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ABSTRACT

Multi-task dense scene understanding tasks require models to jointly reason over
heterogeneous visual cues. While foundation vision models like SAM 2 provide
strong general-purpose features, their extension to multi-task settings is limited
by task interference and the lack of explicit task-aware routing mechanisms. In
this paper, we present LangSAM, a novel language-guided mixture-of-experts
framework built on top of SAM 2 for dense scene understanding. Our key idea is
to leverage natural language task prompts to guide expert activation, thereby en-
abling more effective task-aware feature representation. Specifically, we encode
each task prompt and design a text-guided router that fuses the global visual rep-
resentation with the task embedding to produce task-aware gating signals. These
signals are combined with a token-level MoE gate, yielding a dual-gated mecha-
nism that enables experts to specialize both spatially and semantically. To further
enhance representation learning, LangSAM incorporates task-specific language-
guided MoE blocks for coarse predictions and a shared language-guided MoE
block that refines multi-task features by modeling global dependencies. We evalu-
ate LangSAM on two standard datasets, NYUD-v2 and PASCAL-Context, cover-
ing six dense prediction tasks including semantic segmentation, depth estimation,
human part segmentation, saliency estimation, surface normal estimation, and
boundary detection. Extensive experiments show that LangSAM consistently im-
proves over strong SAM2 baselines and recent multi-task learning methods, high-
lighting the effectiveness of language-guided expert routing as a new paradigm for
multi-task dense prediction. The code will be released.

1 INTRODUCTION

Multi-task dense prediction aims to simultaneously solve multiple pixel-level vision tasks such as
semantic segmentation (SemSeg), depth estimation (Depth), surface normal prediction (Normal),
human part segmentation (PartSeg), saliency detection (Sal), and boundary detection (Bound) within
a single model (Liu et al., 2019; Vandenhende et al., 2020; 2022; Ye & Xu, 2022; Xu et al., 2023a;
Tang et al., 2024a). A unified multi-task model not only reduces memory and computation compared
to training separate networks but also ensures consistency across outputs and enables holistic scene
understanding in applications including autonomous driving and robotics.

Recent progress in large-scale foundation vision models like the Segment Anything Model
(SAM) (Kirillov et al., 2023) and its successor, SAM 2 (Ravi et al., 2024), has revolutionized the
field by providing powerful, general-purpose visual representations with unprecedented zero-shot
capabilities. The natural next step is to leverage these robust visual backbones for multi-task dense
prediction, creating a unified model capable of holistic visual scene understanding(Wang et al.,
2025). However, when deployed in multi-task learning (MTL) settings, SAM 2 remains fundamen-
tally task-agnostic: the same strong representations are indiscriminately shared across tasks, which
often leads to interference and limits task specialization. This raises a central challenge: how can
we inject task-aware control into such large backbones without retraining them from scratch?

Meanwhile, vision-language models (VLMs) such as CLIP (Radford et al., 2021) demonstrate that
natural language can serve as a semantic prior, encapsulating high-level task intent in an interpretable
and flexible form. Recent MTL methods like TaskPrompter (Ye & Xu, 2023b), TaskExpert (Ye
& Xu, 2023a), MLoRE (Yang et al., 2024), and SEM (Huang et al., 2024a) attempt to introduce
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auxiliary priors or expert routing to reduce interference, but they either rely on handcrafted task-
specific modules, parameter-heavy adapters, or low-rank approximations without fully leveraging
the semantic richness of language. Thus, the synergy between linguistic task descriptions and expert
routing in dense vision remains underexplored.

To address this gap, we propose LangSAM, a language-guided mixture-of-experts (MoE) frame-
work built on SAM2 for multi-task dense prediction. Our key idea is to use natural language task
prompts as routing signals that guide expert selection. Specifically, LangSAM introduces three
complementary modules: (1) A task-specific language-guided MoE, where a lightweight router
conditions expert activation on both visual features and task embeddings derived from frozen CLIP
encoders. This design enables fine-grained task-aware feature modulation and reduces task interfer-
ence. (2) A shared language-guided MoE, which captures task-agnostic structures shared across
tasks, promoting cross-task transfer and stabilizing training. (3) Residual connections around each
MoE block, ensuring that routing enhances rather than disrupts backbone features. Together, these
modules allow LangSAM to balance specialization and generalization, yielding interpretable expert
behaviors aligned with task semantics.

We evaluate LangSAM on two diverse datasets: NYUD-v2 and Pascal-Context. Results across
six dense prediction tasks demonstrate that LangSAM consistently outperforms strong SAM2 base-
lines and achieves improvements over recent state-of-the-art MTL methods. Importantly, analysis
of expert routing distributions reveals that language-guided MoE induces semantically meaningful
expert specialization (e.g., depth experts focus on geometry while segmentation experts emphasize
semantics), validating our method.

In summary, our contributions are summarized as follows:

• We introduce LangSAM, a novel language-guided mixture-of-experts (MoE) framework for
multi-task dense prediction. By leveraging task-specific text prompts, LangSAM integrates lan-
guage priors into the expert routing process, enabling fine-grained task-aware feature modulation.

• We design a dual MoE architecture consisting of task-specific language-guided routers and a
shared MoE, which jointly balance task specialization and cross-task generalization while pre-
serving stability through residual connections.

• We conduct extensive experiments on NYUD-v2 and PASCAL-Context, where LangSAM con-
sistently improves performance across six dense prediction tasks and surpasses strong state-of-
the-art MTL baselines. Moreover, our framework provides interpretable routing behaviors, high-
lighting the effectiveness of incorporating language signals into multi-task dense prediction.

2 RELATED WORK

Multi-task Learning (MTL) for Scene Understanding. MTL(Vandenhende et al., 2022) aims
to improve the performance and efficiency of models by learning multiple related tasks simulta-
neously from a shared representation. MTL seeks to exploit the shared structure and correlations
among tasks in order to enhance model accuracy, efficiency, and generalization, compared to training
separate networks for each task. Despite its potential, applying MTL to dense prediction remains
challenging. Key difficulties include mitigating negative task interference and ensuring balanced
optimization across tasks with heterogeneous characteristics. To address these issues, recent stud-
ies have proposed a variety of architectural innovations and algorithmic strategies. Adapter-based
techniques (Bhattacharjee et al., 2023; Liang et al., 2022; Xin et al., 2024; Jiang et al., 2024) insert
lightweight trainable modules into frozen pre-trained backbones, enabling parameter-efficient task
adaptation. In parallel, task-conditioned methods (Jiang et al., 2024; Huang et al., 2024b; Xu et al.,
2023b) and prompt-driven approaches (Ye & Xu, 2023b; Lu et al., 2024) tailor network behavior via
task identifiers or learned prompts. For instance, Prompt Guided Transformer (PGT) (Lu et al., 2024)
integrates task-specific prompts into self-attention, demonstrating the potential of language cues in
task-aware modulation. Diffusion-based MTL approaches such as TaskDiffusion (Yang et al., 2025)
and DiffusionMTL (Ye & Xu, 2024) extend denoising processes to jointly reconstruct multiple task
labels, effectively capturing cross-task dependencies.

