Published in Transactions on Machine Learning Research (10/2025)

Meta-Learning Adaptive Loss Functions

Christian Raymond christian.raymond@ecs.vuw.ac.nz
Victoria University of Wellington

Qi Chen qi.chen@ecs.vuw.ac.nz
Victoria University of Wellington

Bing Xue bing.zue@ecs.vuw.ac.nz
Victoria University of Wellington

Mengjie Zhang mengjie. zhang@ecs.vuw.ac.nz
Victoria University of Wellington

Reviewed on OpenReview: https: //openreview. net/ forum? id= o000DnNOz2z8
Abstract

Loss function learning is a new meta-learning paradigm that aims to automate the essential
task of designing a loss function for a machine learning model. Existing techniques for loss
function learning have shown promising results, often improving a model’s training dynamics
and final inference performance. However, a significant limitation of these techniques is
that the loss functions are meta-learned in an offline fashion, where the meta-objective only
considers the very first few steps of training, which is a significantly shorter time horizon than
the one typically used for training deep neural networks. This causes significant bias towards
loss functions that perform well at the very start of training but perform poorly at the end
of training. To address this issue we propose a new loss function learning technique for
adaptively updating the loss function online after each update to the base model parameters.
The experimental results show that our proposed method consistently outperforms the cross-
entropy loss and offline loss function learning techniques on a diverse range of neural network
architectures and datasets.

1 Introduction

When applying deep neural networks to a given learning task, a significant amount of time is typically
allocated towards performing manual tuning of the hyper-parameters to achieve competitive learning perfor-
mances (Bengio, 2012). Selection of the appropriate hyper-parameters is critical for embedding the relevant
inductive biases into the learning algorithm (Gordon & Desjardins, 1995). The inductive biases control both
the set of searchable models and the learning rules used to find the final model parameters. Therefore, the
field of meta-learning (Schmidhuber, 1987; Vanschoren, 2018; Peng, 2020; Hospedales et al., 2022), as well
as the closely related field of hyper-parameter optimization (Bergstra et al., 2011; Feurer & Hutter, 2019),
aim to automate the design and selection of a suitable set of inductive biases (or a subset of them) and have
been long-standing areas of interest to the machine learning community.

One component that has only very recently been receiving attention in the meta-learning context is the loss
function. The loss function (Wang et al., 2022) is one of the most central components of any gradient-based
supervised learning system, as it determines the base learning algorithm’s learning path and the selection
of the final model (Reed & MarksII, 1999). Furthermore, in deep learning, neural networks are typically
trained through the backpropagation of gradients that originate from the loss function (Rumelhart et al.,
1986; Goodfellow et al., 2016). Given this importance, a new and emerging subfield of meta-learning referred
to as Loss Function Learning (Gonzalez & Miikkulainen, 2020b; Bechtle et al., 2021; Raymond et al., 2023;
Collet et al., 2022) aims to attempt the difficult task of inferring a highly performant loss function directly
from the given data.

https://openreview.net/forum?id=o0ODnN0xz8

Published in Transactions on Machine Learning Research (10/2025)

60
120
40
w « 100
& 20 8
— —]
3 o 80
Q
g g 60
g kK
404
-40
204
-60
0.0 0.2 0.4 0.6 0.8 1.0 0.0 02 0.4 0.6 038 1.0
Predicted Probability (y = 1) Predicted Probability (y = 0)
60 2201
200
40
wv 172}
§ 2 180
2
20
'q;) é 160 {
8 0 3 1404
= —
-20 1201
— 1004
0.0 0.2 0.4 0.6 0.8 1.0 0.0 02 0.4 0.6 038 1.0
Predicted Probability (y = 1) Predicted Probability (y = 0)
0 2000 4000 6000 8000 10000

Figure 1: Example adaptive meta-learned loss functions generated by AdaLFL on the CIFAR-10 dataset,
where each row represents a classification loss function, and the color represents the current gradient step.

Loss function learning aims to meta-learn a task-specific loss function, which yields improved performance
capabilities when utilized in training compared to handcrafted loss functions. Initial approaches to loss
function learning have shown promise at enhancing various aspects of deep neural network training, such
as improving the convergence and sample efficiency (Gonzalez & Miikkulainen, 2020b; Bechtle et al., 2021),
as well as the generalization (Gonzalez & Miikkulainen, 2021; Liu et al., 2020; Li et al., 2022; Leng et al.,
2022), and model robustness (Gao et al., 2021; 2022). However, one prevailing limitation of the existing
approaches to loss function learning is that they have thus far exclusively focused on learning a loss function
in the offline meta-learning settings.

In offline loss function learning, training is prototypically partitioned into two phases. In the first phase, the
base loss function is meta-learned via iteratively updating the loss function by performing one or a few base
training steps to approximate the performance. Second, the base model is trained using the learned loss
function, which is now fized and is used in place of the conventional handcrafted loss function. Unfortunately,
this methodology is prone to a severe short-horizon bias (Wu et al., 2018) towards loss functions which are
performant in the early stages of training but often have poor performance in the later stages.

To address the limitation of offline loss function learning, we propose a new technique for online loss function
learning called Adaptive Loss Function Learning (AdaLFL). In the proposed technique, the learned loss
function is represented as a small feed-forward neural network trained simultaneously with the base learning
model. Unlike prior methods, AdaLFL can adaptively transform both the shape and scale of the loss function
throughout the learning process to adapt to what is required at each stage of the learning process, as shown
in Figure 1. In offline loss function learning, the central goal is to improve the performance of a model by
specializing the loss function to a small set of related tasks. Online loss function learning naturally extends
this general philosophy, specializing the loss function to each individual gradient step on a single task.

Published in Transactions on Machine Learning Research (10/2025)

1.1 Contributions

e We introduce a method for efficiently learning general-purpose adaptive loss functions using online meta-
learning, where the loss function is updated after each base model update via a one-step unrolled differ-
entiation algorithm.

o We identify and address shortcomings in the design of neural network-based loss function parameteriza-
tions, which previously caused learned loss functions to be biased toward overly flat shapes resulting in
poor training dynamics.

o Empirically we show that models trained with our method exhibit faster convergence and improved
inference performance compared to those trained with handcrafted or offline-learned loss functions.

o Finally, we analyze the learned loss functions and uncover key insights, such as implicit meta-learning,
which reveals why meta-learned loss functions consistently outperform traditional handcrafted losses.

2 Online Loss Function Learning

In this work, we aim to automate the design and selection of the loss function and improve upon the
performance of supervised machine learning systems. This is achieved via meta-learning an adaptive loss
function that transforms both its shape and scale throughout the learning process. To achieve this, we
propose Adaptive Loss Function Learning (AdaLFL), an efficient task and model-agnostic approach for
online adaptation of the base loss function.

2.1 Problem Setup

In a prototypical supervised learning setup, we are given a set of N independently and identically distributed
(i.i.d.) examples of form D = {(z1,¥1),.--, (N, yn)}, where ; € X is the ith instance’s feature vector and
y; € Y is its corresponding class label. We want to learn a mapping between X and Y using some base
learning model, e.g., a classifier or regressor, fy : X —), where 6 is the base model parameters. In this
paper, similar to others (Finn et al., 2017; Bechtle et al., 2021), we constrain the selection of the base models
to those amenable to a stochastic gradient descent (SGD) style training procedures such that optimization
of the model parameters € occurs via optimizing some task-specific loss function £5 with learning rule

9t+1 = at - avatﬁT(:% ft9t (il?)), (1)

where L7 is a handcrafted loss function, typically the cross-entropy between the predicted label and the
ground truth label in classification or the squared error in regression. The principal goal of AdaLFL is to
reduce the reliance of models on manually designed handcrafted loss functions such as L7, by instead using
a meta-learned adaptive loss function My, where the meta-parameters ¢ are learned simultaneously with
the base parameters 6, allowing for online adaptation of the loss function. We formulate the task of learning
¢ and 6 as a non-stationary bi-level optimization problem, where ¢ is the current time step

P41 = arg;nin [’T(ya f91,+1 (:C))

. (2)
st Oipi(de) = arggmln/\/lm (Y, fo.(x)).

The outer optimization aims to meta-learn a performant loss function M, that minimizes the error on the
given task. The inner optimization directly minimizes the learned loss value produced by My to learn the
base model parameters 6.

2.2 Loss Function Representation

In AdaLFL, the choice of loss function parameterization is a small feedforward neural network, which is
chosen due to its high expressiveness and design flexibility. Our meta-learned loss function parameterization
inspired by (Bechtle et al., 2021; Psaros et al., 2022) is a small feedforward neural network denoted by £

Published in Transactions on Machine Learning Research (10/2025)

Algorithm 1 Loss Function Initialization (Offline)

Input: L7 + Task loss function (meta-objective)

1: Mg, < Initialize parameters of meta learner
2: for t € {0,...,Sinit — 1} do
0o < Reset parameters of base learner
for i € {0, ..., Sinner — 1} do
X, y < Sample from Dyygin
Mlearned — M¢t (ya fei (X))
91'4,-1 — 91’ - aVGiMlearned
end for
X, y + Sample from Dyq14
10: L:task — ‘CT(yv f9i+1 (X))
11: ¢t+1 — Oy — 77V¢t£task
12: end for

with two hidden layers and 40 hidden units each, which is applied output-wise across C outputs (making it
invariant to the number of outputs).

M(y, fo(x)) = & S35 Lo(yi, fo(x)s) (3)

Crucially, key design decisions are made regarding the activation functions used in £4 to enforce desirable
behavior. In Bechtle et al. (2021), ReLU activations are used in the hidden layers, and the smooth Softplus
activation is used in the output layer to constrain the loss to be non-negative, i.e., {p : R? — Rg‘ . Un-
fortunately, this network architecture is prone to unintentionally encouraging overly flat loss functions, see
Appendix B.1. Generally, flat regions in the loss function are very detrimental to training as uniform loss
is given to non-uniform errors. Removal of the Softplus activation in the output can partially resolve this
flatness issue; however, without it, the learned loss functions would violate the typical constraint that a loss
function should be at least C, 4.e., continuous in the zeroth and first derivatives.

Alternative smooth activations, such as Sigmoid, TanH, ELU, etc., can be used instead; however, due to
their range-bounded limits, they are also prone to encouraging loss functions that have large flat regions
when their activations saturate. Therefore, to inhibit this behavior, the unbounded leaky ReLU (Maas et al.,
2013) is combined with the smooth ReLU, i.e., SoftPlus (Dugas et al., 2000)

@hidden(m) = %log(eﬂ‘” + 1) . (1 — ’7) + Y. (4)

This smooth leaky ReL U activation function with leak parameter v and smoothness parameter /5 has desirable
characteristics for representing a loss function. It is smooth and has linear asymptotic behavior necessary
for tasks such as regression, where extrapolation of the learned loss function can often occur. Furthermore,
as its output is not bounded when ~ > 0, it does not encourage flatness in the learned loss function. See
Appendix B.2 and D.2 for more details.

