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ABSTRACT

Dynamical systems in the life sciences are often composed of complex mixtures
of overlapping behavioral regimes. Cellular subpopulations may shift from cy-
cling to equilibrium dynamics or branch towards different developmental fates.
The transitions between these regimes can appear noisy and irregular, posing a
serious challenge to traditional, flow-based modeling techniques which assume
locally smooth dynamics. To address this challenge, we propose MODE (Mix-
ture Of Dynamical Experts), a graphical modeling framework whose neural gat-
ing mechanism decomposes complex dynamics into sparse, interpretable compo-
nents, enabling both the unsupervised discovery of behavioral regimes and accu-
rate long-term forecasting across regime transitions. Crucially, because agents in
our framework can jump to different governing laws, MODE is especially tailored
to the aforementioned noisy transitions. We evaluate our method on a battery of
synthetic and real datasets from computational biology. First, we systematically
benchmark MODE on an unsupervised classification task using synthetic dynam-
ical snapshot data, including in noisy, few-sample settings. Next, we show how
MODE succeeds on challenging forecasting tasks which simulate key cycling and
branching processes in cell biology. Finally, we deploy our method on human,
single-cell RNA sequencing data and show that it can not only distinguish prolif-
eration from differentiation dynamics but also predict when cells will commit to
their ultimate fate, a key outstanding challenge in computational biology.

Forecasting the long-term behavior of dynamical systems from sparse, noisy data is a major chal-
lenge in computational biology, applied physics and engineering (Bury et al., 2023; Moriel et al.,
2024; Romeo et al., 2025). For example, predicting the developmental fates of progenitor cells from
single cell RNA sequencing (scRNAseq) data is the subject of intense research in systems biology
(Aivazidis et al., 2025). Two factors can make this endeavor especially difficult. First, data may
consist of snapshots of unordered states and velocities at a single moment, (x, ẋ), instead of time
series. This is often the case in transcriptomic, proteomic and other cellular data, which is acquired
by destroying the tissue. Second, the dynamics generating the snapshots may consist of complex
mixtures of overlapping behavioral regimes, so that forecasting rules learned for some samples do
not generalize to others.

Consequently, a large body of research at the intersection of computational biology and data-driven
dynamical systems has been devoted to the modeling of snapshot data. Standard approaches, like
neural ordinary/partial differential equations (NODEs/NPDEs) (Lin et al., 2025), flow matching
(Haviv et al., 2024; Wang et al., 2025) and dynamical optimal transport (Tong et al., 2020), attempt
to fit a continuous-time flow in the form of an ODE or PDE which relates state to velocity. These are
powerful, versatile approaches, but they can break down when overlapping dynamical regimes create
ambiguous velocity signals. For example, when developing progenitor cells split into two different
lineages (Fig. 1, left), cells of different fates (red vs green) can overlap in noisy transition zones
where the dynamics are mixed (inset, with green cells having up-slanting velocities; red, down).
Learning a single flow (e.g. Fig. 1, middle, NODE) tends to average the observed flows in this
transition: the estimated developmental process then blurs between the two lineages (Fig. 1, middle,
purple cells). The problem is all the more acute in cell cycle, where cycling and differentiating
populations intermix (Mahdessian et al., 2021). This is a fundamental problem with all differential-
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GT NODE MODE

Figure 1: Branching in in NODE vs MODE. (Left) Ground truth progenitor cells in 2d advance
along the blue trunk at a constant rate until they bifurcate into two fates, green and red, passing
through an ambiguous switching region (inset; green cells with up-slanting velocities; red, with
down-slanting). (Middle) Models that learn a single flow, like a NODE, can only reconcile switching
zones by averaging. (Right) Instead, MODE learns a compositional flow with dedicated experts for
trunk and branches, helping cells commit to their lineages.

equation modeling, which assumes trajectories change smoothly and cannot cross. With no means to
disambiguate the underlying dynamical mixture, flow-based models struggle in these crucial cases.

Here, we tackle the case of branching, overlapping dynamics head-on using a neurally gated mixture
of experts, MODE, (Mixture Of Dynamical Experts) which learns compositional representations of
complex flows. Unlike previous switching/hybrid models, MODE jointly learns dynamical regres-
sors and mixture assignments on snapshot data, which allows circuit learning to influence regime
discovery. As a result, it can tightly model the categorical branching choices which pervade single
cell dynamics (Fig. 1, right, MODE). After training, MODE can be rolled out as a stochastic ODE
in which evolving particles dynamically shift between different component dynamics. Importantly,
we show that the number of experts can also be learned throughout training. The expert distribu-
tion can vary as a function of state, x, helping to model localized shifts in dynamics, or the experts
can remain independent of x, in which case MODE can be used to classify heterogeneous mixtures
of dynamical agents. Below, we demonstrate MODE’s utility in both dynamical classification and
forecasting tasks on synthetic and real data taken from across the biological sciences. Concretely,
this paper’s contributions are:

1. Unsupervised classification of heterogeneous dynamical populations. We first show how
MODE can be used to classify mixtures of dynamical snapshots in an unsupervised man-
ner. Data represent behaviors of intermingled dynamical agents with different governing
equations. We show how MODE far outperforms standard unsupervised baselines and even
competes with a supervised multi-layer-perceptron (MLP).

2. Systematic noise and sample complexity benchmarking. We run systematic tests on
MODE’s classification accuracy in increasingly difficult noise and sample complexity con-
ditions, showing its favorable performance in these challenging and realistic cases.

3. Forecasting in synthetic biological switches. We then show how MODE outperforms exist-
ing methods on forecasting the long-term behavior of synthetic genetic switches represent-
ing fundamental biological processes, like the cell cycle and branching lineages.

4. Predicting cycle exit in scRNAseq data. Finally, we demonstrate how MODE can accurately
detect, unsupervised, the cell cycle from scRNAseq data and that the mixture distribution
can be used to quantitatively forecast the moment of cell differentiation and shed light on
the transcriptional mechanisms driving this process.

1 RELATED WORK

Data-driven dynamical systems. Modeling dynamical systems from data has attracted consider-
able attention across applied mathematics, machine learning and computational biology (e.g. Schaf-
fer & Kot 1985; Plum & Serra 2025; Khona & Fiete 2022; Costa et al. 2019; Bar et al. 2025). Tradi-
tional flow-based approaches, such as Neural Ordinary Differential Equations (NODEs) (Chen et al.,
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2019) and other regressors like SINDy (Brunton et al., 2016), have proven powerful for learning
continuous-time dynamics from data by parameterizing the derivative of hidden states through neu-
ral networks or symbolic regresison. However, they inherently assume a single, smooth flow, mak-
ing them fundamentally unsuitable for systems exhibiting multiple coexisting dynamical regimes or
abrupt transitions between behavioral modes.

Flow learning in computational biology. In computational biology, flow-based methods have
found particular success in modeling cellular dynamics through RNA velocity estimation (Bergen
et al., 2020) and optimal transport approaches (Tong et al., 2020). Meta Flow Matching (Atanack-
ovic et al., 2024) represents a recent advancement, learning vector fields on the Wasserstein man-
ifold to model population-level dynamics. Recent developments in structured latent velocity mod-
eling (Farrell et al., 2023) have further extended these approaches by incorporating latent variable
frameworks to capture complex single-cell transcriptomic dynamics, demonstrating improved per-
formance in scenarios involving temporal gene expression patterns. While these approaches capture
important aspects of biological systems, their modeling of branching lineages is completely deter-
ministic. In essence, such modeling of the data assumes that the fate of cells is determined very
early in the differentiation process, much before the actual branching into lineages. As such, these
models do not capture the stochastic nature of biological processes.

Switching dynamical systems. The limitations of single-flow models have motivated exten-
sive research into switching dynamical systems, which explicitly model transitions between dif-
ferent dynamical regimes. Classical approaches include piecewise affine models and hybrid
systems (Jin et al., 2021), which segment trajectories and fit separate dynamics to each seg-
ment. More recent neural approaches (Ojeda et al., 2021; Seifner & Sanchez, 2023) have
incorporated deep learning architectures to learn both the underlying dynamics and switch-
ing mechanisms simultaneously, often employing attention mechanisms or variational infer-
ence frameworks. Continuous-time switching systems (Köhs et al., 2021) extend these ideas
by modeling regime transitions as Markov jump processes, providing principled probabilis-
tic frameworks for handling temporal uncertainty. A related framework is found in Hybrid
SINDy (Mangan et al., 2018), which pre-clusters data and fits cluster-specific dynamical re-
gressors after the fact, enabling a switching dynamics on top of the basic SINDy framework.

Θp(Θ)

K

x

s

ẋ

π(x)

N

Figure 2: Plate diagram of MODE.
Expert parameters Θ (with prior
p(Θ)) generate velocities ẋ via
fΘs

(x) under isotropic noise; the
expert distribution optionally de-
pends on x (blue), in which case it
gates states to specific experts, s.

While theoretically appealing for their ability to model mul-
tiple dynamics simultaneously they suffer from a reliance on
trajectory (not snapshot) data or from their sequential (as op-
posed to joint) fitting of clusters and dynamics, which we will
show below leads to suboptimal results for Hybrid SINDy.

Mixture of experts (MoE). Mixture methods represent a
fundamental approach throughout the data sciences. Early ap-
plications of MoE to dynamical systems identification (Lima
et al., 2002; Weigend et al., 1995) demonstrated the ability
to discover temporal regimes and avoid overfitting through
soft partitioning of the input space. Unlike switching sys-
tems that make hard assignments, MoE models enable smooth
transitions between experts through learned gating functions,
making them particularly well-suited for noisy biological data
where regime boundaries are inherently ambiguous. However,
traditional MoEs typically lack interpretability in their expert
components, as the experts are often represented by black-box
neural networks. Furthermore, these methods very often rely
on the availability of time series data, which is not the case of
the snapshot data which are so prevalent in cell biology.

Building on these foundations, our MODE framework unifies interpretable expert dynamics identi-
fication with the flexibility of mixture models. Unlike previous approaches that treat clustering and
dynamics modeling as separate tasks, MODE jointly learns spatial organization and governing equa-
tions, enabling both accurate classification of heterogeneous populations and precise forecasting of
regime transitions.

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

2 METHODS

Let D = {(xi, ẋi)}Ni=1, where xi ∈ Rd, denote snapshot data sampled from an underlying dynam-
ical system. We assume the data are generated by K latent dynamical laws, each with unknown
governing equation fΘs

parameterized by Θs ∈ Rm. We place a Laplace prior Θs ∼ Lap(0, 1/λ)
on the parameters, which promotes sparsity. Each data point is assigned to one of the K experts, in-
dexed by s ∈ [K] which is categorically distributed according to the mixing distribution, s ∼ π. The
mixing distribution π(x) may depend on the state x (as in the cell cycle, where oscillatory regimes
are localized in transcriptomic space) or may be independent of x (as in the case of heterogeneous
subpopulations with distinct intrinsic dynamics).

We model the probability of a state’s velocity with isotropic Gaussian noise,

ẋ | x, s ∼ N
(
fΘs

(x) , σ2
sId

)
.

