submission to TMLR

2 Online Loss Function Learning

In this work, we aim to automate the design and selection of the loss function and improve upon the
performance of supervised machine learning systems. This is achieved via meta-learning an adaptive loss
function that transforms both its shape and scale throughout the learning process. To achieve this, we
propose Adaptive Loss Function Learning (AdaLFL), an efficient task and model-agnostic approach for
online adaptation of the base loss function.

2.1 Problem Setup

In a prototypical supervised learning setup, we are given a set of N independently and identically distributed
(i.i.d.) examples of form D = {(x1, y1), . . . , (xN , yN )}, where xi ∈ X is the ith instance’s feature vector and
yi ∈ Y is its corresponding class label. We want to learn a mapping between X and Y using some base
learning model, e.g., a classifier or regressor, fθ : X → Y, where θ is the base model parameters. In this
paper, similar to others (Finn et al., 2017; Bechtle et al., 2021), we constrain the selection of the base models
to those amenable to a stochastic gradient descent (SGD) style training procedures such that optimization
of model parameters θ occurs via optimizing some task-specific loss function LT as follows:

θt+1 = θt − α∇θtLT (y, fθt(x)) (1)

where LT is a handcrafted loss function, typically the cross entropy between the predicted label and the
ground truth label in classification or the squared error in regression. The principal goal of AdaLFL is
to replace this conventional handcrafted loss function LT with a meta-learned adaptive loss function Mϕ,
where the meta-parameters ϕ are learned simultaneously with the base parameters θ, allowing for online
adaptation of the loss function. We formulate the task of learning ϕ and θ as a non-stationary bilevel
optimization problem, where t is the current time step

ϕt+1 = arg min
ϕ

LT (y, fθt+1 (x))

s.t. θt+1(ϕt) = arg min
θ

Mϕt (y, fθt (x)).
(2)

The outer optimization aims to meta-learn a performant loss function Mϕ that minimizes the error on the
given task. The inner optimization directly minimizes the learned loss value produced by Mϕ to learn the
base model parameters θ.

2.2 Loss Function Representation

In AdaLFL, the choice of loss function parameterization is a small feedforward neural network, which is
chosen due to its high expressiveness and design flexibility. Our meta-learned loss function parameterization
inspired by (Bechtle et al., 2021; Psaros et al., 2022) is a small feedforward neural network denoted by ℓϕ

with two hidden layers and 40 hidden units each, which is applied output-wise (making it invariant to the
number of outputs).

Mϕ(y, fθ(x)) = 1
C

∑C
i=0 ℓϕ(yi, fθ(x)i) (3)

Crucially, key design decisions are made regarding the activation functions used in ℓϕ to enforce desirable
behavior. In (Bechtle et al., 2021), ReLU activations are used in the hidden layers, and the smooth Softplus
activation is used in the output layer to constrain the loss to be non-negative, i.e., ℓϕ : R2 → R+

0 . Un-
fortunately, this network architecture is prone to unintentionally encouraging overly flat loss functions, see
Appendix 2.1. Generally, flat regions in the loss function are very detrimental to training as uniform loss
is given to non-uniform errors. Removal of the Softplus activation in the output can partially resolve this
flatness issue; however, without it, the learned loss functions would violate the typical constraint that a loss
function should be at least C1, i.e., continuous in the zeroth and first derivatives.

Alternative smooth activations, such as Sigmoid, TanH, ELU, etc., can be used instead; however, due to
their range-bounded limits, they are also prone to encouraging loss functions that have large flat regions
when their activations saturate. Therefore, to inhibit this behavior, the unbounded leaky ReLU (Maas et al.,

3



Under review as submission to TMLR

Algorithm 1 Loss Function Initialization (Offline)

Input: LT ← Task loss function (meta-objective)

1: Mϕ0 ← Initialize parameters of meta learner
2: for t ∈ {0, ...,Sinit} do
3: θ0 ← Reset parameters of base learner
4: for i ∈ {0, ...,Sinner} do
5: X, y ← Sample from Dtrain

6: Mlearned ←Mϕt(y, fθi(X))
7: θi+1 ← θi − α∇θi

Mlearned

8: end for
9: X, y ← Sample from Dvalid

10: Ltask ← LT (y, fθi+1(X))
11: ϕt+1 ← ϕt − η∇ϕtLtask

12: end for

Algorithm 2 Loss Function Adaptation (Online)

Input: Mϕ ← Learned loss function (base-objective)
Input: LT ← Task loss function (meta-objective)

1: θ0 ← Initialize parameters of base learner
2: for t ∈ {0, ...,Strain} do
3: X, y ← Sample from Dtrain

4: Mlearned ←Mϕt
(y, fθt

(X))
5: θt+1 ← θt − α∇θiMlearned

6: X, y ← Sample from Dvalid

7: Ltask ← LT (y, fθt+1(X))
8: ϕt+1 ← ϕt − η∇ϕt

Ltask

9: end for

2013) is combined with the smooth ReLU, i.e., SoftPlus (Dugas et al., 2000), as follows:

φhidden(x) = 1
β log(eβx + 1) · (1− γ) + γx (4)

This smooth leaky ReLU activation function with leak parameter γ and smoothness parameter β has desirable
characteristics for representing a loss function. It is smooth and has linear asymptotic behavior necessary
for tasks such as regression, where extrapolation of the learned loss function can often occur. Furthermore,
as its output is not bounded when γ > 0, it does not encourage flatness in the learned loss function. See
Appendix 2.2 and 4.3 for more details.

2.3 Loss Function Initialization

One challenge for online loss function learning is achieving a stable and performant initial set of parameters
for the learned loss function. If ϕ is initialized poorly, too much time is spent on fixing ϕ in the early
stages of the learning process, resulting in poor base convergence, or in the worst case, fθ to diverge. To
address this, offline loss function learning using Meta-learning via Learned Loss (ML3) (Bechtle et al., 2021)
is utilized to fine-tune the initial loss function to the base model prior to online loss function learning. The
initialization process is summarized in Algorithm 1, where Sinit = 2500. In AdaLFL’s initialization process
one step on θ is taken for each step in ϕ, i.e., inner gradient steps Sinner = 1. However, if Sinner < 1, implicit
differentiation (Lorraine et al., 2020; Gao et al., 2022) can instead be utilized to reduce the initialization
process’s memory and computational overhead.

4



Under review as submission to TMLR

Meta Update

Base Update

Inner Optimization 

Outer Optimization 

Figure 2: Computational graph of AdaLFL, where θ is updated using Mϕ in the inner loop (Base Update).
The optimization path is tracked in the computational graph and then used to update ϕ based on the
meta-objective in the outer loop (Meta Update). The dashed lines show the gradients for θ and ϕ with

respect to their given objectives.

2.4 Online Meta-Optimization

To optimize ϕ, unrolled differentiation is utilized in the outer loop to update the learned loss function after
each update to the base model parameters θ in the inner loop, which occurs via vanilla backpropagation. This
is conceptually the simplest way to optimize ϕ as all the intermediate iterates generated by the optimizer
in the inner loop can be stored and then backpropagate through in the outer loop (Maclaurin et al., 2015).
The full iterative learning process is summarized in Algorithm 2 and proceeds as follows: perform a forward
pass fθt(x) to obtain an initial set of predictions. The learned loss function Mϕ is then used to produce a
base loss value

Mlearned =Mϕt
(y, fθt

(x)). (5)

UsingMlearned, the current weights θt are updated by taking a step in the opposite direction of the gradient
of the loss with respect to θt, where α is the base learning rate.

θt+1 = θt − α∇θt
Mϕt

(y, fθt
(x))

= θt − α∇θt
EX,y

[
Mϕt

(y, fθt
(x))

] (6)

which can be further decomposed via the chain rule as shown in Equation (7). Importantly, all the in-
termediate iterates generated by the (base) optimizer at the tth time-step when updating θ are stored in
memory.

θt+1 = θt − α∇fMϕt(y, fθt(x))∇θtfθt(x) (7)

ϕt can now be updated to ϕt+1 based on the learning progression made by θ. Using θt+1 as a function of
ϕt, compute a forward pass using the updated base weights fθt+1(x) to obtain a new set of predictions. The
instances can either be sampled from the training set or a held-out validation set. The new set of predictions
is used to compute the task loss LT to optimize ϕt through θt+1

Ltask = LT (y, fθt+1(x)) (8)

where LT is selected based on the respective application. For example, the squared error loss for the task
of regression or the cross-entropy loss for classification. The task loss is a crucial component for embedding
the end goal task into the learned loss function. Optimization of the current meta-loss network loss weights
ϕt now occurs by taking the gradient of LT , where η is the meta learning rate.

ϕt+1 = ϕt − η∇ϕt
LT (y, fθt+1(x))

= ϕt − η∇ϕt
EX,y

[
LT (y, fθt+1(x))

] (9)

where the gradient computation is decomposed by applying the chain rule as shown in Equation (11) where
the gradient with respect to the meta-loss network weights ϕt requires the updated model parameters θt+1

5



Under review as submission to TMLR

from Equation (6).

ϕt+1 = ϕt − η∇f LT ∇θt+1 fθt+1 ∇ϕt θt+1(ϕt) (10)
= ϕt − η∇f LT ∇θt+1 fθt+1 ∇ϕt [θt − α∇θt Mϕt ] (11)

This process is repeated for a fixed number of gradient steps Strain, which is identical to what would typically
be used for training fθ. An overview and summary of the full associated data flow between the inner and
outer optimization of θ and ϕ, respectively, is given in Figure 2.