2.3 Loss Function Initialization

One challenge for online loss function learning is achieving a stable and performant initial set of parameters
for the learned loss function. If ¢ is initialized poorly, too much time is spent on fixing ¢ in the early
stages of the learning process, resulting in poor base convergence, or in the worst case, fy to diverge. To
address this, offline loss function learning using Meta-learning via Learned Loss (ML?) (Bechtle et al., 2021)
is utilized to fine-tune the initial loss function to the base model prior to online loss function learning. The
initialization process is summarized in Algorithm 1, where S;,;; = 2500. In AdaLLFL’s initialization process
one step on 0 is taken for each step in ¢, i.e., inner gradient steps S;pner = 1. However, if Sjpner > 1, implicit
differentiation (Lorraine et al., 2020; Gao et al., 2022) can instead be utilized to reduce the initialization
process’s memory and computational overhead.

Published in Transactions on Machine Learning Research (10/2025)

Algorithm 2 Loss Function Adaptation (Online)

Input: M < Learned loss function (base-objective)
Input: L7 < Task loss function (meta-objective)

1: 0y < Initialize parameters of base learner
2: for t € {0, ..., Strain — 1} do

3: X,y < Sample from Dyyqin

4 Mlearned <~ M(bt (yafet (X))

5 9t+1 <~ et - avOiMlearned

6: X,y < Sample from D,qiq

& Liask < ‘CT(y7 f9t,+1 (X))

8 @ir1 — ¢ — NV, Liask

9: end for

2.4 Online Meta-Optimization

To optimize ¢, unrolled differentiation is utilized in the outer loop to update the learned loss function after
each update to the base model parameters 6 in the inner loop, which occurs via vanilla backpropagation. This
is conceptually the simplest way to optimize ¢ as all the intermediate iterates generated by the optimizer
in the inner loop can be stored and then backpropagate through in the outer loop (Maclaurin et al., 2015).
The full iterative learning process is summarized in Algorithm 2 and proceeds as follows: perform a forward
pass fp, () to obtain an initial set of predictions. The learned loss function M, is then used to produce a
base loss value

Mlearned = M¢t (y7 f@t (.’E)) (5)
Using Meqrned, the current weights 6; are updated by taking a step in the opposite direction of the gradient
of the loss with respect to the base model parameters 6;,
Or41 =6y — aVe, My, (y, fo.(2))
= 075 - av@t]EX,y [M¢t (ya fet ({,C)):I,

where « is the base learning rate. This can be further decomposed via the chain rule,

Orr1 =0y — anMd)t (% fo. (x))v&f(% (55) (7)

Importantly, all intermediate iterates generated by the base optimizer at the t*" time-step when updating
are stored in memory. The meta-parameters ¢; can now be updated to ¢4 based on the learning progression
made by 6. Using 6,1, as a function of ¢;, compute a forward pass using the updated base weights fy, ., ()
to obtain a new set of predictions. The instances can either be sampled from the training set or a held-out
validation set. The new set of predictions is used to calculate the task loss £ to optimize ¢; through 6;44,

£task: = ET(:‘/? f9t+1 (.’E)), (8)

where L7 is selected based on the respective application. For example, the squared error loss for the task
of regression or the cross-entropy loss for classification. The task loss is a crucial component for embedding
the end goal task into the learned loss function. Optimization of the current meta-loss network loss weights
¢ now occurs by taking the gradient of the task loss,

¢t+1 = (bt - nv¢t£T(y7 f9t+1 ({,C))
= ¢t - 77V¢1Ex,y [ET(:U, f9t+1 (.T))] P
where 77 is the meta learning rate. The gradient computation is decomposed by applying the chain rule as

shown in Equation (11) where the gradient with respect to the meta-loss network weights ¢; requires the
updated model parameters ;11 from Equation (6).

<25t+1 = ¢t - nvaTV0t+1f9f,+1v¢t9i+l(¢t) (10)
= ¢t — anETV9t+1 .f9t,+1v¢t [et - o‘v9tM¢t] (11)

(6)

9)

Published in Transactions on Machine Learning Research (10/2025)

Outer Optimization

Inner Optimization

X fo,

Figure 2: Computational graph of AdaLFL, where 6 is updated using M, in the inner loop (Base Update).
The optimization path is tracked in the computational graph and then used to update ¢ based on the
meta-objective in the outer loop (Meta Update). The dashed lines show the gradients for 6 and ¢ with

respect to their given objectives.

This process is repeated for a fixed number of gradient steps St,qin, which is identical to what would typically
be used for training fy. An overview and summary of the full associated data flow between the inner and
outer optimization of # and ¢, respectively, is given in Figure 2.

3 Related Work

The method that we propose in this paper addresses the general problem of meta-learning a (base) loss func-
tion, 7.e. loss function learning. Existing loss function learning methods can be categorized along two key
axes, loss function representation, and meta-optimization. Frequently used representations in loss function
learning include parametric (Gonzalez & Miikkulainen, 2020b; Raymond et al., 2023) and nonparametric
(Liu et al., 2020; Li et al., 2022) genetic programming expression trees. In addition to this, alternative
representations such as truncated Taylor polynomials (Gonzalez & Miikkulainen, 2021; Gao et al., 2021;
2022) and small feed-forward neural networks (Bechtle et al., 2021) has also been recently explored. Re-
garding meta-optimization, loss function learning methods have heavily utilized computationally expensive
evolution-based methods such as evolutionary algorithms (Koza, 1994) and evolutionary strategies (Hansen
& Ostermeier, 2001). While more recent approaches have made use of gradient-based approaches unrolled
differentiation (Maclaurin et al., 2015), and implicit differentiation (Lorraine et al., 2020).

A common trait among these methods is that, in contrast to AdaLFL, they perform offline loss function
learning, resulting in a severe short-horizon bias towards loss functions which are performant in the early
stages of training but often have sub-optimal performance at the end of training. This short-horizon bias
arises from how the various approaches compute their respective meta-objectives. In offline evolution-based
approaches, the fitness, i.e., meta-objective, is calculated by computing the performance at the end of a
partial training session, e.g., < 1000 gradient steps (Gonzalez & Miikkulainen, 2021; Raymond et al., 2023).
A truncated number of gradient steps are required to be used as evolution-based methods evaluate the
performance of a large number of candidate solutions, typically L loss function over K iterations where
25 < L, K < 100. Therefore, performing full training sessions, which can be hundreds, thousands, or even
millions of gradient steps for each candidate solution, is infeasible.

Regarding the existing gradient-based approaches, offline unrolled optimization requires the whole optimiza-
tion path to be stored in memory; in practice, this significantly restricts the number of inner gradient steps
before computing the meta-objective to only a small number of steps. Methods such as implicit differentia-
tion can obviate these memory issues; however, it would still require a full training session in the inner loop,
which is a prohibitive number of forward passes to perform in tractable time. Furthermore, the dependence
of the model parameters on the meta-parameters increasingly shrinks and eventually vanishes as the number
of steps increases (Rajeswaran et al., 2019).

Published in Transactions on Machine Learning Research (10/2025)

3.1 Online vs Offline Loss Function Learning

The key algorithmic difference of AdaLFL from prior offline gradient-based methods (Bechtle et al., 2021;
Gao et al., 2022) is that ¢ is updated after each update to 6 in lockstep in a single phase as opposed to
learning 6 and ¢ in separate phases. This is achieved by not resetting 6 after each update to ¢ (Algorithm 1,
line 3), and consequently, ¢ has to adapt to each newly updated timestep such that ¢ = (¢o, ¢1,..., Ps,,...)-
In offline loss function learning, ¢ is learned separately at meta-training time and then is fixed for the full
duration of the meta-testing phase where 6 is learned and ¢ = (¢g). Another crucial difference is that in
online loss function learning, there is an implicit meta-learning of the learning rate schedule and a built in
early stopping mechanism, further discussed in Section 5.5.

4 Experimental Evaluation

In this section, the experimental setup for evaluating AdaLFL is presented. In summary experiments are
conducted across seven open-access datasets and multiple well-established network architectures. The per-
formance of AdaLFL is assessed against three benchmark methods. All experiments are implemented in
PyTorch (Paszke et al., 2017) and Higher (Grefenstette et al., 2019), and the code is available at . Further
experimental details and results, including ablations on the loss function representation, are provided in
Appendix C and D, respectively.

4.1 Benchmark Methods

AdaLFL is compared to three benchmark methods. The first is a baseline, which uses conventional hand-
crafted losses, namely the mean squared error and cross-entropy loss. Next, is ML3 (Bechtle et al., 2021) the
offline counterpart of AdaLFL which meta-learns the loss function offline and does not adapt it during train-
ing. Finally, MetaLR, an equivalent algorithm for meta-learning a single scalar adaptive learning rate, which
adjusts the learning rate online during training identical to AdaLFL, see Appendix C.1 for more details.
Importantly, the choice of hyper-parameters between MetaLR, ML? and AdaLFL has been standardized to
enable as fair of a comparison as possible.

4.2 Benchmark Tasks

Following the established literature on loss function learning, the regression datasets Communities and Crime
(Redmond, 2009), Diabetes (Efron et al., 2004), and California Housing (Pace & Barry, 1997) are used as
a simple domain to illustrate the capabilities of the proposed method. Following this classification datasets
MNIST (LeCun et al., 1998), CIFAR-10, CIFAR-100 (Krizhevsky & Hinton, 2009), and SVHN (Netzer et al.,
2011), are employed to assess the performance of AdaLFL to determine whether the results can generalize
to larger, more challenging tasks. The original training-testing partitioning is used for all datasets, with
10% of the training instances allocated for validation. In addition, standard data augmentation techniques
consisting of normalization, random horizontal flips, and cropping are applied to the training data of CIFAR-
10, CIFAR-100, and SVHN during meta and base training.

4.3 Benchmark Models

A diverse set of well-established benchmark architectures are utilized to evaluate the performance of AdaLFL.
For Communities and Crime, Diabetes, and California Housing a two hidden layer multi-layer perceptron
(MLP) taken from (Baydin et al., 2018) is used. For MNIST, logistic regression (McCullagh et al., 1989),
the previously mentioned MLP and the LeNet-5 (LeCun et al., 1998) architecture is used. Following this
experiments are conducted on CIFAR-10, VGG-16 (Simonyan & Zisserman, 2015), AIICNN-C (Springenberg
et al., 2014), ResNet-18 (He et al., 2016), and SqueezeNet (Iandola et al., 2016) are used. For the remaining
datasets, CIFAR-~100 and SVHN, WideResNet 28-10 and WideResNet 16-8 (Zagoruyko & Komodakis, 2016)
are employed.