The full generative model of the data (Fig. 2) is then

p(D | Θ, σ, π) =

N∏
i=1

K∑
s=1

πs(xi)N
(
ẋi

∣∣ fΘs
(xi), σ

2
sId

)
, (1)

where σ = (σs)
K
s=1, giving the conditional negative log likelihood on ẋ as

− log p(ẋ | x) = − log

K∑
s=1

πs(x) exp
(
− 1

2σ2
s

∥∥ẋ− fΘs
(x)

∥∥2
2
− d

2 log(2πσ
2
s)
)
. (2)

Our goal is to estimate π,Θ, σ by minimizing the maximum a posteriori (MAP) objective

L(x, ẋ) = − log

K∑
s=1

πs(x) p(ẋ | x, s) + λ

K∑
s=1

∥Θs∥1. (3)

There are several choices for how to model fΘs
. In practice, we find that symbolic regression works

well: fΘs
is computed as a linear combination of basis functions, Z, depending on x, so that

fΘs(x) = Z(x)Θs,

where Θs serves as the weights. Throughout, we set Z to be polynomials of order up to c, allowing
for explicit control as to the complexity of the fitted approximation. In this form, MODE uses a
SINDy-based regressor (Brunton et al., 2016) (See. App. Sec. C for details), though other estimators
are possible (see Sec. 4). Here, we show results in which K is known in advance, but we also
provide an algorithm for discovering K from data based on the Akaike (Akaike, 1974) or Bayesian
Information Criteria (Schwarz, 1978) (AIC/ BIC; see Sec. Specifically, the algorithm iteratively
evaluates whether adding or removing experts improves model fit while penalizing over-complexity.
Starting from an initial estimate of K, the gating network’s responsibilities are used to track expert
usage, and redundant experts are pruned if their assignment drops below a threshold. This adaptive
strategy ensures robust identification of the underlying number of dynamical regimes (see Sec. C.4),
avoiding manual selection and reducing the risk of overfitting or underfitting.

If π in Eq. 3 does not depend on x, then the MAP can be estimated efficiently using an expec-
tation–maximization (EM) algorithm (see App. C.2). Otherwise, we set π(x) to be a multilayer
perceptron (MLP) in the manner of a gating network (Jacobs et al., 1991) and optimize Eq. 3 with
stochastic gradient descent. However, when optimizing using gradient descent, the gating function
has a tendency to converge to local minima corresponding to either a single expert or uniform prob-
abilities everywhere. Thus, we found that performance was improved by regularizing Eq. 3 with the
additional terms

Hgate = − 1
N

N∑
i=1

K∑
s=1

πi,s log πi,s ; KLbalance =

K∑
s=1

π̄s

(
log π̄s − log 1

K

)
(4)

where Hgate encourages confident (low-entropy) gating decisions per sample, and KLbalance prevents
expert collapse by balancing average usage across experts, π̄s, across the dataset (see Sec.C). This
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Figure 3: Elementary dynamics discovery on canonical systems. Each system challenges spatial
clustering in distinct ways: (Bistable) spatially overlapping attractors with opposite rotational dy-
namics, (Lotka-Volterra) nonlinear predator-prey interactions creating complex phase structure,
(Lorenz) chaotic flow with intricate spatial organization. Ground truth colors indicate true dynami-
cal regimes. Clustering results colors indicate training data (gray) and estimated dynamical regimes
(blue, orange). Accuracy of each method is displayed on the top-left of each subplots. Computation
time is displayed at the upper right corner

combination of terms ensures that the gating network remains both selective and diverse, leveraging
the strengths of individual experts while avoiding redundancy.

After training, we can simulate MODE forward in time according to the generative model, with a
discrete-time Euler-Maruyama-like update:

st+1 ∼ π( · | xt) (5)

xt+1 = xt +∆t fΘst+1(xt) + σB

√
∆t ξt, (6)

where ξt ∼ N (0, ID) is standard D-dimensional Gaussian noise and σB controls the stochasticity
level. When π is especially peaked, cells can “commit” to a new fate by sampling preferentially
from that modal expert. Alternative rollout schemes are discussed in Sec. C.

3 RESULTS

3.1 DISENTANGLING HETEROGENEOUS DYNAMICAL POPULATIONS

Many complex systems in biology comprise heterogeneous mixtures of agents with different dynam-
ical profiles, like tissues with multiple cell types or ecosystems with multiple species. To demon-
strate that MODE’s compositional dynamics provide essential advantages in disentangling these
populations, we evaluate its performance on an unsupervised clustering task using mixture versions
of three canonical dynamical systems where “geometry-only” methods systematically fail.

In particular, we generated data from a bistable attracting system (2d), the Lotka-Volterra predator-
prey model (2d) and the Lorenz model of chaos (3d). In each case, snapshot samples, (x, ẋ),
were randomly drawn from two distinct parameter settings, creating overlapping attracting blobs
(bistable), concentric orbits (Lotka volterra) or intertwined paths (Lorenz) (Fig. 3, first column; see
Sec.A for data details). Data consisted of snapshots (x, ẋ) with additive noise (σ = 0.1) split 80-20
into train and test. For each dataset we chose 2 sets of parameters and sampled following numerous
initial conditions.

We fit a 2-MODE with x-independent mixture distributions to each of these data sets using an
EM algorithm to optimize the expert allocation and dynamical parameters. We also fit a two-class
gaussian mixture model (GMM) as well as a spectral clustering algorithm using standard, out-of-the-
box parameters from scikit-learn. All models were trained with full snapshot data, (x, ẋ), including
velocities. To ensure fair comparison, all methods were tuned via cross-validation, provided with
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the correct number of clusters K, and evaluated using identical train-test splits (see Sec. C.2 for
details). Additionally, we included a supervised MLP baseline using true cluster labels to establish
an upper performance bound. After optimal cluster-to-class mapping, models were evaluated by
their F1 score, recall, and precision.

Method Metric Bistable Lokta Volterra Lorenz Average
GMM F1 0.527 ± 0.000 1.000 ± 0.000 0.523 ± 0.000 0.683 ± 0.000

Recall 0.527 ± 0.000 1.000 ± 0.000 0.524 ± 0.000 0.684 ± 0.000
Precision 0.527 ± 0.000 1.000 ± 0.000 0.524 ± 0.000 0.684 ± 0.000

Spectral F1 0.988 ± 0.000 0.765 ± 0.032 0.522 ± 0.000 0.758 ± 0.011
Recall 0.988 ± 0.000 0.793 ± 0.018 0.523 ± 0.000 0.768 ± 0.006

Precision 0.988 ± 0.000 0.864 ± 0.003 0.523 ± 0.000 0.792 ± 0.001
MODE F1 0.993 ± 0.000 1.000 ± 0.000 0.927 ± 0.028 0.974 ± 0.009

Recall 0.993 ± 0.000 1.000 ± 0.000 0.927 ± 0.028 0.974 ± 0.009
Precision 0.993 ± 0.000 1.000 ± 0.000 0.927 ± 0.028 0.974 ± 0.009

MLP F1 0.993 ± 0.000 1.000 ± 0.000 1.000 ± 0.000 0.997 ± 0.000
Recall 0.993 ± 0.000 1.000 ± 0.000 1.000 ± 0.000 0.997 ± 0.000

Precision 0.993 ± 0.000 1.000 ± 0.000 1.000 ± 0.000 0.997 ± 0.000

Table 1: Summary metrics: F1, Recall and Precision

We found that MODE achieved substantially higher F1 scores, recall, and precision than both unsu-
pervised baselines and even competed with the supervised MLP (Table 1). Consistently, the GMM
performed the worst, since it could only split ellipsoids in (x, ẋ) space, which fails dramatically for
these thoroughly mixed systems. Spectral clustering could identify coherent bands from each pop-
ulation, but failed when the bands dissolved into salt-and-pepper noise. MODE, on the other hand,
does not rely on phase space geometry, instead clustering systems according to the best division of
data into two sparse, dynamical laws. This allows it to cluster populations which look like blobs,
bands or true mixtures (Lorenz).

Thus, the improvement is most pronounced in cases where purely geometrical clustering fundamen-
tally fails—precisely the scenarios most relevant to biological applications. For noise and sample
size benchmarking, see Sec. B.2.

3.2 FORECASTING SYNTHETIC BIOLOGICAL SWITCHES

Although Sec. 3.1 demonstrates that MODE can be used to cluster dynamical agents with hetero-
geneous governing equations, it could be argued that this does not demonstrate MODE’s value for
modeling dynamics per se. After all, a key problem arising in computational biology and elsewhere
is not just classifying snapshot data, but also forecasting its behavior into the future.

To that end, we sought to evaluate MODE’s utility in forecasting the long-term behavior of dynam-
ical systems with challenging switching behaviors. We examined this capability in two synthetic
datasets modeling biological processes fundamental to all multi-cellular organisms: the cell cycle
and cell lineage branching. Modeling these processes is made difficult by their inherent stochastic
switching behaviors, whereby some cells randomly exit the cycle to continue their development or
split off from a current lineage to join a new cell fate. We sought to examine how well MODE’s
mixture modeling could forecast this behavior compared to standard flow-learning baselines.

For cell cycle data, we used a classic three-variable model of mitotic oscillation from Goldbeter
(Goldbeter, 1991) given by fluctuating levels of cyclin, maturation promoting factor (MPF) and
protease (Fig. 4, top, first panel). We set the probability of cell cycle exit (differentiation, Fig. 4
top, first panel, orange branch) to be p = 0.15 in a small region on the cycle where cyclin was
minimal. Cells which randomly committed to leaving the cycle in this region evolved according to
a linear dynamics towards a stable node attractor (green X) placed about one cycle radius away. We
sampled data uniformly in arc-length around both the cycle and exit path so that slow parts of the
cycle would not be overrepresented. This resulted in 6320 positions and velocities separated into an
80-20 train-validation split.

For branching lineage data, we used a simple two-dimensional switching system (Fig. 4, bottom,
first panel) similar to those used in dynamic optimal transport and flow matching studies of transcrip-
tomic dynamics (Farrell et al., 2023; Zhang et al., 2024). A Gaussian blob of cells was advanced
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Figure 4: MODE vs MLP baseline on synthetic biological switches. (Top row) Cells evolving ac-
cording to the Goldbeter oscillator (first panel, blue) could escape (p = 0.15 per time step) to a
differentiated state (green X) when they pass through a region of low cyclin (gray box). The MLP
(pictured, second panel) and SINDy try to use their single flow to explain the switching system,
transiting near the differentiated branch’s equilibrium before snaking back wildly towards the cy-
cle. MODE (third panel) simply jettisons cells to the other expert with the appropriate probability
since it has located the switching zone (argmax of π(x), fourth panel). (Bottom). MODE’s’ per-
formance advantage on simulated branching lineages (first panel) is similar: the MLP’s (pictured,
second panel) and SINDy’s pushforward distribution blur the early split; MODE (third panel) better
separates these branches since its experts locate the branches (fourth panel).

with a constant flow along a straight trunk (blue) for a fixed period. After traversing along the trunk,
cells randomly branched (50-50) towards two different fates (orange, green) following two linear
flows. The resulting 7500 samples were split 80-20 into train and validation.

(a) Mitotic oscillator
W1 W2 W1,C W1,M W1,X

MLP 0.3288 ± 0.0012 0.3759 ± 0.0015 0.2745 ± 0.0009 0.0896 ± 0.0004 0.1274 ± 0.0006
SINDy 0.5000 ± 0.0020 0.6000 ± 0.0025 0.4000 ± 0.0015 0.1500 ± 0.0007 0.2000 ± 0.0010
Hybrid SINDy 0.1097 ± 0.0003 0.1899 ± 0.0005 0.0312 ± 0.0001 0.0593 ± 0.0002 0.0706 ± 0.0003
MODE-NN 0.0913 ± 0.0003 0.1788 ± 0.0005 0.0294 ± 0.0001 0.0392 ± 0.0002 0.0695 ± 0.0003
MODE-Symb 0.0837 ± 0.0005 0.1049 ± 0.0010 0.0590 ± 0.0003 0.0223 ± 0.0002 0.0289 ± 0.0002

(b) Branching lineage
W1 W2 W1,x W1,y

MLP 0.6535 ± 0.0018 0.8371 ± 0.0016 0.1284 ± 0.0006 0.6254 ± 0.0015
SINDy 0.9000 ± 0.0025 1.1000 ± 0.0030 0.2000 ± 0.0010 0.8000 ± 0.0020
Hybrid SINDy 0.6329 ± 0.0017 0.8200 ± 0.0016 0.1304 ± 0.0006 0.6053 ± 0.0015
MODE-NN 0.6124 ± 0.0017 0.8030 ± 0.0016 0.1324 ± 0.0006 0.5853 ± 0.0015
MODE-Symb 0.5713 ± 0.0017 0.7689 ± 0.0015 0.1363 ± 0.0007 0.5452 ± 0.0014

Table 2: Comparative performance of NODE vs baselines (see main text) Wasserstein scores (lower
is better) show distributional discrepancies between final states: W1 (3D linear cost), W2 (3D
quadratic cost), and the marginal scores (per-coordinate 1D distances).

