

000 GRPO IS SECRETLY A PROCESS REWARD MODEL

001
002
003 **Anonymous authors**

004 Paper under double-blind review

005 006 007 ABSTRACT

008
009 We prove theoretically that the GRPO RL algorithm induces a non-trivial process
010 reward model (PRM), under certain assumptions regarding within-group overlap
011 of token sequences across completions. We then show empirically that these
012 assumptions are met under real-world conditions: GRPO does in fact induce a
013 non-trivial PRM. Leveraging the framework of GRPO-as-a-PRM, we identify a
014 flaw in the GRPO objective: non-uniformly distributed process steps hinder both
015 exploration and exploitation (under different conditions). We propose a simple
016 modification to the algorithm to mitigate this defect (λ -GRPO), and show that
017 LLMs trained with λ -GRPO achieve higher validation accuracy and performance
018 on downstream reasoning tasks—and reach peak performance more rapidly—than
019 LLMs trained with standard GRPO. Our results call into question the advantage of
020 costly, explicitly-defined PRMs for GRPO: we show that it is possible to instead
021 leverage the hidden, built-in PRM structure within the vanilla GRPO algorithm to
022 boost model performance with a negligible impact on training time and cost.

023 1 INTRODUCTION

024 Process reward models (PRMs)—models that assign reward to intermediate steps (see Section
025 2.2)—allow for finer-grained reward assignment than outcome-level signals, thereby yielding im-
026 proved multi-step reasoning performance (Lightman et al., 2024). PRMs are therefore particularly
027 applicable to RL training for step-by-step processes such as mathematical reasoning.

028 However, training neural PRMs requires costly, step-level human annotation (Zhang et al., 2025),
029 and such models are particularly susceptible to reward hacking (Cui et al., 2025). These shortcom-
030 ings have resulted in the limited adoption of learned PRMs for RL training Setlur et al. (2025),
031 leading to the development of Monte-Carlo-based and other heuristic, non-neural PRMs (e.g. Wang
032 et al., 2024; Kazemnejad et al., 2025; Hou et al., 2025).

033 PRMs are typically employed with RL algorithms such as Proximal Policy Optimization (PPO;
034 Schulman et al., 2017) that employ a critic model and/or generalized advantage estimation (GAE).
035 Although Group Relative Policy Optimization (GRPO; Shao et al., 2024) greatly simplifies and
036 reduces the memory consumption of RL training, leading to its adoption for a wide range of appli-
037 cations—e.g. tool use (Qian et al., 2025; Sullivan et al., 2025), RLHF (Yang et al., 2025b), and, in
038 particular, mathematical reasoning (Shao et al., 2024; DeepSeek-AI, 2025)—it does so by eliminat-
039 ing the critic model and GAE of PPO (see Section 2.1). GRPO has therefore not been widely used
040 with PRMs: to the best of our knowledge, Shao et al. (2024), Yang et al. (2025a), and Feng et al.
041 (2025) are the only instances in which GRPO is employed with step-level rewards—and these ap-
042 proaches necessitate the modification of the algorithm to accommodate finer-grained reward signals.

043 In this paper, we show that—under certain mild assumptions—GRPO induces a Monte-Carlo-based
044 PRM (Section 3). Specifically, we prove theoretically that GRPO assigns rewards (and advantages)
045 derived from outcome-level rewards and Monte-Carlo-sampled completions to sub-trajectories,
046 whenever subsets of trajectories within each group share identical prefixes. We then show empiri-
047 cally that this identical-prefix condition is almost always met under real-world conditions, yielding
048 rich step-level process reward structures. These two findings definitively demonstrate that the GRPO
049 objective covertly assigns and optimizes for complex, structured step-level rewards and advantages.

050 An investigation of the properties of GRPO’s hidden PRM reveals a defect in the objective func-
051 tion that hinders both exploration and exploitation (under different conditions) during RL training
052 (Section 4): namely, a vulnerability to non-uniformly-distributed process steps within a group. To

mitigate this shortcoming, we propose including a PRM-aware normalization factor into the GRPO loss function (λ -GRPO).

We show that λ -GRPO results in higher validation accuracy and a $\sim 2x$ training speedup over standard GRPO (Section 5). On downstream reasoning benchmarks, λ -GRPO consistently improves over standard GRPO, demonstrating the superiority of our method.