1GitHub Repository: https://github.com/Decadz/0nline-Loss-Function-Learning

https://github.com/Decadz/Online-Loss-Function-Learning

Published in Transactions on Machine Learning Research (10/2025)

Log Error Rate
s s =

Log Error Rate

Log Error Rate

2000 4000 6000 8000 10000

=4

2000 4000 6000 8000 10000

=

2000 4000 6000 8000 10000

=

(a) Crime + MLP (b) Diabetes + MLP (c) California + MLP

Log Error Rate
Log Error Rate

5‘) = EA =
Log Error Rate

5000 10000 15000 20000 25000

=3
=

5000 10000 15000 20000 25000

=3

5000 10000 15000 20000 25000

(d) MNIST + Logistic (e) MNIST + MLP (f) MNIST + LeNet-5

Log Squared Error
5\ 5\
Log Error Rate
Log Squared Error

0 20000 40000 60000 80000 100000 0 20000 40000 60000 80000 100000 0 20000 40000 60000 80000 100000

(g) CIFAR-10 + VGG-16 (h) CIFAR-10 + AIICNN-C (i) CIFAR-10 + ResNet-18

Log Squared Error
5 3 =
Log Error Rate
Log Error Rate

- 10 : : . : v y ;
10 0 20000 40000 60000 80000 100000 0 25000 50000 75000 100000 125000 150000 0 25000 50000 75000 100000 125000 150000
(j) CIFAR-10 + SqueezeNet (k) CIFAR-100 + WRN 28-10 (1) SVHN + WRN 16-8
Baseline ML3 (Offline) MetaLR (Online) == AdaLFL (Online)

Figure 3: Mean learning curves across 10 independent executions of each algorithm on each task + model
pair, showing the log of the training mean squared error or error rate (y-axis) against gradient steps
(x-axis). Best viewed in color.

5 Results and Analysis

The results in Figure 3 show the average (log) training learning curves of AdaLFL compared with the
baseline, MetaLR, and ML3, across 10 executions of each dataset-model pair. Overall, AdaLFL demonstrates
consistent improvements in convergence speed compared to the baseline and ML3. These gains are evident
across a wide range of tasks and architectures, with the exception of the regression datasets, which is due to
regularization behavior as shown in Appendix D.4. Importantly, the errors obtained by AdaLFL at the end
of training are typically lower than those of all compared methods, indicating that AdaLFL delivers both
faster convergence and stronger overall performance.

On the more challenging tasks of CIFAR-10, CIFAR-100, and SVHN, AdaLFL improves noticeably over
the baseline and ML3. Improved performance on these datasets is achieved through AdaLFL’s adaptive
updating of the learned loss function throughout the learning process, which adapts to changes in the
training dynamics. This is in contrast to ML?3, where the loss function remains static, resulting in poor
performance on tasks where the training dynamics at the beginning of training vary significantly from those
at the end of training.

Published in Transactions on Machine Learning Research (10/2025)

Table 1: Results reporting the mean + standard deviation of final inference testing mean squared error or
error rate across 10 independent executions of each algorithm on each task + model pair (using no base
learning rate scheduler).

Task Model Baseline ML? (Offine) Meta-LR (Online) AdaLFL (Online)
Crime MLP ! 0.02744+0.0017 0.0270£0.0025 0.0274+0.0018 0.0263+£0.0023
Diabetes MLP ! 0.0432+0.0013 0.0430+0.0012 0.0463+0.0013 0.0420+0.0014
California MLP ! 0.0157+0.0001 0.027640.0058 0.015440.0004 0.0151+£0.0007
MNIST Logistic 2 0.0766+0.0009 0.071040.0010 0.0756+0.0008 0.0697+0.0010
MLP ! 0.0203+£0.0006 0.0185+0.0004 0.0192+0.0007 0.0184+0.0006
LeNet-5 3 0.0125+0.0007 0.0094£0.0005 0.0097+0.0013 0.0091+0.0004
CIFAR-10 VGG-16 4 0.1036+0.0049 0.1024£0.0055 0.0966+0.0087 0.0903+0.0032
AIICNN-C 5 0.1030£0.0062 0.101540.0055 0.0672-+0.0068 0.0835+0.0050
ResNet-18 ¢ 0.087140.0057 0.0883+0.0041 0.0866+0.0056 0.0788+0.0035
SqueezeNet 7 0.1226+0.0080 0.1162+0.0052 0.1173+0.0065 0.1083+0.0049
CIFAR-100 WRN 28-10 ® 0.304640.0087 0.310840.0075 0.2288+0.0019 0.2668+0.0283
SVHN WRN 16-8 8 0.0512+0.0043 0.0500+£0.0034 0.0367-+0.0007 0.0441+0.0014

I (Baydin et al., 2018)
5 (Springenberg et al., 2014)

2 (McCullagh et al., 1989)
6 (He et al., 2016)

3 (LeCun et al., 1998)
7 (Iandola et al., 2016)

4 (Simonyan & Zisserman, 2015)
8 (Zagoruyko & Komodakis, 2016)

Compared to MetalLR, AdaLLFL generally achieves superior performance across tasks. This suggests that
meta-learned loss functions capture nuanced meta-information about the training process that cannot be fully
represented by meta-learning only the base learning rate, consistent with findings in (Raymond et al., 2023).
Notably, on a few specific datasets: CIFAR-10 AIICNN-C, CIFAR-100 WRN28-10, and SVHN WRN16-
8, MetaLLR achieves slightly better performance. We hypothesize that this is due to the fixed learning rate
settings adopted from prior works (Gonzalez & Miikkulainen, 2021; Raymond et al., 2023) being sub-optimal
in these cases, making explicit meta-learning of the learning rate more effective.

5.1 Final Inference Testing Performance

Table 1 reporting the average mean squared error or error rate across 10 independent executions of each
method. Across all tested problems, AdaLFL consistently outperform the baseline, these improvements are
both substantial and stable, as reflected by the relatively small standard deviations across runs, indicating
lower variability. Even though the models were originally designed and optimized around baseline loss
functions, AdaLFL demonstrates clear and consistent gains across tasks. This result highlights the gains of
using an adaptive meta-learned loss function compared to the typically used handcrafted loss functions.

Compared to ML?, AdaLFL achieves better performance on all datasets. The improvements on MNIST
are relatively modest; this suggests that the training dynamics on MNIST at the beginning of training are
similar to those at the end; hence there are minimal gains from adapting the loss function online. While
on more challenging datasets such as CIFAR-10, CIFAR-100, and SVHN, the gains are considerably larger,
demonstrating the scalability and robustness of the approach. Regarding MetalLR, AdaLFL achieves better
performance on most tasks, with the exception of CIFAR-10 AIICNN-C, CIFAR-100, and SVHN. This is
likely due to the sub-optimal learning rates used on these tasks. Notably, MetaL.R is also shown to outperform
MLS3, this further highlights the importance of adaptation on large complex learning tasks.

The results attained by AdaLFL are promising given that the models tested were designed and optimized
around the baseline loss functions. Larger performance gains may be attained using models designed specifi-
cally around meta-learned loss function (Kim et al., 2018; Elsken et al., 2020; Ding et al., 2022). Thus future
work will explore learning the loss function in tandem with the network architecture.

Published in Transactions on Machine Learning Research (10/2025)

Table 2: Average run-time of the entire learning process (end-to-end) for each benchmark method. Each
algorithm is run on a single Nvidia RTX A5000, and results are reported in hours.

Task and Model Baseline ML? MetaLR AdaLFL
Crime + MLP 0.01 0.03 0.05 0.05
Diabetes + MLP 0.01 0.03 0.05 0.05
California + MLP 0.01 0.03 0.05 0.05
MNIST + Logistic 0.06 0.31 0.53 0.55
MNIST + MLP 0.06 0.32 0.53 0.56
MNIST + LeNet-5 0.10 0.38 0.64 0.67
CIFAR-10 + VGG-16 1.50 1.85 5.46 5.56
CIFAR-10 + ANICNN-C 1.41 1.72 5.39 5.53
CIFAR-10 + ResNet-18 1.81 2.18 8.21 8.38
CIFAR-10 + SqueezeNet 1.72 2.02 7.84 7.88
CIFAR-100 + WRN 28-10 8.81 10.3 48.71 50.49
SVHN + WRN 16-8 7.32 7.61 23.33 24.75

5.2 Run-time Analysis

Table 2 reports the average run-time of all benchmark methods on all tasks, including the time to initialize
the learning rate and loss function for MetalLR and AdaLFL, respectively. Notably, there are three key
reasons why the computational overhead of AdaLFL is not as bad as it may at first seem. First, the baseline
time excludes the implicit cost of manual hyper-parameter tuning for the loss function, initial learning rate,
and learning rate schedule required to achieve reasonable performance (Goodfellow et al., 2016). Second,
most the computational overhead of AdaLFL (and Metal.LR) comes from storing the one-step optimization
trajectory and backpropogating through it to update ¢. Importantly, this is an identical computation to those
used in other meta-learning paradigms (Andrychowicz et al., 2016; Finn et al., 2017). Consequently, when
combined with optimization-based meta-learning methods the computational overhead would be amortized,
since the intermediate iterates generated by those algorithms can be reused (Li et al., 2017; Park & Oliva,
2019; Flennerhag et al., 2020; Baik et al., 2020; 2021). Finally, we take one meta-gradient step on ¢ per
base step on €, but meta steps could instead occur periodically, e.g., every 100-1000 steps, to reduce the
computational and memory overhead. As shown in Figures 9-18, the meta-learned loss functions interpolate
very smoothly between their initial and final states, and in many cases converges well before the base model
has finished training.