For the cycle data, we used a 2-expert MODE with up to cubic terms; for branching, a 3-expert
MODE with linear terms. In these experiments, the mixture distribution for MODE depended on x
and a neural gating function was used, modeled as an MLP with one hidden layer. For baselines, we
compared NODE with symbolic regressors (MODE-symb) to a (1) 4-layer MLP, (2) SINDy with
cubic (linear) terms for the cycle (branching), (3) Hybrid SINDy (Mangan et al., 2018) using these
same symbolic hyperparameters and MODE-NN in which the dynamical regressors were neural
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ODEs. All models were trained with the same optimization and early-stopping criteria, and we
confirmed both baselines could fit each dynamical component (i.e. Goldbeter cycle, cycle exit,
branches) individually. The different models were compared to each other by pushing forward
“progenitor cells” (from the cycle or trunk) under the estimated dynamics. The Wasserstein distance
between the resulting positions of the cells and their groundtruth counterparts was calculated, using
both the full joint and marginal distributions (full training details in Sec. C.3).

We found that MODE-Symb outperformed the baseline models on both tasks (Table 2). On the cycle
data, the 2-expert MODE-Symb correctly identified the cell cycle exit (Fig. 4 top, fourth panel), and
the probability assigned to the argmax expert in the exit region was close to the ground truth exit
probability (π0(x) = 0.11± 0.01) (Fig. 13a). Single flow baselines (MLP, SINDy) tried to account
for both the stable node and cycle (MLP, Fig. 4, top, second panel), which leads to high Wasserstein
error. Hybrid SINDy struggled to find the true regimes during its pre-clustering phase and it never
let cells exit the cycle. MODE-NN performed closest to MODE-Symb but seemed to suffer from the
lack of sparsity constraint, which greatly aids in finding the true dynamical regimes (see App. Sec.
C. Note that MODE-Symb still provides a very good fit of the Goldbeter oscillator, even though this
system uses rational functions outside of our dictionary of basis functions.

On the branching data, MODE’s stochastic rollout allowed it to commit (Fig. 4, bottom, third
panel) more definitively to each branch, which decreased the error specifically in the y-dimensional
marginal (i.e. the branching direction) (Tab. 2b). By contrast, baselines only captured the general
quantitative behavior of the switch, spreading noncommittal cells in the branch interior. MODE-
Symb experts correctly localized the branching structure (Fig. 4, bottom right) and discovered the
underlying governing equations nearly exactly (see Sec. C.3).

3.3 FORECASTING CELL DEVELOPMENT FATE FROM SCRNASEQ DATA

The synthetic cellular processes examined in Sec. 3.2 were challenging to model for regular flow-
learning approaches, but they were nevertheless highly idealized compared to their real, biological
counterparts. In that spirit, we sought to understand if MODE could be used to forecast the develop-
mental dynamics of the cell cycle from actual scRNAseq data. To that end, we analyzed single-cell
RNA-sequencing data from the U2OS cell line from Mahdessian et al. in order to investigate the
spatiotemporal dynamics of human cell cycle expression, chosen because this data contains a pre-
cise labeling for cells that are part of the cell-cycle versus those that are not. These labels give us a
ground truth for two dynamical regimes that mimic our synthetic Goldbeter system of Sec. 3.2: the
cycle regime, and the cycle exit regime. In Appendix Sec. B.6, we demonstrate similar results on an
additional dataset of human fibroblasts.

Following a standard preprocessing protocol (Zheng et al., 2023), we used scVelo (Bergen et al.,
2020) to estimate the local dynamics of each cell and gene, in the form of an RNA velocity (full
details can be found in Appendix Sec. D.1). The gene expression data and the inferred velocities
were projected into a 5-dimensional space using principal component analysis (PCA) for fitting (Fig.
5a).

We then fit this five-dimensional data with a 2-expert MODE having up to cubic terms, repeating this
over ten random initializations to create an ensemble model (further training details in Sec. D.1).
After training, we found that the ensemble averaged expert distribution (Fig. 5b) closely matched the
true cell cycle scores (Fig. 5c), indicating that MODE’s experts correctly divided gene expression
space into a cycling program and a differentiation program. Additionally, Fig. 5d illustrates the
stability of this segmentation, showing that all runs consistently converge to the correct number of
regimes (cycling vs. differentiation).We also observed a characteristic entropic zone between these
regimes (Fig. 5b, pink dots), acting as a stochastic escape route for differentiating cells to leave the
cycle. We quantitatively confirmed MODE’s fit of the true developmental dynamics by calculating
the average ROC curve (Fig. 5d) from the ten training initializations, achieving an area-under-the-
curve (AUC) score of 0.98, indicating a strong and stable correspondence to the true hidden regimes.

We also examined on this data whether the number of experts can be chosen adaptively during
training. A metric relying on the Akaike Information Criterion (AIC) achieved by each expert was
used in order to change the number of experts used (full details in Appendix Sec. C.4). Fig. 5e
shows that our adaptive algorithm consistently converges at 2 experts, and that the AIC flattens out
before the selection (Fig. 5f), indicating that it is a stable choice.
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(a) (b) (c)

(d) (e)

(a) (b) (c)

(d) (e) ( f )

Figure 5: Modeling cell-cycle and differentiation dynamics using MODE. (a) Single cell RNA se-
quencing data from the U2OS bone cancer line was preprocessed for RNA velocity with scVelo
(first three PCA dimensions shown). (b) We fit a 2-expert MODE to the first five PCA dimensions,
revealing a sharp distinction between cycling and differentiating modes (red vs blue) averaged over
ten random model initializations. (c) This closely matched ground truth scores computed from pseu-
dotime, which allowed us to (d) accurately, and stably distinguish these two regimes. (e) Evolution
of expert count over training epochs for 15 independent runs (colored lines) starting from K = 5
experts. The mean trajectory (purple line with markers) and confidence band (shaded region) show
convergence to K = 2 experts, with most runs stabilizing by epoch 500. Individual runs demon-
strate consistent adaptation despite different random initializations. (f) Akaike Information Criterion
(AIC) trajectories for all runs. Each curve is truncated at its minimum AIC value (red dots), indi-
cating the optimal model complexity. The log-scale y-axis shows rapid initial decrease followed by
stabilization, confirming that the adaptive algorithm successfully identifies the optimal number of
experts without manual tuning.

3.4 DISCOVERING CIRCUIT TRANSITIONS DURING CELL-CYCLE EXIT

To validate the biological relevance of MODE’s learned dynamics, we analyzed expert-specific gene
expression signatures and regulatory network rewiring during cell cycle exit. Differential expression
analysis on experts (based on the analysis of the weighted Jacobian of the experts, see Appendix
Sec. D.1) revealed that Expert 0 (cycling cells) upregulated canonical proliferation markers includ-
ing TOP2A, CDK1, and AURKA (Malumbres & Barbacid, 2009), while Expert 1 (exiting cells)
showed enrichment of exit-associated genes such as CAV1, THBS1, and CCN1(Coller et al., 2006)
(Table 12 in Appendix Sec. D.1). Known G2/M markers (CCNB1, CDC20, CDK1) exhibited sig-
nificantly higher expression in Expert 0, while exit markers (CAV1, CDKN1A) were enriched in
Expert 1(Coller et al., 2006), confirming that MODE captures the known cycle exit phenotype.

Ordering cells by Expert 0 probability revealed coherent temporal expression patterns (Fig. 6A).
Along this pseudotemporal trajectory, proliferation markers gradually decreased while exit markers
increased, with the steepest changes occurring at the transition point defined by maximal expert
entropy. This sequential pattern suggests coherent regulatory changes during exit that align with
known molecular markers for cell cycle exit (Spencer et al., 2013).

To identify mechanistic drivers, we extracted gene regulatory networks (GRNs) from the ex-
perts by computing learned Jacobian matrices for data before and after cycle exit (see App. D.1
for methodology). GRN topology underwent substantial rewiring across transition phases (Fig.
6B). Before transition, the network featured prominent interactions among proliferative genes
(CDK1–CCNB1–CDC20 module) (Malumbres & Barbacid, 2009). After transition, exit genes
(CAV1, THBS1) gained regulatory centrality while proliferative interactions weakened. Notably,
CCNB1 interactions shifted from promoting CDK1 activity to engaging exit-associated pathways,
consistent with known checkpoint mechanisms(Pines, 1995).
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A

B

C

Figure 6: Biological validation of cell cycle exit dynamics. A Temporal heatmap of top differentially
expressed genes along pseudotime (ordered by Expert 0 probability). Upper panel: expert probabil-
ities; lower panel: gene expression z-scores. Red dashed line: transition point (maximum entropy).
Proliferation markers decrease while exit markers increase. B Gene regulatory network topology
before, during, and after transition. Circular graphs show key gene interactions (edge thickness:
strength; color: sign). Bottom: differential connectivity. C Volcano plot of differential expression
in high- vs low-entropy regions. Red: significant genes (|FC| > 0.5, p < 0.001). Dashed lines:
thresholds.

Analysis of high-entropy cells associated with the moment of transition (top 20% by gating uncer-
tainty) revealed 222 genes with significant expression changes (|FC| > 0.5, p < 0.001, Fig. 6C).
Top transition-specific genes included CDC20B and PDK4, which differed from expert-defining
markers, suggesting a distinct transcriptional state during fate resolution. These results provide ev-
idence that MODE recovers both cell cycle regulators and mechanistic details of exit dynamics.

4 DISCUSSION AND FUTURE DIRECTIONS

Interacting agents in a real-world complex system can exhibit substantial dynamical variety, re-
sulting from intrinsic biases, heterogeneous media, and differing noise levels. While single-flow
methods can often explain the long-term behaviors of these heterogeneous systems on average, they
can struggle in the case of strong branching, as we have shown. Building on earlier work in switch-
ing dynamical systems, MODE aims to discover these differing dynamical regimes from data. We
showed the utility of this framework in unsupervised dynamical classification, forecasting in syn-
thetic switches and the modeling of the cell cycle from scRNAseq data.

While these results are promising, MODE is currently limited by its lack of an explicit temporal
component. Snapshot data is important and biologically relevant, but including dependence on time
could help our framework learn more complex switching and branching schemes. For instance,
the current stochastic rollout merely selects the most likely expert at each step. A more sophis-
ticated approach could learn waiting times between switches, in the manner of a continuous-time
Markov process. Extensions to higher dimensions, new regressors like neural ODEs, and hierarchi-
cal mixtures are also natural future directions. Furthermore, we are intrigued by the incorporation of
augmented dynamical variables, like those in augmented neural ODEs (Dupont et al., 2019), which
could be used in scRNAseq data to model effects like hidden proteometic influences during cell
cycle dynamics.

Overall, we believe that the compositional representation of complex systems is a promising ap-
proach which captures the intuition that complicated phenomena should be broken down into sim-
pler parts. MODE shows that this can be done in a straightforward way which can nevertheless
outperform baselines on biologically-relevant problems.
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A SYNTHETIC SYSTEMS

A.1 DISCOVERING ELEMENTARY DYNAMICS IN SPATIALLY OVERLAPPING SYSTEMS

To systematically evaluate MODE’s ability to discover elementary dynamics in complex systems,
we constructed three canonical test cases that exhibit spatially overlapping regimes with distinct
underlying dynamics (Figure 7). These synthetic systems serve as controlled benchmarks where
ground truth cluster assignments are known, enabling rigorous quantitative assessment of clustering
performance. Each system represents a different class of dynamical complexity commonly encoun-
tered in biological and physical applications, specifically designed to challenge spatial clustering
methods while providing rich velocity information for dynamics-based approaches.

