
Extending R2RML to a source-independent
mapping language for typed literals

Aparna Nayak ID , Bojan Božić ID , and

Luca Longo ID

ML-Labs, Technological University Dublin, Dublin, Republic of Ireland
{aparna.nayak, bojan.bozic, luca.longo}@tudublin.ie

Abstract. Linked data is often generated from raw data with help of
mapping languages. However, such techniques do not allow complex data
transformations which either can be implemented as custom solutions or
separated from the mapping process. In this paper, we propose an
approach of separating complex data transformations from the mapping
process that can be still reusable across the systems. Complex data
transformations include the entailment of (i) language tag and (ii)
datatype that are present at the data source. The proposed method also
includes inferring missing datatype information. We extended R2RML-F
to handle data transformations. Our approach is validated on the test
cases specified by the RDF mapping language (RML). The proposed
method considers data in the form of JSON, thus making the system
interoperable and reusable.

Keywords: Knowledge graphs · Linked data · Mapping language · Typed
literals

1 Introduction

The meaning of the term ‘Knowledge Graph’ has evolved with the announcement
of the Google Knowledge Graph. It has positively impacted the semantic uplifting
of different structures of data appearing in heterogeneous formats. Therefore,
various approaches have been proposed to generate knowledge graphs from
existing (semi-)structured data. One of the approaches involves the use of direct
mappings from (semi-)structured data to the Resource Description Framework
(RDF) format1. These mappings are in the form of rules. Detaching the rules
renders them to be interoperable between implementations while the systems
that process those rules are independent of the use-case. The W3C standard
Relational Database (RDB) to RDF Mapping Language(R2RML) is a widely
used language for specifying mappings needed to generate RDF datasets from
relational databases 2. Uplifting data from any form to RDF requires the selection

1 https://www.w3.org/RDF/
2 https://www.w3.org/TR/r2rml/

https://orcid.org/0000-0002-8135-3515
https://orcid.org/0000-0002-4420-1029
https://orcid.org/0000-0002-2718-5426

2 A. Nayak et al.

of appropriate vocabulary. It helps to achieve the objective of the Semantic Web
that is to connect all the entities for reuse across application, enterprise, and
community.
RDF stores the data in the form of triples (subject, predicate, and object). Subject
and predicate in RDF are identified by Internationalized Resource Identifier (IRI).
Objects are represented in the form of literals which can be a string or a number.
Objects having literals can be annotated with optional type information, such
as datatype and optional language tag to describe the language used to denote
an object. A datatype is a classification of data that describes types of RDF
literals and are adopted from XML Schema 3. XML schema supports two classes
of datatypes: simple and complex. Simple datatypes can be primitive or derived.
Each simple datatype can be uniquely addressed via a Uniform Resource Identifier
(URI). Annotating RDF literal with language helps to match and integrate RDF
documents[4]. Language tags help to identify the language of the written content.
The use of correct language tag helps in accessibility, translation tools, page
rendering, and search.

Many dedicated mapping languages were proposed for RDF mapping.
However, to the best of our knowledge, a mapping language that supports the
annotation of language tag and datatype that is already present in the dataset
as a separate tuple doesn’t exist. In this paper, we annotate literals with an
appropriate datatype and language tags that are already provided in the
(semi-)structured dataset. In the case of the missing datatype, it is inferred by
considering core datatypes. We aim to answer the following research questions:

To what extent can the R2RML-F mapping technique be extended to support
annotation of datataype and language tag, by incorporating a separate complex
data transformations from mapping process?

Answer to the above mentioned research question is explored in section 3.
R2RML is W3C standardized mapping language. It supports typed literals.
However, typed literals consider only hard-coded value for the datatype or
language tag. The requirement is to override the behaviour of a typed literal
creation. The proposed solution annotates existing language tag and datatype to
the literal.
The remaining part of this paper is structured as follows: Section 2, outlines the
literature work on mapping languages and other functionalities supported by it.
Section 3, gives a detailed explanation of the implementation of language tag
and datatype entailment. Section 4, discusses the result with multiple examples.
Finally, section 5 covers the conclusion.