A complementary line of work introduces MoE frameworks for MTL (Shen et al., 2024; Chen et al.,
2023a), where routing mechanisms dynamically activate specialized experts to mitigate task inter-
ference. Recently, language-guided MoE designs have emerged, leveraging semantic prompts to
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steer expert selection and improve interpretability (Zhao et al., 2024). While these methods have ad-
vanced the field, they often add significant architectural and still operate on a fixed set of pre-defined
tasks. Our method sidesteps the issue of direct gradient conflict by isolating task-specific knowledge
into modular experts, thereby providing a scalable and flexible solution to task interference.

Mixture-of-Experts. MoE models have emerged as a powerful strategy to balance model capacity
with computational efficiency by selectively activating only a subset of experts during training or
inference (Jacobs et al., 1991; Jacobs & Jordan, 1993; Tang et al., 2024a;b; Mu & Lin, 2025). An
MoE layer consists of two key components: a set of ”expert” subnetworks and a ”router” or ”gating”
network that, for a given input, sparsely selects a small subset of experts to activate. This allows
for the creation of extremely large models where only a fraction of the parameters are used for any
single forward pass, leading to significant efficiency gains. The central idea is to divide the network
into multiple expert modules, each capturing a specific subspace of the feature distribution, while a
lightweight router dynamically determines which experts should be engaged for a given input.

Although MoE was initially popularized in large-scale natural language processing (Fedus et al.,
2022; Du et al., 2022; Dai et al., 2024), recent works have begun to extend this paradigm to multi-
task dense prediction (Chen et al., 2023b; liang et al., 2022; Ye & Xu, 2023a; Yang et al., 2024; Jiang
et al., 2024). For example, TaskExpert (Ye & Xu, 2023a) represents one of the earliest attempts to
integrate MoE within the decoder of an MTL framework, demonstrating its potential to mitigate
task interference. Building on this idea, MLoRE (Yang et al., 2024) introduces low-rank experts in-
spired by LoRA (Hu et al., 2022), thereby reducing parameter overhead while scaling effectively to
multiple tasks. Beyond pure MoE designs, task-conditioned adapters (Jiang et al., 2024; Han et al.,
2024) provide an alternative that inserts parallel adapter modules conditioned on task prompts. Al-
though not explicitly framed as MoE, such designs echo the gating mechanism of expert selection,
highlighting the convergence between adapter-based and MoE-based approaches in MTL (Ye & Xu,
2023a). To the best of our knowledge, this work is the first to employ natural language task prompts
as explicit routing signals in a unified dense prediction model. While prior language-conditioned ap-
proaches typically use text to modulate visual features or to guide generative processes, our method
directly leverages language to control an MoE router for discriminative MTL. This design effec-
tively bridges instruction-following with efficient sparse architectures, marking a novel paradigm
for task-aware computation.

3 METHODOLOGY

3.1 BACKBONE REPRESENTATIONS AND TASK EMBEDDINGS

SAM. The Segment Anything Model is a foundational model for promptable image segmentation,
consisting of three primary components: an image encoder, a prompt encoder, and a mask decoder.
The image encoder, built upon a Vision Transformer (ViT), extracts high-quality embeddings from
input images. The prompt encoder is highly versatile, capable of interpreting diverse user inputs
such as points, bounding boxes, and masks. Finally, a lightweight mask decoder efficiently inte-
grates image and prompt embeddings to produce accurate segmentation masks. SAM2 extends this
framework by incorporating video inputs and the memory mechanism, while also achieving higher
accuracy and faster inference on images. Although the original SAM work briefly discusses the po-
tential of text prompts, the released model does not provide official support for text-based guidance.

Text Prompt Understanding Tasks. To explicitly integrate task semantics into expert routing, we
transform natural language task descriptions into dense vector embeddings using a pretrained lan-
guage encoder. For a given task t with description dt (e.g., assign each pixel a semantic category
label from a predefined set of object classes), the procedure is as follows: Tokenization: The de-
scription is first tokenized by a pretrained CLIP tokenizer, producing a sequence of tokens suitable
for text encoding. Text encoding: These tokens are processed by a frozen CLIP text encoder, which
generates contextualized hidden states that capture both syntactic and semantic information. Em-
bedding extraction: We use the global sentence representation from the text encoder as the task em-
bedding, summarizing the semantics of the full description ℓt. This vector is then treated as the task
embedding et ∈ R512. Task embedding dictionary: All embeddings are stored in a dictionary t : et,
providing fixed semantic representations for each task. These embeddings serve as language-guided
control signals for conditioning the routing mechanism in task-specific language-guided MoE.
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Figure 1: Overview of our LangSAM model. Given an input image, the SAM2 encoder extracts
visual representations, while the CLIP tokenizer and text encoder generate task-specific text em-
beddings. These visual and text features are fused through two complementary modules: (1) a
task-specific language-guided MoE, enabling fine-grained expert specialization, and (2) a shared
language-guided MoE, which integrates token-level sparse routing with a task-aware language-
guided router. The router leverages global task features to compute expert activation weights,
thereby endowing the MoE with explicit task-awareness and adaptive routing.

3.2 LANGSAM FRAMEWORK

The overview of LangSAM is depicted in Figure 1. The framework is composed of four key compo-
nents: a CLIP-based text encoder, the SAM2 encoder, task-specific language-guided MoE blocks,
and a shared language-guided MoE block. First, the CLIP text encoder converts natural language
task descriptions into dense semantic embeddings, providing explicit task-level guidance. Second,
the SAM 2 encoder processes the input image to produce generic multi-scale visual features that
serve as a shared representation across tasks. Third, the task-specific language-guided MoE blocks
fuse SAM2 features with the corresponding task embeddings, generating specialized task features
and coarse predictions that are directly supervised by ground-truth annotations. Finally, the shared
language-guided MoE block further refines these task-specific representations by modeling cross-
task interactions and global spatial dependencies. The refined features are then passed through
lightweight task-specific heads to produce the final dense predictions.

3.3 TASK-SPECIFIC LANGUAGE-GUIDED MOE

Revisiting Mixture-of-Experts (MoE). The MoE framework has emerged as a powerful archi-
tecture for scaling model capacity, with early examples such as GShard (Lepikhin et al., 2021)
and V-MoE (Riquelme et al., 2021). An MoE layer typically consists of a set of experts E =
{E1, E2, . . . , EN} and one or more routers G = {G1, G2, . . . , GM} that determine expert selec-
tion. For an input x, the router computes gating scores and assigns x to the most relevant experts.
The output of the MoE layer can be written as:

y =

N∑
i=1

Gi(x) · Ei(x), (1)

where Ei(x) denotes the response of the i-th expert and Gi(x) is the corresponding routing weight.