5.3 Inner Gradient Steps Table 3: Results reporting the mean 4 standard
deviation of testing error rates when using an

3 .
In ML?, (Bechtle et al., 2021) suggested taking only increasing number of inner gradient steps with ML3.

one inner step, i.e., setting S;pner = 1 in Algorithm
1. A reasonable question to ask is whether increas-

ing the number of inner steps to extend the hori- Method CIFAR-10 + ANCNN-C
zon of the meta-objective past the first step will re- ML? (Sinner = 1) 0.101540.0055
(X(lice the disparity in performance between ML? and ML3 (Sinner = 5) 0.097840.0052
aLLFL. To answer this question, experiments are 3 /e .

performed on CIFAR-10 AIICNN-C with ML? set- ML3 (Sinner = 10) 0-0985:0.0050
ting Sinner = {1,5,10,15,20}. The results reported ML? (Sinner = 15) 0.0989+0.0049

in Table 3 show that increasing the number of inner ML3 (Sinner = 20) 0.097440.0061
steps in ML2 up to the limit of what is feasible in AdaLFL (Online) 0.083520.0050

memory on a consumer GPU does not resolve the

10

Published in Transactions on Machine Learning Research (10/2025)

17.5

15.0

125

10.0

7.5

Learned Loss
|

s 4
S o
Learned Loss

5.0

—12.5
2.5

-15.0

0.0

0.0 02 08 10 0.0 02 08 10

04 06 04 0.6
Predicted Probability (y = 1) Predicted Probability (y = 0)

30 30
20 20
2 1 2
ki g
LT]
L Q 0
g 5
o -10 Q
- — -10
-20
-20
-30
0.0 02 04 0.6 0.8 10 0.0 02 0.4 0.6 08 1.0
Predicted Probability (y = 1) Predicted Probability (y = 0)
225 30
20.0
25
© 175 2
5 3
= 150 il
Q Q
£ 125 £
51 S s
— 10,0 —
7.5 10
5.0
0.0 0.2 04 0.6 0.8 1.0 0.0 02 0.4 0.6 0.8 10
Predicted Probability (y = 1) Predicted Probability (y = 0)
0 20000 40000 60000 80000 100000

Figure 4: Loss functions generated by AdaLFL on the CIFAR-10 dataset, where each row represents
a loss function and the color represents the current gradient step.

short horizon bias present in offline loss function learning. Furthermore, the results show that increasing the
number of inner steps only results in marginal improvements in the performance over S, = 1. Hence,
offline learning methods that seek to obviate the memory issues of unrolled differentiation to allow for an
increased number of inner steps, such as (Gao et al., 2022), which uses implicit differentiation, are still prone
to a kind of short-horizon bias.

5.4 Visualizing Learned Loss Functions

To better understand why the meta-learned loss functions produced by AdaLFL are so performant, two of
the learned loss functions are highlighted in Figure 4, where the learned loss function is plotted at equispaced
intervals throughout the training. See Appendix D.6 for further examples of the diverse and creative loss
function meta-learned by AdaLFL.

Analyzing the learned loss functions, it can be observed that the loss functions change significantly in their
shape throughout the learning process. In both cases, the learned loss functions attributed strong penalties
for severe misclassification at the start of the learning process, and then gradually pivoted to a more moderate
or minor penalty as learning progressed. This behavior enables fast and efficient learning early on and reduces
the sensitivity of the base model to outliers in the later stages of the learning process.

11

Published in Transactions on Machine Learning Research (10/2025)

5.5 Implicit Tuning of Learning Rate Schedule

In offline loss function learning, it is known from (Gonzalez & Miikkulainen, 2021; Raymond et al., 2023) that
there is implicit initial learning rate tuning of & when meta-learning a loss function since dadp : 0 —aVy L =~
0 — VoM. Consequently, an emergent behavior, unique to online loss function learning, is that the adaptive
loss function generated by AdaLFL implicitly embodies multiple different learning rates throughout the
learning process hence often causing a fine-tuning of the fixed learning rate or of a predetermined learning
rate schedule. Analyzing the learned loss functions in Figure 4, it can be observed that the scale of the
learned loss function changes, confirming that implicit learning rate scheduling is occurring over time. In
Appendix C.1 additional experiments are given comparing the performance of AdaLFL to a method for
meta-learning the base learning rate.

5.6 Implicit Early Stopping Regularization

A unique property observed in the loss functions generated by AdaLLFL is that often once base convergence
is achieved the learned loss function will intentionally start to flatten or take on a parabolic form, as shown
in Figure 4 (second row). This is implicitly a type of early stopping, also observed in related paradigms such
as in hypergradient descent (Baydin et al., 2018), which meta-learns base learning rates. In hypergradient
descent the learned learning rate has been observed to oscillate around 0 near the end of training, at times
becoming negative, essentially terminating training. Implicit early stopping is beneficial as it is known to
have a regularizing effect on model training (Yao et al., 2007); however, if not performed carefully it can
also be detrimental to training due to terminating training prematurely. Therefore, in future work, we aim
to further investigate regulating this behavior, as a potential avenue for further improving performance.

5.7 Implicit Label Smoothing Regularization

Another novel observation we make is that in many of the classification loss functions, such as in Figure
4 (third row), the target loss initially decreases as the model becomes more confident in its predictions.
However, counterintuitively, as the predicted probability approaches 1 (i.e., the model becomes very confi-
dent), the loss begins to increase. This behavior has been previously observed and theoretically studied in
(Gonzalez & Miikkulainen, 2020a; Raymond et al., 2023), where it was shown to resemble a form of label
smoothing regularization. This later inspired a new regularization method called sparse label smoothing
regularization (Raymond, 2024). In such cases, the loss function penalizes overconfident predictions, thereby
encouraging better generalization. Importantly, this is the first time this phenomenon has been observed in
neural network parameterizations of the loss functions. Moreover, because AdaLFL learns the loss function
adaptively, unlike prior methods that learn static loss functions, it implicitly meta-learns an adaptive form
of label smoothing regularization which is dynamically adjusted throughout the learning process.

6 Conclusion

In this work, the first fully online approach to loss function learning has been proposed. The proposed
technique, Adaptive Loss Function Learning (AdaLFL), infers the base loss function directly from the data
and adaptively trains it with the base model parameters simultaneously using unrolled differentiation. The
results showed that models trained with our method have enhanced convergence capabilities and inference
performance compared with the de facto standard mean squared error and cross-entropy loss, and offline loss
function learning method ML3. Further analysis of the learned loss functions identified common patterns in
the shape of the learned loss function, as well as revealed unique emergent behavior present only in adaptively
learned loss functions. Namely, implicit tuning of the learning rate schedule, early stopping regularization,
and an adaptive form of label smoothing regulization. While this work has solely set focus on meta-learning
the loss function in isolation to better understand and analyze its properties, we believe that further benefits
can be realized upon being combined with existing optimization-based meta-learning techniques.

12

Published in Transactions on Machine Learning Research (10/2025)

References

Marcin Andrychowicz, Misha Denil, Sergio Gomez, Matthew W Hoffman, David Pfau, Tom Schaul, Brendan
Shillingford, and Nando De Freitas. Learning to Learn by Gradient Descent by Gradient Descent. In
Advances in Neural Information Processing Systems (NeurIPS), 2016.

Antreas Antoniou, Harrison Edwards, and Amos Storkey. How to Train Your MAML. International Con-
ference on Learning Representations (ICLR), 2019.

Sungyong Baik, Myungsub Choi, Janghoon Choi, Heewon Kim, and Kyoung Mu Lee. Meta-Learning with
Adaptive Hyperparameters. Advances in Neural Information Processing Systems (NeurIPS), 2020.

Sungyong Baik, Janghoon Choi, Heewon Kim, Dohee Cho, Jaesik Min, and Kyoung Mu Lee. Meta-Learning
with Task-Adaptive Loss Function for Few-Shot Learning. In IEEE/CVF International Conference on
Computer Vision (ICCV), 2021.

Jonathan T Barron. A General and Adaptive Robust Loss Function. In IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), 2019.

Atilm Giineg Baydin, Robert Cornish, David Martinez Rubio, Mark Schmidt, and Frank Wood. Online
Learning Rate Adaptation with Hypergradient Descent. In International Conference on Learning Repre-
sentations (ICLR), 2018.

Sarah Bechtle, Artem Molchanov, Yevgen Chebotar, Edward Grefenstette, Ludovic Righetti, Gaurav
Sukhatme, and Franziska Meier. Meta-Learning via Learned Loss. In International Conference on Pattern
Recognition (ICPR). IEEE, 2021.

Yoshua Bengio. Practical Recommendations for Gradient-Based Training of Deep Architectures. In Neural
Networks: Tricks of the Trade. Springer, 2012.

James Bergstra, Rémi Bardenet, Yoshua Bengio, and Baldzs Kégl. Algorithms for Hyper-parameter Opti-
mization. Advances in Neural Information Processing Systems (NeurIPS), 2011.

Alan Collet, Antonio Bazco-Nogueras, Albert Banchs, and Marco Fiore. Loss Meta-Learning for Forecasting,
2022.

Yadong Ding, Yu Wu, Chengyue Huang, Siliang Tang, Yi Yang, Longhui Wei, Yueting Zhuang, and Qi Tian.
Learning to Learn by Jointly Optimizing Neural Architecture and Weights. In IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), 2022.

Charles Dugas, Yoshua Bengio, Francois Bélisle, Claude Nadeau, and René Garcia. Incorporating Second-
Order Functional Knowledge for Better Option Pricing. Advances in Neural Information Processing Sys-
tems (NeurIPS), 2000.

Bradley Efron, Trevor Hastie, Iain Johnstone, and Robert Tibshirani. Least Angle Regression. 2004.

Thomas Elsken, Benedikt Staffler, Jan Hendrik Metzen, and Frank Hutter. Meta-Learning of Neural Archi-
tectures for Few-Shot Learning. In IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), 2020.

Matthias Feurer and Frank Hutter. Hyperparameter Optimization. In Automated Machine Learning.
Springer, 2019.

Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-Agnostic Meta-Learning for Fast Adaptation of
Deep Networks. In International Conference on Machine Learning (ICML), 2017.

Sebastian Flennerhag, Andrei A Rusu, Razvan Pascanu, Francesco Visin, Hujun Yin, and Raia Hadsell.
Meta-Learning with Warped Gradient Descent. International Conference on Learning Representations
(ICLR), 2020.

13

Published in Transactions on Machine Learning Research (10/2025)

Boyan Gao, Henry Gouk, and Timothy M Hospedales. Searching for Robustness: Loss Learning for Noisy
Classification Tasks. In IEEE/CVF International Conference on Computer Vision (ICCV), 2021.

Boyan Gao, Henry Gouk, Yongxin Yang, and Timothy Hospedales. Loss Function Learning for Domain
Generalization by Implicit Gradient. In International Conference on Machine Learning (ICML), 2022.

Santiago Gonzalez and Risto Miikkulainen. Effective Regularization through Loss Function Meta-Learning.
arXiv preprint arXiw:2010.00788, 2020a.

Santiago Gonzalez and Risto Miikkulainen. Improved Training Speed, Accuracy, and Data Utilization
Through Loss Function Optimization. In IEEE Congress on Evolutionary Computation (CEC), 2020b.