3 Related Work

The method that we propose in this paper addresses the general problem of meta-learning a (base) loss func-
tion, i.e. loss function learning. Existing loss function learning methods can be categorized along two key
axes, loss function representation, and meta-optimization. Frequently used representations in loss function
learning include parametric (Gonzalez & Miikkulainen, 2020b; Raymond et al., 2023) and nonparametric
(Liu et al., 2020; Li et al., 2022) genetic programming expression trees. In addition to this, alternative
representations such as truncated Taylor polynomials (Gonzalez & Miikkulainen, 2021; Gao et al., 2021;
2022) and small feed-forward neural networks (Bechtle et al., 2021) has also been recently explored. Re-
garding meta-optimization, loss function learning methods have heavily utilized computationally expensive
evolution-based methods such as evolutionary algorithms (Koza, 1994) and evolutionary strategies (Hansen
& Ostermeier, 2001). While more recent approaches have made use of gradient-based approaches unrolled
differentiation (Maclaurin et al., 2015), and implicit differentiation (Lorraine et al., 2020).

A common trait among these methods is that, in contrast to AdaLFL, they perform offline loss function
learning, resulting in a severe short-horizon bias towards loss functions which are performant in the early
stages of training but often have sub-optimal performance at the end of training. This short-horizon bias
arises from how the various approaches compute their respective meta-objectives. In offline evolution-based
approaches, the fitness, i.e., meta-objective, is calculated by computing the performance at the end of a
partial training session, e.g., ≤ 1000 gradient steps (Gonzalez & Miikkulainen, 2021; Raymond et al., 2023).
A truncated number of gradient steps are required to be used as evolution-based methods evaluate the
performance of a large number of candidate solutions, typically L loss function over K iterations where
25 ≤ L, K ≤ 100. Therefore, performing full training sessions, which can be hundreds, thousands, or even
millions of gradient steps for each candidate solution, is infeasible.

Regarding the existing gradient-based approaches, offline unrolled optimization requires the whole optimiza-
tion path to be stored in memory; in practice, this significantly restricts the number of inner gradient steps
before computing the meta-objective to only a small number of steps. Methods such as implicit differentia-
tion can obviate these memory issues; however, it would still require a full training session in the inner loop,
which is a prohibitive number of forward passes to perform in tractable time. Furthermore, the dependence
of the model parameters on the meta-parameters increasingly shrinks and eventually vanishes as the number
of steps increases (Rajeswaran et al., 2019).

3.1 Online vs Offline Loss Function Learning

The key algorithmic difference of AdaLFL from prior offline gradient-based methods (Bechtle et al., 2021;
Gao et al., 2022) is that ϕ is updated after each update to θ in lockstep in a single phase as opposed to
learning θ and ϕ in separate phases. This is achieved by not resetting θ after each update to ϕ (Algorithm 1,
line 3), and consequently, ϕ has to adapt to each newly updated timestep such that ϕ = (ϕ0, ϕ1, . . . , ϕStrain

).
In offline loss function learning, ϕ is learned separately at meta-training time and then is fixed for the full
duration of the meta-testing phase where θ is learned and ϕ = (ϕ0). Another crucial difference is that in
online loss function learning, there is an implicit meta-learning of the learning rate schedule and a built in
early stopping mechanism, further discussed in Section 5.4.

6



Under review as submission to TMLR

3.2 Alternative Paradigms

Although online loss function learning has not been explored in the meta-learning context, some existing
research outside the subfield has previously explored the possibility of adaptive loss functions, such as in
(Li et al., 2019) and (Wang et al., 2020). However, we emphasize that these approaches are categorically
different in that they do not learn the loss function from scratch; instead, they interpolate between a small
subset of handcrafted loss functions, updating the loss function after each epoch. Furthermore, in contrast
to loss function learning which is both task and model-agnostic, these techniques are restricted to being
task-specific, e.g., face recognition only. Finally, this class of approaches does not implicitly tune the base
learning rate α, as is the case in loss function learning.

4 Experimental Evaluation

In this section, the experimental setup for evaluating AdaLFL is presented. In summary, experiments
are conducted across seven open-access datasets and multiple well-established network architectures. The
performance of the proposed method is contrasted against the handcrafted cross-entropy loss and AdaLFL’s
offline counterpart ML3 (Bechtle et al., 2021). Further experiments are also provided in Appendix D, where
AdaLFL is contrasted with an equivalent algorithm for meta-learning an adaptive learning rate, as well as
ablations on the loss function representation. The experiments were implemented in PyTorch (Paszke et al.,
2017), and Higher (Grefenstette et al., 2019), and the code can be found at github.com/*redacted*.

4.1 Benchmark Tasks

Following the established literature on loss function learning, the regression datasets Communities and Crime
(Redmond, 2009), Diabetes (Efron et al., 2004), and California Housing (Pace & Barry, 1997) are used as
a simple domain to illustrate the capabilities of the proposed method. Following this classification datasets
MNIST (LeCun et al., 1998), CIFAR-10, CIFAR-100 (Krizhevsky & Hinton, 2009), and SVHN (Netzer et al.,
2011), are employed to assess the performance of AdaLFL to determine whether the results can generalize
to larger, more challenging tasks. The original training-testing partitioning is used for all datasets, with
10% of the training instances allocated for validation. In addition, standard data augmentation techniques
consisting of normalization, random horizontal flips, and cropping are applied to the training data of CIFAR-
10, CIFAR-100, and SVHN during meta and base training.

4.2 Benchmark Models

A diverse set of well-established benchmark architectures are utilized to evaluate the performance of AdaLFL.
For Communities and Crime, Diabetes, and California Housing a two hidden layer multi-layer perceptron
(MLP) taken from (Baydin et al., 2018) is used. For MNIST, logistic regression (McCullagh et al., 1989),
the previously mentioned MLP and the LeNet-5 (LeCun et al., 1998) architecture is used. Following this
experiments are conducted on CIFAR-10, VGG-16 (Simonyan & Zisserman, 2015), AllCNN-C (Springenberg
et al., 2014), ResNet-18 (He et al., 2016), and SqueezeNet (Iandola et al., 2016) are used. For the remaining
datasets, CIFAR-100 and SVHN, WideResNet 28-10 and WideResNet 16-8 (Zagoruyko & Komodakis, 2016)
are employed.

5 Results and Analysis

The results in Figure 3 show the average training learning curves of AdaLFL compared with the baseline
and ML3 across 10 executions of each method on each dataset + model pair. The results show that AdaLFL
makes clear and consistent gains in convergence speed compared to the baseline and offline loss function
learning method ML3, except on the regression datasets, which is due to regularization behavior as shown in
Appendix 4.4, and on CIFAR-100 where there was difficulty in achieving a stable initialization. Furthermore,
the errors obtained by AdaLFL at the end of training are typically better than both of the compared methods,
suggesting that performance gains are being made in addition to enhanced convergence and training speeds.

7

github.com/*redacted*


Under review as submission to TMLR

0 2000 4000 6000 8000 10000

0.000

0.025

0.050

0.075

0.100

M
ea

n 
Sq

ua
re

d 
Er

ro
r

(a) Crime + MLP

0 2000 4000 6000 8000 10000

0.000

0.025

0.050

0.075

0.100

M
ea

n 
Sq

ua
re

d 
Er

ro
r

(b) Diabetes + MLP

0 2000 4000 6000 8000 10000

0.000

0.025

0.050

0.075

0.100

M
ea

n 
Sq

ua
re

d 
Er

ro
r

(c) California + MLP

0 5000 10000 15000 20000 25000
0.0

0.1

0.2

0.3

0.4

Er
ro

r R
at

e

(d) MNIST + Logistic

0 5000 10000 15000 20000 25000
0.00

0.05

0.10

0.15

0.20

Er
ro

r R
at

e

(e) MNIST + MLP

0 5000 10000 15000 20000 25000
0.00

0.05

0.10

0.15

0.20

Er
ro

r R
at

e

(f) MNIST + LeNet-5

0 20000 40000 60000 80000 100000
0.00

0.05

0.10

0.15

0.20

Er
ro

r R
at

e

(g) CIFAR-10 + VGG-16

0 20000 40000 60000 80000 100000
0.00

0.05

0.10

0.15

0.20

Er
ro

r R
at

e

(h) CIFAR-10 + AllCNN-C

0 20000 40000 60000 80000 100000
0.00

0.05

0.10

0.15

0.20

Er
ro

r R
at

e

(i) CIFAR-10 + ResNet-18

0 20000 40000 60000 80000 100000
0.00

0.05

0.10

0.15

0.20

Er
ro

r R
at

e

(j) CIFAR-10 + SqueezeNet

0 25000 50000 75000 100000 125000 150000
0.00

0.05

0.10

0.15

0.20

Er
ro

r R
at

e

(k) CIFAR-100 + WRN 28-10

0 25000 50000 75000 100000 125000 150000
0.00

0.05

0.10

0.15

0.20

Er
ro

r R
at

e

(l) SVHN + WRN 16-8

Baseline ML3 (Offline) AdaLFL (Online)

Figure 3: Mean learning curves across 10 independent executions of each algorithm on each task + model
pair, showing the training mean squared error or error rate (y-axis) against gradient steps (x-axis). Best

viewed in color.

Another key observation is that AdaLFL improves upon the performance of the baseline on the more challeng-
ing tasks of CIFAR-10, CIFAR-100, and SVHN, where offline loss functions learning method ML3 consistently
performs poorly. Improved performance on these datasets is achieved via AdaLFL adaptively updating the
learned loss function throughout the learning process to the changes in the training dynamics. This is in
contrast to ML3, where the loss function remains static, resulting in poor performance on tasks where the
training dynamics at the beginning of training vary significantly from those at the end of training.

5.1 Final Inference Testing Performance

The final inference testing results reporting the average mean squared error or error rate across 10 inde-
pendent executions of each method are shown in Table 1. The results show that AdaLFL’s meta-learned
loss functions produce superior inference performance when used in training compared to the baseline on
all the tested problems. A further observation is that the gains achieved by AdaLFL are consistent and
stable. Notably, in most cases, lower variability than the baseline is observed, as shown by the relatively
small standard deviation in error rate across the independent runs.