In practice, the gating function is often implemented as a softmax over a linear projection of x,

Gi(x) = Softmax(xWg), (2)
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with Wg being a learnable parameter matrix. This formulation allows the router to dynamically
select and weight experts according to the input representation, thereby enabling conditional com-
putation and efficient scaling of model capacity.

To enable task-aware specialization on SAM2 features, we design a language-guided MoE block
that combines token-level sparse routing with task-level language guidance. The block consists of
three key components: a visual router, a language-guided router, and a set of experts. A gate com-
putes token-wise weights and top-k expert indices based on visual features, following recent MTL
MoE method (TaskExpert (Ye & Xu, 2023a)). Simultaneously, the language-guided router provides
global, task-aware coefficients for each expert. During expert computation, outputs are modulated by
both token-level weights and task-level language weights. This synergy allows fine-grained special-
ization (per-token routing) while maintaining global task consistency (per-task language routing).

Let Fv and et denote the task-specific language-guided MoE block inputs, where Fvis the visual
feature and et is text feature. Formally, the output of the task-specific language-guided MoE is
calculated as:

yts =

Nvt∑
i=1

Gi(Fv)Ei(Fv)Glangi(Fv, et), (3)

Gi =
gi∑Nvt

j=1 gj
, (4)

Glangi =
glangi∑Nvt

j=1 g
lang
j

, (5)

gi =

{
si, si ∈ Top-k({sj |1 ≤ j ≤ Nvt},Kvt)

0, otherwise,
(6)

si = Sigmoid(F⊤
v ei), (7)

where Nvt denotes the number of visual task experts. gi denotes the gate value for the i-th expert.
si is the visual feature to expert affinity. ei is the centroid of the i-th expert. Top-k(si,K) represents
the set of K highest affinity scores calculated for visual task feature and routing experts. The visual
task expert design increases the number of non-zero gates to Nvt, enabling full activation of all
task-specific experts.

Language-guided router. To effectively integrate task semantics into the expert routing process,
we introduce a language-guided router, as shown in Figure 2. Unlike conventional MoE gating
that relies solely on visual features, our router incorporates both vision and task-specific textual
embeddings to produce routing weights. Given the input visual features F ∈ RH×W×C , we apply
global average pooling across spatial dimensions to obtain a compact visual descriptor:

Fp = MeanPool(Fv) ∈ RC . (8)

In parallel, we encode the text prompt of the task description into an embedding vector et ∈ Rd

using a pretrained text encoder (i.e., CLIP).

Specifically, given a pooled visual feature Fp ∈ RC from the backbone and a task embedding vector
et ∈ Rd obtained from the text encoder, we first project them into a joint latent space:

h = tanh(WpFp +Wtet), (9)

where Wp and Wt are learnable projection matrices. The joint representation h is then mapped
to expert logits through a linear layer, followed by a softmax normalization to obtain the routing
distribution:

glang = Softmax(Woh). (10)
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Figure 2: Overview of our language-guided router. Given text and visual features, the router maps
them into a joint space and outputs task-aware routing weights, which activate a subset of experts
for dynamic feature modulation.

Here, glang ∈ RE encodes the probability of assigning the input features to each of the E experts.
By conditioning the routing on both vision and text cues, the language-guided router explicitly
aligns expert selection with task semantics, enabling the model to dynamically activate the most
relevant experts for each task while maintaining cross-task consistency. This design provides a
principled mechanism to leverage language priors for task-aware routing, which is crucial in MTL
where different tasks require specialized feature transformations.

3.4 SHARED LANGUAGE-GUIDED MOE

In addition to task-specific language-guided MoE blocks, we introduce a shared language-guided
MoE that provides a global mechanism for cross-task feature refinement. While task-specific MoEs
focus on learning specialized transformations aligned with individual task prompts, the shared MoE
leverages language-conditioned routing to capture common semantic structures that benefit all tasks.
Formally, given a visual feature Fv and task embedding et, the shared MoE computes a language-
aware routing distribution that activates a subset of experts,

ys =

Nvt∑
i=1

Gi(Fv)Ei(Fv)Glangi(Fv, et), (11)

where Gi(Fv) and Glangi(Fv, et) denotes the language-conditioned routing weights for expert i.
By aggregating information across tasks through a shared pool of experts, this design enables knowl-
edge transfer and regularization, effectively preventing overfitting to a single task while enhancing
the consistency of multi-task representations. In practice, the shared MoE acts as a global bridge,
complementing task-specific MoEs with cross-task inductive biases and ensuring that the framework
exploits both task-level specialization and global task-agnostic knowledge.

We introduce a residual connection by directly adding the original feature x back to the aggregated
output y. Specifically, the update rule is formulated as:

y← yts + ys. (12)
This residual pathway stabilizes training by preserving the original feature information, thereby
preventing the degradation of task-aware representations caused by overly aggressive expert routing.

3.5 TRAINING OBJECTIVE

Training the proposed LangSAM involves optimizing a multi-objective loss that simultaneously bal-
ances task-specific objectives, encourages effective expert specialization, and facilitates beneficial
cross-task knowledge transfer. The overall training objective is formulated as the multi-task loss:

Lmt =

T∑
t=1

βtLt, (13)

where βt denotes the set of hyperparameters (i.e., balancing factors) and Lt represents the task-
specific losses, and T is the total number of tasks with t ∈ [1, T ].

6
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4 EXPERIMENTS

Datasets. We evaluate LangSAM on two standard benchmarks: NYUD-v2 (Silberman et al., 2012)
and PASCAL-Context (Chen et al., 2014). NYUD-v2 consists of 1,449 annotated RGB-D images
from 464 indoor scenes, split into 795 training and 654 testing samples, supporting tasks includ-
ing semantic segmentation (SemSeg), depth estimation (Depth), surface normal prediction (Nor-
mal), and boundary detection (Bound). PASCAL-Context provides dense pixel-level annotations
for 10,103 images (4,998 train / 5,105 val), covering SemSeg, human part segmentation (PartSeg),
saliency detection (Sal), Normal, and Bound tasks.

Baselines. We compare the proposed LangSAM with several baselines, including single-task base-
lines (STB), multi-task baselines (MTB), and hard-parameter sharing (HPS).