Santiago Gonzalez and Risto Miikkulainen. Optimizing Loss Functions through Multi-Variate Taylor Poly-
nomial Parameterization. In ACM Genetic and Evolutionary Computation Conference (GECCO), 2021.

Tan Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT press, 2016.

Diana F Gordon and Marie Desjardins. Evaluation and Selection of Biases in Machine Learning. Machine
Learning, 1995.

Edward Grefenstette, Brandon Amos, Denis Yarats, Phu Mon Htut, Artem Molchanov, Franziska Meier,
Douwe Kiela, Kyunghyun Cho, and Soumith Chintala. Generalized Inner Loop Meta-Learning. arXiw
preprint arXiv:1910.01727, 2019.

Nikolaus Hansen and Andreas Ostermeier. Completely Derandomized Self-Adaptation in Evolution Strate-
gies. Fvolutionary Computation, 2001.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep Residual Learning for Image Recognition.
In IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2016.

Timothy Hospedales, Antreas Antoniou, Paul Micaelli, and Amos Storkey. Meta-Learning in Neural Net-
works: A Survey. IEEFE Transactions on Pattern Analysis and Machine Intelligence (TPAMI), 2022.

Forrest N Iandola, Song Han, Matthew W Moskewicz, Khalid Ashraf, William J Dally, and Kurt Keutzer.
SqueezeNet: AlexNet-Level Accuracy with 50x Fewer Parameters and < 0.5MB Model Size. arXiv preprint
arXiv:1602.07360, 2016.

Jaehong Kim, Sangyeul Lee, Sungwan Kim, Moonsu Cha, Jung Kwon Lee, Youngduck Choi, Yongseok Choi,
Dong-Yeon Cho, and Jiwon Kim. Auto-Meta: Automated Gradient-Based Meta Learner Search. arXiv
preprint arXiv:1806.06927, 2018.

Diederik P Kingma and Jimmy Ba. Adam: A Method for Stochastic Optimization. International Conference
on Learning Representations (ICLR), 2015.

John R Koza. Genetic Programming II. MIT press Cambridge, 1994.

Alex Krizhevsky and Geoffrey Hinton. Learning Multiple Layers of Features from Tiny Images. Technical
report, University of Toronto, 2009.

Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-Based Learning Applied to
Document Recognition. Proceedings of the IEEE, 1998.

Zhaoqi Leng, Mingxing Tan, Chenxi Liu, Ekin Dogus Cubuk, Xiaojie Shi, Shuyang Cheng, and Dragomir
Anguelov. PolyLoss: A Polynomial Expansion Perspective of Classification Loss Functions. International
Conference on Learning Representations (ICLR), 2022.

Chuming Li, Xin Yuan, Chen Lin, Minghao Guo, Wei Wu, Junjie Yan, and Wanli Ouyang. AM-LFS: AutoML
for Loss Function Search. In IEEE/CVF International Conference on Computer Vision (ICCV), 2019.

14

Published in Transactions on Machine Learning Research (10/2025)

Hao Li, Tianwen Fu, Jifeng Dai, Hongsheng Li, Gao Huang, and Xizhou Zhu. AutoLoss-Zero: Searching Loss
Functions from Scratch for Generic Tasks. In IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), 2022.

Zhenguo Li, Fengwei Zhou, Fei Chen, and Hang Li. Meta-SGD: Learning to Learn Quickly for Few-Shot
Learning. arXiv preprint arXiv:1707.09835, 2017.

Peidong Liu, Gengwei Zhang, Bochao Wang, Hang Xu, Xiaodan Liang, Yong Jiang, and Zhenguo Li. Loss
Function Discovery for Object Detection via Convergence-Simulation Driven Search. In International
Conference on Learning Representations (ICLR), 2020.

Jonathan Lorraine, Paul Vicol, and David Duvenaud. Optimizing Millions of Hyperparameters by Implicit
Differentiation. In International Conference on Artificial Intelligence and Statistics (AISTATS), 2020.

Andrew L Maas, Awni Y Hannun, Andrew Y Ng, et al. Rectifier Nonlinearities Improve Neural Network
Acoustic Models. In International Conference on Machine Learning (ICML), 2013.

Dougal Maclaurin, David Duvenaud, and Ryan Adams. Gradient-Based Hyperparameter Optimization
through Reversible Learning. In International Conference on Machine Learning (ICML), 2015.

Peter McCullagh, John A Nelder, et al. Generalized Linear Models. Routledge, 1989.

Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bissacco, Bo Wu, and Andrew Y Ng. Reading Digits in
Natural Images with Unsupervised Feature Learning. Advances in Neural Information Processing Systems
(NeurIPS), 2011.

R Kelley Pace and Ronald Barry. Sparse Spatial Autoregressions. Statistics and Probability Letters, 1997.

Eunbyung Park and Junier B Oliva. Meta-Curvature. Advances in Neural Information Processing Systems
(NeurIPS), 2019.

Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang, Zachary DeVito, Zeming Lin,
Alban Desmaison, Luca Antiga, and Adam Lerer. Automatic Differentiation in Pytorch. 2017.

Huimin Peng. A Comprehensive Overview and Survey of Recent Advances in Meta-Learning. arXiv preprint
arXiv:2004.11149, 2020.

Apostolos F Psaros, Kenji Kawaguchi, and George Em Karniadakis. Meta-Learning PINN Loss Functions.
Journal of Computational Physics, 2022.

Aravind Rajeswaran, Chelsea Finn, Sham M Kakade, and Sergey Levine. Meta-Learning with Implicit
Gradients. Advances in Neural Information Processing Systems (NeurIPS), 2019.

Christian Raymond. Meta-Learning Loss Functions for Deep Neural Networks. arXiv preprint
arXiw:2406.09713, 2024.

Christian Raymond, Qi Chen, Bing Xue, and Mengjie Zhang. Learning Symbolic Model-Agnostic Loss
Functions via Meta-Learning. IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI),
2023.

Michael Redmond. Communities and Crime, 2009.

Russell Reed and Robert J MarksIl. Neural Smithing: Supervised Learning in Feedforward Artificial Neural
Networks. Mit Press, 1999.

David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. Learning Representations by Back-
propagating Errors. Nature, 1986.

Jirgen Schmidhuber. Evolutionary Principles in Self-Referential Learning. PhD thesis, Technical University
of Munich, 1987.

15

Published in Transactions on Machine Learning Research (10/2025)

Karen Simonyan and Andrew Zisserman. Very Deep Convolutional Networks for Large-Scale Image Recog-
nition. International Conference on Learning Representations (ICLR), 2015.

Jost Tobias Springenberg, Alexey Dosovitskiy, Thomas Brox, and Martin Riedmiller. Striving for Simplicity:
The All Convolutional Net. International Conference on Learning Representations (ICLR), 2014.

Joaquin Vanschoren. Meta-Learning: A Survey. arXiv preprint arXiv:1810.03548, 2018.

Qi Wang, Yue Ma, Kun Zhao, and Yingjie Tian. A Comprehensive Survey of Loss Functions in Machine
Learning. Annals of Data Science, 2022.

Xiaobo Wang, Shuo Wang, Cheng Chi, Shifeng Zhang, and Tao Mei. Loss Function Search for Face Recog-
nition. In International Conference on Machine Learning (ICML), 2020.

Yuhuai Wu, Mengye Ren, Renjie Liao, and Roger Grosse. Understanding Short-Horizon Bias in Stochastic
Meta-Optimization. International Conference on Learning Representations (ICLR), 2018.

Yuan Yao, Lorenzo Rosasco, and Andrea Caponnetto. On Early Stopping in Gradient Descent Learning.
Constructive Approximation, 2007.

Sergey Zagoruyko and Nikos Komodakis. Wide Residual Networks. arXiv preprint arXiv:1605.07146, 2016.

16

Published in Transactions on Machine Learning Research (10/2025)

A Extended Background

w =y
3 1=}
S S

s

=3

S
=N
S

Learned Loss
2
g
Learned Loss
P
ES

)
S
=

u
102 \—

IS}
S

=

0.0 0.2 0.4 0.6 038 10 0.0 02 04 0.6 08 10
Predicted Probability (y = 1) Predicted Probability (y = 1)
600
100
500
g 80 % 400
— 6 —
b 2 300
£ =]
g g 20
— § —
20 100
0 0

0.0 0.2 04 0.6 08 1.0 0.0 0.2 0.4 0.6 0.8 10
Predicted Probability (y = 1) Predicted Probability (y = 1)
0 20000 40000 60000 80000 100000

Figure 5: Four example loss functions generated by AdaLFL using the network architecture proposed in
(Bechtle et al., 2021), which uses a softplus activation in the output layer, causing flattening behavior
degrading learning performance.

A.1 Online vs Offline Loss Function Learning

The key algorithmic difference of AdaLFL from prior offline gradient-based methods (Bechtle et al., 2021;
Gao et al., 2022) is that ¢ is updated after each update to 6 in lockstep in a single phase as opposed to
learning 6 and ¢ in separate phases. This is achieved by not resetting 6 after each update to ¢ (Algorithm 1,
line 3), and consequently, ¢ has to adapt to each newly updated timestep such that ¢ = (g, d1, ..., DS, 0)-
In offline loss function learning, ¢ is learned separately at meta-training time and then is fixed for the full
duration of the meta-testing phase where 6 is learned and ¢ = (¢p). Another crucial difference is that in
online loss function learning, there is an implicit tuning of the learning rate schedule and implicit early
stopping regularization, as discussed in Section 5.5 and 5.6, respectively.

A.2 Alternative Paradigms

Although online loss function learning has not been explored in the meta-learning context, some existing
research outside the subfield has previously explored the possibility of adaptive loss functions (Barron, 2019;
Li et al., 2019; Wang et al., 2020). However, we emphasize that these approaches are categorically different
in that they do not learn the loss function from scratch; instead, they interpolate between a small subset
of handcrafted loss functions, updating the loss function after each epoch. Furthermore, in contrast to loss
function learning which is both task and model-agnostic, these techniques are restricted to being task-specific,
e.g., face recognition only. Finally, this class of approaches does not implicitly tune the base learning rate
«, as is the case in loss function learning.