8



Under review as submission to TMLR

Table 1: Results reporting the mean ± standard deviation of final inference testing
mean squared error or error rate across 10 independent executions of each algorithm

on each task + model pair (using no base learning rate scheduler).

Task Model Baseline ML3 (Offline) AdaLFL (Online)

Crime MLP 1 0.0274±0.0017 0.0270±0.0025 0.0263±0.0023

Diabetes MLP 1 0.0432±0.0013 0.0430±0.0012 0.0420±0.0014

California MLP 1 0.0157±0.0001 0.0276±0.0058 0.0151±0.0007

MNIST Logistic 2 0.0766±0.0009 0.0710±0.0010 0.0697±0.0010
MLP 1 0.0203±0.0006 0.0185±0.0004 0.0184±0.0006
LeNet-5 3 0.0125±0.0007 0.0094±0.0005 0.0091±0.0004

CIFAR-10 VGG-16 4 0.1036±0.0049 0.1024±0.0055 0.0903±0.0032
AllCNN-C 5 0.1030±0.0062 0.1015±0.0055 0.0835±0.0050
ResNet-18 6 0.0871±0.0057 0.0883±0.0041 0.0788±0.0035
SqueezeNet 7 0.1226±0.0080 0.1162±0.0052 0.1083±0.0049

CIFAR-100 WRN 28-10 8 0.3046±0.0087 0.3108±0.0075 0.2668±0.0283

SVHN WRN 16-8 8 0.0512±0.0043 0.0500±0.0034 0.0441±0.0014

Network architecture references: 1 (Baydin et al., 2018) 2 (McCullagh et al., 1989)
3 (LeCun et al., 1998) 4 (Simonyan & Zisserman, 2015) 5 (Springenberg et al., 2014)

6 (He et al., 2016) 7 (Iandola et al., 2016) 8 (Zagoruyko & Komodakis, 2016)

Regarding the regression results, AdaLFL is shown to consistently achieve strong out-of-sample performance,
compared to the baseline and ML3. As for the classification tasks, on MNIST AdaLFL obtains improved
performance compared to the baseline, and similar performance to ML3, suggesting that the training dy-
namics at the beginning of training are similar to those at the end; hence the modest difference in results.
While on the more challenging tasks of CIFAR-10, CIFAR-100, and SVHN, AdaLFL produced significantly
better results than ML3, demonstrating the scalability of the proposed loss function learning approach.

The results attained by AdaLFL are promising given that the models tested were designed and optimized
around the baseline loss functions. Larger performance gains may be attained using models designed specifi-
cally around meta-learned loss function (Kim et al., 2018; Elsken et al., 2020; Ding et al., 2022). Thus future
work will explore learning the loss function in tandem with the network architecture.

5.2 Inner Gradient Steps

Table 2: Results reporting the mean ± standard
deviation of testing error rates when using an

increasing number of inner gradient steps with ML3.

Method CIFAR-10 + AllCNN-C

ML3 (Sinner = 1) 0.1015±0.0055
ML3 (Sinner = 5) 0.0978±0.0052
ML3 (Sinner = 10) 0.0985±0.0050
ML3 (Sinner = 15) 0.0989±0.0049
ML3 (Sinner = 20) 0.0974±0.0061

AdaLFL (Online) 0.0835±0.0050

In ML3, (Bechtle et al., 2021) suggested taking only
one inner step, i.e., setting Sinner = 1 in Algorithm
1. A reasonable question to ask is whether increas-
ing the number of inner steps to extend the hori-
zon of the meta-objective past the first step will re-
duce the disparity in performance between ML3 and
AdaLFL. To answer this question, experiments are
performed on CIFAR-10 AllCNN-C with ML3 set-
ting Sinner = {1, 5, 10, 15, 20}. The results reported
in Table 2 show that increasing the number of in-
ner steps in ML3 up to the limit of what is feasible
in memory on a consumer GPU does not resolve
the short horizon bias present in offline loss func-
tion learning. Furthermore, the results show that
increasing the number of inner steps only results in

9



Under review as submission to TMLR

0.0 0.2 0.4 0.6 0.8 1.0
Predicted Probability (y = 1)

15.0

12.5

10.0

7.5

5.0

2.5

0.0
Le

ar
ne

d 
Lo

ss

0.0 0.2 0.4 0.6 0.8 1.0
Predicted Probability (y = 0)

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

Le
ar

ne
d 

Lo
ss

0.0 0.2 0.4 0.6 0.8 1.0
Predicted Probability (y = 1)

10

20

30

40

50

60

Le
ar

ne
d 

Lo
ss

0.0 0.2 0.4 0.6 0.8 1.0
Predicted Probability (y = 0)

80

60

40

20

0

20

Le
ar

ne
d 

Lo
ss

0 20000 40000 60000 80000 100000

Figure 4: Loss functions generated by AdaLFL on the CIFAR-10 dataset, where each row represents
a loss function and the color represents the current gradient step.

marginal improvements in the performance over Sinner = 1. Hence, offline learning methods that seek to
obviate the memory issues of unrolled differentiation to allow for an increased number of inner steps, such
as (Gao et al., 2022), which uses implicit differentiation, are still prone to a kind of short-horizon bias.

5.3 Visualizing Learned Loss Functions

To better understand why the meta-learned loss functions produced by AdaLFL are so performant, two of the
learned loss functions are highlighted in Figure 4, where the learned loss function is plotted at equispaced
intervals throughout the training. See Appendix 5 for further examples of the diverse and creative loss
function meta-learned by AdaLFL.

Analyzing the learned loss functions, it can be observed that the loss functions change significantly in their
shape throughout the learning process. In both cases, the learned loss functions attributed strong penalties
for severe misclassification at the start of the learning process, and then gradually pivoted to a more moderate
or minor penalty as learning progressed. This behavior enables fast and efficient learning early on and reduces
the sensitivity of the base model to outliers in the later stages of the learning process.

5.4 Implicit Tuning of Learning Rate Schedule

In offline loss function learning, it is known from (Gonzalez & Miikkulainen, 2021; Raymond et al., 2023) that
there is implicit initial learning rate tuning of α when meta-learning a loss function since ∃α∃ϕ : θ−α∇θLT ≈
θ−∇θMϕ. Consequently, an emergent behavior, unique to online loss function learning, is that the adaptive
loss function generated by AdaLFL implicitly embodies multiple different learning rates throughout the
learning process hence often causing a fine-tuning of the fixed learning rate or of a predetermined learning
rate schedule. Analyzing the learned loss functions in Figure 4, it can be observed that the scale of the
learned loss function changes, confirming that implicit learning rate scheduling is occurring over time. In
Appendix 4.1 additional experiments are given comparing the performance of AdaLFL to a method for
meta-learning the base learning rate.

10



Under review as submission to TMLR

5.5 Implicit Early Stopping Regularization

A unique property observed in the loss functions generated by AdaLFL is that often once base convergence is
achieved the learned loss function will intentionally start to flatten or take on a parabolic form, see Figures 11
and 16 in the Appendix. This is implicitly a type of early stopping, also observed in related paradigms such
as in hypergradient descent (Baydin et al., 2018), which meta-learns base learning rates. In hypergradient
descent the learned learning rate has been observed to oscillate around 0 near the end of training, at times
becoming negative, essentially terminating training. Implicit early stopping is beneficial as it is known to
have a regularizing effect on model training (Yao et al., 2007); however, if not performed carefully it can
also be detrimental to training due to terminating training prematurely. Therefore, in future work, we aim
to further investigate regulating this behavior, as a potential avenue for further improving performance.

5.6 Implicit Label Smoothing Regularization

Another novel observation we make is that in many of the classification loss functions, such as those visualized
in Figure 4 and Figures 11–17 in the appendix, the target loss initially decreases as the model becomes more
confident in its predictions. However, somewhat counterintuitively, as the predicted probability approaches
1 (i.e., the model becomes very confident), the loss begins to increase. This behavior has been previously
observed and theoretically studied in works such as (Gonzalez & Miikkulainen, 2020a; Raymond et al., 2023;
Raymond, 2024), where it was shown to resemble a form of label smoothing regularization. In such cases,
the loss function penalizes overconfident predictions, thereby encouraging better generalization. Importantly,
this is the first time this phenomenon has been observed in neural network parameterizations of the loss
functions. Moreover, because AdaLFL learns the loss function adaptively, unlike prior methods that learn
static loss functions, it implicitly meta-learns an adaptive form of label smoothing regularization which is
dynamically adjusted throughout the learning process.

6 Conclusion

In this work, the first fully online approach to loss function learning has been proposed. The proposed
technique, Adaptive Loss Function Learning (AdaLFL), infers the base loss function directly from the data
and adaptively trains it with the base model parameters simultaneously using unrolled differentiation. The
results showed that models trained with our method have enhanced convergence capabilities and inference
performance compared with the de facto standard mean squared error and cross-entropy loss, and offline loss
function learning method ML3. Further analysis of the learned loss functions identified common patterns in
the shape of the learned loss function, as well as revealed unique emergent behavior present only in adaptively
learned loss functions. Namely, implicit tuning of the learning rate schedule, early stopping regularization,
and an adaptive form of label smoothing regulization. While this work has solely set focus on meta-learning
the loss function in isolation to better understand and analyze its properties, we believe that further benefits
can be realized upon being combined with existing optimization-based meta-learning techniques.

References
Marcin Andrychowicz, Misha Denil, Sergio Gomez, Matthew W Hoffman, David Pfau, Tom Schaul, Brendan

Shillingford, and Nando De Freitas. Learning to Learn by Gradient Descent by Gradient Descent. In
Advances in Neural Information Processing Systems (NeurIPS), 2016.

Antreas Antoniou, Harrison Edwards, and Amos Storkey. How to Train Your MAML. International Con-
ference on Learning Representations (ICLR), 2019.