Evaluation metric. We adopt six evaluation metrics to comprehensively assess the performance
of multi-task models. (1) Mean Intersection-over-Union (mIoU) is employed to evaluate both se-
mantic segmentation and human part segmentation. (2) Root Mean Square Error (RMSE) is used
to measure the accuracy of depth estimation. (3) Mean Angular Error (mErr) is adopted for surface
normal prediction. (4) Optimal Dataset Scale F-measure (ODS-F) is reported for edge detection.
(5) Maximum F-measure (maxF) is utilized for saliency estimation. (6) Average per-task perfor-
mance drop (∆m) is introduced as a holistic metric to characterize multi-task trade-offs. Specifically,
∆m = 1

T

∑T
i=1

Fm,i−Fs,i

Fs,i
× 100%, where Fm,i and Fs,i denote the performance of the multi-task

model and the single-task baseline on task i, respectively, and T is the number of tasks. A higher
∆m indicates better overall multi-task performance.

Implementation details. The backbone is the pretrained SAM 2 encoder, which is frozen during
training to preserve its general-purpose dense representations. The multi-scale features from SAM
2 are upsampled and concatenated to form a feature map of dimension 352, which is used as the
input to the task-specific modules. We set the batch size to 2 for NYUD-v2, and 2 for PASCAL-
Context. The number of epochs is set to 200 for NYUD-v2, and 30 for PASCAL-Context. We adopt
the Adam optimizer with an initial learning rate of 1 × 10−3, a linear warmup of 5% of training
steps, and weight decay of 1 × 10−6. For loss functions, we adopt cross-entropy loss for SemSeg
and PartSeg, L1 loss for Depth and Normal, and Balanced Binary Cross Entropy Loss for Bound.
Text Prompts. For each dense prediction task (SemSeg, Depth, Normal, Bound, PartSeg, Sal), we
design short natural language descriptions. These prompts are encoded by the pretrained CLIP text
encoder (ViT-B/32) without fine-tuning. The [CLS] token embedding is used as the task embedding
and cached for efficient training. Task Heads. For each task, we attach a lightweight convolutional
decoder with one hidden layer of dimension equal to the final embedding size. Each head upsamples
the expert-aggregated features to the original input resolution using bilinear interpolation.

4.1 RESULTS

Results on PASCAL-Context. Table 1 reports results on the PASCAL-Context benchmark across
five dense prediction tasks. When using the ViT-L backbone, LangSAM achieves strong overall
performance, reaching 81.91 mIoU on SemSeg, 69.42 mIoU on PartSeg, 84.92 maxF on Sal, 13.51
mErr on Normal, and 74.20 odsF on Bound, while requiring fewer FLOPs and parameters than
recent competitors such as TaskPrompter, TaskExpert, and SEM. These results indicate that incor-
porating language-guided routing improves both efficiency and accuracy, particularly in balancing
semantic and geometric tasks. With the SAM2-H-L backbone, LangSAM further demonstrates its
adaptability, achieving competitive results with notable gains on PartSeg and Bound, underscoring
the framework’s scalability to large foundation models. Visual results in Appendix Figure 7.

Results on NYUD-v2. As shown in Table 2, most previous methods (e.g., InvPT (Ye & Xu, 2022),
TaskPrompter (Ye & Xu, 2023b), TaskExpert (Ye & Xu, 2023a)) fall short of the single-task baseline,
indicating severe task interference. MLoRE (Yang et al., 2024) alleviates this issue slightly with low-
rank experts, but only achieves marginal gains (+0.11%). In contrast, LangSAM delivers consistent
improvements across tasks, notably reducing depth error (rmse 0.4701) and normal error (mErr
16.72), while also achieving the best boundary detection (odsF 79.10). Overall, LangSAM yields a
clear average gain of +3.66%, demonstrating the benefit of language-guided routing in mitigating
task conflicts and enhancing multi-task dense prediction. Visual results in Appendix Figure 8.
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Table 1: Experimental results on PASCAL-Context dataset. ‘↓’: lower is better. ‘↑’: Higher is better.
∆m denotes the average per-task performance drop (the higher, the better).

Model Backbone SemSeg PartSeg Sal Normal Bound
∆m[%]↑ FLOPs Params

(mIoU)↑ (mIoU)↑ (maxF)↑ (mErr)↓ (odsF)↑ (G)↓ (M)↓
STB HRNet18 62.23 61.66 85.08 13.69 73.06 0.00 - -
MTI-Net HRNet18 61.70 60.18 84.78 14.23 70.80 -2.10 161 128
ATRC HRNet18 57.89 57.33 83.77 13.99 69.74 -4.45 216 96
DeMT HRNet18 59.23 57.93 83.93 14.02 69.80 -3.79 - -
STB ViT-L 81.62 72.21 84.34 13.59 76.79 0.00 - -
PAD-Net ViT-L 78.01 67.12 79.21 14.37 72.60 -5.72 773 330
MTI-Net ViT-L 78.31 67.40 84.75 14.67 73.00 -4.62 774 851
ATRC ViT-L 77.11 66.84 81.20 14.23 72.10 -5.50 871 340
InvPT ViT-L 79.03 67.61 84.81 14.15 73.00 -3.61 669 423
TaskPrompter ViT-L 80.89 68.89 84.83 13.72 73.50 -2.03 497 401
TaskExpert ViT-L 80.64 69.42 84.87 13.56 73.30 -1.74 622 420
SEM ViT-L 81.66 69.90 84.95 13.39 73.80 -0.98 - -
LangSAM (Ours) ViT-L 81.91 69.42 84.92 13.51 74.20 -0.87 479 301
LangSAM (Ours) SAM2-H-L 77.33 73.85 84.58 13.71 77.10 -0.57 361 252

Table 2: Experimental results on NYUD-v2 dataset. ’↓(↑)’: lower (higher) is better.

Model SemSeg Depth Normal Bound
∆m[%](mIoU)↑ (rmse)↓ (mErr)↓ (odsF)↑

Single task 56.77 0.5141 18.56 78.93 0.00
InvPT 53.56 0.5183 19.04 78.10 -2.52
TaskPrompter 55.30 0.5152 18.47 78.20 -0.81
TaskExpert 55.35 0.5157 18.54 78.40 -0.84
MLoRE 55.96 0.5076 18.33 78.43 0.11
LangSAM (Ours) 54.36 0.4701 16.72 79.10 3.66

Table 3: Fine-tuning results on PASCAL-Context. We adopt a straightforward fine-tuning setup
where the SAM 2 backbone is frozen, following the evaluation protocol of MTSAM.