The bistable system (Figure 7, left panels) models two competing attractors that create spatially
overlapping but dynamically distinct regimes. Data points are sampled from Gaussian distributions
centered at (−0.5, 0) and (0.5, 0) with spread σ = 1.0, resulting in substantial spatial overlap be-
tween the two dynamical modes. The dynamics for each attractor follow:

Mode 0: ẋ = −x+ 2y, ẏ = −0.5x− y − xy (7)
Mode 1: ẋ = −x− 2y, ẏ = 0.5x− y + xy (8)
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where derivatives are computed relative to each attractor’s center. As shown in the figure, while the
two regimes occupy overlapping spatial regions, their velocity fields exhibit distinctly different flow
patterns—Mode 0 displays clockwise rotation while Mode 1 shows counterclockwise dynamics.
This configuration exemplifies systems where spatial clustering methods fail due to overlapping
support, while velocity-based approaches can successfully distinguish the underlying dynamical
regimes.

The Lotka-Volterra system (Figure 7, middle panels) implements predator-prey dynamics with two
different parameter regimes, each generating distinct oscillatory behaviors. We simulate trajectories
from 20 uniformly sampled initial conditions over the domain [10, 50]× [10, 50] and integrate each
system for 100 time units. The two dynamical regimes are governed by:

Mode 0: ẋ = 0.5x− 0.02xy, ẏ = −0.5y + 0.01xy (9)
Mode 1: ẋ = 0.5x− 0.04xy, ẏ = −0.6y + 0.01xy (10)

The different parameter values create distinct cycle shapes and periods, as visualized by the concen-
tric orbits in the phase portraits. The resulting trajectories exhibit overlapping spatial support where
position alone cannot distinguish between regimes, yet the velocity patterns remain characteristic of
each underlying dynamics, with Mode 0 generating tighter elliptical cycles and Mode 1 producing
broader, more circular orbits.

The Lorenz system (Figure 7, right panels) represents chaotic dynamics with two distinct parameter
sets, each producing different attractor geometries. We generate trajectories from 20 random initial
conditions uniformly distributed over [−15, 15]× [−15, 15]× [0, 40] and integrate for 10 time units,
discarding the first 1000 time steps to eliminate transients. The two chaotic regimes follow:

Mode 0: ẋ = 12(y − x), ẏ = x(28− z)− y, ż = xy − 4z (11)

Mode 1: ẋ = 10(y − x), ẏ = x(35.65− z)− y, ż = xy − 8z

3
(12)

These parameter choices generate attractors with different wing shapes and temporal dynamics. As
illustrated in the three-dimensional projections, trajectory segments from different regimes occupy
similar spatial regions but exhibit distinct local flow patterns, creating a challenging clustering sce-
nario where velocity information provides the crucial discriminating signal.

For all systems, we add Gaussian noise with standard deviation σ = 0.1 to both position and velocity
measurements to simulate realistic experimental conditions. Each dataset contains n = 10, 000 data
points equally distributed between the two dynamical regimes. The resulting datasets exhibit the
key challenge that motivates MODE: spatial clustering methods fail due to overlapping support,
while velocity information provides the crucial distinguishing signal needed for accurate regime
identification. This experimental design directly tests MODE’s central hypothesis that incorporating
local dynamics can resolve ambiguities that spatial methods cannot handle.

A.2 FORECASTING SYNTHETIC BIOLOGICAL SWITCHES

To evaluate MODE’s forecasting capabilities on biologically relevant switching dynamics, we con-
structed two synthetic datasets that capture fundamental processes in cellular biology: cell cycle
dynamics with stochastic exit events and lineage branching processes. These systems represent
challenging forecasting scenarios where single-flow models fundamentally fail due to the presence
of discrete regime transitions and branching trajectories that violate the assumptions of continuous
dynamical systems.

Cell cycle dataset with differentiation exit. The cell cycle dataset implements the classic three-
variable Goldbeter oscillator model (Goldbeter, 1991), which describes mitotic oscillations through
the temporal dynamics of cyclin concentration, maturation promoting factor (MPF), and protease
activity. The Goldbeter model captures essential features of cell cycle regulation through a system
of nonlinear ordinary differential equations that generate stable limit cycle behavior representing
normal cell division cycles. These are given by:
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Figure 7: Synthetic datasets for elementary dynamics discovery benchmarks. Phase portraits
showing spatially overlapping dynamical regimes for three canonical test systems. Each column
represents a different system (bistable, Lotka-Volterra, Lorenz), with Mode 0 (top row, blue) and
Mode 1 (bottom row, orange) displaying distinct velocity fields despite spatial overlap. Arrows
indicate local flow directions on a subsample of data points. Left: Bistable system with compet-
ing attractors showing clockwise vs. counterclockwise rotation patterns. Middle: Lotka-Volterra
predator-prey dynamics with different oscillatory regimes producing distinct cycle shapes. Right:
Lorenz chaotic system with different parameter sets generating contrasting attractor geometries in
3D projections. These datasets demonstrate the fundamental challenge MODE addresses: spatial
clustering fails due to overlapping support, while velocity information provides the discriminating
signal for accurate regime identification.

dC

dt
= vi − kdC −

vd X C

Kd + C
(13)

dM

dt
=

V1(1−M)

K1 + (1−M)
− V2M

K2 +M
, V1 =

VM1 C

Kc + C
(14)

dX

dt
=

V3(1−X)

K3 + (1−X)
− V4X

K4 +X
, V3 = VM3 M (15)

Parameters were set to the standard values found in Table 3.

We augmented the standard Goldbeter oscillator with a stochastic differentiation exit mechanism to
simulate the biological phenomenon where cycling cells can irreversibly commit to differentiation.
Specifically, we defined a spatial exit zone in the region of minimal cyclin concentration (the G1/S
checkpoint region) where cells have a probability p = 0.15 per time step of exiting the cell cycle.
Cells that stochastically transition in this region evolve according to linear dynamics toward a stable
node attractor representing the differentiated state, positioned approximately one cycle radius away
from the oscillator trajectory. Specifically, cells evolved according to

dy

dt
= −K

(
y − x∗), (16)

where

x∗ =

[−0.3461
0.1481
0.1468

]
, K =

[
0.6000 0 0

0 0.8000 0
0 0 0.9000

]
.
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Symbol Code parameter Value
vi vi 0.0335
kd kd 0.0000
vd vd 0.2500
Kd Kd 0.0200
VM1 VM1 3.2523
Kc Kc 0.5000
K1 K1 0.0050
V2 V2 0.8158
K2 K2 0.0050
VM3 VM3 1.7020
K3 K3 0.0050
V4 V4 1.1580
K4 K4 0.0050

Table 3: Employed parameters used for Goldbeter’s mitotic oscillator.

The resulting dynamics combine three distinct behavioral regimes: (1) stable oscillatory behavior
along the limit cycle, (2) stochastic transition events in the exit zone, and (3) deterministic approach
to the differentiated attractor. This configuration creates a challenging forecasting scenario where
successful prediction requires accurately modeling both the continuous cycle dynamics and the dis-
crete exit decisions that fundamentally alter cell fate trajectories.

Data generation involved uniform sampling in arc-length along both the cycle trajectory and the
differentiation path to ensure balanced representation across dynamical regimes and prevent over-
sampling of slow trajectory segments. This sampling strategy produced n = 6, 320 position-velocity
pairs (xi, ẋi) with additive Gaussian noise (σ = 0.1), split into 80% training and 20% validation
sets. The ground truth exit probability in the transition zone provides quantitative validation of
MODE’s learned gating function.

Lineage branching dataset. The branching dataset implements a simplified model of cellular lin-
eage specification commonly observed in developmental biology, where a homogeneous progenitor
population splits into distinct cell fates through binary decision processes. This system models the
essential features of lineage commitment: initial homogeneous dynamics followed by irreversible
branching toward distinct terminal states.

Specifically, n = 600 initial cells were drawn from a Gaussian distribution with parameters

µ0 =

[
0
0

]
, Σ0 = 0.08 I2.

These were evolved according to the system

ẋ = ATx+ c, AT =

[
0.15 −0.05
0.05 0.10

]
, c =

[
0.6
0

]
,

for 45 steps, at which point 50% of cells were divided between the two lineages.

These new populations evolved according to

ẋ =

[
0 0

±s 0

]
x+ c, s = 0.6,

for 30 steps. Throughout, the step size was given by ∆t = 0.08. By sampling all trajectories every
step, this process accumulated a total of 600× (45 + 30) = 45,000 samples, divided into an 80–20
train-validation split.

Experimental design and evaluation metrics. Both datasets challenge forecasting methods
through distinct mechanisms: the cell cycle system tests handling of stochastic regime transitions
within continuous dynamics, while the branching system evaluates prediction of discrete fate deci-
sions and trajectory divergence. These complementary challenges provide comprehensive assess-
ment of MODE’s forecasting capabilities across the spectrum of switching behaviors encountered
in biological systems.

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Evaluation employed pushforward analysis, where ”progenitor cells” sampled from initial condi-
tions (cycle initiation points or trunk origins) were evolved under learned dynamics and compared
to ground truth trajectories using Wasserstein distance metrics. This approach directly measures
forecasting accuracy for the biological phenomena of interest: predicting cell cycle exit timing and
lineage commitment outcomes. Both full joint distributions and marginal distributions were evalu-
ated to assess different aspects of forecasting performance, with particular attention to accuracy in
the branching dimension for lineage specification tasks.

B ADDITIONAL EXPERIMENTAL RESULTS

B.1 GOVERNING EQUATION RECOVERY IN MULTI-MODAL DYNAMICAL SYSTEMS

Beyond clustering trajectories into distinct dynamical regimes, MODE simultaneously recovers the
governing equations for each discovered mode. This dual capability enables mechanistic interpre-
tation of multi-modal systems by providing sparse polynomial representations of the underlying
dynamics. We evaluate MODE’s equation discovery performance on three canonical test systems,
comparing recovered coefficients against ground truth dynamics.

For each system, we apply MODE with polynomial feature libraries of degree 2, enabling simul-
taneous trajectory clustering and sparse coefficient identification. The recovered equations provide
direct access to the mathematical structure distinguishing different dynamical regimes, offering in-
terpretability that pure clustering methods cannot provide.

Bistable system analysis. The bistable system exhibits spatially overlapping attractors with non-
linear coupling terms that create distinct basins of attraction. Table 4 reveals MODE’s capacity for
precise coefficient recovery across both modes. The method successfully identifies all structurally
important coefficients while maintaining sparsity by correctly setting zero-valued terms to negligible
values.

MODE accurately recovers the critical dynamical structure: Mode 0 follows ẋ = −0.5−x+2y and
ẏ = −0.25− 0.5x− 1.5y− xy, while Mode 1 exhibits ẋ = 0.5− x− 2y and ẏ = −0.25 + 0.5x−
1.5y + xy. The sign reversal in both linear and nonlinear terms creates the bistable character, and
MODE’s precise identification of these differences (errors O(10−5)) demonstrates its sensitivity to
dynamical rather than geometric features.

Lotka-Volterra system analysis. The predator-prey dynamics present temporal rather than spa-
tial mode separation, challenging traditional clustering approaches. Table 5 demonstrates MODE’s
ability to resolve distinct ecological parameter regimes within the same phase space region. The
method correctly recovers the prey growth rates (0.5 in both modes) and distinguishes the predation
efficiencies: 0.02 for Mode 0 versus 0.04 for Mode 1.