Sungyong Baik, Myungsub Choi, Janghoon Choi, Heewon Kim, and Kyoung Mu Lee. Meta-Learning with
Adaptive Hyperparameters. Advances in Neural Information Processing Systems (NeurIPS), 2020.

Sungyong Baik, Janghoon Choi, Heewon Kim, Dohee Cho, Jaesik Min, and Kyoung Mu Lee. Meta-Learning
with Task-Adaptive Loss Function for Few-Shot Learning. In IEEE/CVF International Conference on
Computer Vision (ICCV), 2021.

11



Under review as submission to TMLR

Jonathan T Barron. A General and Adaptive Robust Loss Function. In IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), 2019.

Atılım Güneş Baydin, Robert Cornish, David Martínez Rubio, Mark Schmidt, and Frank Wood. Online
Learning Rate Adaptation with Hypergradient Descent. In International Conference on Learning Repre-
sentations (ICLR), 2018.

Sarah Bechtle, Artem Molchanov, Yevgen Chebotar, Edward Grefenstette, Ludovic Righetti, Gaurav
Sukhatme, and Franziska Meier. Meta-Learning via Learned Loss. In International Conference on Pattern
Recognition (ICPR). IEEE, 2021.

Yoshua Bengio. Practical Recommendations for Gradient-Based Training of Deep Architectures. In Neural
Networks: Tricks of the Trade. Springer, 2012.

James Bergstra, Rémi Bardenet, Yoshua Bengio, and Balázs Kégl. Algorithms for Hyper-parameter Opti-
mization. Advances in Neural Information Processing Systems (NeurIPS), 2011.

Alan Collet, Antonio Bazco-Nogueras, Albert Banchs, and Marco Fiore. Loss Meta-Learning for Forecasting,
2022.

Yadong Ding, Yu Wu, Chengyue Huang, Siliang Tang, Yi Yang, Longhui Wei, Yueting Zhuang, and Qi Tian.
Learning to Learn by Jointly Optimizing Neural Architecture and Weights. In IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), 2022.

Charles Dugas, Yoshua Bengio, François Bélisle, Claude Nadeau, and René Garcia. Incorporating Second-
Order Functional Knowledge for Better Option Pricing. Advances in Neural Information Processing Sys-
tems (NeurIPS), 2000.

Bradley Efron, Trevor Hastie, Iain Johnstone, and Robert Tibshirani. Least Angle Regression. 2004.

Thomas Elsken, Benedikt Staffler, Jan Hendrik Metzen, and Frank Hutter. Meta-Learning of Neural Archi-
tectures for Few-Shot Learning. In IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), 2020.

Matthias Feurer and Frank Hutter. Hyperparameter Optimization. In Automated Machine Learning.
Springer, 2019.

Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-Agnostic Meta-Learning for Fast Adaptation of
Deep Networks. In International Conference on Machine Learning (ICML), 2017.

Sebastian Flennerhag, Andrei A Rusu, Razvan Pascanu, Francesco Visin, Hujun Yin, and Raia Hadsell.
Meta-Learning with Warped Gradient Descent. International Conference on Learning Representations
(ICLR), 2020.

Boyan Gao, Henry Gouk, and Timothy M Hospedales. Searching for Robustness: Loss Learning for Noisy
Classification Tasks. In IEEE/CVF International Conference on Computer Vision (ICCV), 2021.

Boyan Gao, Henry Gouk, Yongxin Yang, and Timothy Hospedales. Loss Function Learning for Domain
Generalization by Implicit Gradient. In International Conference on Machine Learning (ICML), 2022.

Santiago Gonzalez and Risto Miikkulainen. Effective Regularization through Loss Function Meta-Learning.
arXiv preprint arXiv:2010.00788, 2020a.

Santiago Gonzalez and Risto Miikkulainen. Improved Training Speed, Accuracy, and Data Utilization
Through Loss Function Optimization. In IEEE Congress on Evolutionary Computation (CEC), 2020b.

Santiago Gonzalez and Risto Miikkulainen. Optimizing Loss Functions through Multi-Variate Taylor Poly-
nomial Parameterization. In ACM Genetic and Evolutionary Computation Conference (GECCO), 2021.

Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT press, 2016.

12



Under review as submission to TMLR

Diana F Gordon and Marie Desjardins. Evaluation and Selection of Biases in Machine Learning. Machine
Learning, 1995.

Edward Grefenstette, Brandon Amos, Denis Yarats, Phu Mon Htut, Artem Molchanov, Franziska Meier,
Douwe Kiela, Kyunghyun Cho, and Soumith Chintala. Generalized Inner Loop Meta-Learning. arXiv
preprint arXiv:1910.01727, 2019.

Nikolaus Hansen and Andreas Ostermeier. Completely Derandomized Self-Adaptation in Evolution Strate-
gies. Evolutionary Computation, 2001.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep Residual Learning for Image Recognition.
In IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2016.

Timothy Hospedales, Antreas Antoniou, Paul Micaelli, and Amos Storkey. Meta-Learning in Neural Net-
works: A Survey. IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI), 2022.

Forrest N Iandola, Song Han, Matthew W Moskewicz, Khalid Ashraf, William J Dally, and Kurt Keutzer.
SqueezeNet: AlexNet-Level Accuracy with 50x Fewer Parameters and ≤ 0.5MB Model Size. arXiv preprint
arXiv:1602.07360, 2016.

Jaehong Kim, Sangyeul Lee, Sungwan Kim, Moonsu Cha, Jung Kwon Lee, Youngduck Choi, Yongseok Choi,
Dong-Yeon Cho, and Jiwon Kim. Auto-Meta: Automated Gradient-Based Meta Learner Search. arXiv
preprint arXiv:1806.06927, 2018.

John R Koza. Genetic Programming II. MIT press Cambridge, 1994.

Alex Krizhevsky and Geoffrey Hinton. Learning Multiple Layers of Features from Tiny Images. Technical
report, University of Toronto, 2009.

Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-Based Learning Applied to
Document Recognition. Proceedings of the IEEE, 1998.

Zhaoqi Leng, Mingxing Tan, Chenxi Liu, Ekin Dogus Cubuk, Xiaojie Shi, Shuyang Cheng, and Dragomir
Anguelov. PolyLoss: A Polynomial Expansion Perspective of Classification Loss Functions. International
Conference on Learning Representations (ICLR), 2022.

Chuming Li, Xin Yuan, Chen Lin, Minghao Guo, Wei Wu, Junjie Yan, and Wanli Ouyang. AM-LFS: AutoML
for Loss Function Search. In IEEE/CVF International Conference on Computer Vision (ICCV), 2019.

Hao Li, Tianwen Fu, Jifeng Dai, Hongsheng Li, Gao Huang, and Xizhou Zhu. AutoLoss-Zero: Searching Loss
Functions from Scratch for Generic Tasks. In IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), 2022.

Zhenguo Li, Fengwei Zhou, Fei Chen, and Hang Li. Meta-SGD: Learning to Learn Quickly for Few-Shot
Learning. arXiv preprint arXiv:1707.09835, 2017.

Peidong Liu, Gengwei Zhang, Bochao Wang, Hang Xu, Xiaodan Liang, Yong Jiang, and Zhenguo Li. Loss
Function Discovery for Object Detection via Convergence-Simulation Driven Search. In International
Conference on Learning Representations (ICLR), 2020.

Jonathan Lorraine, Paul Vicol, and David Duvenaud. Optimizing Millions of Hyperparameters by Implicit
Differentiation. In International Conference on Artificial Intelligence and Statistics (AISTATS), 2020.

Andrew L Maas, Awni Y Hannun, Andrew Y Ng, et al. Rectifier Nonlinearities Improve Neural Network
Acoustic Models. In International Conference on Machine Learning (ICML), 2013.

Dougal Maclaurin, David Duvenaud, and Ryan Adams. Gradient-Based Hyperparameter Optimization
through Reversible Learning. In International Conference on Machine Learning (ICML), 2015.

Peter McCullagh, John A Nelder, et al. Generalized Linear Models. Routledge, 1989.

13



Under review as submission to TMLR

Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bissacco, Bo Wu, and Andrew Y Ng. Reading Digits in
Natural Images with Unsupervised Feature Learning. Advances in Neural Information Processing Systems
(NeurIPS), 2011.

R Kelley Pace and Ronald Barry. Sparse Spatial Autoregressions. Statistics and Probability Letters, 1997.

Eunbyung Park and Junier B Oliva. Meta-Curvature. Advances in Neural Information Processing Systems
(NeurIPS), 2019.

Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang, Zachary DeVito, Zeming Lin,
Alban Desmaison, Luca Antiga, and Adam Lerer. Automatic Differentiation in Pytorch. 2017.

Huimin Peng. A Comprehensive Overview and Survey of Recent Advances in Meta-Learning. arXiv preprint
arXiv:2004.11149, 2020.

Apostolos F Psaros, Kenji Kawaguchi, and George Em Karniadakis. Meta-Learning PINN Loss Functions.
Journal of Computational Physics, 2022.

Aravind Rajeswaran, Chelsea Finn, Sham M Kakade, and Sergey Levine. Meta-Learning with Implicit
Gradients. Advances in Neural Information Processing Systems (NeurIPS), 2019.

Christian Raymond. Meta-Learning Loss Functions for Deep Neural Networks. arXiv preprint
arXiv:2406.09713, 2024.

Christian Raymond, Qi Chen, Bing Xue, and Mengjie Zhang. Learning Symbolic Model-Agnostic Loss
Functions via Meta-Learning. IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI),
2023.

Michael Redmond. Communities and Crime, 2009.

Russell Reed and Robert J MarksII. Neural Smithing: Supervised Learning in Feedforward Artificial Neural
Networks. Mit Press, 1999.

David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. Learning Representations by Back-
propagating Errors. Nature, 1986.

Jürgen Schmidhuber. Evolutionary Principles in Self-Referential Learning. PhD thesis, Technical University
of Munich, 1987.