2 Literature review

R2RML is a mapping language to express customized mappings from relational
databases to RDF datasets. These mappings allow us to represent the relational

3 https://www.w3.org/TR/xmlschema-2/

Title Suppressed Due to Excessive Length 3

database that conforms to schema in RDF format. The main goal of R2RML is
to directly map relational databases to RDF datasets. An advantage of R2RML
over direct mapping is, a mapping author can define highly customized views
over relational data. R2RML supports ‘Transformation function’ [5], that allows
to represent a literal value in a different (syntactic) representation in RDF.
However, these transformation considers underlying database technology that
allows required conversion. R2RML-F [1], is an extended version that captures
the function in mapping. It also allows to uplift of CSV files into RDF [6].
The functions are executed with the help of ECMAScript, hence absence of
functionality by underlying technology does not make a difference to the core
work.
On the other hand, R2RML can be extended altogether to add more functionality
such as support of different sources, serialization formats etc. One such mapping
language is RML. It is defined as a superset of the mapping language R2RML,
that aims to extend applicability and score of R2RML [3]. RML is a generic
mapping language defined defined to express customized mapping rules from
heterogeneous data structures and serializations to the RDF data model [2]. At
this stage, however, we choose to extend R2RML-F [1] to validate our ideas and
will consider RML at a later stage.

3 Implementation

Complex data transformations remain out of scope for mapping languages. One
such concern is annotation of literal with language tag and datatype. In RDF,
typed literal comprise a literal value and a datatype or a language tag. Typed
literal allows annotation of literal with datatype and language tag. Listing 1
shows the syntax to generate typed literal in Apache Jena framework 4. However,
this function supports only hard-coded values for language tags and datatype.

Listing 1. Creation of typed literal

model . c r ea teTypedL i t e ra l (value , datatype)

The proposed method is an extension of R2RML-F [1]. R2RML-F extends
R2RML to uplift CSV into RDF format. Along side, it also supports
user-defined function. R2RML-F requires a function name and a function body
to declare a function. The function call contains function name and parameters
that has to be processed. Each function must have exactly one function name
and exactly one function body. The function body is processed to compute the
output and value is returned to the called function. Any error with the function
output will be sent back to the user.

4 https://jena.apache.org/

4 A. Nayak et al.

Two special cases are added to the existing R2RML-F functionality. First
case is annotation of datatype and the second case is annotation of language tag.
Function in R2RML-F is defined as shown in listing 2. In the example,‘attachdt’
is a function name. Function body will get executed and a value is returned.

<#Attachdt>
r r f : functionName ‘ ‘ at tachdt ” ;
r r f : functionBody ‘ ‘ ‘ ‘ ‘ ‘
//Omitted
””” ;
.

Listing 2. Function declaration in R2RML-F

The datatype and language tag that are present in the data source is rendered
as a column. Therefore, the column that holds literal values and the column that
holds datatype value must be specified in parameter bindings. Listing 3 depicts
a function call from R2RML object map. All the numbers that belong to column
‘NUM’ are annotated with corresponding values present in ‘DT’ column.

r r f : f u n c t i o n C a l l [
r r f : f unc t i on <#Attachdt> ;
r r f : parameterBindings (

[r r : column ‘ ‘NUM”]
[r r : column ‘ ‘DT”]

) ;
] .

Listing 3. Function in a Predicate Object Map

When the function name is neither ‘attachdt’ nor ‘attachlg’ the system executes
the body of the function and returns appropriate value. Additionally, data is
preprocessed to bring the data in required format before converting it into RDF
format. The steps followed in proprocessing are discussed in the following section
4.

4 Experiment and Result

We demonstrate and evaluate our approach with test cases specified by RML 5.
RML test cases are designed to verify the mapping language and there are no
test cases to support annotation of datatype and language tag. Test cases are
modified to support language tag and datatype. Also, all the use cases provided
by knowledge graph construction workshop 6 for datatype and language tags are
considered along with modified RML test cases.