Our findings call into question the utility of dedicated PRMs for GRPO, and suggest that future work may benefit instead from exploiting the step-level reward signal already available to the GRPO algorithm.

2 BACKGROUND

2.1 GRPO

GRPO is a variant of PPO that discards the critic model and GAE of the latter. Instead, for each query q in the training set, GRPO nondeterministically samples a *group* \mathbb{G} of k trajectories (completions to q) and computes the advantage a_i for the completion $g^{(i)} \in \mathbb{G}$ relative to the mean (outcome) reward of \mathbb{G} , as in Equation 1 (where r_i is the reward for $g^{(i)}$).

$$a_i = \frac{r_i - r_{\text{mean}}(\mathbb{G})}{r_{\text{std}}(\mathbb{G})} \quad (1)$$

In our theoretical analysis in Section 3, we make two key assumptions: first, we assume the use of the DAPO token-level policy gradient objective (Yu et al., 2025), rather than sample-level loss. Although it differs from the original GRPO formulation laid out in Shao et al. (2024), Yu et al. (2025) show that this objective leads to more stable training, and it is the standard GRPO loss function employed in commonly-used RL packages (e.g. the TRL GRPO trainer¹).

Second, we assume that the number of update iterations per batch (μ) is set to $\mu = 1$. Under this assumption, the ratio $P_{i,t}$ is fixed at 1.0 (see Equation 2b), allowing us to ignore the clipping factor of the GRPO loss function in our theoretical analysis.

Under these two assumptions, the per-group GRPO loss $L_{\text{GRPO}}(\mathbb{G})$ reduces to that in Equation 2.

$$L_{\text{GRPO}}(\mathbb{G}) = \frac{1}{\sum_{g^{(i)} \in \mathbb{G}} \text{len}(g^{(i)})} \sum_{g^{(i)} \in \mathbb{G}} \sum_{t=0}^{\text{len}(g^{(i)})-1} (P_{i,t} \cdot a_i) - D_{i,t} \quad (2a)$$

$$P_{i,t} = \frac{\pi_{\theta}(g_t^{(i)} \mid q, g_{:t}^{(i)})}{\pi_{\theta_{\text{old}}}(g_t^{(i)} \mid q, g_{:t}^{(i)})} \quad (2b)$$

$$D_{i,t} = \beta \cdot \left(\frac{\pi_{\theta_{\text{ref}}}(g_t^{(i)} \mid q, g_{:t}^{(i)})}{\pi_{\theta}(g_t^{(i)} \mid q, g_{:t}^{(i)})} - \ln \frac{\pi_{\theta_{\text{ref}}}(g_t^{(i)} \mid q, g_{:t}^{(i)})}{\pi_{\theta}(g_t^{(i)} \mid q, g_{:t}^{(i)})} - 1 \right) \quad (2c)$$

2.2 PROCESS REWARD MODELS (PRMs)

Given an alphabet Σ (i.e. set of tokens), we formally define a PRM as a function $f_{\phi}: \Sigma^* \rightarrow (\Sigma^* \times \mathbb{R})^*$ parameterized by ϕ that maps a trajectory $g \in \Sigma^*$ to the sequence $f_{\phi}(g) = ((g_{:i_1}, r_0^{(g)}), (g_{i_1:i_2}, r_1^{(g)}), \dots, (g_{i_{n-1}:}, r_{n-1}^{(g)}))$ of pairs of *process steps* (sub-trajectories) $g_{i_k:i_{k+1}}$ and step-level rewards $r_k^{(g)}$.

¹https://huggingface.co/docs/trl/main/en/grpo_trainer

108	$g^{(1)} =$	
109	$g^{(2)} =$	
110	$g^{(3)} =$	
111	$g^{(4)} =$	
112	$g^{(5)} =$	
113	$g^{(6)} =$	
114		
115		
116		
117		
118		
119		