Karen Simonyan and Andrew Zisserman. Very Deep Convolutional Networks for Large-Scale Image Recog-
nition. International Conference on Learning Representations (ICLR), 2015.

Jost Tobias Springenberg, Alexey Dosovitskiy, Thomas Brox, and Martin Riedmiller. Striving for Simplicity:
The All Convolutional Net. International Conference on Learning Representations (ICLR), 2014.

Joaquin Vanschoren. Meta-Learning: A Survey. arXiv preprint arXiv:1810.03548, 2018.

Qi Wang, Yue Ma, Kun Zhao, and Yingjie Tian. A Comprehensive Survey of Loss Functions in Machine
Learning. Annals of Data Science, 2022.

Xiaobo Wang, Shuo Wang, Cheng Chi, Shifeng Zhang, and Tao Mei. Loss Function Search for Face Recog-
nition. In International Conference on Machine Learning (ICML), 2020.

Yuhuai Wu, Mengye Ren, Renjie Liao, and Roger Grosse. Understanding Short-Horizon Bias in Stochastic
Meta-Optimization. International Conference on Learning Representations (ICLR), 2018.

Yuan Yao, Lorenzo Rosasco, and Andrea Caponnetto. On Early Stopping in Gradient Descent Learning.
Constructive Approximation, 2007.

Sergey Zagoruyko and Nikos Komodakis. Wide Residual Networks. arXiv preprint arXiv:1605.07146, 2016.

14



Under review as submission to TMLR

A Extended Background

0 20000 40000 60000 80000 100000

Figure 5: Four example loss functions generated by AdaLFL using the network architecture proposed in
(Bechtle et al., 2021), which uses a softplus activation in the output layer, causing flattening behavior

degrading learning performance.

A.1 Online vs Offline Loss Function Learning

The key algorithmic difference of AdaLFL from prior offline gradient-based methods (Bechtle et al., 2021;
Gao et al., 2022) is that ϕ is updated after each update to θ in lockstep in a single phase as opposed to
learning θ and ϕ in separate phases. This is achieved by not resetting θ after each update to ϕ (Algorithm 1,
line 3), and consequently, ϕ has to adapt to each newly updated timestep such that ϕ = (ϕ0, ϕ1, . . . , ϕStrain

).
In offline loss function learning, ϕ is learned separately at meta-training time and then is fixed for the full
duration of the meta-testing phase where θ is learned and ϕ = (ϕ0). Another crucial difference is that in
online loss function learning, there is an implicit tuning of the learning rate schedule and implicit early
stopping regularization, as discussed in Section 5.4 and 5.5, respectively.

A.2 Alternative Paradigms

Although online loss function learning has not been explored in the meta-learning context, some existing
research outside the subfield has previously explored the possibility of adaptive loss functions (Barron, 2019;
Li et al., 2019; Wang et al., 2020). However, we emphasize that these approaches are categorically different
in that they do not learn the loss function from scratch; instead, they interpolate between a small subset
of handcrafted loss functions, updating the loss function after each epoch. Furthermore, in contrast to loss
function learning which is both task and model-agnostic, these techniques are restricted to being task-specific,
e.g., face recognition only. Finally, this class of approaches does not implicitly tune the base learning rate
α, as is the case in loss function learning.

15



Under review as submission to TMLR

B Loss Function Representation

The representation of the learned loss function under consideration in AdaLFL is a simple feed-forward
neural network. We consider the general case of a feed-forward neural network with one input layer, L
hidden layers, and one output layer. A hidden layer refers to a feed-forward mapping between two adjacent
layers hϕ(l) such that

hϕ(l)
(
hϕ(l−1)

)
= φ(l)(ϕ(l)Thϕ(l−1)

)
,∀l = 1, . . . L, (12)

where φ(·)(l) refers to the element-wise activation function of the lth layer, and ϕ(l) is the matrix of inter-
connecting weights between hϕ(l−1) and hϕ(l) . For the input layer, the mapping is defined as hϕ(0)(yi, fθ(x)i),
and for the output layer as hϕ(out)(hϕ(L)). Subsequently, the meta-learned loss function ℓϕ parameterized by
the set of meta-parameters ϕ = {ϕ0, . . . , ϕl, ϕout} can be defined as a composition of feed-forward mappings
such that

ℓϕ
(
yi, fθ(x)i

)
= hϕ(out)

(
hϕ(L)

(
. . .

(
hϕ(0)

(
yi, fθ(x)i

))
. . .

))
(13)

which is applied output-wise across the C output channels of the ground truth and predicted labels, e.g.,
applied to each index of the one-hot encoded class vector in classification, or to each continuous output in
regression. The loss value produced by ℓϕ is then summed across the output channel to reduce the loss
vector into its final scalar form.

Mϕ(y, fθ(x)) = 1
C

C∑
i=0

ℓϕ(yi, fθ(x)i) (14)

B.1 Network Architecture

The learned loss function used in our experiments has L = 2 hidden layers and 40 hidden units in each layer,
inspired by the network configuration utilized in Meta-Learning via Learned Loss (ML3 Supervised) (Bechtle
et al., 2021). We found no consistent improvement in performance across our experiments by increasing
or decreasing the number of hidden layers or nodes. However, it was found that the choice of non-linear
activations used in ML3, was highly prone to encouraging poor-performing loss functions with large flat
regions, as shown in Figure 5.

In ML3, rectified linear units, φReLU (x) = max(0, x), are used in the hidden layers and the smooth SoftPlus
φsoftplus = log(eβx + 1) is used in the output layer to enforce the optional constraint that Mlearned should
be non-negative, i.e., ∀y∀fθ(x)Mϕt(y, fθ(x)) ≥ 0. An adverse side-effect of using the softplus activation in
the output is that all negative inputs to the output layer go to 0, resulting in flat regions in the learned loss.
Furthermore, removal of the output activation does not resolve this issue, as ReLU, as well as other common
activations such as Sigmoid, TanH, and ELU, are also bounded and are prone to causing flatness when their
activations saturate, a common occurrence when taking gradients through long unrolled optimization paths
(Antoniou et al., 2019).

B.2 Smooth Leaky ReLU

To inhibit the flattening behavior of learned loss functions, a range unbounded activation function should be
used. A popular activation function that is unbounded (when the leak parameter γ < 0) is the Leaky ReLU
(Maas et al., 2013)

φleaky(x) = max(γ · x, x) (15)
= max(0, x) · (1− γ) + γx (16)

However, it is typically assumed that a loss function should be at least C1, i.e., continuous in the zeroth and
first derivatives. Fortunately, there is a smooth approximation to the ReLU, commonly referred to as the
SoftPlus activation function (Dugas et al., 2000), where β (typically set to 1) controls the smoothness.

φsmooth(x) = 1
β · log(eβx + 1) (17)

16



Under review as submission to TMLR

4 2 0 2 4
4

2

0

2

4

 = 0.0
 = 0.25
 = 0.5
 = 0.75
 = 1.0

(a)

4 2 0 2 4
0.0

0.2

0.4

0.6

0.8

1.0

 = 0.0
 = 0.25
 = 0.5
 = 0.75
 = 1.0

(b)

4 2 0 2 4
2

0

2

4
 = 1
 = 2
 = 3
 = 4
 = 5

(c)

4 2 0 2 4
0.5

0.6

0.7

0.8

0.9

1.0
 = 1
 = 2
 = 3
 = 4
 = 5

(d)

2 0 2 4
2

0

2

4
ReLU
Leaky ReLU
Smooth ReLU
Smooth Leaky ReLU

(e)

Figure 6: The proposed activation function and its corresponding derivatives when shifting γ are shown in
(a) and (b), respectively. In (c) and (d) the activation function and its derivatives when shifting β are

shown. Finally, in (c), the smooth leaky ReLU is contrasted with the original smooth and leaky variants
ReLU.

The leaky ReLU is combined with the smooth ReLU by taking the term max(0, x) from Equation (16) and
substituting it with the smooth SoftPlus defined in Equation (17) to construct a smooth approximation to
the leaky ReLU

φhidden(x) = 1
β log(eβx + 1) · (1− γ) + γx (18)

17



Under review as submission to TMLR

where the derivative of the smooth leaky ReLU with respect to the input x is

φ′
hidden(x) = d

dx

[
log(eβx + 1) · (1− y)

β
+ γx

]
(19)

=
d

dx [log(eβx + 1)] · (1− y)
β

+ γ (20)

=
d

dx [eβx + 1] · (1− y)
β · eβx + 1 + γ (21)

= eβx · β · (1− y)
β · eβx + 1 + γ (22)

= eβx(1− γ)
eβx + 1 + γ (23)

= eβx(1− γ)
eβx + 1 + γ(eβx + 1)

eβx + 1 (24)

= eβx + γ

eβx + 1 (25)

The smooth leaky ReLU and its corresponding derivatives are shown in Figure 6. Early iterations of AdaLFL
learned γ and β simultaneously with the network weights ϕ, however; empirically, we found that setting
γ = 0.01 and β = 10 gave adequate inference performance across our experiments.

C Experimental Setup

To initialize Mϕ, Sinit = 2500 steps are taken in offline mode with a meta learning rate of η = 1e − 3. In
contrast, in online mode, a meta learning rate of η = 1e−5 is used (note, a high meta learning rate in online
mode can cause a jittering effect in the loss function, which can cause training instability). The popular
Adam optimizer is used in the outer loop for both initialization and online adaptation.

In the inner-loop, all regression models are trained using stochastic gradient descent (SGD) with a base
learning rate of α = 0.001. While the classification models are trained using SGD with a base learning rate
of α = 0.01, and on CIFAR-10, CIFAR-100, and SVHN, Nesterov momentum 0.9, and weight decay 0.0005
are used. The remaining base-model hyper-parameters are selected using their respective values from the
literature in an identical setup to (Gonzalez & Miikkulainen, 2021).