17

Published in Transactions on Machine Learning Research (10/2025)

B Loss Function Representation

The representation of the learned loss function under consideration in AdaL.FL is a simple feed-forward
neural network. We consider the general case of a feed-forward neural network with one input layer, L
hidden layers, and one output layer. A hidden layer refers to a feed-forward mapping between two adjacent
layers h¢(z) such that

how (hga-v) = @ (¢ Thyq 1)), VI=1,.. L, (12)

where ¢(-)(!) refers to the element-wise activation function of the I** layer, and ¢ is the matrix of inter-
connecting weights between hu-1) and h,a). For the input layer, the mapping is defined as o) (i, fo(x):),
and for the output layer as A our (hyr)). Subsequently, the meta-learned loss function £¢ parameterized by
the set of meta-parameters ¢ = {¢o, ..., @1, Pout} can be defined as a composition of feed-forward mappings

such that
€ (yi, fo(2)i) = hgoun <h¢<L>(m (h(pm) (yivfe(x)i)))) (13)

which is applied output-wise across the C output channels of the ground truth and predicted labels, e.g.,
applied to each index of the one-hot encoded class vector in classification, or to each continuous output in
regression. The loss value produced by f¢ is then summed across the output channel to reduce the loss

vector into its final scalar form c

Mol fol@) = 5 3 Colui fo(a)s). (14)

i=0
B.1 Network Architecture

The learned loss function used in our experiments has L = 2 hidden layers and 40 hidden units in each layer,
inspired by the network configuration utilized in Meta-Learning via Learned Loss (ML® Supervised) (Bechtle
et al., 2021). We found no consistent improvement in performance across our experiments by increasing
or decreasing the number of hidden layers or nodes. However, it was found that the choice of non-linear
activations used in ML?3, was highly prone to encouraging poor-performing loss functions with large flat
regions, as shown in Figure 5.

In ML3, rectified linear units, prerv(z) = maz(0, x), are used in the hidden layers and the smooth SoftPlus
Psoftplus = log(eﬁ"” + 1) is used in the output layer to enforce the optional constraint that Mjcarneq should
be non-negative, i.e., YyV fo(x) Mg, (y, fo(x)) > 0. An adverse side-effect of using the softplus activation in
the output is that all negative inputs to the output layer go to 0, resulting in flat regions in the learned loss.
Furthermore, removal of the output activation does not resolve this issue, as ReLU, as well as other common
activations such as Sigmoid, TanH, and ELU, are also bounded and are prone to causing flatness when their
activations saturate, a common occurrence when taking gradients through long unrolled optimization paths
(Antoniou et al., 2019).

B.2 Smooth Leaky ReLU

To inhibit the flattening behavior of learned loss functions, a range unbounded activation function should be
used. A popular activation function that is unbounded (when the leak parameter v < 0) is the Leaky ReLU
(Maas et al., 2013)

Pleaky(x) = max(y -z, z) (15)
= max(0,z) - (1 —) + yz. (16)

However, it is typically assumed that a loss function should be at least C!, i.e., continuous in the zeroth and
first derivatives. Fortunately, there is a smooth approximation to the ReLU, commonly referred to as the
SoftPlus activation function (Dugas et al., 2000), where 8 (typically set to 1) controls the smoothness.

Psmooth (T) = % . log(eﬁx +1) (17)

18

Published in Transactions on Machine Learning Research (10/2025)

0.8

0.6

0.4

y=10
0.0

0.2 —y=0.75
2

ReLU

Leaky ReLU

Smooth ReLU

=== Smooth Leaky ReLU

Figure 6: The proposed activation function and its corresponding derivatives when shifting v are shown in
(a) and (b), respectively. In (c) and (d) the activation function and its derivatives when shifting 3 are
shown. Finally, in (¢), the smooth leaky ReLU is contrasted with the original smooth and leaky variants
ReLU.

19

Published in Transactions on Machine Learning Research (10/2025)

The leaky ReLU is combined with the smooth ReLU by taking the term maxz(0, z) from Equation (16) and
substituting it with the smooth SoftPlus defined in Equation (17) to construct a smooth approximation to
the leaky ReLU,

Phidaen(x) = L 10g(e7 + 1) - (1=) + 7, (18)
where the derivative of the smooth leaky ReLLU with respect to the input x is

d [log(eP* +1)-(1—y)

Phidden(T) = Ir 3 +yz (19)
_ dsllog(@ +1]-(1-y) . (20)
d [Br ’ _
= [65 .—Z,Blj +(11 Dy (21)
b,
e
R 2
_ ZZ iz (25)

The smooth leaky ReLLU and its corresponding derivatives are shown in Figure 6. Early iterations of AdaLFL
learned v and 8 simultaneously with the network weights ¢, however; empirically, we found that setting
v =0.01 and 8 = 10 gave adequate inference performance across our experiments.

C Experimental Setup

For all datasets, we use the original training—testing split, with 10% of the training data held out as a
validation set. The validation set is used to optimize the training setup and tune hyper-parameters for the
baseline models, ensuring they represent the strongest possible comparisons. Standard data augmentation
techniques—mnormalization, random horizontal flips, and random cropping—are applied to the training data
of CIFAR-10, CIFAR-100, and SVHN during both meta-training and base training.

In the inner loop, all regression models are trained using stochastic gradient descent (SGD) with a base
learning rate of a = 0.001. Classification models are trained with SGD using a base learning rate of
a = 0.01, and on CIFAR-10, CIFAR-100, and SVHN, Nesterov momentum 0.9 and weight decay 0.0005
are applied. These choices reflect the settings that gave the best performance on the validation set, while
the remaining base-model hyper-parameters follow the standard configurations reported in the literature,
consistent with the setup in (Gonzalez & Miikkulainen, 2021).

To initialize Mg, Sinie = 2500 steps are taken in offline mode with a meta learning rate of n = le — 3.
In contrast, in online mode, a meta learning rate of n = le — 5 is used (note, a high meta learning rate
in online mode can cause a jittering effect in the loss function, which can cause training instability). For
meta-optimization, the Adam optimizer (Kingma & Ba, 2015) is used in the outer loop for both initialization
and online adaptation.

All experimental results reported show the average across 10 independent executions with different seeds
to analyze algorithmic consistency. To ensure fairness, all methods are initialized with identical parameters
under the same random seed, such that any differences in variance can be attributed to the respective
algorithms and their loss functions. Furthermore, the choice of hyper-parameters between MetaLR, ML?,
and AdaLFL has been standardized to allow for a fair comparison.

20

Published in Transactions on Machine Learning Research (10/2025)

C.1 Meta-Learned Learning Rate

A notable finding presented in Section 5.5 of the main manuscript is the intimate relationship between
learning a loss function and learning a learning rate/learning rate schedule, which is due to learned loss
functions not just learning shape, but also learning scale. Given this relationship, it is interesting to compare
and contrast the performance of AdaLFL to a method for meta-learning a base learning rate online. To
construct a fair comparison, we use an identical learning setup to that used in AdaLFL, which allows us to
control for the hyper-parameter settings. The algorithm, which we further refer to as Meta-LR is presented
in Algorithms 3 and 4, uses an offline initialization process to find the best initial base learning rate, following
which learning subsequently progresses to an online adaptation process.

Algorithm 3 Learning Rate Initialization (Offline)

Input: L7 + Task loss function (meta-objective)

1: ag < Initialize the base learning rate
2: for t € {0, ey Simit — 1} do
3: 0y < Reset parameters of base learner
for i € {0, ..., Sinner — 1} do
X, y «+ Sample from Dyyqin
Oit1 = 0i — Vo, L7 (y, fo,(X))
end for
X, y < Sample from D,q;iq
Liask < LT(yv f9i+1 (X))
10: 11— o — NV, Liask
11: end for

© ® NPTk

Algorithm 4 Learning Rate Adaptation (Online)

Input: o + Learned learning rate
Input: L7 + Task loss function

1: 0y < Initialize parameters of base learner
2: for t € {0, -~-7Strain — 1} do
3: X,y < Sample from Diqin

4: 9t+1 — et - OlivétET(yv f91, (X))
5: X, y < Sample from D,qiq

6: »Ctask — ET(Z/» f91+1 (X))

7 Qg1 < Qp — nvatﬁtask

8: end for

21

Published in Transactions on Machine Learning Research (10/2025)

Table 4: Experimental results exploring alternative loss function representations based on Taylor
polynomial parameterizations reporting the mean + standard deviation of final inference testing mean
squared error or error rate across 10 independent executions of each algorithm on each task + model pair.

Task Model Quadratic-TP (Online) Cubic-TP (Online) AdaLFL (Online)
Crime MLP - 0.0254+0.0015 0.02634-0.0023
Diabetes MLP - 0.0418+0.0041 0.0420+0.0014
California MLP - 0.0783+0.0167 0.0151+0.0007
MNIST Logistic 0.0810+0.0281 0.0707+£0.0009 0.0697+0.0010
MLP 0.02054-0.0008 0.01854-0.0007 0.018440.0006
LeNet-5 0.1357+0.0728 0.0096+0.0006 0.0091+0.0004
CIFAR-10 VGG-16 0.1442+0.0025 0.1439+0.0027 0.0903+0.0032
AlICNN-C 0.108640.0100 0.090840.0020 0.08350.0050
ResNet-18 0.1133+0.0033 0.130940.0070 0.0788+0.0035
SqueezeNet 0.1506+0.0092 0.1367+0.0041 0.1083+0.0049
CIFAR-100 WRN 28-10 0.2952+0.0220 0.2934+0.0621 0.2668+0.0283
SVHN WRN 16-8 0.0494+0.0000 0.0431+0.0000 0.0441+0.0014

D Further Experiments

D.1 Loss Function Representations

In AdaLFL a two-hidden-layer feedforward neural network is used for the loss function representation, this
was inspired by its use in prior studies (Bechtle et al., 2021; Psaros et al., 2022). We chose this representation
as it has more expressive power than both quadratic and cubic Taylor polynomials, which were used in
(Gonzalez & Miikkulainen, 2021) and (Gao et al., 2021; 2022), respectively. Although the best representation
for learned loss functions is not under investigation; it is important to note that the proposed method of
online meta-optimization discussed in Section 2.4 makes no assumptions about the underlying representation
used for the learned loss function. Therefore, alternative representations can be used in AdaLFL.

In Table 4, results comparing and contrasting the performance between different learned loss function rep-
resentations are presented. Specifically, we contrast the performance of AdaLFL which uses a feed-forward
neural network (NN) with smooth leaky ReLU activations against the aforementioned quadratic and cu-
bic Taylor polynomials (TP) representation. The results show that the NN representation has on average
the best performance and consistency in contrast to quadratic and cubic Taylor polynomials, with better
performance and very little variance between independent executions on all datasets except the two small
regression datasets Crime and Diabetes. These results demonstrate the superiority of the NN representation
for learned loss functions, especially when dealing with relatively large learning tasks where expressive be-
havior is important. Note, that on the regression datasets, we found that the majority of the quadratic TP
experiments diverged, even with hyper-parameter tuning.