Most critically, MODE identifies the different prey mortality parameters that characterize each
regime: −0.5 for Mode 0 and −0.6 for Mode 1. These parameter differences, while seemingly
modest, create qualitatively distinct cyclical behaviors that MODE successfully captures through its
velocity-informed clustering approach. Coefficient estimation errors remain at the level ofO(10−7)
for the principal terms.

Lorenz system analysis. The chaotic Lorenz attractor represents the most challenging case for
equation discovery, with three-dimensional dynamics and sensitive dependence on initial conditions.
Table 6 reveals both the capabilities and limitations of MODE’s approach in chaotic regimes. While
the method successfully recovers the fundamental structure of the Lorenz equations, estimation
accuracy varies significantly across coefficient types.

MODE accurately identifies the critical nonlinear coupling terms: the xy coefficients in the ż equa-
tions (recovered as 1.00± 10−4 and 1.01± 10−3) and maintains the essential xz coupling structure
with coefficients of −0.999± 10−6 and −1.00± 10−5. However, the method exhibits larger errors
in constant and linear terms, particularly evident in the ẏ equations where estimated constant terms
(1.29± 101 and −1.59± 101) deviate substantially from the true values of 0.
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Table 4: Equation recovery for the bistable system. Each cell shows the true coefficient, estimated
mean± variance over 10 runs, and absolute error. MODE achieves near-perfect recovery with errors
at the level of O(10−6).

1 1̂ x x̂ y ŷ

mode 0 dx/dt −0.5 −0.493 ±10−5 −1 −0.988 ±10−5 2 1.98 ±10−5

mode 0 dy/dt −0.25 −0.248 ±10−5 −0.5 −0.497 ±10−5 −1.5 −1.49 ±10−5

mode 1 dx/dt 0.5 0.497 ±10−5 −1 −0.992 ±10−6 −2 −1.98 ±10−5

mode 1 dy/dt −0.25 −0.244 ±10−5 0.5 0.491 ±10−5 −1.5 −1.48 ±10−4

x2 x̂2 xy x̂y y2 ŷ2

mode 0 dx/dt 0 −0.000152 ±10−5 0 0.00262 ±10−5 0 −0.00307 ±10−6

mode 0 dy/dt 0 0.000716 ±10−5 −1 −0.987 ±10−5 0 −0.00317 ±10−6

mode 1 dx/dt 0 0.00474 ±10−6 0 −0.000486 ±10−5 0 −0.000675 ±10−5

mode 1 dy/dt 0 −0.00102 ±10−5 1 0.98 ±10−5 0 −0.000296 ±10−5

Table 5: Equation recovery for the Lotka-Volterra predator-prey system. MODE correctly identifies
distinct predation rates and mortality parameters that characterize each ecological regime.

1 1̂ x x̂ y ŷ

mode 0 dx/dt/dt 0 −0.0281 ±10−4 0.5 0.501 ±10−7 0 0.000761 ±10−6

mode 0 dy/dt/dt 0 −0.006 ±10−4 0 −2.17e− 05 ±10−7 −0.5 −0.5 ±10−7

mode 1 dx/dt/dt 0 0.00661 ±10−4 0.5 0.499 ±10−7 0 0.000474 ±10−7

mode 1 dy/dt/dt 0 0.00118 ±10−5 0 −4.09e− 05 ±10−8 −0.6 −0.6 ±10−7

x2 x̂2 xy x̂y y2 ŷ2

mode 0 dx/dt/dt 0 −3.75e− 07 ±10−11 −0.02 −0.02 ±10−11 0 2.34e− 06 ±10−10

mode 0 dy/dt/dt 0 −9.74e− 08 ±10−11 0.01 0.01 ±10−11 0 −2.98e− 06 ±10−10

mode 1 dx/dt/dt 0 3.02e− 06 ±10−11 −0.04 −0.04 ±10−10 0 −3.12e− 05 ±10−9

mode 1 dy/dt/dt 0 6.79e− 07 ±10−12 0.01 0.00999 ±10−11 0 4.6e− 06 ±10−10

These larger estimation errors in the Lorenz system reflect the inherent challenges of applying sparse
regression to chaotic data. The sensitive dependence on initial conditions and the presence of mul-
tiple time scales create difficulties in cleanly separating trajectories between modes, leading to co-
efficient bias when the clustering assignment itself contains uncertainty. Despite these limitations,
MODE successfully captures the essential nonlinear structure that governs the chaotic dynamics.

Statistical consistency and limitations. All results represent averages over 10 independent runs
with different random initializations, providing estimates of method reliability. For the bistable and
Lotka-Volterra systems, coefficient variances remain extremely low (O(10−7) or smaller), indicat-
ing consistent convergence across runs. The Lorenz system shows higher variance, particularly for
constant terms, reflecting the added complexity of chaotic trajectory separation.

The equation recovery demonstrates MODE’s interpretability advantage: unlike black-box cluster-
ing methods, MODE provides explicit mathematical models revealing the mechanisms underlying
each dynamical regime. This capability transforms trajectory clustering from pattern recognition
into scientific discovery, enabling researchers to understand not just which trajectories belong to-
gether, but why they exhibit similar dynamics.

B.2 NOISE AND TRAINING SIZE ROBUSTNESS

To assess the practical applicability of elementary dynamics decomposition, we conduct system-
atic robustness studies examining how clustering performance degrades under realistic experimental
conditions. Real-world dynamical systems inevitably contain measurement noise and are often con-
strained by limited sample sizes, factors that can severely impact clustering methods that rely on
precise velocity estimates.
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Table 6: Equation recovery for the Lorenz chaotic system. Despite the system’s complexity and
three-dimensional dynamics, MODE accurately recovers the key parameters distinguishing the two
chaotic attractors.

1 1̂ x x̂ y ŷ

mode 0 dx/dt/dt 0 0.0993 ±10−2 −12 −12 ±10−3 12 11.9 ±10−2

mode 0 dy/dt/dt 0 1.29 ±101 28 28.5 ±100 −1 −1.1 ±10−2

mode 0 dz/dt/dt 0 −0.0777 ±10−3 0 −0.653 ±100 0 0.266 ±10−1

mode 1 dx/dt/dt 0 0.0523 ±10−2 −10 −10.2 ±10−1 10 10.1 ±10−1

mode 1 dy/dt/dt 0 −1.59 ±101 35.6 35.4 ±10−1 −1 −1.13 ±10−1

mode 1 dz/dt/dt 0 −0.0963 ±10−2 0 0.553 ±100 0 −0.212 ±10−1

z ẑ x2 x̂2 xy x̂y

mode 0 dx/dt/dt 0 0.0386 ±10−2 0 0.00456 ±10−4 0 0.00152 ±10−5

mode 0 dy/dt/dt 0 −0.299 ±10−1 0 −0.0516 ±10−2 0 0.0279 ±10−3

mode 0 dz/dt/dt −4 −3.92 ±10−2 0 −0.00421 ±10−4 1 1 ±10−4

mode 1 dx/dt/dt 0 −0.0406 ±10−2 0 −0.00311 ±10−4 0 −0.002 ±10−5

mode 1 dy/dt/dt 0 0.265 ±10−1 0 0.0532 ±10−2 0 −0.0362 ±10−2

mode 1 dz/dt/dt −2.67 −2.76 ±10−2 0 −0.0173 ±10−3 1 1.01 ±10−3

xz x̂z y2 ŷ2 yz ŷz

mode 0 dx/dt/dt 0 0.000759 ±10−6 0 −0.000665 ±10−6 0 −0.000515 ±10−6

mode 0 dy/dt/dt −1 −0.999 ±10−6 0 −0.0054 ±10−4 0 0.00202 ±10−5

mode 0 dz/dt/dt 0 0.0094 ±10−4 0 −0.000259 ±10−6 0 −0.00324 ±10−5

mode 1 dx/dt/dt 0 0.000664 ±10−6 0 0.000369 ±10−7 0 −0.000614 ±10−6

mode 1 dy/dt/dt −1 −1 ±10−5 0 0.011 ±10−3 0 0.00326 ±10−5

mode 1 dz/dt/dt 0 −0.00809 ±10−4 0 −0.00252 ±10−5 0 0.00249 ±10−5

z2 ẑ2

mode 0 dx/dt/dt 0 −0.00187 ±10−5

mode 0 dy/dt/dt 0 0.0076 ±10−4

mode 0 dz/dt/dt 0 0.000345 ±10−6

mode 1 dx/dt/dt 0 0.00174 ±10−5

mode 1 dy/dt/dt 0 −0.00652 ±10−4

mode 1 dz/dt/dt 0 0.00218 ±10−5

We evaluated robustness across three canonical test systems (bistable, Lotka-Volterra, Lorenz)
by systematically varying two critical experimental parameters: Gaussian noise levels (σ ∈
{0.0, 10−5, 10−2, 10−1, 2 × 10−1}) and training dataset sizes (N ∈ {100, 800, 8000}). Noise is
added to both position x and velocity ẋ measurements after normalization (V AR[x] = V AR[ẋ] =
1) to simulate realistic experimental conditions. For each parameter combination, we evaluate clus-
tering performance using ARI and NMI metrics on held-out test data (20% of each dataset), averag-
ing results over multiple random seeds to ensure statistical reliability.

Figure 8 reveals that MODE demonstrates competitive performance compared to the MLP base-
line while substantially outperforming spatial-only methods across most test conditions. MODE
shows robust performance on the bistable and Lotka-Volterra systems, maintaining high clustering
accuracy (ARI, NMI > 0.8) even under moderate noise levels where spatial clustering methods
fail completely. This advantage stems from MODE’s ability to leverage velocity information—even
noisy velocity estimates provide directional information that purely spatial clustering cannot access.

The noise robustness patterns reveal system-specific insights: the bistable system shows the most
dramatic performance advantages for MODE over spatial methods, with MODE maintaining high
accuracy while GMM and Spectral clustering fail completely across most noise levels. This oc-
curs because the bistable system’s spatially overlapping attractors become indistinguishable without
velocity information as noise increases. The Lorenz system presents the most challenging case,
where all methods show performance degradation, though MODE and MLP maintain more robust
performance than spatial-only approaches.
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Figure 8: Clustering performance (ARI, NMI) as a function of noise level (σ) and training set
size (N ) across different dynamical systems. Each subplot corresponds to a specific dataset and
metric. MODE demonstrates superior noise tolerance and sample efficiency compared to spatial-
only methods, maintaining high performance even under challenging experimental conditions where
baseline methods fail.

The training size analysis reveals differential sample efficiency across systems. On the bistable and
Lotka-Volterra systems, MODE maintains reasonable clustering performance even with limited sam-
ples (N = 100), while spatial methods show severe degradation in small-sample regimes. However,
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performance variability increases substantially at the smallest sample size (N = 100), indicating
that while MODE can work with limited data, larger sample sizes (N ≥ 800) provide more reliable
results.

The Lotka-Volterra system demonstrates MODE’s effectiveness for temporally-separated dynamics,
where spatial clustering methods consistently fail regardless of sample size. The underlying ad-
vantage is that velocity information provides crucial directional cues about cluster membership that
spatial position alone cannot capture—each (xi, ẋi) pair encodes both current state and dynamical
tendency, enabling more robust clustering even when phase space regions overlap.

These robustness results provide practical guidance for experimental applications. MODE’s noise
tolerance suggests applicability to real biological data with moderate measurement uncertainties,
though performance degrades significantly under high noise conditions (σ > 0.1). The sample size
analysis indicates that while MODE can function with limited data, reliable performance requires
adequate sample sizes (N ≥ 800 recommended) to ensure consistent clustering results.

The comparison with the MLP baseline reveals an important trade-off: while MLP often matches
or slightly exceeds MODE’s clustering performance, MODE provides the critical advantage of in-
terpretable sparse dynamics. MODE achieves competitive robustness while simultaneously offering
mechanistic insight through its recovered governing equations, making it particularly suitable for
scientific applications where understanding system structure is as important as clustering accuracy.