All experimental results reported show the average results across 10 independent executions on different
seeds for the purpose of analysing algorithmic consistency. Importantly, our experiments control for the base
initializations such that all methods get identical initial parameters across the same random seed; thus, any
difference in variance between the methods can be attributed to the respective algorithms and their loss
functions. Furthermore, the choice of hyper-parameters between ML3 and AdaLFL has been standardized
to allow for a fair comparison.

D Further Experiments

D.1 Comparison to Meta-Learned Learning Rate

A notable finding presented in section 5.4 of the main manuscript is the intimate relationship between learning
a loss function and learning a learning rate/learning rate schedule, which is due to learned loss functions not
just learning shape, but also learning scale. Given this relationship, it is interesting to compare and contrast
the performance of AdaLFL to a method for meta-learning a base learning rate online. To construct a fair
comparison, we use an identical learning setup to that used in AdaLFL, which allows us to control for the
hyper-parameter settings. The algorithm, which we further refer to as Meta-LR is presented in Algorithms 3
and 4, uses an offline initialization process to find the best initial base learning rate, following which learning
subsequently progresses to an online adaptation process.

18



Under review as submission to TMLR

Algorithm 3 Learning Rate Initialization (Offline)

Input: LT ← Task loss function (meta-objective)

1: α0 ← Initialize the base learning rate
2: for t ∈ {0, ...,Sinit} do
3: θ0 ← Reset parameters of base learner
4: for i ∈ {0, ...,Sinner} do
5: X, y ← Sample from Dtrain

6: θi+1 ← θi − αt∇θiLT (y, fθi(X))
7: end for
8: X, y ← Sample from Dvalid

9: Ltask ← LT (y, fθi+1(X))
10: αt+1 ← αt − η∇αtLtask

11: end for

Algorithm 4 Learning Rate Adaptation (Online)

Input: α← Learned learning rate
Input: LT ← Task loss function

1: θ0 ← Initialize parameters of base learner
2: for t ∈ {0, ...,Strain} do
3: X, y ← Sample from Dtrain

4: θt+1 ← θt − αi∇θtLT (y, fθt(X))
5: X, y ← Sample from Dvalid

6: Ltask ← LT (y, fθt+1(X))
7: αt+1 ← αt − η∇αt

Ltask

8: end for

The results of our experiments are presented in Table 3, which shows that on most of the tested tasks,
AdaLFL can obtain superior performance compared to Meta-LR. This empirically suggests that meta-learned
loss functions can learn meta-information that cannot be directly captured through only meta-learning a
base learning rate, a result similar to the one found in (Raymond et al., 2023). Interestingly, on a few
of the datasets, namely, CIFAR-10 AllCNN-C, CIFAR-100 WRN28-10, and SVHN WRN16-8 we find that
Meta-LR can achieve improved performance, which we hypothesize is due to the learning rate settings (taken
from prior works (Gonzalez & Miikkulainen, 2021; Raymond et al., 2023)) used in our experiments being
sub-optimal, resulting in explicitly learning the learning rate being more effective. In future work, we plan
to explore meta-learning the loss function and learning rate simultaneously.

D.2 Loss Function Representations

In AdaLFL a two-hidden-layer feedforward neural network is used for the loss function representation, this
was inspired by its use in prior studies (Bechtle et al., 2021; Psaros et al., 2022). We chose this representation
as it has more expressive power than both quadratic and cubic Taylor polynomials, which were used in
(Gonzalez & Miikkulainen, 2021) and (Gao et al., 2021; 2022), respectively. Although the best representation
for learned loss functions is not under investigation; it is important to note that the proposed method of
online meta-optimization discussed in section 2.4 makes no assumptions about the underlying representation
used for the learned loss function. Therefore, alternative representations can be used in AdaLFL.

In Table 4, results comparing and contrasting the performance between different learned loss function rep-
resentations are presented. Specifically, we contrast the performance of AdaLFL which uses a feed-forward
neural network (NN) with smooth leaky ReLU activations against the aforementioned quadratic and cu-
bic Taylor polynomials (TP) representation. The results show that the NN representation has on average
the best performance and consistency in contrast to quadratic and cubic Taylor polynomials, with better

19



Under review as submission to TMLR

Table 3: Performance of meta-learning a base learning rate/learning rate schedule vs meta-learning an
adaptive loss function. Results reporting the mean ± standard deviation of final inference testing mean

squared error or error rate across 10 independent executions of each algorithm on each task + model pair.

Task Model Meta-LR AdaLFL

Crime MLP 0.0274±0.0018 0.0263±0.0023

Diabetes MLP 0.0463±0.0013 0.0420±0.0014

California MLP 0.0154±0.0004 0.0151±0.0007

MNIST Logistic 0.0756±0.0008 0.0697±0.0010
MLP 0.0192±0.0007 0.0184±0.0006
LeNet-5 0.0097±0.0013 0.0091±0.0004

CIFAR-10 VGG-16 0.0966±0.0087 0.0903±0.0032
AllCNN-C 0.0656±0.0017 0.0835±0.0050
ResNet-18 0.0866±0.0056 0.0788±0.0035
SqueezeNet 0.1173±0.0065 0.1083±0.0049

CIFAR-100 WRN 28-10 0.2288±0.0019 0.2668±0.0283

SVHN WRN 16-8 0.0367±0.0007 0.0441±0.0014

performance and very little variance between independent executions on all datasets except the two small
regression datasets Crime and Diabetes. These results demonstrate the superiority of the NN representation
for learned loss functions, especially when dealing with relatively large learning tasks where expressive be-
havior is important. Note, that on the regression datasets, we found that the majority of the quadratic TP
experiments diverged, even with hyper-parameter tuning.

D.3 Loss Network Activation Function

An important difference between AdaLFL’s neural network representation and prior neural network-based
learned loss function representation such as the one used in ML3, is the use of smooth leaky ReLU activation
functions presented in Section 2.2 of the main manuscript. This new activation function resolves many issues
with the prior network design; however, it remains to be seen how much of the performance improvement can
be attributed to the newly proposed smooth leaky ReLU activation function vs the newly proposed online
optimization algorithm.

In Table 5, results are presented comparing and contrasting the performance between offline loss function
learning (i.e. ML3) with the standard ReLU + SoftPlus network architecture, and the new smooth leaky
ReLU network architecture. The results show that on most tasks the new activation function improves per-
formance compared to the conventional architecture used in ML3. However, this performance improvement
is not a significant contributing factor compared to the change in optimization algorithm, i.e. going from
offline to online meta-learning.

D.4 Regularization and Meta-Objectives

When computing the meta-objective of AdaLFL (equation 8 in the main manuscript) Ltask = LT (y, fθt+1(x)),
the instances can either be sampled from Dtrain or Dvalid. Consequently, the learned loss function can either
optimize for in-sample performance or out-of-sample generalization, respectively. This behavior is shown
on the Communities and Crime and Diabetes dataset, where as shown in Figure 7, optimizing the meta-
objective using training samples results in the training error quickly approaching 0. In contrast, when using
the validation samples the training error does not converge as quickly and to as low of a training error
value. This behavior is a form of regularization since as shown in Table 6 the final inference testing error is

20



Under review as submission to TMLR

Table 4: Experimental results exploring alternative loss function representations based on Taylor
polynomial parameterizations reporting the mean ± standard deviation of final inference testing mean

squared error or error rate across 10 independent executions of each algorithm on each task + model pair.

Task Model Quadratic-TP (Online) Cubic-TP (Online) AdaLFL (Online)

Crime MLP - 0.0254±0.0015 0.0263±0.0023

Diabetes MLP - 0.0418±0.0041 0.0420±0.0014

California MLP - 0.0783±0.0167 0.0151±0.0007

MNIST Logistic 0.0810±0.0281 0.0707±0.0009 0.0697±0.0010
MLP 0.0205±0.0008 0.0185±0.0007 0.0184±0.0006
LeNet-5 0.1357±0.0728 0.0096±0.0006 0.0091±0.0004

CIFAR-10 VGG-16 0.1442±0.0025 0.1439±0.0027 0.0903±0.0032
AllCNN-C 0.1086±0.0100 0.0908±0.0020 0.0835±0.0050
ResNet-18 0.1133±0.0033 0.1309±0.0070 0.0788±0.0035
SqueezeNet 0.1506±0.0092 0.1367±0.0041 0.1083±0.0049

CIFAR-100 WRN 28-10 0.2952±0.0220 0.2934±0.0621 0.2668±0.0283

SVHN WRN 16-8 0.0494±0.0000 0.0431±0.0000 0.0441±0.0014

Table 5: Experimental results ablating the newly proposed smooth leaky ReLU activation function,
reporting the mean ± standard deviation of final inference testing mean squared error or error rate across

10 independent executions of each algorithm on each task + model pair.

Task Model ML3 ReLU (Offline) ML3 SLReLU (Offline) AdaLFL (Online)

Crime MLP 0.0270±0.0025 0.0274±0.0029 0.0263±0.0023

Diabetes MLP 0.0481±0.0020 0.0430±0.0012 0.0420±0.0014

California MLP 0.0346±0.0087 0.0276±0.0058 0.0151±0.0007

MNIST Logistic 0.0782±0.0117 0.0710±0.0015 0.0697±0.0010
MLP 0.0167±0.0021 0.0185±0.0004 0.0184±0.0006
LeNet-5 0.0095±0.0006 0.0094±0.0005 0.0091±0.0004

CIFAR-10 VGG-16 0.1034±0.0058 0.1024±0.0055 0.0903±0.0032
AllCNN-C 0.1087±0.0174 0.1015±0.0055 0.0835±0.0050
ResNet-18 0.0972±0.0259 0.0883±0.0041 0.0788±0.0035
SqueezeNet 0.1282±0.0086 0.1162±0.0052 0.1083±0.0049

CIFAR-100 WRN 28-10 0.3114±0.0063 0.3108±0.0075 0.2668±0.0283

SVHN WRN 16-8 0.0500±0.0034 0.0502±0.0032 0.0441±0.0014

superior when using validation samples on both the Communities and Crime and Diabetes datasets. This is
an important discovery as it suggests that loss function learning can induce a form of regularization, similar
to the findings in (Gonzalez & Miikkulainen, 2021), (Gonzalez & Miikkulainen, 2020a), and (Raymond et al.,
2023).