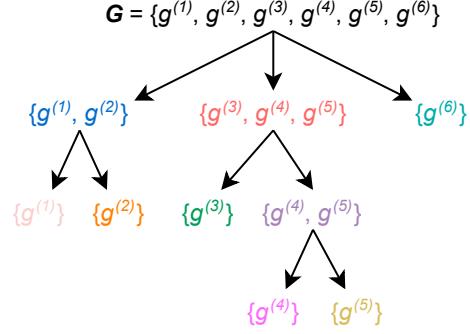


Figure 1: Toy example of a group $\mathbb{G} = \{g^{(1)}, \dots, g^{(6)}\}$ (left) and its corresponding $\mathcal{B}(\mathbb{G})$ tree (right). Tokens (boxes) are numbered for readability—subscripted numbers within boxes only indicate position. Each process *set* (node in the $\mathcal{B}(\mathbb{G})$ tree) is a set of trajectories that share a common prefix, and corresponds to a process *step* (subtrajectory) spanning those shared tokens: in this figure, colored nodes in $\mathcal{B}(\mathbb{G})$ correspond to those subsequences in \mathbb{G} that span tokens/boxes of the same color². GRPO implicitly assigns a step-level reward and advantage to the tokens of each process step, which are computed as functions of the mean outcome-level reward of each trajectory in the corresponding process set.

While PRMs are typically contrasted with *outcome* reward models (ORMs)—which assign a single reward to the entire trajectory—under the above definition, an ORM $f'_{\phi'}$ is simply a *trivial* PRM: i.e. $f'_{\phi'}(g) = ((g, r_0^{(g)}))$.

Both the division of the trajectory g into steps and the assignment of rewards to those steps are dependent upon the PRM in question. When trajectories are clearly delineated into individual steps—e.g. via ReACT-style prompting (Yao et al., 2023) or instructing the model to divide its reasoning into demarcated steps—the PRM can simply be directed to assign a reward to each pre-defined step (e.g. Li & Li, 2025). In other cases, trajectories are heuristically split into steps—for example, at high-entropy tokens (e.g. Hou et al., 2025).

Although the assignment of step-level reward can be performed by a model with learned parameters ϕ (e.g. Uesato et al., 2022), Kazemnejad et al. (2025) and Hou et al. (2025) combine Monte Carlo estimation with outcome-level rewards to yield heuristic PRMs that do not require the labor-intensive annotation of—and are less susceptible to reward-hacking than—their learned counterparts. In cases such as these in which the PRM f_{ϕ} is not learned, we simply consider ϕ to be fixed/trivial.

3 GRPO’S HIDDEN PRM

In Section 3.1, we prove that GRPO theoretically induces a PRM (given the assumptions of Section 2.1) as defined in Section 2.2. However, this PRM is only non-trivial—i.e. not equivalent to an ORM—if subsets of trajectories within each group share identical initial sub-trajectories.

In Section 3.2, we empirically demonstrate that such rich, overlapping prefix structures arise very frequently under real-world conditions: this shows that GRPO is “secretly” a non-trivial PRM.

3.1 THEORETICAL ANALYSIS

Let $\mathcal{B}(\mathbb{G}) = \{\lambda \subseteq \mathbb{G} \mid \exists n \geq 0 \forall g^{(i)}, g^{(k)} \in \lambda: g_{:n}^{(i)} = g_{:n}^{(k)}\}$ be the set of all *process sets*: sets $\lambda \subseteq \mathbb{G}$ of completions such that all $g^{(i)} \in \lambda$ are identical up to the n^{th} token, for some $n \geq 0$ (see Figure 1). Note that there is a natural tree structure on $\mathcal{B}(\mathbb{G})$, which is induced by the \supseteq relation.

²Same-colored boxes in \mathbb{G} indicate identical *sequences* of tokens across trajectories only: for example, $g_{:4}^{(3)} = g_{:4}^{(4)}$ and $g_{:6}^{(4)} = g_{:6}^{(5)}$, but it is not necessarily the case that e.g. $g_0^{(3)} = g_1^{(3)}$.