B.3 THE ROLE OF SPARSITY AND COMPARISON TO HYBRID SINDY

We found that MODE using symbolic regressors (MODE-Symb) consistently outperformed a ver-
sion with neural regressors (MODE-NN), suggesting a potential role for sparsity during learning. To
investigate this phenomenon, we reran the Goldbeter experiment with MODE-Symb while setting
the sparsity value to λ = 0,1e-4,1e-3,1e-2,1e-1. Each model was retrained with 5 random
seeds.

We found that higher sparsity values encouraged more stable divisions of phase space into dynami-
cal regimes across retrainings. This is visible if we plot the variance in cluster assignment averaged
over all cells and across retrainings (Fig. 11) or view this variance across cells having retrained on
different sparsity values. This complies with our intuition that less sparse (i.e more “complex” sys-
tems) should be able to fit the dynamics in multiple ways, and more sparse systems should converge
to the same (in our experience also the true) expert distribution.

(a) Sparsity = 0 (b) Sparsity=1e-1

Figure 9: Variance in cluster assignment after MODE training with low vs high sparsity on Gold-
beter.

This highlights an important difference between MODE and comparable switching/hybrid systems
like Hybrid SINDy, where the regime assignments are learned before training. In our framework,
model discovery and mixture modeling interact through learning. This means that we can use spar-
sity, for example, to help discover the true dynamical regimes. See, for example, the comparison
between the Goldbeter regimes discovered by MODE vs Hybrid SINDy.
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(a) Most likely cluster assignment according to en-
semble of 5 MODEs with high sparsity.

(b) Most likely cluster assignment according to en-
semble of 5 Hybrid SINDys with high sparsity.

Figure 10: Jointly learning regime assignments with dynamics using MODE correctly identifies true
branches (MODE, left). Pre-clustering using Hybrid SINDy systematically leads to poor clustering.

Figure 11: Variance of regime assignment with sparsity.
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B.4 SUPPLEMENTAL FIGURES

(a) Argmax of expert distribution learned for toy
branching.

(b) Entropy of expert mixture, highlighting
switching region.

Figure 12: Toy branching argmax and entropy figures

(a) Probability of differentiation expert (expert 1)
learned for the Goldbeter system.

(b) Entropy of expert mixture, highlighting
switching region.

Figure 13: Goldbeter probability and entropy figures

B.5 OUT-OF-DISTRIBUTION (OOD) GENERALIZATION

To demonstrate MODE’s ability to generalize to held-out data representing a large, contiguous por-
tion of phase space, we ran an experiment in which a certain small arc on cell cycle was removed
from the Goldbeter data. The sector was chosen to be away from the switching zone and near where
protease starts being nonzero (red dots, Fig. 15, left). We found no difference (Fig. 15, right) in
MODE’s ability to detect the ground truth dynamical regimes on training (lightweight dots) vs OOD
data (heavy blue dots). This indicates the bias introduced by MODE’s sparse regressors helps ”paint
in” contiguous regions of phase space.

B.6 CELL CYCLING IN HUMAN FIBROBLASTS

In Sec. 3 we used MODE in order to model experimental scRNA-seq data from the U2OS cell-line.

To further demonstrate the applicability of MODE on experimental data, we turned to data from Riba
et al. of human fibroblasts. In this data, the cells can be separated into two subpopulations, only one
of which exhibits genes related to the cell-cycle. A UMAP of this data can be seen in Fig. 16 (a),
where cells are either part of the cell cycle or exiting it. We follow the same preprocessing steps
as for the FUCCI data (Appendix Sec. D.1, estimate velocities using scVelo (Bergen et al., 2020),
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Figure 14: 3D plot of FUCCI cycle data with expert 1 and 2 in orange and blue respectively, high-
lighting the discovered cycling and exiting modes. Exiting cones doubled in size for visual emphasis.

Exit true, train

Cycle true, train

Cycle true, OOD

Exit pred, train

Cycle pred, train

Cycle pred, OOD

(a) (b)

Figure 15: MODE generalizes on Out-of-Distribution data. (a) a 2-expert MODE was fit to the
Goldbeter data with a sector of points hidden during training. (b) MODE is able to detect the correct
dynamical regimes even in the region of space that was held-out during training.

which are then projected onto a 5-dimensional PCA. After the filtration steps, this data contains a
total of 5,367 cells. Riba et al. showed it is possible to cluster these into cycling and non-cycling
cells.
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Figure 16: Using MODE to model cell-cycle and exit dynamics in human fibroblasts. (a) UMAP of
the human fibroblasts data from Riba et al.. The cells can be divided into those that are part of the
cell-cycle (in blue) and those that are not part of it (in orange). (b) MODE accurately distinguishes
between these two regimes, and is stable between different seeds. (c) PCA projection of the data
into two dimensions, with cell velocities. (d) true labeling into cell-cycle (blue) versus not (red).
(e) classification according to 10 2-expert MODE, averaged over different seeds. The two different
regimens, cycling and not, are captured by the two expert fit using MODE.

Following the results on U2OS, we fit this data with a 2-expert MODE, using up to quadratic terms,
and repeated this process over ten random initializations to create an ensemble model (as described
in Appendix Sec. D.1). We found that the ensemble averaged expert distribution is able to faithfully
distinguish between cells that are cycling versus those that are not (Fig. 16 (b)). As in the U2OS
data, the gating function had high entropy for cells between these regions, as shown in Fig. 16 (e).
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C ALGORITHM IMPLEMENTATION DETAILS

We implement two variants of MODE corresponding to different assumptions about the mixing dis-
tribution π: MODE Local (state-independent mixing) and MODE Global (state-dependent mixing
via neural gating).

C.1 SPARSE IDENTIFICATION OF NONLINEAR DYNAMICS (SINDY)

The SINDy framework (Brunton et al., 2016) forms the foundation of our expert dynamics parame-
terization. Given snapshot data D = {(xi, ẋi)}Ni=1, SINDy assumes the governing equation can be
expressed as a sparse linear combination of basis functions:

ẋ = f(x) = Z(x)Θ,

where Z(x) ∈ Rnlib is a library of candidate functions and Θ ∈ Rnlib×d are sparse coefficients
discovered via regularized regression. For polynomial libraries of degree c, we construct:

Z(x) = [1, x1, . . . , xd, x
2
1, x1x2, . . . , x

c
d],

yielding nlib =
(
d+c
c

)
terms. The sparsity-promoting Laplace prior Θs ∼ Lap(0, 1/λ) in Eq. 3

induces an ℓ1 penalty λ∥Θ∥1, implemented via Lasso regression. This enables automatic selection
of relevant terms, yielding interpretable ordinary differential equations: each row of Θ specifies
which polynomial terms contribute to each state derivative. For example, with d = 2 and c = 2, a
discovered equation might be ẋ1 = θ2x2 + θ5x1x2, directly revealing interaction structure.

In MODE Local (Sec. C), we solve weighted SINDy regressions in the M-step with responsibilities
Ri,k as sample weights. For numerical stability, we scale the design matrix and targets by

√
Ri,k,

apply column-wise standardization without centering, fit Lasso, then rescale coefficients. In MODE
Global (Sec. C.3), expert weight matrices Θk are directly optimized via gradient descent with ℓ1
regularization. The degree c controls model complexity: higher degrees capture richer dynamics but
increase overfitting risk.

We show in the clustering experiments that SINDy can accurately recover the true governing equa-
tions when they lie within the chosen basis (Tables 4,5). However, SINDy still works well, even
when the true dynamics are not expressible in closed form in the basis. This is the case with the
Goldbeter model, which uses rational functions. Polynomials should be an effective basis for this
data away from singularities, especially when the degree of the basis functions grows larger. We can
confirm this in a simple experiment in which the polynomial degree, d, is varied and the resulting
model is evaluated using W1 and W2 pushforward losses (Fig. 17).

C.2 MODE LOCAL

MODE Local implements the case where mixing probabilities π = (π1, . . . , πK) are state-
independent constants. This variant is particularly suitable for unsupervised clustering of hetero-
geneous dynamical populations where each subpopulation follows distinct intrinsic dynamics re-
gardless of spatial location.

Algorithm. We optimize the MAP objective (Eq. 3) using an Expectation-Maximization (EM)
algorithm with soft assignments. The algorithm alternates between:

E-step: Compute responsibilities Ri,k = p(si = k | xi, ẋi) for each data point i and expert k:

Ri,k ∝ πk · N (ẋi | Z(xi)Θk, σ
2
kId) (17)

where responsibilities are normalized such that
∑K

k=1 Ri,k = 1.

M-step: Update expert parameters by solving weighted SINDy regression problems. For each
expert k, we fit polynomial coefficients Θk by minimizing:

N∑
i=1

Ri,k ∥ẋi − Z(xi)Θk∥22 + λ∥Θk∥1 (18)

We also update mixing probabilities πk = 1
N

∑N
i=1 Ri,k and noise variances σ2

k.
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Figure 17: Degree, d, of the SINDy basis was varied while fitting Goldbeter data. We observed
monotonically decreasing Wasserstein error as d increased, indicating an increasingly accurate Tay-
lor fit of the rational functions in the true dynamics.

Implementation. The core algorithm is implemented in the MODELocal class with the following
key parameters:

• n clusters: Number of experts K (default: 3)
• degree: Polynomial basis degree for SINDy (default: 2)
• alpha: L1 regularization strength λ (default: 10−4)
• max iter: Maximum EM iterations (default: 150)
• tol: Convergence tolerance on log-likelihood (default: 10−5)

The weighted SINDy regression in the M-step uses sample re-weighting with stabilization: for each
expert, we scale the design matrix Z and targets ẋ by

√
Ri,k, apply column-wise standardization

without centering, fit Lasso regression, then rescale coefficients back to the original feature scale.
This approach improves numerical stability compared to direct weighted least squares.

Training Procedure. The EM algorithm for MODE Local is summarized below:

The E-step computes soft assignments (responsibilities) Ri,k for each data point based on the current
expert parameters (lines 6–10). The M-step updates expert dynamics via weighted SINDy regression
(lines 13–18), then updates mixing probabilities and noise variances (lines 21–22). Convergence
is monitored via the marginal log-likelihood (line 25). The weighted regression uses sample re-
weighting with column standardization (lines 14–17) to improve numerical stability.

C.3 MODE GLOBAL

MODE Global implements the case where mixing probabilities depend on state: π(x) =
(π1(x), . . . , πK(x)). This variant uses a neural gating network to model spatially-localized regime
transitions, making it suitable for forecasting tasks where dynamical behavior varies smoothly across
state space.

Algorithm. We optimize Eq. 3 using stochastic gradient descent with the following neural archi-
tecture:

Gating Network: A 3-layer MLP with tanh activations maps normalized states to log-mixing prob-
abilities:

π(x) = softmax
(

MLP
(
x− µx

σx

))
(19)
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Algorithm 1 MODE Local Training (EM Algorithm)

Require: Data (X, Ẋ), number of experts K, hyperparameters {λ, degree}
1: Initialize Expert parameters {Θk}Kk=1, mixing probabilities π ∈ RK , noise scales {σk}Kk=1
2: Construct polynomial basis: Z(X)← PolynomialFeatures(X, degree) ▷ (N, P) features
3:
4: for iteration = 1 to Niter do
5:
6: // E-step: Compute responsibilities
7: for k = 1 to K do
8: vk(X)← Z(X)Θk ▷ Expert predictions
9: ℓi,k ← log πk + logN (ẋi|vk(xi), σ

2
k) ▷ Log-likelihood per sample

10: end for
11: Ri,k ← exp(ℓi,k)∑K

j=1 exp(ℓi,j)
▷ Normalize responsibilities

12:
13: // M-step: Update parameters
14: for k = 1 to K do
15: // Weighted SINDy regression
16: wi ←

√
Ri,k ▷ Sample weights

17: Zw ← Z ⊙ w, Ẋw ← Ẋ ⊙ w ▷ Weight design matrix and targets
18: Standardize columns of Zw: Zw ← Zw/std(Zw)

19: Solve: Θk ← argminΘ ∥ZwΘ− Ẋw∥22 + λ∥Θ∥1 ▷ Lasso regression
20: Rescale Θk to original feature scale
21:
22: // Update mixing probability and noise
23: πk ← 1

N

∑N
i=1 Ri,k

24: σ2
k ←

∑N
i=1 Ri,k∥ẋi−vk(xi)∥2

2∑N
i=1 Ri,k

25: end for
26:
27: // Check convergence
28: L ←

∑N
i=1 log

∑K
k=1 πkN (ẋi|vk(xi), σ

2
k) ▷ Marginal log-likelihood

29: if |L − Lprev| < tol then
30: break
31: end if
32: Lprev ← L
33: end for
34:
Ensure: Expert parameters {Θk}Kk=1, mixing probabilities π, noise scales {σk}Kk=1

where µx, σx are empirical mean and standard deviation of the training data.