Model SemSeg PartSeg Sal Normal Params
∆m↑(mIoU)↑ (mIoU)↑ (mIoU)↑ (mErr)↓ (M)

HPS 64.77 57.91 64.10 14.21 30.07 +0.00%
STL 65.14 58.58 65.02 15.94 63.60 -2.25%
Cross-Stitch 64.97 58.63 64.46 15.32 79.46 -1.42%
MTAN 64.56 59.08 64.57 14.74 36.61 -0.33%
NDDR-CNN 65.28 59.18 65.09 15.57 69.25 -1.26%
HyperFormer 71.43 60.73 65.54 17.77 287.32 -1.91%
Polyhistor 70.87 59.54 65.47 17.47 34.18 -2.14%
Polyhistor-Lite 70.24 59.12 64.75 17.40 11.29 -2.72%
LoRA-HPS (r=32) 48.19 46.73 69.50 20.38 74.33 -19.97%
LoRA-STL (r=16) 55.25 71.33 75.72 17.05 86.33 +1.65%
LoRA-STL (r=32) 65.07 72.05 76.41 16.82 110.33 +6.42%
MultiLoRA 72.39 67.78 71.66 20.07 92.80 -0.16%
MTSAM 74.13 71.04 76.28 17.10 74.71 +8.95%
LangSAM(Ours) 76.01 73.48 77.02 15.91 54.10 +10.88%

Results on fine-tuning. Table 3 shows that classical multi-task baseline methods (e.g., HPS,
MTAN) bring limited or inconsistent gains under frozen SAM 2. Recent transformer- and LoRA-
based methods improve efficiency but often trade off performance across tasks. MTSAM achieves
strong results by introducing task-aware fine-tuning. Our LangSAM further advances the state of
the art, delivering the best overall performance (+10.88% ∆m) with fewer parameters.

4.2 ABLATION STUDIES

Ablation on components. Table 4 shows that adding task-specific MoE (TLM) already yields
clear gains over the multi-task baseline. Introducing task-specific language-guided MoE (TLM)
yields substantial gains across all tasks, demonstrating the benefit of language-guided specialization.
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Table 4: Ablation study of model components
on NYUD-v2 dataset using the SAM 2 back-
bone. SLM and TLM denote the shared and task-
specific language-guided MoE blocks, respec-
tively. LGR denotes the language-guided router.

Components SemSeg Depth Normal Bound
(mIoU)↑ (rmse)↓ (mErr)↓ (odsF)↑

MTB 52.23 0.4932 17.04 78.1
w/ TLM 53.65 0.4867 16.70 78.9

w/ TLM+SLM 54.36 0.4701 16.72 79.1
w/o LGR 53.05 0.4807 16.80 79.0

Table 5: Ablation on the number of experts in the
language-guided MoE on NYUD-v2 dataset us-
ing the SAM 2 backbone. For the other settings,
expert is fixed at 6 We select 2, 4, 6, 8, and 16
experts and activated them proportionally.

Experts SemSeg Depth Normal Bound
(mIoU)↑ (rmse)↓ (mErr)↓ (odsF)↑

2 53.54 0.4889 16.92 78.9
6 54.36 0.4701 16.72 79.1
8 53.28 0.4849 16.97 79.0

16 54.59 0.4783 16.88 79.2

Adding the shared MoE (SLM) further improves overall performance, highlighting the complemen-
tary role of cross-task knowledge transfer. Removing the language-guided router (LGR) leads to
a noticeable drop, highlighting the importance of language cues in expert selection. Overall, these
results confirm that each component contributes to the robustness of LangSAM.

Effect of the number of experts. As shown in Table 5, performance improves as the number of
experts increases from 2 to 6, indicating that a moderate pool of experts effectively captures task
diversity. Using too few experts limits specialization, while too many experts (e.g., 16) introduces
redundancy and optimization difficulty. The best trade-off is observed around 6 experts, which
balances specialization and stability, confirming the importance of properly scaling expert capacity
in language-guided MoE. More experiments on expert number in the appendix (see Section A.4.1).
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Figure 3: We set the number of experts to 8. Expert routing distributions in LangSAM for SemSeg,
Depth, Normals, and Boundary detection. Different tasks activate distinct expert subsets, showing
that language-guided routing enables interpretable specialization and reduces task interference.

Effect of the expert specialization. We visualize the average gating weights across experts for each
task (see Figure 3). Interestingly, the distributions vary significantly between tasks: segmentation
heavily activates expert 1 and 3, while depth estimation relies more on expert 4 and 5. This indicates
that LangSAM learns a meaningful division of labor among experts, where different experts spe-
cialize in semantic vs. geometric cues. This validates the core idea of LangSAM: by conditioning
expert selection on task descriptions, the model mitigates negative transfer and achieves semanti-
cally aligned MTL. We provide a more detailed examination of how experts evolve across different
tasks in Appendix A.4.2, offering further insights into task-specific specialization.

5 CONCLUSION

We propose LangSAM, a language-guided mixture-of-experts framework that leverages task de-
scriptions as routing signals to inject task-aware control into SAM 2 for multi-task dense predic-
tion. By combining task-specific and shared MoE modules with residual connections, LangSAM
achieves a strong balance between specialization and generalization. Experiments on NYUD-v2
and PASCAL-Context show consistent improvements over SAM 2 baselines and recent MTL meth-
ods, while expert routing analysis reveals interpretable task-aligned specialization. These results
highlight the promise of language as a universal interface for guiding expert computation and point
toward future extensions in broader task domains and modalities.
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A APPENDIX

Appendix organization:

Section A.1: Background

A.1.1: Multi-task dense predictions
A.1.2: Multi-task with MoE
A.1.3: Multi-task with different backbones

Section A.2: Proofs

A.2.1: Theory: Why Language-Guided Dual Gating in MoE

Section A.3: Experimental details

A.3.1: Text prompt implementation details

Section A.4: Discussions

A.4.1: More experts results
A.4.2: Task-level expert division
A.4.3: Early Stop strategy

Section A.5: Visualizations

A.5.1: Gating Heatmap
A.5.2: Visualization comparison

Section A.6: Exploration with large models

A.1 BACKGROUND

A.1.1 MULTI-TASK DENSE PREDICTIONS

Dense prediction tasks, such as semantic segmentation, depth estimation, surface normal estimation,
and boundary detection, are fundamental to holistic scene understanding. While traditionally studied
in isolation, these tasks are highly correlated: geometry (depth, normals) complements structure (se-
mantics, boundaries). Multi-task learning (MTL) therefore offers a unified framework that reduces
redundancy and improves generalization by sharing representations across tasks while preserving
task-specific specialization.

However, MTL often suffers from negative transfer, where conflicting gradients degrade perfor-
mance. Existing solutions, including attention mechanisms, cross-task modulation, and adaptive
loss weighting, mitigate this issue but remain limited in scalability and interpretability. This mo-
tivates more flexible routing strategies, such as mixture-of-experts and language-guided control,
which dynamically adapt feature sharing to the needs of each task.