162 Each $\lambda \in \mathcal{B}(\mathbb{G})$ defines a process step within each $g^{(i)} \in \lambda$, spanning the subsequence $g_{s(\lambda):e(\lambda)}^{(i)}$
 163 from the $s(\lambda)^{th}$ to the $e(\lambda)^{th}$ tokens of $g^{(i)}$. The endpoint $e(\lambda)$ is defined as the largest n such
 164 that $g_{:n}^{(i)} = g_{:n}^{(k)}$ for all $g^{(i)}, g^{(k)} \in \lambda$, and $s(\lambda)$ is defined as the endpoint of the immediate parent
 165 $Pa_{\mathcal{B}(\mathbb{G})}(\lambda)$ of λ in the tree structure induced on $\mathcal{B}(\mathbb{G})$.
 166

$$e(\lambda) = \max\{n \geq 0 \mid \forall g^{(i)}, g^{(k)} \in \lambda : g_n^{(i)} = g_n^{(k)}\}$$

$$s(\lambda) = \begin{cases} 0 & \text{if } \lambda = \text{root}(\mathcal{B}(\mathbb{G})) \\ e(Pa_{\mathcal{B}(\mathbb{G})}(\lambda)) & \text{otherwise} \end{cases}$$

173 For example, $s(\{g^{(4)}, g^{(5)}\}) = e(\{g^{(3)}, g^{(4)}, g^{(5)}\}) = 4$ in Figure 1, and $e(\{g^{(4)}, g^{(5)}\}) = 6$: the
 174 process step corresponding to $\{g^{(4)}, g^{(5)}\}$ spans $g_{4:6}^{(4)}$ and $g_{4:6}^{(5)}$.
 175

176 For each $g^{(i)} \in \mathbb{G}$ and each $0 \leq t < \text{len}(g^{(i)})$, let $\lambda^{(i,t)} \in \mathcal{B}(\mathbb{G})$ denote the unique process set such
 177 that $g_t^{(i)} \in \lambda^{(i,t)}$ and $s(\lambda^{(i,t)}) \leq t < e(\lambda^{(i,t)})$. In other words, $\lambda^{(i,t)}$ is the process step to which
 178 the token $g_t^{(i)}$ belongs. In Figure 1, $\lambda^{(i,t)}$ corresponds to the set whose color matches that of $g_t^{(i)}$:
 179 $\lambda^{(1,0)} = \{g^{(1)}, g^{(2)}\}$, $\lambda^{(1,3)} = \{g^{(1)}\}$, $\lambda^{(5,5)} = \{g^{(4)}, g^{(5)}\}$, etc.
 180

181 Now, for each process step defined by some $\lambda \in \mathcal{B}(\mathbb{G})$, we define the step-level reward $\hat{R}(\lambda)$ via
 182 Monte Carlo estimation (Equation 3): $\hat{R}(\lambda)$ is the mean outcome-level reward of each trajectory in
 183 λ . In other words, $\hat{R}(\lambda)$ is the mean reward of each leaf node dominated by λ in the tree structure
 184 induced on $\mathcal{B}(\mathbb{G})$ —i.e. of each sampled completion to the process step defined by λ .
 185

$$\hat{R}(\lambda) = \frac{\sum_{g^{(i)} \in \lambda} r_i}{|\lambda|} \quad (3)$$

190 For each trajectory $g^{(i)} \in \mathbb{G}$ and each $0 \leq t < \text{len}(g^{(i)})$ define the reward $R_{i,t}$ for the token $g_t^{(i)}$ as
 191 the reward of the process step to which $g_t^{(i)}$ belongs: $R_{i,t} = \hat{R}(\lambda^{(i,t)})$. For example, in Figure 1, the
 192 step-level reward for the sub-trajectories $g_{:4}^{(3)}, g_{:4}^{(4)}, g_{:4}^{(5)}$ is the mean of the outcome-level rewards
 193 for $g^{(3)}, g^{(4)}$, and $g^{(5)}$: $R_{3,0} = \dots = R_{5,3} = \text{mean}(\{r_3, r_4, r_5\})$.
 194

195 By the definition given in Section 2.2, $R_{i,t}$ and $\mathcal{B}(\mathbb{G})$ clearly define a PRM: each $g^{(i)} \in \mathbb{G}$ is mapped
 196 to the sequence $(g_{:s(\lambda_1)}^{(i)}, R_{i,0}), (g_{s(\lambda_1):s(\lambda_2)}^{(i)}, R_{i,s(\lambda_1)}), \dots, (g_{s(\lambda_n)}^{(i)}, R_{i,s(\lambda_n)})$, where $(\lambda_0 = \mathbb{G}) \rightarrow$
 197 $\dots \rightarrow (\lambda_n = \{g^{(i)}\})$ is the unique path in the tree structure induced on $\mathcal{B}(\mathbb{G})$ from the root \mathbb{G} to the
 198 node $\{g^{(i)}\}$.
 199