Expert Networks: Each expert k parameterizes the dynamical law fΘk
(x) = Z(x)Θk where Z(x)

contains polynomial features up to degree c and Θk are learnable weight matrices of shape (P, d)
with P polynomial features and d output dimensions.

Regularization. To prevent mode collapse and ensure confident gating decisions, we augment the
loss with:

• Expert L1 sparsity: λexpert
∑K

k=1 ∥Θk∥1 promotes sparse expert dynamics (applied only
to linear SINDy experts)

• Gate entropy: − 1
B

∑B
i=1

∑K
k=1 πi,k log πi,k encourages confident per-sample decisions

• Load balancing:
∑K

k=1 π̄k log(Kπ̄k) prevents expert collapse via KL divergence from
uniform distribution
In practice, we find that a balance of entropy and load balancing terms works fairly well
and is not too difficult to tune. Often, setting both to 1 produces fine results which can
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be improved if necessary by either simple manual tuning or a grid search. The example
of a gridsearch on gating entropy and load balancing in which Wasserstein 1-distance is
measured on Goldbeter testing data is given in Fig. 18.

Figure 18: Hyperparameter grid search on the Goldbeter data.

Rollouts All results in the paper use the stochastic rollout described in Eqs. 5. Alternatively, we
investigated using ”mean” and ”max” rollouts in which the average or mode of the expert distribution
is used at every step, respectively. This represents a different type of cellular dynamics in which
regulatory processes either have a conjoined, simultaneous effect or a winner-takes-all dynamics.
Table 7 shows Wasserstein scores on the Goldbeter data for these different dynamics.

W1 W2 W1,C W1,M W1,X

Max 0.096034 0.152445 0.022993 0.039216 0.050021
Mean 0.101588 0.160200 0.024213 0.041055 0.055026
Stochastic 0.0837 0.1049 0.0590 0.0223 0.0289

Table 7: Wasserstein distances for different MODE rollout methods. Stochastic rollouts perform
best on this Goldbeter data.

Implementation. The algorithm is implemented in the MODEGlobal class with two training
modes: fixed-K and adaptive-K. For all clustering experiments (Sec. 3.1), the key hyperparame-
ters were set to:

• K: Number of experts (fixed mode: default 2)
• degree: Polynomial degree for expert dynamics (default: 2)
• hidden: Hidden units in gating network (default: 64)
• epochs: Training epochs (default: 1500 )
• lr: Learning rate (default: 1× 10−3)
• l1 lambda, ent lambda, lb lambda: Regularization weights (defaults:
10−1, 1, 1)

MODE training and hyperparameters for all experiments are shown in tables Tab. 8, 9 and 11.
Wherever parameters are dashed, they were omitted or set to 0 as they had no influence on the
result.
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All MLP baselines had four hidden layers (except for the two data which had only one layer) with
64 units in each layer and tanh activation functions.

Parameter Description Value
K experts 3
LIB ORDER poly. degree 0
GATE HIDDEN gating hidden sizes (64,)
ACTIVATION nonlinearity tanh
LR learning rate 2e-3
WEIGHT DECAY L2 penalty 1e-5
EPOCHS training epochs 500
PATIENCE early stop patience 30
MIN DELTA val. loss margin —
LAM L1 L1 penalty 1e-4
LAM ENT entropy penalty 1e-3
LAM LB load balance penalty 5e-4
GRAD CLIP gradient clipping —
BATCH SIZE batch size 512

Table 8: Toy Branching (i.e. Fig. 1) hyperparameters.

Parameter Description Value
K experts 2
LIB ORDER poly. degree 3
GATE HIDDEN gating hidden sizes (64,)
ACTIVATION nonlinearity SILU
LR learning rate 1e-2
WEIGHT DECAY L2 penalty 1e-6
EPOCHS training epochs 10000
PATIENCE early stop patience 30
MIN DELTA val. loss margin 1e-4
LAM L1 L1 penalty 1e-3
LAM ENT entropy penalty 1e0
LAM LB load balance penalty 1e0
GRAD CLIP gradient clipping 5.0
BATCH SIZE batch size 512

Table 9: Goldbeter oscillator hyperparameters.

All implementations support multiple random restarts with validation-based model selection to avoid
poor local minima. For reproducibility, all experiments use fixed random seeds across method com-
parisons. GMM and spectral clustering baselines were run in scikit-learn v. 1.7.2.
MODE, MLPs and SINDy were implemented in pytorch v. 2.8.0 and were trained with
an Adam optimizer (Kingma & Ba, 2015). Experiments were run locally on a cpu cluster with no
parallelization. Typical run times range from around a minute for the toy example of Fig. 1 to about
ten minutes for the full fifteen-seed FUCCI ensemble shown in Fig. 5 (e), (f).

Training Procedure. The complete training algorithm is summarized below:

The forward pass computes gating probabilities π(x) and expert predictions {vk(x)} (lines 7–8),
which are combined via a Gaussian mixture likelihood (line 11). Regularization terms (lines 14–
17) prevent mode collapse and encourage sparse, confident expert assignment. The total loss is
minimized using Adam optimizer (lines 20–21).

C.4 ADAPTIVE EXPERT SELECTION

In many biological systems, the number of distinct dynamical regimes is a priori unknown. While
cell population heterogeneity is ubiquitous in single-cell data, determining how many functionally
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Parameter Description Value
K experts 3
LIB ORDER poly. degree 1
GATE HIDDEN gating hidden sizes (64,)
ACTIVATION nonlinearity tanh
LR learning rate 1e-2
WEIGHT DECAY L2 penalty 1e-4
EPOCHS training epochs 2000
PATIENCE early stop patience 30
MIN DELTA val. loss margin 1e-4
LAM L1 L1 penalty 1e-3
LAM ENT entropy penalty 2e-3
LAM LB load balance penalty 1e-1
GRAD CLIP gradient clipping 5.0
BATCH SIZE batch size 512

Table 10: Lineage branching hyperparameters.

Parameter Description Value
K experts 2
LIB ORDER poly. degree 3
GATE HIDDEN gating hidden sizes (64,)
ACTIVATION nonlinearity SILU
LR learning rate 1e-3
WEIGHT DECAY L2 penalty 1e-6
EPOCHS training epochs 5000
PATIENCE early stop patience 100
MIN DELTA val. loss margin 1e-4
LAM L1 L1 penalty 1e-3
LAM ENT entropy penalty 1e0
LAM LB load balance penalty 1e0
GRAD CLIP gradient clipping 5.0
BATCH SIZE batch size 512

Table 11: FUCCI hyperparameters.

distinct subpopulations exist - and whether these correspond to discrete dynamical regimes or con-
tinuous transitions - remains a fundamental challenge. Manual selection of the expert count K is
both impractical and prone to overfitting or underfitting. We therefore introduce an AIC/BIC-based
strategy for dynamically adapting K during training, allowing the model to automatically discover
the intrinsic dimensionality of the system.

Starting with an initial K (default: 5), the algorithm periodically evaluates information criteria to
balance model complexity with goodness-of-fit:

AIC = 2k + 2N · NLL (20)
BIC = k log(N) + 2N · NLL (21)

where k is the number of model parameters, N is the number of samples, and NLL is the negative
log-likelihood. The adaptation rules are:

• Add expert: If AIC/BIC plateaus for Padd consecutive checks (default: 30 checks × 50
epochs = 1500 epochs), suggesting the model needs more capacity to improve fit.

• Remove expert: If (1) any expert has usage < τusage (default: 5%), indicating redundancy,
or (2) AIC/BIC worsens consistently for Premove checks (default: 30), suggesting overfit-
ting. The least-used expert is removed.

To further encourage sparsity in expert assignment, we add the regularization term λgate
∑

p∈gating |p|
to the loss, which penalizes gating network weights and prevents diffuse, non-interpretable expert
usage (default: λgate = 10−3).
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Algorithm 2 MODE Global Training

Require: Data (X, Ẋ), number of experts K, hyperparameters {λexpert, λent, λlb}
1: Initialize Gating network MLP, expert parameters {Θk}Kk=1, noise scales {σk}Kk=1
2: Normalize data: µx ← mean(X), σx ← std(X)
3: for epoch = 1 to Nepochs do
4: for minibatch (xb, ẋb) in DataLoader(X, Ẋ) do
5: // Forward pass
6: π(xb)← softmax(MLP((xb − µx)/σx)) ▷ Gating probabilities
7: {vk(xb)}Kk=1 ← {Z(xb)Θk}Kk=1 ▷ Expert predictions
8: // Mixture likelihood
9: Ldata ← − 1

B

∑B
i=1 log

∑K
k=1 πk(xi) · N (ẋi|vk(xi), σ

2
k)

10: // Regularization
11: Lexpert ← λexpert

∑K
k=1 ∥Θk∥1 ▷ Expert sparsity

12: Lent ← −λent · 1
B

∑B
i=1

∑K
k=1 πi,k log πi,k ▷ Gate entropy

13: π̄ ← 1
B

∑B
i=1 πi ▷ Average expert usage

14: Llb ← λlb
∑K

k=1 π̄k log(Kπ̄k) ▷ Load balancing
15: // Update
16: Ltotal ← Ldata + Lexpert + Lent + Llb
17: Backpropagate ∇Ltotal and update parameters with Adam
18: end for
19: if early stopping criterion met then
20: break
21: end if
22: end for
Ensure: Trained gating network and expert parameters

Figure 5(e), (f) demonstrates the robustness of this adaptive strategy across 15 independent training
runs with different random initializations. Despite starting from K = 5 experts, all runs converge
to K = 2 experts, with the mean trajectory (purple line) showing rapid initial adaptation followed
by stable convergence. The right panel shows that AIC values decrease sharply during adaptation
and stabilize once the optimal expert count is reached, with all runs identifying similar final model
complexities (red dots mark minimum AIC). The algorithm maintains Kmin ≤ K ≤ Kmax (default:
2 ≤ K ≤ 10) and resets patience counters after each adaptation to allow the model to stabilize.
This consistency across random seeds confirms that the method reliably discovers the intrinsic di-
mensionality of the dynamical regimes without requiring prior knowledge of the optimal K.

Note on experimental results. While this adaptive selection capability is critical for exploratory
analyses where the number of regimes is unknown, the main results presented in this paper were
obtained with fixed K values, as the number of biologically relevant populations was known a priori
from experimental annotations. The adaptive strategy is provided as a tool for discovery-driven
applications and to demonstrate the model’s robustness to initialization, but was not required for the
validation experiments described in Section 3.

D BIOLOGICAL DATASET DETAILS

D.1 FUCCI DATASET

The FUCCI (Fluorescent Ubiquitination-based Cell Cycle Indicator) dataset used in this study orig-
inates from the comprehensive single-cell proteogenomics analysis conducted by Mahdessian et al.
(2021). This dataset represents a unique integration of single-cell RNA sequencing with fluorescent
cell cycle markers in the U2OS human osteosarcoma cell line, providing ground truth annotations
for cell cycle phase identification.