A.1.2 MULTI-TASK WITH MOE

Mixture-of-Experts (MoE) has become a promising approach to scale model capacity efficiently by
activating only a sparse subset of experts per input. This enables specialization, adaptive capacity
allocation, and improved computational efficiency.

For multi-task dense prediction, MoE naturally balances shared and task-specific representations.
Instead of forcing all tasks through a single backbone, MoE routes features via distinct experts,
mitigating interference and fostering interpretable specialization. Recent works show that such con-
ditional computation outperforms conventional shared-backbone designs by promoting diversity and
disentanglement.

However, existing MoE gating is typically data-driven and task-agnostic, leading to routing decisions
misaligned with task semantics. Moreover, naively scaling experts increases overhead in multi-task
settings. These challenges motivate structured, controllable gating strategies—such as language-
guided MoE—that leverage high-level task descriptions for more interpretable and efficient expert
selection.

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

A.1.3 MULTI-TASK WITH DIFFERENT BACKBONES

The performance of multi-task dense prediction is highly influenced by the choice of backbone archi-
tecture. Early approaches relied on CNNs, such as HRNet, which provide strong spatial resolution
and remain competitive in dense prediction tasks. With the advent of transformers, Vision Trans-
formers (i.e., ViT-Tiny, ViT-Base, ViT-Large) and hierarchical variants such as Swin Transformer
(i.e., Swin-Tiny, Swin-Base, Swin-Large) have demonstrated superior ability to capture long-range
dependencies and scale to large datasets, leading to notable improvements in multi-task benchmarks.

More recently, foundation vision models have reshaped the design space for multi-task learning.
In particular, the Segment Anything Model (SAM) and its successors offer highly generalizable
feature extractors pretrained on large-scale image segmentation tasks. These models provide dense,
task-agnostic visual representations that can be adapted to multiple downstream tasks with minimal
fine-tuning. However, directly extending such powerful but monolithic backbones to multi-task
settings introduces challenges of task interference and insufficient task-specific control.

Therefore, an open research direction is how to effectively integrate different backbone families
into multi-task frameworks, leveraging CNNs for spatial detail, transformers for global reasoning,
and foundation models such as SAM for strong generalization. Our work follows this direction by
adopting SAM 2 as the backbone and introducing a language-guided MoE module to inject task-
awareness into its otherwise task-agnostic features.

A.2 PROOFS

A.2.1 THEORY: WHY LANGUAGE-GUIDED DUAL GATING IN MOE WORKS

Setup. Let T denote a set of dense prediction tasks (e.g., NYUD-v2: SemSeg, Depth, Normal,
Bound). Given an image I , a backbone (SAM 2) produces a feature Fv ∈ RB×C×H×W . For
task t ∈ T with language description ℓt, a pretrained text encoder (CLIP) yields an embedding
et ∈ Rd. Our MoE block consists of N experts {Ei}Ni=1 and two gates: (i) a token-level gate
Gtok : RC → ∆N−1 that produces top-k sparse weights per location, and (ii) a language-guided
global gate Glang : RC × Rd→∆N−1 that depends on (F̄v, et), where F̄v = 1

HW

∑
h,w FV:,h,w

is a
pooled visual summary. For a token feature x ∈ RC , the effective routing weight for expert i is

ωi(x; et) = Gtok,i(x) · Glang,i(F̄v, et).

The MoE output at a token is:

y(x; et) =

N∑
i=1

ωi(x; et)Ei(x).

A.2.2 EXPRESSIVITY AND TASK-CONDITIONAL FACTORIZATION

Proposition 1 (Task-conditional expressivity). Assume each expert Ei is a universal approximator
on RC (e.g., a 2-layer MLP with SiLU function), and both gates Gtok, Glang are measurable functions
mapping into the probability simplex. Then the induced family {x 7→

∑
i ωi(x; et)Ei(x)}t∈T is a

universal approximator for the class of measurable task-conditional functions {ft : RC → RC}.

Sketch. The classical MoE universal approximation follows by partition-of-unity arguments: gates
implement a soft partition of the input space; experts approximate local charts. Here, Glang(·, et)
modulates the partition according to et, thus selecting a task-conditioned convex combination of
experts. Because et varies with t, the model instantiates a distinct soft partition per task, and hence
can approximate any collection {ft} jointly by reusing experts across tasks when beneficial.

A.2.3 GENERALIZATION ADVANTAGE VIA SPARSE CONDITIONAL COMPUTATION

Proposition 2 (Complexity reduction by sparse activation). Suppose the token-level gate activates
at most k experts (k ≪ N ) per token, and experts have parameter norm bounded by R. Let FMoE
be the hypothesis class realized by our dual-gated MoE. Then the empirical Rademacher complexity
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satisfies

R̂n(FMoE)

√
k

N
· R̂n(Fdense) with R̂n(Fdense) ∝

R√
n
,

where Fdense denotes the class that densely mixes all E experts per token.

Sketch. Because only k experts contribute per token, the effective hypothesis is a k-sparse mixture.
Standard symmetrization plus contraction yields a complexity scaling with the ℓ2-norm of mixture
weights. Under a simplex constraint and k-sparsity, this norm is upper bounded by

√
k/N times

the dense case, leading to the stated bound. The language gate further conditions the mixture on et,
reducing the entropy of the selection and tightening the bound in practice.

Implication. Sparse conditional computation lowers the function class capacity relative to dense
sharing, which yields better generalization at fixed sample size and curbs overfitting due to unnec-
essary expert co-activation.

A.2.4 NEGATIVE TRANSFER MITIGATION VIA TASK-AWARE ROUTING

Define the (per-token) gradient of expert i on task t as gt,i(x) = ∇θiLt(Ei(x)), and the inter-task
interference at expert i as

Γi = Ex

[∑
t̸=t′

ωi(x; et)ωi(x; et′) ⟨gt,i(x), gt′,i(x)⟩
]
.

Large positive Γi indicates conflicting supervision flowing through the same expert.
Proposition 3 (Task-aware attenuation of interference). Assume Glang(F̄v, et) is task-discriminative
in the sense that Ex[ωi(x; et)ωi(x; et′)] ≤ ρi for t ̸= t′ with ρi ≪ 1. Then the total interference∑

i Γi is upper bounded by a constant proportional to
∑

i ρi. Moreover, if Glang becomes near
one-hot over tasks (i.e., experts specialize), then ρi → 0 and interference vanishes in the limit.

Sketch. The dual gating multiplies token affinity Gtok with a task prior Glang. For t ̸= t′, the product
of routing weights at the same expert is suppressed by task-discriminativity, reducing the cross-terms
⟨gt,i, gt′,i⟩ in expectation. Hence the bound scales with ρi, which shrinks as specialization emerges
during training.