200 Now, define the step-level advantage $A_{i,t}$ for the token $g_t^{(i)}$ in an analogous manner to the original
 201 GRPO definition in Equation 1—i.e. as the normalized difference between the step-level reward $R_{i,t}$
 202 for $g_t^{(i)}$ and the mean reward of \mathbb{G} : $A_{i,t} = (R_{i,t} - r_{\text{mean}}(\mathbb{G}))/r_{\text{std}}(\mathbb{G})$.
 203

204 Replacing the term a_i with $A_{i,t}$ in Equation 2a yields a PRM-aware RL objective (Equation 4).
 205

$$L_{\text{PRM}}(\mathbb{G}) = \frac{1}{\sum_{g^{(i)} \in \mathbb{G}} \text{len}(g^{(i)})} \sum_{g^{(i)} \in \mathbb{G}} \sum_{t=0}^{\text{len}(g^{(i)})-1} (P_{i,t} \cdot A_{i,t}) - D_{i,t} \quad (4)$$

211 We now show that the standard GRPO objective defined in Equation 2a with outcome-level rewards
 212 (L_{GRPO}) is equivalent to the PRM defined in Equations 3-4 (L_{PRM}).
 213

214 **Theorem 1.** *For any query q , policy π_θ , and group $\mathbb{G} \sim \pi_\theta(- \mid q)$ with outcome-level rewards
 215 $\{r_i\}_{g^{(i)} \in \mathbb{G}}$: $L_{\text{GRPO}}(\mathbb{G}) = L_{\text{PRM}}(\mathbb{G})$.*

216 *Proof.* Let λ be any process set in $\mathcal{B}(\mathbb{G})$, and let t be any integer such that $s(\lambda) \leq t < e(\lambda)$. We
 217 first prove that the sum of the PRM loss terms $P_{i,t} \cdot A_{i,t} - D_{i,t}$ for each trajectory $g^{(i)} \in \lambda$ at the
 218 token t is equivalent to the sum of the standard GRPO loss terms $P_{i,t} \cdot a_i - D_{i,t}$ (Equation 5).
 219

220 Recall that for any $g^{(i)}, g^{(k)} \in \lambda$, $g_{:t+1}^{(i)} = g_{:t+1}^{(k)}$ by definition: therefore, $P_{i,t} = P_{k,t}$ and $D_{i,t} =$
 221 $D_{k,t}$ (Equations 2b-2c). Again by definition, $g^{(i)}, g^{(k)} \in \lambda$ implies that $R_{i,t} = R_{k,t} = \hat{R}(\lambda)$
 222 (Equation 3), and so $A_{i,t} = A_{k,t}$. As such, we may define $\hat{P}_t(\lambda) = P_{k,t}$, $\hat{D}_t(\lambda) = D_{k,t}$, and
 223 $\hat{A}(\lambda) = A_{k,t}$ in Equation 5, choosing any arbitrary $g^{(k)} \in \lambda$.
 224

$$\begin{aligned}
 226 \quad & \sum_{g^{(i)} \in \lambda} (P_{i,t} \cdot A_{i,t}) - D_{i,t} = |\lambda| \cdot ((\hat{P}_t(\lambda) \cdot \hat{A}(\lambda)) - \hat{D}_t(\lambda)) \\
 227 \quad & = |\lambda| \cdot \left(\left(\hat{P}_t(\lambda) \cdot \frac{\hat{R}(\lambda) - r_{\text{mean}}(\mathbb{G})}{r_{\text{std}}(\mathbb{G})} \right) - \hat{D}_t(\lambda) \right) = |\lambda| \cdot \left(\left(\hat{P}_t(\lambda) \cdot \frac{\sum_{g^{(i)} \in \lambda} \frac{r_i}{|\lambda|} - r_{\text{mean}}(\mathbb{G})}{r_{\text{std}}(\mathbb{G})} \right) - \hat{D}_t(\lambda) \right) \\
 228 \quad & = \left(\hat{P}_t(\lambda) \frac{|\lambda|(\sum_{g^{(i)} \in \lambda} \frac{r_i}{|\lambda|} - r_{\text{mean}}(\mathbb{G}))}{r_{\text{std}}(\mathbb{G})} \right) - |\lambda| \hat{D}_t(\lambda) = \left(\hat{P}_t(\lambda) \frac{\sum_{g^{(i)} \in \lambda} r_i - \sum_{g^{(i)} \in \lambda} r_{\text{mean}}(\mathbb{G})}{r_{\text{std}}(\mathbb{G})} \right) - |\lambda| \hat{D}_t(\lambda) \\
 229 \quad & = \left(\sum_{g^{(i)} \in \lambda} P_{i,t} \frac{r_i - r_{\text{mean}}(\mathbb{G})}{r_{\text{std}}(\mathbb{G})} \right) - \sum_{g^{(i)} \in \lambda} D_{i,t} = \sum_{g^{(i)} \in \lambda} (P_{i,t} \cdot a_i) - D_{i,t}
 \end{aligned} \tag{5}$$