21



Under review as submission to TMLR

Table 6: Results reporting the mean ± standard deviation of final inference testing mean squared error
across 10 independent executions of each algorithm on each task + model pair (using no base learning rate

scheduler).

Task AdaLFL (Training) AdaLFL (Validation)

Crime 0.0267±0.0022 0.0265±0.0021

Diabetes 0.0468±0.0016 0.0420±0.0014

0 2000 4000 6000 8000 10000
0.000

0.005

0.010

0.015

0.020

M
ea

n 
Sq

ua
re

d 
Er

ro
r

(a) Crime + MLP

0 2000 4000 6000 8000 10000
0.000

0.005

0.010

0.015

0.020

M
ea

n 
Sq

ua
re

d 
Er

ro
r

(b) Diabetes + MLP

AdaLFL (Training) AdaLFL (Validation)

Figure 7: Mean learning curves across 10 independent executions of AdaLFL showing the training mean
squared error (y-axis) against gradient steps (x-axis) when taking meta gradient steps on the meta-training

(blue) vs meta-validation (red) set.

D.5 Run-time Analysis Table 7: Average run-time of the entire learning
process for each benchmark method. Each algorithm
is run on a single Nvidia RTX A5000, and results are

reported in hours.

Task and Model Baseline Offline Online

Crime + MLP 0.01 0.03 0.05

Diabetes + MLP 0.01 0.03 0.05

California + MLP 0.01 0.03 0.05

MNIST + Logistic 0.06 0.31 0.55
MNIST + MLP 0.06 0.32 0.56
MNIST + LeNet-5 0.10 0.38 0.67

CIFAR-10 + VGG-16 1.50 1.85 5.56
CIFAR-10 + AllCNN-C 1.41 1.72 5.53
CIFAR-10 + ResNet-18 1.81 2.18 8.38
CIFAR-10 + SqueezeNet 1.72 2.02 7.88

CIFAR-100 + WRN 28-10 8.81 10.3 50.49

SVHN + WRN 16-8 7.32 7.61 24.75

The average run-time of the entire learning pro-
cess of all benchmark methods on all tasks is re-
ported in Table 7. Notably, there are two key rea-
sons why the computational overhead of AdaLFL
is not as bad as it may at first seem. First, the
time reported for the baseline does not include
the implicit cost of manual hyper-parameter selec-
tion and tuning of the loss function, as well as
the initial learning rate and learning rate sched-
ule, which is needed prior to training in order to
attain reasonable performance (Goodfellow et al.,
2016). Second, a large proportion of the cost of
AdaLFL comes from storing a large number of in-
termediate iterates needed for the outer loop. How-
ever, the intermediate iterates stored in this process
are identical to those used in other popular meta-
learning paradigms (Andrychowicz et al., 2016; Finn
et al., 2017). Consequently, future work can explore
combining AdaLFL with other optimization-based
meta-learning methods with minimal overhead cost,
similar to (Li et al., 2017; Park & Oliva, 2019; Flen-
nerhag et al., 2020; Baik et al., 2020; 2021).

D.6 Learned Loss Functions (Extended)

22



Under review as submission to TMLR

0.4 0.2 0.0 0.2 0.4
Error

4.5

5.0

5.5

6.0

6.5

7.0

7.5

Le
ar

ne
d 

Lo
ss

0.4 0.2 0.0 0.2 0.4
Error

19

20

21

22

Le
ar

ne
d 

Lo
ss

0.4 0.2 0.0 0.2 0.4
Error

17

18

19

20

21

Le
ar

ne
d 

Lo
ss

0.4 0.2 0.0 0.2 0.4
Error

10

11

12

13

14

Le
ar

ne
d 

Lo
ss

0.4 0.2 0.0 0.2 0.4
Error

19

20

21

22

Le
ar

ne
d 

Lo
ss

0.4 0.2 0.0 0.2 0.4
Error

18

19

20

21

Le
ar

ne
d 

Lo
ss

0.4 0.2 0.0 0.2 0.4
Error

18

19

20

21

22

Le
ar

ne
d 

Lo
ss

0.4 0.2 0.0 0.2 0.4
Error

22

23

24

25

26

Le
ar

ne
d 

Lo
ss

1000080006000400020000

Figure 8: Loss functions generated by AdaLFL on the Communities and Crime dataset, where each plot
represents a loss function, and the color represents the current gradient step.

23



Under review as submission to TMLR

0.4 0.2 0.0 0.2 0.4
Error

70

80

90

100

110

120

130

Le
ar

ne
d 

Lo
ss

0.4 0.2 0.0 0.2 0.4
Error

70

80

90

100

110

120

130

Le
ar

ne
d 

Lo
ss

0.4 0.2 0.0 0.2 0.4
Error

70

80

90

100

110

Le
ar

ne
d 

Lo
ss

0.4 0.2 0.0 0.2 0.4
Error

60

70

80

90

Le
ar

ne
d 

Lo
ss

0.4 0.2 0.0 0.2 0.4
Error

80

90

100

110

120

Le
ar

ne
d 

Lo
ss

0.4 0.2 0.0 0.2 0.4
Error

30

35

40

45

50

Le
ar

ne
d 

Lo
ss

0.4 0.2 0.0 0.2 0.4
Error

50

60

70

80

90

100

Le
ar

ne
d 

Lo
ss

0.4 0.2 0.0 0.2 0.4
Error

50

60

70

80

Le
ar

ne
d 

Lo
ss

1000080006000400020000

Figure 9: Loss functions generated by AdaLFL on the Diabetes dataset, where each plot represents a loss
function, and the color represents the current gradient step.

24



Under review as submission to TMLR

0.4 0.2 0.0 0.2 0.4
Error

4

5

6

7

Le
ar

ne
d 

Lo
ss

0.4 0.2 0.0 0.2 0.4
Error

1

2

3

4

5

Le
ar

ne
d 

Lo
ss

0.4 0.2 0.0 0.2 0.4
Error

1.4

1.6

1.8

2.0

2.2

2.4

2.6

Le
ar

ne
d 

Lo
ss

0.4 0.2 0.0 0.2 0.4
Error

3.0

3.5

4.0

4.5

5.0

5.5

6.0

Le
ar

ne
d 

Lo
ss

0.4 0.2 0.0 0.2 0.4
Error

1.50

1.75

2.00

2.25

2.50

2.75

3.00

3.25

Le
ar

ne
d 

Lo
ss

0.4 0.2 0.0 0.2 0.4
Error

2.0

2.5

3.0

3.5

4.0

Le
ar

ne
d 

Lo
ss

0.4 0.2 0.0 0.2 0.4
Error

1.0

1.5

2.0

2.5

Le
ar

ne
d 

Lo
ss

0.4 0.2 0.0 0.2 0.4
Error

0.5

1.0

1.5

2.0

2.5

Le
ar

ne
d 

Lo
ss

1000080006000400020000

Figure 10: Loss functions generated by AdaLFL on the California Housing dataset, where each plot
represents a loss function, and the color represents the current gradient step.

25



Under review as submission to TMLR

0.0 0.2 0.4 0.6 0.8 1.0
Predicted Probability (y = 1)

5.0

7.5

10.0

12.5

15.0

17.5

20.0

22.5

Le
ar

ne
d 

Lo
ss

0.0 0.2 0.4 0.6 0.8 1.0
Predicted Probability (y = 0)

10

15

20

25

30

Le
ar

ne
d 

Lo
ss

0.0 0.2 0.4 0.6 0.8 1.0
Predicted Probability (y = 1)

6

8

10

12

14

16

18

Le
ar

ne
d 

Lo
ss

0.0 0.2 0.4 0.6 0.8 1.0
Predicted Probability (y = 0)

5

10

15

20

25

Le
ar

ne
d 

Lo
ss

0.0 0.2 0.4 0.6 0.8 1.0
Predicted Probability (y = 1)

4

6

8

10

12

14

16

18

Le
ar

ne
d 

Lo
ss

0.0 0.2 0.4 0.6 0.8 1.0
Predicted Probability (y = 0)

5

10

15

20

25

Le
ar

ne
d 

Lo
ss

0.0 0.2 0.4 0.6 0.8 1.0
Predicted Probability (y = 1)

10.0

12.5

15.0

17.5

20.0

22.5

25.0

Le
ar

ne
d 

Lo
ss

0.0 0.2 0.4 0.6 0.8 1.0
Predicted Probability (y = 0)

10

15

20

25

30

Le
ar

ne
d 

Lo
ss

0 5000 10000 15000 20000 25000

Figure 11: Loss functions generated by AdaLFL on the MNIST dataset, where each row represents a loss
function, and the color represents the current gradient step.

26



Under review as submission to TMLR

0.0 0.2 0.4 0.6 0.8 1.0
Predicted Probability (y = 1)

17.5

15.0

12.5

10.0

7.5

5.0

2.5

Le
ar

ne
d 

Lo
ss

0.0 0.2 0.4 0.6 0.8 1.0
Predicted Probability (y = 0)

5

0

5

10

Le
ar

ne
d 

Lo
ss

0.0 0.2 0.4 0.6 0.8 1.0
Predicted Probability (y = 1)

0

2

4

6

8

10

Le
ar

ne
d 

Lo
ss

0.0 0.2 0.4 0.6 0.8 1.0
Predicted Probability (y = 0)

0

5

10

15

20

Le
ar

ne
d 

Lo
ss

0.0 0.2 0.4 0.6 0.8 1.0
Predicted Probability (y = 1)

0

2

4

6

8

10

12

14

16

Le
ar

ne
d 

Lo
ss

0.0 0.2 0.4 0.6 0.8 1.0
Predicted Probability (y = 0)

0

5

10

15

20

Le
ar

ne
d 

Lo
ss

0.0 0.2 0.4 0.6 0.8 1.0
Predicted Probability (y = 1)

8

10

12

14

16

18

20

Le
ar

ne
d 

Lo
ss

0.0 0.2 0.4 0.6 0.8 1.0
Predicted Probability (y = 0)

0

5

10

15

20

Le
ar

ne
d 

Lo
ss

0 5000 10000 15000 20000 25000

Figure 12: Loss functions generated by AdaLFL on the MNIST dataset, where each row represents a loss
function, and the color represents the current gradient step.