Implication. Language-guided global gating serves as a task prior that steers tokens towards ex-
perts aligned with the task semantics, thereby reducing negative transfer by lowering the probability
that conflicting tasks co-route through the same expert.
Proposition 4 (Consistency of language-guided routing). Under the separability assumption and a
cross-entropy objective on the router, gradient descent with sufficiently small step size yields routing
probabilities Glang,j(F̄v, et) → 1 for t ∈ Tj and→ 0 otherwise. Consequently, experts specialize
to disjoint task groups in probability.

Sketch. The router is a linear-softmax classifier over experts, driven by (F̄v, et). With et linearly
separable by {µj}, standard margin-based convergence analyses apply: the logits align with µj ,
and softmax probabilities concentrate on the correct expert group. The residual dependence on F̄v

refines routing within a task via image-level context.

A.2.5 PUTTING IT TOGETHER

Props. 1–4 jointly explain the empirical phenomena observed with LangSAM: (i) the model family
is expressive enough to realize task-conditional solutions while sharing experts when beneficial;
(ii) sparse dual gating reduces the hypothesis complexity, improving generalization; (iii) language-
guided routing injects a task prior that attenuates gradient interference and drives experts toward
interpretable specialization. These effects align with our training dynamics: early iterations show
near-uniform expert usage, while later stages exhibit peaked, task-specific routing distributions.

language-guided MoE Our method uses the CLIP text encoder to convert the task description into
a vector (fixed dimension, such as 512). Then, this vector is used as the Task Routing Token and
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input into the gating network to calculate the weight distribution of expert together with the visual
features. gating = (token-gate-weights[idx, top,None])∗(language-guided-weights[token[idx]]),
allowing the task text embedding to influence the selection of experts.

A.3 EXPERIMENTAL DETAILS

A.3.1 TEXT PROMPT

We construct task-specific text prompts based on detailed task descriptions and, when applicable,
incorporate class label information from different datasets. The resulting task description embed-
dings serve as language-guided routing tokens in our framework. For clarity and reproducibility, we
also provide the implementation of all task-specific text prompts used in our method.

Listing 1: Task prompts dictionary for dense prediction tasks.
self.task_prompts = {

"semseg": "For each pixel, assign a semantic category label from a
predefined set of object classes.",

"depth": "For each pixel, estimate its continuous depth value
representing the relative distance from the camera plane.",

"human_parts": "For each pixel, assign a label corresponding to a
specific human body part (e.g., head, torso, arms, legs).",

"normals": "For each pixel, predict a normalized 3D orientation vector
representing the local surface orientation in the scene.",

"sal": "For each pixel, predict a saliency score indicating the pixel
being part of a visually prominent region.",

"edge": "For each pixel, detect and localize semantic boundaries that
delineate distinct object regions in the image."}

A task description serves as the base text prompt. Using a vision–language model (e.g., GPT-5), we
further augment this prompt into richer, more informative variants.

Listing 2: Task prompts used for language-guided routing.
self.task_prompts = {

"semseg": "Assign each pixel a semantic class label from the dataset
vocabulary. Categories include indoor objects (chair, table, sofa,
bed, cabinet, lamp, window, door), structural elements (wall,
floor, ceiling), outdoor entities (road, sidewalk, sky, water,
grass, tree, building), and movable objects (person, car, bus,
bicycle, dog, cat).",

"depth": "Predict for each pixel a continuous depth value relative to
the camera plane, accurately modeling flat surfaces like floors,
walls, and tables, while preserving discontinuities at object
boundaries such as chairs, beds, and vehicles.",

"human_parts": "Label each pixel with fine-grained part categories.
For humans: head, torso, arms, legs, hands, feet, eyes, nose, and
mouth. For vehicles and objects: parts such as wheels, doors,
wings, engines, windows, and mirrors are included. For animals:
torso, head, legs, tail, horns, wings, and beak.",

"normals": "Estimate for each pixel a unit-length 3D surface normal
vector in camera coordinates, capturing local surface orientation
of indoor objects (tables, sofas), room structures (walls, floors)
, and outdoor elements (roads, buildings, vegetation), while
maintaining sharp discontinuities at edges and boundaries.",

"sal": "Predict for each pixel a saliency score between 0 and 1 that
highlights visually prominent foreground regions, including people
, animals, vehicles, furniture, and objects of interest, while
suppressing background clutter like sky, walls, or floors.",

"edge": "Detect for each pixel whether it lies on a semantic boundary
separating different objects or parts. Boundaries often occur
between walls and furniture, between people and their surroundings
, or between vehicles and road surfaces, and should be thin,
precise, and topologically coherent."}

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Table 6: Ablation study for text prompt variants.

Text Prompt Variants SemSeg Depth Normal Bound
(mIoU)↑ (rmse)↓ (mErr)↓ (odsF)↑

Full method w/ augment text prompt 54.73 0.4646 16.68 79.20
w/o augment text prompt 54.36 0.4701 16.72 79.10

Table 6 shows that incorporating augmented text prompts consistently improves performance across
all tasks. In semantic segmentation, the mIoU rises from 54.36 to 54.73, while depth estimation
achieves lower error (0.4701 → 0.4646). Similarly, surface normal estimation and boundary detec-
tion both benefit slightly (16.72 → 16.68 and 79.10 → 79.20). Although the gains are modest, they
demonstrate that prompt augmentation provides more informative task guidance, leading to more
stable and effective multi-task representations.

A.4 DISCUSSIONS

A.4.1 MORE EXPERTS RESULTS

Table 7: Ablation study for expert numbers on NYUD-v2 dataset.

Expert numbers SemSeg Depth Normal Bound
(mIoU)↑ (rmse)↓ (mErr)↓ (odsF)↑

2 53.54 0.4889 16.92 78.9
4 53.60 0.4713 16.81 78.9
6 54.36 0.4701 16.72 79.1
8 53.28 0.4849 16.97 79.0

16 54.59 0.4783 16.88 79.2
32 54.61 0.4801 16.94 79.4

Effect on expert numbers. Table 7 evaluates the impact of varying expert numbers on NYUD-v2.
Performance improves steadily from 2 to 6 experts, suggesting sufficient capacity is critical for task
specialization. Beyond 6, gains saturate and fluctuate slightly, with 16 and 32 experts offering only
marginal improvements. These results highlight that a moderate number of experts achieves the best
balance between efficiency and effectiveness.

A.4.2 TASK-LEVEL EXPERT DIVISION
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Figure 4: We set the number of experts to 32 (selected at 1 iteration). Expert routing distributions in
LangSAM for SemSeg, Depth, Normals, and Bound. Different tasks activate distinct expert subsets,
showing language-guided routing enables interpretable specialization and reduces task interference.