230 Now, letting $t_{\max} = \max_{g^{(i)} \in \mathbb{G}} \text{len}(g^{(i)})$, for each $0 \leq t < t_{\max}$ we can define a partition $\mathbb{X}_t \subseteq \mathcal{B}(\mathbb{G})$
 231 of $\{g^{(i)} \in \mathbb{G} \mid \text{len}(g^{(i)}) \leq t\}$ such that $\mathbb{X}_t = \{\lambda \in \mathcal{B}(\mathbb{G}) \mid s(\lambda) \leq t < e(\lambda)\}$ is the set of all process
 232 sets corresponding to a token span containing the index t . The GRPO loss term $L_{\text{GRPO}}(\mathbb{G})$ (Equation
 233 2a) can be equivalently expressed as in Equation 6 (and analogously for $L_{\text{PRM}}(\mathbb{G})$ of Equation 4).
 234

$$L_{\text{GRPO}}(\mathbb{G}) = \frac{1}{\sum_{g^{(i)} \in \mathbb{G}} \text{len}(g^{(i)})} \cdot \sum_{t=0}^{t_{\max}-1} \sum_{\lambda \in \mathbb{X}_t} \sum_{g_i \in \lambda} (P_{i,t} \cdot a_i) - D_{i,t} \tag{6}$$

235 We then have the following equalities by Equations 5 and 6:
 236

$$\begin{aligned}
 237 \quad L_{\text{GRPO}}(\mathbb{G}) &= \frac{1}{\sum_{g^{(i)} \in \mathbb{G}} \text{len}(g^{(i)})} \cdot \sum_{g^{(i)} \in \mathbb{G}} \sum_{t=0}^{\text{len}(g^{(i)})-1} (P_{i,t} \cdot a_i) - D_{i,t} = \\
 238 \quad \frac{1}{\sum_{g^{(i)} \in \mathbb{G}} \text{len}(g^{(i)})} \cdot \sum_{t=0}^{t_{\max}-1} \sum_{\lambda \in \mathbb{X}_t} \sum_{g^{(i)} \in \lambda} (P_{i,t} \cdot a_i) - D_{i,t} &= \frac{1}{\sum_{g^{(i)} \in \mathbb{G}} \text{len}(g^{(i)})} \cdot \sum_{t=0}^{t_{\max}-1} \sum_{\lambda \in \mathbb{X}_t} \sum_{g^{(i)} \in \lambda} (P_{i,t} \cdot A_{i,t}) - D_{i,t} \\
 239 \quad &= \frac{1}{\sum_{g^{(i)} \in \mathbb{G}} \text{len}(g^{(i)})} \cdot \sum_{g^{(i)} \in \mathbb{G}} \sum_{t=0}^{\text{len}(g^{(i)})-1} (P_{i,t} \cdot A_{i,t}) - D_{i,t} = L_{\text{PRM}}(\mathbb{G})
 \end{aligned}$$

□

240 In other words, the standard GRPO objective defined in Equation 2a automatically induces the PRM
 241 and PRM-aware objective defined in Equations 3-4.
 242

243 3.2 EMPIRICAL ANALYSIS

244 The theoretical analysis in Section 3.1 shows that the GRPO objective induces a PRM: it remains to
 245 be shown, however, that this induced PRM is *non-trivial*. We refer to the set $\mathcal{B}(\mathbb{G})$ of process sets
 246 as *trivial* if it contains only singleton sets³—i.e. $\mathcal{B}(\mathbb{G}) = \{\mathbb{G}\} \cup \{\{g^{(i)}\} \mid g^{(i)} \in \mathbb{G}\}$.
 247