JSON data considered is pre-processed to get all the fields in required format
of mapping. The pre-processing steps include the steps as shown in algorithm 4.

5 https://rml.io/test-cases/
6 https://github.com/kg-construct/mapping-challenges/tree/main/challenges

Title Suppressed Due to Excessive Length 5

The algorithm considers JSON data as input, preprocesses the data to required
format and outputs the comma separated values.

Algorithm 1 Data preprocessing

Result: Comma separated values of data
Read JSON data.
Initialize a stack.
while all key-value pairs do

Push the key value pair into the stack.
if key==‘dt’ then

Pop the value.
if value!=‘xsd:nnn’ then

Update the value to ‘xsd:nnn’ format.
end
if value==‘ ’ then

Predict the type based on recent pushed item.
end

end
Push the value into the stack.
Separate key-value pairs into two different list.
Identify repeated patterns in key list to calculate total number of rows and columns.
Generate dataframe based in total number of rows and columns.
if languageTag header then

Replace all complete language words into tag.
end
Create a comma separated values using dataframe.

end

The value of datatype that we are interested is in the form of “xsd:nnn”.
Here, nnn can be any RDF-compatible core datatype7. Missing datatypes are
predicted either based on regular expression or based on JSON type. For
example, datatype value for “xsd:integer” can be in the form of int, integer, or
“http://www.w3.org/2001/XMLSchema#integer” irrespective of the sensitivity of
the case. All the forms are finally converted into “xsd:integer”.

Assuming that no missing keys and values in the JSON objects, repeated
pattern of key is identified to create a header for CSV data. All the values are
converted into dataframe based on total number of elements identified in header.
Language tags are also updated based on the following two scenarios.

– Language tag is given: Value that language tag considers are in the form
of ‘en’ for english, ‘fr’ for french, ‘ga’ for irish and so on. These values can be
directly substituted to create typed literals.

7 https://www.w3.org/TR/rdf11-concepts/

6 A. Nayak et al.

– Language is given: When the language is given in the form of full word, it
is replaced with corresponding tag. All the languages and its corresponding
tags are scraped from W3 schools8.

Once we have all the datatype and language tag in required format the entire
dataframe in written as comma separated values. Mapping for each test case is
written and converted as per extended R2RML-F. Table 1 shows the different
scenarios that have been considered for evaluation process. The code is made
publicly available at github repository9.

Table 1. Evaluation scenarios of extended R2RML-F

Scenario Language tag Datatype

Single object Yes Missing datatype

Single object Yes Yes

Single object Yes No

Single object No Missing datatype

Single object No Yes

Single object No No

Multiple objects Yes Missing datatype

Multiple objects Yes Yes

Multiple objects Yes No

Multiple objects No Missing datatype

Multiple objects No Yes

Multiple objects No No

One special scenario where languages are described as separate JSON object is
also implemented, however this requires JSON head to be named as ”languages”.
Some of the limitations of the research are

– In case of multiple object scenario, total items in each object should be of
same length.

– Keys in the JSON should be a single word.
– Keys and values can not be null values.
– Headers of the datatype column and language column should be declared as

‘dt’ and ‘lang’.

The preprocessed data later used to create RDF triples. This is done with
the help of modified R2RML-F. R2RML-F engine returns typed literals when
the function are named as “attachdt” or “attachlg”. Each input file requires
a mapping file associated with it. Based on the customized mapping, data is
converted into RDF triple format. Generated RDF triples are validated on easyrdf
10. This helps to understand the generated data is in proper RDF format.

8 https://www.w3schools.com/tags/ref language codes.asp
9 https://github.com/aparnanayakn/r2rmlpreprocess

10 https://www.easyrdf.org/

Title Suppressed Due to Excessive Length 7

The listing 4 shows sample input considered, listing 5 shows preprocessed
output, and listing 6 shows data in RDF TURTLE format. The example includes
various scenarios such as missing datatype, language tag as a complete language
name, multiple objects. Missing datatypes are inferred, language tags are
converted into required format to generate RDF that depicts annotated data.