Analysis of Gate Distribution Dynamics. We further investigate how the gate distribution evolves
during training. At the early stage (e.g., iteration 1, Figure 4), the routing weights across different
experts exhibit nearly uniform distributions, with no clear preference. This behavior is expected,
as the router and experts are randomly initialized and the model has not yet learned to differen-
tiate task-specific patterns. However, as training progresses (e.g., iteration 2000, Figure 5), the
distributions become increasingly sparse: only a small subset of experts receive consistently high
weights (up to 0.8 on average), while others are largely suppressed. This transition highlights that
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Figure 5: The distribution of experts after 2000 iterations. We set the number of experts to 32.
Expert routing distributions in LangSAM for SemSeg, Depth, Normals, and Boundary detection.

the language-guided router gradually discovers meaningful task–expert correspondences, allowing
different experts to specialize in distinct aspects of multi-task dense prediction. Such sparsification
not only improves computational efficiency by avoiding redundant expert activation but also pro-
vides interpretability, as the emerging specialization indicates how LangSAM aligns experts with
semantic or geometric task priors, thereby mitigating negative transfer across tasks.

A.4.3 EARLY STOP STRATEGY

Observation on Early Stop Strategy. Table 8 reports the performance of LangSAM under different
training iterations. We observe that the model exhibits rapid improvement in the early stage: at
2k iterations, the performance is poor across all tasks, while at 6k iterations, both segmentation
(mIoU: 52.37) and boundary detection (odsF: 77.2) improve substantially. Performance continues
to increase until around 16k iterations, where the model achieves the best overall trade-off across
tasks (SemSeg: 54.38, Depth rmse: 0.4807, Normal mErr: 16.85, Bound: 79.2). After this point,
additional training does not yield further gains and even causes minor fluctuations, suggesting the
model risks overfitting or over-specializing experts. This indicates that an early stop around 16k
iterations is sufficient for stable convergence, while prolonged training offers diminishing returns.

Table 8: Ablation study for 40k iterations.

Iterations SemSeg Depth Normal Bound
(mIoU)↑ (rmse)↓ (mErr)↓ (odsF)↑

2000 37.57 0.7040 18.23 52.5
6000 52.37 0.6756 17.27 77.2
10000 53.10 0.5337 16.98 78.1
16000 54.38 0.4807 16.85 79.2
20000 53.88 0.4829 16.86 79.1
26000 53.24 0.4737 16.91 78.9
30000 52.99 0.4674 16.98 79.0
36000 53.31 0.4693 16.95 79.1
40000 53.16 0.4665 16.94 79.3

A.5 VISUALIZATIONS

A.5.1 GATING HEATMAP

Analysis of global gating behavior. As shown in Figure 6, to better understand the behavior of the
proposed LangSAM framework, we analyze the gating heatmaps across four representative dense
prediction tasks: semantic segmentation, depth estimation, bound detection, and surface normal
prediction. Each heatmap reports the averaged gating weights over eight experts, thus revealing
which experts are preferentially activated by each task.

Semantic Segmentation. Semantic segmentation relies heavily on Expert 0 (0.25), substantially
larger than any other expert, with only modest support from Expert 4 (0.14). This bias suggests the
emergence of a semantic-specialized expert that aggregates contextual information across categories,
while other experts remain underutilized.
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Figure 6: We set the number of experts to 8. Expert gating heatmap in LangSAM for 4 tasks.

Depth Estimation. The routing distribution is moderately spread, with Expert 2 (0.16) and Expert 3
(0.17) receiving the highest weights, followed by Experts 0/1/4/5 (0.11-0.13). This suggests that
depth estimation benefits from a combination of experts capturing multi-scale geometric cues rather
than relying on a single dominant expert.

Surface Normal. Normal also demonstrates a clear geometric preference: Expert 0 (0.21) and Ex-
pert 5 (0.20) dominate, whereas others play secondary roles (0.07–0.13). This strongly parallels the
depth case, confirming that Experts 0 and 5 encode structural priors useful for modeling geometry.

Bound Detection. In contrast, edge detection exhibits a more skewed distribution, with Expert 0
(0.23) and Expert 5 (0.17) contributing most strongly, while Experts 1 and 7 remain minimally
activated. This indicates that a small subset of experts specialize in local contrast and contour-
sensitive representations, which are crucial for boundary localization.

Two key insights can be observed. First, Expert 0 consistently receives high weights across all tasks,
acting as a generic expert that captures universally useful features. Second, Expert 5 is consistently
activated in geometry-related tasks (depth and normals), while edge detection additionally engages
Expert 6. Semantic segmentation, in contrast, strongly concentrates on a single semantic expert
(Expert 0). These patterns validate the desired task-specific specialization with shared expert reuse:
tasks dynamically recruit distinct subsets of experts while still leveraging common ones, striking a
balance between specialization and generalization.

A.5.2 VISUALIZATION COMPARISON

As shown in Figures 7 and 8, the qualitative comparisons on PASCAL-Context (5 tasks) and NYUD-
v2 (4 tasks) clearly demonstrate the advantages of our framework in multi-task dense prediction.
On NYUD-v2, our model produces sharper semantic boundaries, more consistent depth maps, and
accurate surface normal orientations, highlighting its ability to capture both global structures and
fine-grained geometric details. On PASCAL-Context, the visualizations reveal that our method not
only preserves category-level semantics across diverse object classes but also maintains coherent
boundary delineation and part consistency, even in cluttered scenes.

These visualizations highlight the strength of language-guided MoE in balancing shared represen-
tations with task-aware specialization, enabling both semantic fidelity and geometric consistency
across dense prediction tasks.

A.6 EXPLORATION WITH LARGE MODELS

Cross-modal and temporal generalization. Large video and vision–language models open MTL
beyond still images. Extending LangSAM to spatiotemporal backbones (e.g., SAM 2-like video
encoders) with time-aware routing may enable joint learning of optical flow, depth, tracking, and
segmentation. Language priors can disambiguate long-range correspondences and specify temporal
tasks (i.e., track the person and refine boundaries over time).

Future work. LangSAM demonstrates that language-guided expert routing can inject task-
aware into powerful but task-agnostic backbones (e.g., SAM 2). We anticipate a convergence
of instruction-tuned vision–language backbones, scalable sparse MoE, and compositional routing,
yielding MTL systems that are open-vocabulary, compute-efficient, and interpretable—capable of
following natural-language goals to perform diverse dense predictions with minimal retraining.
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SemSeg BoundNormal SaliencyHuman PartsInput Image

Figure 7: Qualitative results on 5-task PASCAL-Context dataset. The results illustrate the effec-
tiveness of our model in capturing both semantic and fine-grained details. Best viewed in color and
zoom.

SemSeg NormalDepthInput Image Bound

Figure 8: Qualitative results on 4-task NYUD-v2 dataset. The results illustrate the effectiveness of
our model in capturing both semantic and fine-grained details. Best viewed in color and zoom.
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