Dataset composition and cell cycle labeling. The original dataset comprises 1,152 individual
cells characterized by the expression profiles of 58,884 genes. The FUCCI system employs two
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fluorescently tagged cell cycle markers: CDT1 (tagged with RFP, expressed during G1 phase) and
GMNN (tagged with GFP, expressed during S and G2 phases). Cells expressing both markers si-
multaneously indicate the G1-S transition phase. This dual-marker system provides precise tempo-
ral information about cell cycle progression, enabling the identification of cells in cycling versus
non-cycling (differentiation) states. The FUCCI markers serve as our ground truth labels for distin-
guishing between two fundamental dynamical regimes: (1) active cell cycle progression and (2) cell
cycle exit leading to differentiation.

Preprocessing pipeline. We followed the preprocessing protocol established by Zheng et al.
(2023), which includes several critical steps for robust scRNA-seq analysis:

• Gene filtering: Removal of genes with low expression counts across the cell population to
reduce noise and computational burden.

• Cell filtering: Exclusion of cells with abnormally low or high gene counts that might
indicate technical artifacts or doublets.

• Normalization: Application of library size normalization to account for differences in
sequencing depth between cells.

• Log transformation: Log10(count + 1) transformation to stabilize variance and reduce the
influence of highly expressed genes.

• Highly variable gene selection: Identification and retention of genes showing significant
cell-to-cell variability, which are most informative for capturing biological differences.

RNA velocity estimation. We employed scVelo (Bergen et al., 2020) to estimate RNA velocity
vectors from the preprocessed data. scVelo computes velocity by modeling the dynamics of gene
expression through an analytical framework that considers transcription, splicing, and degradation
rates. Specifically, the method uses the ratio of unspliced to spliced mRNA counts to infer the
directional flow of gene expression changes. This provides local velocity estimates ẋi for each cell
i, representing the instantaneous rate of change in gene expression space. The velocity estimation
captures the intrinsic directionality of cellular state transitions, making it particularly suitable for
identifying developmental trajectories and regime transitions.

Dimensionality reduction and feature space. Given the high-dimensional nature of the gene
expression data (58,884 dimensions), we applied Principal Component Analysis (PCA) to project
both the gene expression profiles and their corresponding velocity vectors into a 5-dimensional
latent space. This dimensionality reduction serves multiple purposes: (1) computational efficiency
for MODE training, (2) noise reduction by focusing on the most informative directions of variation,
and (3) visualization feasibility for the first three principal components. The choice of 5 dimensions
balances the preservation of essential biological signals while maintaining computational tractability
for the mixture of experts framework.

MODE training configuration. Full hyperparameters in Tab. 11. An ensemble model created by
averaging (e.g. over mixture distributions and expert parameters; experts were aligned by similarity
of parameter vectors) over 10 random seeds. All seeds but one (the outlier curve in Fig. 5) divided
the data into clear cycle and exit regimes.

Validation methodology. Model performance was evaluated using the FUCCI ground truth labels
as the gold standard for cell cycle phase classification. We computed Receiver Operating Charac-
teristic (ROC) curves for each of the 10 model initializations, measuring the ability of the learned
expert probabilities to distinguish cycling from differentiating cells. The consistently high Area Un-
der the Curve (AUC) scores (0.98 ± 0.01) across all initializations demonstrate both the reliability
of our approach and the biological relevance of the discovered dynamical regimes. Additionally,
we validated the biological interpretability of the learned dynamics by examining the correspon-
dence between expert assignments and known cell cycle markers, confirming that the two experts
successfully captured the cycling and differentiation programs respectively.

Transcriptional and regulatory validation. Beyond phase classification accuracy, we validated
whether MODE’s learned dynamics capture biologically interpretable structure through multilevel
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analysis of gene expression signatures, temporal dynamics, and regulatory network topology. Im-
portantly, MODE was trained without any prior knowledge of cell cycle markers or temporal anno-
tations—all biological interpretations were performed post-hoc.

EXPERT-SPECIFIC DIFFERENTIAL EXPRESSION METHODOLOGY. We compared gene expression
between cells assigned to Expert 0 versus Expert 1 using dominant expert assignments as the basis
for grouping. For each gene g, we computed mean expression in each expert group and assessed
differential expression using fold-change FCg = log2(x̄

(1)
g /x̄

(0)
g ) with statistical significance via

permutation tests ( FDR-corrected p < 0.001).

Remarkably, without supervision, Expert 0 spontaneously enriched for canonical proliferation mark-
ers (TOP2A, CDK1, AURKA) and chromatin organization factors (HIST1H1C, HIST1H4C), while
Expert 1 enriched for known cell cycle exit-associated genes (CAV1, THBS1, CCN1, CDKN1A).
Comparison with established marker gene sets from the literature (Malumbres & Barbacid, 2009;
Coller et al., 2006) confirmed that MODE’s unsupervised expert discovery recovered biologically
meaningful cell states (Table 12).
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Upregulated in Expert 1 Downregulated in Expert 1
Gene Role Change Gene Role Change
CAV1 Quiescence 28.0 KRT17 Proliferation -41.0
CDC20 APC/C activator 26.2 TGFBI ECM protein -11.1
THBS1 Anti-angiogenic 23.7 HIST1H1C Chromatin -10.2
TPX2 Mitotic spindle 21.2 TOP2A DNA topology -7.8
CCNB1 G2/M cyclin 20.5 CDK1 Cell cycle kinase -5.7

Table 12: Top differentially expressed genes between experts
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PSEUDOTEMPORAL ORDERING AND TEMPORAL DYNAMICS. We constructed a pseudotime tra-
jectory by sorting cells according to Expert 0 probability π0(xi), naturally ordering cells from high
π0 to low π0 states. Gene expression profiles were smoothed using Gaussian kernel smoothing
(σ = 50 cells), and the transition point was identified as the pseudotime value maximizing expert
entropy: t∗ = argmaxt H(π(xt)), where H(π) = −

∑
k πk log πk.

Along this trajectory, Expert 0-enriched markers (TOP2A, CDK1) decreased while Expert 1-
enriched markers (CAV1, THBS1) increased, with the steepest changes occurring near t∗ (Fig. 6A).
Expression profiles showed gradual downregulation of proliferation-associated genes preceding up-
regulation of exit-associated genes, suggesting sequential transcriptional reprogramming consistent
with established models of cell cycle exit (Spencer et al., 2013).

GENE REGULATORY NETWORK EXTRACTION AND REWIRING ANALYSIS. For linear SINDy ex-
perts with dynamics ẋ = Z(x)Θk, the local Jacobian in PCA space is computed from the learned
coefficient matrices Θk and the basis family Z. To map Jacobians to the original gene space, we
applied the chain rule through PCA projection xPCA = V (xgene − µ), where V ∈ RdPCA×dgene are the
PCA components:

Jgene
k = V ⊤JPCA

k V

We extracted inferred gene regulatory networks (GRNs) for three cell state regions based on expert
dominance: before transition (Expert 0 probability > 0.8), during transition (expert entropy in
top 20%), and after transition (Expert 1 probability > 0.8). For each region, we computed mean
Jacobians over sampled cells (n = 50 per region) and applied a sparsity threshold of |J̃ij | > 0.15
after normalization to retain the strongest interactions.

Network topology analysis revealed substantial rewiring across transition phases (Fig. 6B). Before
transition, the inferred network featured prominent interactions among proliferative genes including
the CDK1–CCNB1–CDC20 module. After transition, exit-associated genes (CAV1, THBS1) gained
regulatory prominence while proliferative gene interactions weakened. These patterns of network
reorganization are consistent with known regulatory circuitry governing cell cycle progression and
exit (Malumbres & Barbacid, 2009; Pines, 1995).

HIGH-ENTROPY TRANSITION ANALYSIS. To identify genes specifically associated with the tran-
sition state, we compared gene expression between cells in high-entropy regions (top 20% by gating
network entropy: H(π) > θH , where θH = percentile80(H)) versus low-entropy cells (bottom
20%). This identified 222 genes with significant expression changes (|FC| > 0.5, permutation
p < 0.001, Fig. 6C).

Notably, top transition-associated genes (including CDC20B, PDK4, and RASSF6) differed from
the markers defining stable expert states (e.g., TOP2A for Expert 0, CAV1 for Expert 1), suggesting
these genes represent transient regulatory factors active during the decision phase rather than stable
markers of committed states. This demonstrates MODE’s ability to distinguish stable dynamical
regimes from transitional cell states.

VALIDATION SUMMARY. Collectively, these analyses demonstrate that MODE’s unsupervised
learning recovers biologically coherent structure: (1) experts spontaneously align with known cell
cycle states without prior annotation, (2) pseudotemporal ordering reveals sequential transcriptional
dynamics matching established exit mechanisms (Spencer et al., 2013), (3) inferred regulatory net-
works exhibit topology changes consistent with known cell cycle circuitry (Malumbres & Barbacid,
2009; Pines, 1995), and (4) transition-state cells show distinct gene expression profiles from stable
states. Together, this multilevel concordance with domain knowledge validates that MODE captures
mechanistically meaningful dynamics rather than arbitrary data partitions.

SUPPLEMENTAL VIDEOS

We have also included with this submission four videos showing MLP vs MODE on toy branching
data, the stochastic MODE rollout on the Goldbeter oscillator as well as the rollout for our fit of the
FUCCI RNA velocity data.
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REPRODUCIBILITY STATEMENT

All details necessary to reproduce the results of this work can be found in the appendix and supple-
mentary materials:

• Complete specifications of the MODE architecture, including network architectures, loss
functions, and training procedures are provided in Appendix C.

• Hyperparameter choices for all experiments, including learning rates, regularization
weights, and model selection criteria can be found in Appendix C.

• Governing equations and parameter values for all synthetic dynamical systems are de-
scribed in Appendix A for the elementary dynamics benchmarks and Appendix A.2 for
the forecasting experiments.

• Detailed preprocessing steps for the FUCCI biological dataset, including gene filtering
criteria, normalization procedures, and dimensionality reduction parameters are given in
Appendix D.1.

• Source code implementing the MODE framework, including both EM-based and neural-
gated variants, is available in the notebooks/ directory with documented examples re-
producing all main results.

• All synthetic datasets can be regenerated using the equations and parameters provided in the
appendices, while the FUCCI dataset is publicly available from Mahdessian et al. (2021).

• Computational requirements and runtime specifications are documented for all experi-
ments, with typical runtimes.

We have made every effort to ensure that our experimental methodology is transparent and our
results are fully reproducible by the research community. Moreover, we provide our complete im-
plementation at https://github.com/anonresearcher22-netizen/MODE.

LARGE LANGUAGE MODEL USAGE STATEMENT

In accordance with ICLR 2026 policies on Large Language Model usage, we disclose that Large
Language Models (specifically Claude Sonnet 3.5) were used to assist in the preparation of this
manuscript in the following ways:

• Writing assistance: LLMs were used to typeset equations and format tables in LATEX.
It was also used to summarize implementational details from code into sections of the
Appendix.

• Literature review support: LLMs assisted in identifying relevant references and helped
structure the related work section, though all cited works were independently verified and
evaluated by the authors.

• Code documentation and presentation: LLMs were employed to enhance code com-
ments, improve code readability, and assist in the preparation of well-structured, docu-
mented implementations in the supplementary materials.

We emphasize that all core research contributions, experimental design, data analysis, and scientific
conclusions are entirely the work of the human authors. The authors take full responsibility for
the accuracy and validity of all content, including any text that may have been refined with LLM
assistance. All LLM-generated content was carefully reviewed, fact-checked, and validated by the
authors before inclusion. No LLMs were used for generating experimental results, conducting data
analysis, or making scientific claims.
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