{
‘ ‘ per sons ” : [

{
‘ ‘ f i r s tname ” : ‘ ‘ John ” , ‘ ‘ lastname ” : ‘ ‘ Doe” ,
‘ ‘ lang ” : ‘ ‘ e n g l i s h ” , ‘ ‘num” : 3 , ‘ ‘ dt ” : ‘ ‘ ”

} ,
{

‘ ‘ f i r s tname ” : ‘ ‘ Jane ” , ‘ ‘ lastname ” : ‘ ‘ Smith ” ,
‘ ‘ lang ” : ‘ ‘ f r ” , ‘ ‘num” : ‘ ‘ 3 . 1 4 ” , ‘ ‘ dt” : ‘ ‘ ”

}
]

}
Listing 4. Sample input

f i r s tname , lastname , lang ,num, dt
John , Doe , en , 3 . 0 , xsd : i n t e g e r
Jane , Smith , f r , 3 . 1 4 , xsd : s t r i n g

Listing 5. Preprocessed output

<http :// data . example . org /sw/John>
a <http ://www. example . org / ont#Person> ;
<http ://www. example . org / ont#FNAME>

‘ ‘ John” ;
<http ://www. example . org / ont#LNAME>

‘ ‘ Doe”@en ;
<http ://www. example . org / ont#NUM>

‘ ‘3.0”ˆˆ < xsd : in t ege r> .

<http :// data . example . org /sw/Jane>
a <http ://www. example . org / ont#Person> ;
<http ://www. example . org / ont#FNAME>

‘ ‘ Jane” ;
<http ://www. example . org / ont#LNAME>

‘ ‘ Smith”@fr ;
<http ://www. example . org / ont#NUM>

‘ ‘3.14”ˆˆ < xsd : s t r i ng> .

Listing 6. Output in RDF TURTLE format

8 A. Nayak et al.

5 Conclusion

In this paper, we presented a simple approach to map JSON data sources into
RDF and to create typed literals using extended R2RML-F. Proposed method
follows the principle separating complex data transformations from mapping
process. Our method efficiently solves the research questions discussed in section
1. The proposed model is evaluated using RML test cases by adding datatype
and language tag in the input file. The model’s extensibility is self-evident as
the whole solution is separated from mapping process. R2RML-F treats function
calls as a term map. These mapping function helps to create typed literals in
RDF.

Future work includes creating typed literals using heterogeneous data
structures and thus using RML, along with additional experiments to validate
our findings and developing additional scenarios.

References

1. Debruyne, C., O’Sullivan, D.: R2rml-f: towards sharing and executing domain logic
in r2rml mappings. In: LDOW@ WWW (2016)

2. Dimou, A., Sande, M., Colpaert, P., Verborgh, R., Mannens, E., Van De Walle, R.:
Rml: A generic language for integrated rdf mappings of heterogeneous data. vol. 1184.
CEUR-WS (2014)

3. Dimou, A., Vander Sande, M., Colpaert, P., Mannens, E., Van de Walle, R.: Extending
r2rml to a source-independent mapping language for rdf. In: International Semantic
Web Conference (Posters & Demos). vol. 1035, pp. 237–240 (2013)

4. Dongo, I., Cardinale, Y., Chbeir, R.: Rdf-f: Rdf datatype inferring framework:
Towards better rdf document matching. Data Science and Engineering 3(2), 115–135
(2018)

5. Hert, M., Reif, G., Gall, H.: A comparison of rdb-to-rdf mapping languages. ACM
International Conference Proceeding Series pp. 25–32 (2011)

6. Junior, A., Brennan, R., Debruyne, C., O’Sullivan, D.: Funul: A method to
incorporate functions into uplift mapping languages. pp. 267–275 (2016)

	 Extending R2RML to a source-independent mapping language for typed literals