D.2 Loss Network Activation Function

An important difference between AdaLLFL’s neural network representation and prior neural network-based
learned loss function representation such as the one used in ML3, is the use of smooth leaky ReLU activation
functions presented in Section 2.2 of the main manuscript. This new activation function resolves many issues
with the prior network design; however, it remains to be seen how much of the performance improvement can
be attributed to the newly proposed smooth leaky ReLU activation function vs the newly proposed online
optimization algorithm.

22

Published in Transactions on Machine Learning Research (10/2025)

Table 5: Experimental results ablating the newly proposed smooth leaky ReLLU activation function,
reporting the mean + standard deviation of final inference testing mean squared error or error rate across
10 independent executions of each algorithm on each task + model pair.

Task Model ML? ReLU (Offline) ML?3 SLReLU (Offline) AdaLFL (Online)
Crime MLP 0.0270+0.0025 0.027440.0029 0.0263+0.0023
Diabetes MLP 0.048140.0020 0.0430+0.0012 0.0420+0.0014
California MLP 0.0346+0.0087 0.0276+0.0058 0.0151+0.0007
MNIST Logistic 0.0782+0.0117 0.071040.0015 0.0697+0.0010
MLP 0.0167+0.0021 0.0185+0.0004 0.0184+0.0006
LeNet-5 0.0095+0.0006 0.0094+0.0005 0.0091+0.0004
CIFAR-10 VGG-16 0.1034+0.0058 0.1024+0.0055 0.0903+0.0032
AlICNN-C 0.1087+0.0174 0.1015£0.0055 0.0835+£0.0050
ResNet-18 0.0972+0.0259 0.0883+0.0041 0.0788+0.0035
SqueezeNet 0.128240.0086 0.1162+0.0052 0.1083+0.0049
CIFAR-100 WRN 28-10 0.311440.0063 0.3108+0.0075 0.2668+0.0283
SVHN WRN 16-8 0.0500+0.0034 0.0502+0.0032 0.0441+0.0014

In Table 5, results are presented comparing and contrasting the performance between offline loss function
learning (i.e. ML3) with the standard ReLU + SoftPlus network architecture, and the new smooth leaky
ReLU network architecture. The results show that on most tasks the new activation function improves per-
formance compared to the conventional architecture used in ML3. However, this performance improvement
is not a significant contributing factor compared to the change in optimization algorithm, i.e. going from

offline to online meta-learning.

D.3 Second-Order Hyperparameter Sensitivity

We further investigated the sensitivity of AdaLFL to
second-order hyperparameters, with particular fo-
cus on the meta-level learning rate 7, which was the
only parameter found to significantly affect perfor-
mance, a behavior consistent with observations in
other widely used meta-learning algorithms such as
MAML (Finn et al., 2017). In the online adap-
tation setting, setting n too high can cause the
learned loss function to change too abruptly af-
ter each update, leading to unstable or oscillatory
training dynamics. To evaluate this effect, we per-
formed an ablation study on MNIST using LeNet-
5 with varying values for the meta learning rate
n € {1071,...,1075}. The results presented in Ta-
ble 6, demonstrate that AdaLFL maintains stable
and consistent performance for all but the largest

Table 6: Ablating the second-order hyperparameter
sensitivity to the meta-level learning rate n. Results

report the mean + standard deviation of testing error

rate across 10 independent executions of each

task-+model.
Task Model AdaLFL
MNIST LeNet-5 (p=10"1) 0.0191 £ 0.0070
LeNet-5 (p = 102) 0.0159 £ 0.0017
LeNet-5 (n = 1073) 0.0104 4 0.0011
LeNet-5 (n = 10=%) 0.0094 4 0.0007
LeNet-5 (p = 107°) 0.0091 =+ 0.0004
LeNet-5 (n = 1075) 0.0088 4 0.0004

value of 7, where a there is a slight degradation in accuracy. Overall, these findings indicate that AdaLFL
is robust to the choice of n within a relatively broad range, providing evidence of its stability with respect

to second-order hyperparameter sensitivity.

23

Published in Transactions on Machine Learning Research (10/2025)

10 "1
1072< k

Log Squared Error
Log Squared Error

|
w
(=]
L

—_
(=1

0 2000 4000 6000 8000 10000 0 2000 4000 6000 8000 10000

(a) Crime + MLP (b) Diabetes + MLP
AdaLFL (Training) === AdaLFL (Validation)

Figure 7: Mean learning curves across 10 independent executions of AdaLLFL showing the training mean
squared error (y-axis) against gradient steps (x-axis) when taking meta gradient steps on the meta-training
(blue) vs meta-validation (red) set.

D.4 Regularization and Meta-Objectives

When computing the meta-objective of AdaLFL. Table 7: Results reporting the mean + standard deviation
(Equation 8 in the main manuscript) Ligsr = testing mean squared error across 10 independent
L7y, fo,..(x)), the instances can either be executions of each algorithm on each task + model pair.
sampled from Dyyqin OF Dyarig. Consequently,
the learned loss function can either optimize for Task AdaLFL (Training) AdaLFL (Validation)
in-sample performance or out-of-sample gener- -
alization, respectively. This behavior is shown Crime 0.0267-£0.0022 0.0265::0.0021
on the Communities and Crime and Diabetes Diabetes 0.04684+0.0016 0.0420+0.0014
dataset, where as shown in Figure 7, optimiz-
ing the meta-objective using training samples
results in the training error quickly approaching 0. In contrast, when using the validation samples the train-
ing error does not converge as quickly and to as low of a training error value. This behavior is a form of
regularization since as shown in Table 7 the final inference testing error is superior when using validation
samples on both the Communities and Crime and Diabetes datasets. This is an important discovery as it
suggests that loss function learning can induce a form of regularization, similar to the findings in (Gonzalez
& Miikkulainen, 2021; 2020a; Raymond et al., 2023).

D.5 Generalization Dynamics During Training

To further assess the generalization perfor-
mance of AdaLFL during training, we con-
ducted experiments on MNIST using the LeNet-
5 base model. The dataset was partitioned
into four subsets: training, validation, evalua-
tion, and testing. The validation set was used
to learn the loss function parameters ¢, while
the evaluation set, a distinct held-out subset,
was employed to monitor out-of-sample per- i i] ; ' !
formance throughout training. As shown in 0 5000 10000 15000 20000 25000
Figure 8, the proposed method achieves faster

convergence and improved generalization com- Baseline ML3 (Offline) MetaLR (Online) ~ —— AdaLFL (Online)
pared to the baseline. These results indicate

5\
L

Log Error Rate

|
[S)

—
S
L

that AdaLFL not onl lorates optimizati Figure 8: Mean leaning curves across 10 independent
a a not only accelerates optimzation executions of each algorithm on MNIST+LeNet-5,

but also enhances robustness against overfit- . ca .
. . > . showing the log of the validation error rate (y-axis)
ting, leading to more stable learning dynamics. . . .
against gradient steps (x-axis).

24

Published in Transactions on Machine Learning Research (10/2025)

D.6 Learned Loss Functions (Extended)

Learned Loss
P b e B I X N
wn =3 wn =} wn =} wn
Learned Loss
— [*) 5] I
=l (=] — %)

0.4 -0.2 0.0 0.2 0.4 0.4 -0.2 0.0 0.2 0.4
Error Error
21 14
172) v
172] 172]
S 20 S 134
— —
=] -
Ew £
= E 121
[(5]
— —
18
114
17
10
-0.4 -0.2 0.0 0.2 0.4 0.4 0.2 0.0 0.2 0.4
Error Error
» 214
v 172]
8 & 201
a2 q
=] k=]
£ £
= 20 = 194
[(5]
— —
19 181
-0.4 -0.2 0.0 0.2 0.4 0.4 0.2 0.0 0.2 0.4
Error Error
2
261
21
2 % 05
Q e
— —
Eh E
24+
= g
[19 o
— — 53]
18 2]
-0.4 -0.2 0.0 0.2 0.4 0.4 —0.2 0.0 0.2 0.4
Error Error
0 2000 4000 6000 8000 10000

Figure 9: Loss functions generated by AdaLFL on the Communities and Crime dataset, where each plot
represents a loss function, and the color represents the current gradient step.

25

Published in Transactions on Machine Learning Research (10/2025)

=
S

Learned Loss
% © = = o >
(=] (=] (=] (=} (=3 (=}
Learned Loss
% ° = ot I~y o
(=] (=] (=] (=3 (=] (=]

Error Error

Learned Loss
< %) = =
=} (=1 (=] =] (=)
Learned Loss
D ~ >© =3
(=] =] (=3 (=3

Error Error

120

80

Learned Loss
© > =
(=} (=] (=}
Learned Loss
(%) w B F W
(=} W (=} W (=}

-0.4 -0.2 0.0 0.2 0.4 -0.4 -0.2 0.0 0.2 0.4
Error Error
100 801
2 90 2
S 701
3 S
= 3
£ £ 604
g g
37 3
501
60
50
-0.4 -0.2 0.0 0.2 0.4 0.4 -0.2 0.0 0.2 0.4
Error Error
0 2000 4000 6000 8000 10000

Figure 10: Loss functions generated by AdaLLFL on the Diabetes dataset, where each plot represents a loss
function, and the color represents the current gradient step.

26

Published in Transactions on Machine Learning Research (10/2025)

5]
7
17 w 41
172 6 v
Q o
— —
- e
o Q 34
= £
< <
Q Q
— —
2]
4
1
-0.4 0.2 0.0 0.2 0.4 0.4 0.2 0.0 0.2 0.4
Error Error
26 6.0 1
24 5.5
v 172)
8 8
0 22 3 5.0
B B
£20 2 a5
< <
Q Q
— 1.8 — 4.0
1.6 3.5
14 3.0
-0.4 -0.2 0.0 0.2 0.4 -0.4 0.2 0.0 0.2 0.4
Error Error
3.25 4.0
3.00
7] «u |
8 275 8 35
= —
g 2% 3 1ol
£ 225 £
3 3
2.00 25
1.75
150 2.0
0.4 -0.2 0.0 0.2 0.4 0.4 -0.2 0.0 0.2 0.4
Error Error
254
25
] @2 201
<] e
— 2.0 —
B B 151
& g
015 Q
— — 104
1.0
0.5
—04 ~0.2 0.0 02 0.4 —0.4 0.2 0.0 02 0.4
Error Error
0 2000 4000 6000 8000 10000

Figure 11: Loss functions generated by AdaLLFL on the California Housing dataset, where each plot
represents a loss function, and the color represents the current gradient step.