27



Under review as submission to TMLR

0.0 0.2 0.4 0.6 0.8 1.0
Predicted Probability (y = 1)

10

0

10

20

30

40

50

60

Le
ar

ne
d 

Lo
ss

0.0 0.2 0.4 0.6 0.8 1.0
Predicted Probability (y = 0)

20

40

60

80

100

Le
ar

ne
d 

Lo
ss

0.0 0.2 0.4 0.6 0.8 1.0
Predicted Probability (y = 1)

10

20

30

40

50

Le
ar

ne
d 

Lo
ss

0.0 0.2 0.4 0.6 0.8 1.0
Predicted Probability (y = 0)

80

60

40

20

0

20

40

60

80

Le
ar

ne
d 

Lo
ss

0.0 0.2 0.4 0.6 0.8 1.0
Predicted Probability (y = 1)

10

0

10

20

30

40

Le
ar

ne
d 

Lo
ss

0.0 0.2 0.4 0.6 0.8 1.0
Predicted Probability (y = 0)

20

40

60

80

100

120

Le
ar

ne
d 

Lo
ss

0.0 0.2 0.4 0.6 0.8 1.0
Predicted Probability (y = 1)

20

40

60

80

100

Le
ar

ne
d 

Lo
ss

0.0 0.2 0.4 0.6 0.8 1.0
Predicted Probability (y = 0)

70

60

50

40

30

20

10

0

Le
ar

ne
d 

Lo
ss

0 5000 10000 15000 20000 25000

Figure 13: Loss functions generated by AdaLFL on the MNIST dataset, where each row represents a loss
function, and the color represents the current gradient step.

28



Under review as submission to TMLR

0.0 0.2 0.4 0.6 0.8 1.0
Predicted Probability (y = 1)

100

80

60

40

20

0

20

Le
ar

ne
d 

Lo
ss

0.0 0.2 0.4 0.6 0.8 1.0
Predicted Probability (y = 0)

50

25

0

25

50

75

100

Le
ar

ne
d 

Lo
ss

0.0 0.2 0.4 0.6 0.8 1.0
Predicted Probability (y = 1)

0

25

50

75

100

125

150

Le
ar

ne
d 

Lo
ss

0.0 0.2 0.4 0.6 0.8 1.0
Predicted Probability (y = 0)

80

60

40

20

0

20

Le
ar

ne
d 

Lo
ss

0.0 0.2 0.4 0.6 0.8 1.0
Predicted Probability (y = 1)

20

0

20

40

60

80

Le
ar

ne
d 

Lo
ss

0.0 0.2 0.4 0.6 0.8 1.0
Predicted Probability (y = 0)

80

60

40

20

0

20

40

Le
ar

ne
d 

Lo
ss

0.0 0.2 0.4 0.6 0.8 1.0
Predicted Probability (y = 1)

20

40

60

80

100

120

Le
ar

ne
d 

Lo
ss

0.0 0.2 0.4 0.6 0.8 1.0
Predicted Probability (y = 0)

100

75

50

25

0

25

50

75

Le
ar

ne
d 

Lo
ss

0 20000 40000 60000 80000 100000

Figure 14: Loss functions generated by AdaLFL on the CIFAR-10 dataset, where each row represents a loss
function, and the color represents the current gradient step.

29



Under review as submission to TMLR

0.0 0.2 0.4 0.6 0.8 1.0
Predicted Probability (y = 1)

20

0

20

40

60

80

100

120

Le
ar

ne
d 

Lo
ss

0.0 0.2 0.4 0.6 0.8 1.0
Predicted Probability (y = 0)

0

20

40

60

80

Le
ar

ne
d 

Lo
ss

0.0 0.2 0.4 0.6 0.8 1.0
Predicted Probability (y = 1)

60

40

20

0

20

40

60

Le
ar

ne
d 

Lo
ss

0.0 0.2 0.4 0.6 0.8 1.0
Predicted Probability (y = 0)

60

40

20

0

20

40

60

80

100

Le
ar

ne
d 

Lo
ss

0.0 0.2 0.4 0.6 0.8 1.0
Predicted Probability (y = 1)

20

0

20

40

60

Le
ar

ne
d 

Lo
ss

0.0 0.2 0.4 0.6 0.8 1.0
Predicted Probability (y = 0)

20

40

60

80

100

120

Le
ar

ne
d 

Lo
ss

0.0 0.2 0.4 0.6 0.8 1.0
Predicted Probability (y = 1)

20

40

60

80

100

120

Le
ar

ne
d 

Lo
ss

0.0 0.2 0.4 0.6 0.8 1.0
Predicted Probability (y = 0)

150

125

100

75

50

25

0

25

50

Le
ar

ne
d 

Lo
ss

0 20000 40000 60000 80000 100000

Figure 15: Loss functions generated by AdaLFL on the CIFAR-10 dataset, where each row represents a loss
function, and the color represents the current gradient step.

30



Under review as submission to TMLR

0.0 0.2 0.4 0.6 0.8 1.0
Predicted Probability (y = 1)

50

40

30

20

10

0

10

Le
ar

ne
d 

Lo
ss

0.0 0.2 0.4 0.6 0.8 1.0
Predicted Probability (y = 0)

40

30

20

10

0

10

20

Le
ar

ne
d 

Lo
ss

0.0 0.2 0.4 0.6 0.8 1.0
Predicted Probability (y = 1)

30

20

10

0

10

20

30

Le
ar

ne
d 

Lo
ss

0.0 0.2 0.4 0.6 0.8 1.0
Predicted Probability (y = 0)

30

20

10

0

10

20

30

Le
ar

ne
d 

Lo
ss

0.0 0.2 0.4 0.6 0.8 1.0
Predicted Probability (y = 1)

30

20

10

0

10

20

30

Le
ar

ne
d 

Lo
ss

0.0 0.2 0.4 0.6 0.8 1.0
Predicted Probability (y = 0)

20

10

0

10

20

30

Le
ar

ne
d 

Lo
ss

0.0 0.2 0.4 0.6 0.8 1.0
Predicted Probability (y = 1)

10

20

30

40

50

60

Le
ar

ne
d 

Lo
ss

0.0 0.2 0.4 0.6 0.8 1.0
Predicted Probability (y = 0)

30

20

10

0

10

20

30

40

Le
ar

ne
d 

Lo
ss

0 20000 40000 60000 80000 100000

Figure 16: Loss functions generated by AdaLFL on the CIFAR-10 dataset, where each row represents a loss
function, and the color represents the current gradient step.

31



Under review as submission to TMLR

0.0 0.2 0.4 0.6 0.8 1.0
Predicted Probability (y = 1)

20

10

0

10

20

30

Le
ar

ne
d 

Lo
ss

0.0 0.2 0.4 0.6 0.8 1.0
Predicted Probability (y = 0)

10

0

10

20

30

40

50

Le
ar

ne
d 

Lo
ss

0.0 0.2 0.4 0.6 0.8 1.0
Predicted Probability (y = 1)

40

30

20

10

0

10

20

Le
ar

ne
d 

Lo
ss

0.0 0.2 0.4 0.6 0.8 1.0
Predicted Probability (y = 0)

30

20

10

0

10

20

30

40

Le
ar

ne
d 

Lo
ss

0.0 0.2 0.4 0.6 0.8 1.0
Predicted Probability (y = 1)

20

10

0

10

20

30

Le
ar

ne
d 

Lo
ss

0.0 0.2 0.4 0.6 0.8 1.0
Predicted Probability (y = 0)

20

10

0

10

20

30

40

50

60

Le
ar

ne
d 

Lo
ss

0.0 0.2 0.4 0.6 0.8 1.0
Predicted Probability (y = 1)

40

30

20

10

0

10

20

Le
ar

ne
d 

Lo
ss

0.0 0.2 0.4 0.6 0.8 1.0
Predicted Probability (y = 0)

20

10

0

10

20

30

40

50

Le
ar

ne
d 

Lo
ss

0 20000 40000 60000 80000 100000

Figure 17: Loss functions generated by AdaLFL on the CIFAR-10 dataset, where each row represents a loss
function, and the color represents the current gradient step.

32


	Introduction
	Contributions

	Online Loss Function Learning
	Problem Setup
	Loss Function Representation
	Loss Function Initialization
	Online Meta-Optimization

	Related Work
	Online vs Offline Loss Function Learning
	Alternative Paradigms

	Experimental Evaluation
	Benchmark Tasks
	Benchmark Models

	Results and Analysis
	Final Inference Testing Performance
	Inner Gradient Steps
	Visualizing Learned Loss Functions
	Implicit Tuning of Learning Rate Schedule
	Implicit Early Stopping Regularization
	Implicit Label Smoothing Regularization

	Conclusion
	Extended Background
	Online vs Offline Loss Function Learning
	Alternative Paradigms

	Loss Function Representation
	Network Architecture
	Smooth Leaky ReLU

	Experimental Setup
	Further Experiments
	Comparison to Meta-Learned Learning Rate
	Loss Function Representations
	Loss Network Activation Function
	Regularization and Meta-Objectives
	Run-time Analysis
	Learned Loss Functions (Extended)