27

Published in Transactions on Machine Learning Research (10/2025)

Learned Loss

Learned Loss

Learned Loss

Learned Loss

Figure 12: Loss functions generated by AdaLFL on the MNIST dataset, where each row represents a loss

25 30
20.0
25
17.5 2
5]
150 22
Q
125 £
S 15
10.0 =
7.5 10
5.0
0.0 0.2 0.4 0.6 0.8 1.0 0.0 02 0.4 0.6 038 10
Predicted Probability (y = 1) Predicted Probability (y = 0)
18
16 25
14 % 20
12 =
o g 15
t
8 10
6
5
0.0 02 0.4 0.6 038 10 0.0 02 0.4 0.6 038 10
Predicted Probability (y = 1) Predicted Probability (y = 0)
18 25
16
14 020
Q
12 =
B 15
10 £
8
8 = 10
6
4 5
0.0 02 0.4 0.6 038 1.0 0.0 02 04 0.6 038 1.0
Predicted Probability (y = 1) Predicted Probability (y = 0)
30
25.0
25
25
]
20.0 S 20
17.5 3
15.0 2
125 10
10.0
00 02 04 06 08 10 00 02 04 06 08 10
Predicted Probability (y = 1) Predicted Probability (y = 0)
0 5000 10000 15000 20000 25000

function, and the color represents the current gradient step.

28

Published in Transactions on Machine Learning Research (10/2025)

Learned Loss

| | |
S b o3 4 b
2 o g8 4 2
Learned Loss

=y w =

-175 -5
08 1! 0 02 04 056 08 Il
Predicted Probablhty y=1) Predicted Probability (y = 0)

o
=
=
N
=3

0.0 02

Learned Loss
o IS o o S
Learned Loss

=3
4
=

0.0 02 0.4 0.6 08 1 02 0.4 0.6 038 10
Predicted Probability (y = 1) Predicted Probability (y = 0)

Learned Loss
N - Y
Learned Loss

« > o 2

=3
g
=

0.0 02 0.4 0.6 038 1 02 0.4 0.6 038 1.0
Predicted Probability (y = 1) Predicted Probability (y = 0)

Learned Loss

» = B B & = 2
Learned Loss

- «» s b

0.0 02 04 0.6 038 1.0 0.0 02 04 0.6 038 1.0
Predicted Probability (y = 1) Predicted Probability (y = 0)
0 5000 10000 15000 20000 25000

Figure 13: Loss functions generated by AdaLLFL on the MNIST dataset, where each row represents a loss
function, and the color represents the current gradient step.

29

Published in Transactions on Machine Learning Research (10/2025)

60 1001
50
80+
2 40 2
] 5]
s |
S 30 = 60
Q o
£ 5
(] Q 4
| 3 40
10
0 204
10
0.0 02 04 0.6 0.8 1.0 0.0 02 0.4 0.6 0.8 10
Predicted Probability (y = 1) Predicted Probability (y = 0)
80
50 o
40
" 40 "
20
] 5]
=0 =
E T
S 20 g
A 8 a0
10 -60
-80
0.0 02 0.4 0.6 0.8 1.0 0.0 02 0.4 0.6 038 1.0
Predicted Probabilit =1 Predicted Probabilit =0
yy y y
40 120
30 100 {
w «
2 20 & 804
ki S
])
o 10 5]
E E 604
< <
[] Q
- 0 = 0]
-10
201
0.0 02 04 0.6 0.8 1.0 0.0 02 0.4 0.6 0.8 10
Predicted Probabilit =1 Predicted Probabilit; =0)
y (y y(y
0
100 1o
-20
§ 80 2
A S 30
3 3
60 40
s 8 -s0
40 -60
-70
20

Figure 14: Loss functions generated by AdaLFL on the MNIST dataset, where each row represents a loss

0.8 1.

0.2 0.4 0.6

Predicted Probability (y = 1)

0.8 1.

°

0.2 0.4 0.6

Predicted Probability (y = 0)

T

0 5000 10000

15000

20000 25000

function, and the color represents the current gradient step.

30

Published in Transactions on Machine Learning Research (10/2025)

20 100
0 75
2 2 504
<) 5]
—~ —
E —40 'q'é 25
g 60 S o
- —
-80 -25
-100 50
0.0 02 0.4 0.6 08 10 0.0 02 0.4 0.6 0.8 1.0
Predicted Probability (y = 1) Predicted Probability (y = 0)
150
20
125 //
7] 0
Z 100 § /
= =
= 75 = 20
£ £
g 50 g 40
— —
25 60
0
-80
0.0 0.2 0.4 0.6 038 10 0.0 02 0.4 0.6 0.8 1.0
Predicted Probability (y = 1) Predicted Probability (y = 0)
40
80
20
wn 60 7
w0 v
3 S’
E 40 ,qg 0
g S 40
- —
0 -60
-20 -80
0.0 0.2 0.4 0.6 0.8 1.0 0.0 02 0.4 0.6 0.8 1.0
Predicted Probability (y = 1) Predicted Probability (y = 0)
75
120
50
o 100 w25
172 1723
3]
2 = 0
o 80 =]
Z Z
S 60 g
- — =50
40 75
2 -100
0.0 02 0.4 0.6 0.8 10 0.0 02 0.4 0.6 038 10
Predicted Probability (y = 1) Predicted Probability (y = 0)
20000 40000 60000 80000 100000

Figure 15: Loss functions generated by AdaLLFL on the CIFAR-10 dataset, where each row represents a loss
function, and the color represents the current gradient step.

31

Published in Transactions on Machine Learning Research (10/2025)

120
80
100
» 80 «» 60
w 1723
3« 3
3 3%
% 40 %
S 2 520
01— 0
-20
0.0 02 0.4 0.6 0.8 1.0 0.0 02 0.4 0.6 038 1.0
Predicted Probability (y = 1) Predicted Probability (y = 0)
0 100
80
40
60
2 20 2
5] 8 40
— —
3 o g »
= =
40 40
~60 -60
0.0 02 04 0.6 0.8 1.0 0.0 02 0.4 0.6 0.8 1.0
Predicted Probability (y = 1) Predicted Probability (y = 0)
60
120
o Y « 100
172 v
3 3
g) = 801
Q Q
o 0 Q
s —
404
-20
20+
0.0 0.2 0.4 0.6 0.8 1.0 0.0 02 0.4 0.6 0.8 1.0
Predicted Probability (y = 1) Predicted Probability (y = 0)
120 s
100 »
2 2 0
S s S s
b=}]
z 2
g o 5
2 g s
40 —100
-125
20 —1504, ‘ ‘ ‘ ‘ ‘
0.0 0.2 0.4 0.6 038 1.0 0.0 02 0.4 0.6 08 1.0
Predicted Probability (y =1) Predicted Probability (y = 0)
0 20000 40000 60000 80000 100000

Figure 16: Loss functions generated by AdaLFL on the CIFAR-10 dataset, where each row represents a loss
function, and the color represents the current gradient step.

32

Published in Transactions on Machine Learning Research (10/2025)

10 204
0 104
2 -10 @ 01
- — 0
‘é -20 g
S 30 g —207
— —
—40 =301
401
-50
0.0 02 04 0.6 08 10 00 02 04 0.6 08 10
Predicted Probability (y = 1) Predicted Probability (y = 0)
30
30
20
20
w 10 »n
B & 10
i IS |
)]
o) S
§ -10 g
= 5 = o
0 -20
-30
0.0 0.2 0.4 0.6 0.8 1.0 0.0 02 0.4 0.6 0.8 1.0
Predicted Probability (y = 1) Predicted Probability (y = 0)
30 30
20 20
2 1 2
k S
=]
Q Q 0
= £
S -10 3
- — -10
-20
-20
-30
0.0 0.2 0.4 0.6 0.8 1.0 0.0 02 0.4 0.6 0.8 1.0
Predicted Probability (y = 1) Predicted Probability (y = 0)
o 40
30
50
2 @ 20
S0 S —_—
3 -
g 30 E 0
o Q
= 2 = 10
0 -20
-30
0.0 0.2 0.4 0.6 0.8 1.0 0.0 02 0.4 0.6 0.8 10
Predicted Probability (y = 1) Predicted Probability (y = 0)
0 20000 40000 60000 80000 100000

Figure 17: Loss functions generated by AdaLFL on the CIFAR-10 dataset, where each row represents a loss

function, and the color represents the current gradient step.

33

Published in Transactions on Machine Learning Research (10/2025)

30 50
40
w 20 »n
é & 10
— —
o 10 9
51 S 20
E £
g 0 § % S 1w
- —
“10 0
20 -10
0.0 0.2 0.4 0.6 0.8 1.0 0.0 02 04 0.6 0.8 1.0
Predicted Probability (y = 1) Predicted Probability (y = 0)
2 40
30
10
3 o é 0 ﬁ
B -0 B o
: .
3 20 g1
-20
-30
-30
-40
0.0 0.2 04 0.6 0.8 1.0 0.0 02 04 0.6 08 1.0
Predicted Probability (y = 1) Predicted Probability (y = 0)
60
30 50
w 20 ” 40
w v
S o 3 3
8 0 \ 8 10
— -
“10 0
-10
-20
-20
0.0 02 04 0.6 0.8 10 0.0 02 0.4 0.6 08 1.0
Predicted Probability (y = 1) Predicted Probability (y = 0)
2 50
0 40
7] w30
@0 @
5] S
— — 20
o 10 el
Qo Q
= é £ 10
S 20 g
= = o
-30
-10
-40
-20
0.0 02 04 0.6 0.8 1.0 0.0 02 0.4 0.6 08 1.0
Predicted Probability (y = 1) Predicted Probability (y = 0)
0 20000 40000 60000 80000 100000

Figure 18: Loss functions generated by AdaLFL on the CIFAR-10 dataset, where each row represents a loss
function, and the color represents the current gradient step.

34

	Introduction
	Contributions

	Online Loss Function Learning
	Problem Setup
	Loss Function Representation
	Loss Function Initialization
	Online Meta-Optimization

	Related Work
	Online vs Offline Loss Function Learning

	Experimental Evaluation
	Benchmark Methods
	Benchmark Tasks
	Benchmark Models

	Results and Analysis
	Final Inference Testing Performance
	Run-time Analysis
	Inner Gradient Steps
	Visualizing Learned Loss Functions
	Implicit Tuning of Learning Rate Schedule
	Implicit Early Stopping Regularization
	Implicit Label Smoothing Regularization

	Conclusion
	Extended Background
	Online vs Offline Loss Function Learning
	Alternative Paradigms

	Loss Function Representation
	Network Architecture
	Smooth Leaky ReLU

	Experimental Setup
	Meta-Learned Learning Rate

	Further Experiments
	Loss Function Representations
	Loss Network Activation Function
	Second-Order Hyperparameter Sensitivity
	Regularization and Meta-Objectives
	Generalization Dynamics During Training
	Learned Loss Functions (Extended)