248 ³And, by definition, \mathbb{G} itself, with $s(\mathbb{G}) = e(\mathbb{G}) = 0$.
 249

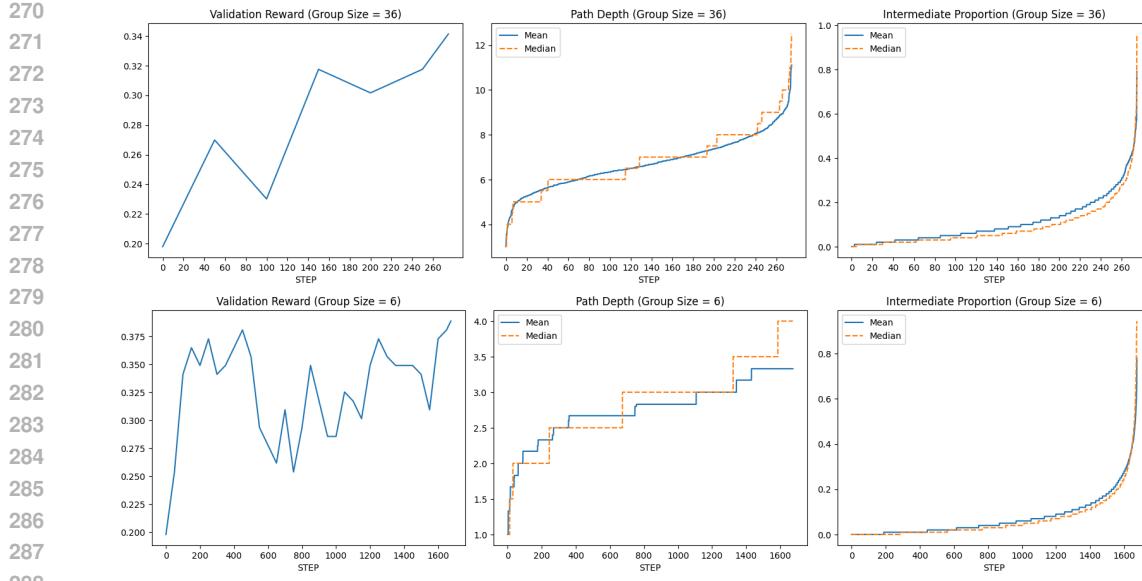


Figure 2: Validation reward (exact-match accuracy; left), $\mathcal{B}(\mathbb{G})$ root-to-terminal path depth (center), and proportions of trajectories spanned by intermediate (non-terminal) process steps (right) for GRPO runs with group sizes of 36 (top) and 6 (bottom).

If $\mathcal{B}(\mathbb{G})$ is trivial, then there are no meaningful process steps within each trajectory, and only the outcome reward has an effect on learning. On the other hand, if $\mathcal{B}(\mathbb{G})$ is *not* trivial, then Theorem 1 entails that the standard GRPO objective of Equation 2a induces a non-trivial PRM.

To analyze the complexity of real-world, GRPO-derived step-level rewards, we empirically evaluated $\mathcal{B}(\mathbb{G})$ structures generated during standard GRPO training: for each group \mathbb{G} , we computed its $\mathcal{B}(\mathbb{G})$ tree, and measured the number of intermediate nodes between the root \mathbb{G} and each terminal node $\{g^{(i)}\}$ (*path depth*), as a proxy for the complexity of the $\mathcal{B}(\mathbb{G})$ structure.

In addition, for each completion $g^{(i)} \in \mathbb{G}$, we counted the number of tokens $n_{term}^{(i)} = e(\{g^{(i)}\}) - s(\{g^{(i)}\})$ contained in the process step corresponding to the terminal node $\{g^{(i)}\}$ —i.e. the number of tokens unique to $g^{(i)}$ —and calculated the *intermediate proportion* p_i of $g^{(i)}$: $p_i = (len(g^{(i)}) - n_{term}^{(i)})/len(g^{(i)})$. Higher values of p_i indicate that a greater proportion of the trajectory $g^{(i)}$ belongs to intermediate process steps and is therefore assigned non-trivial step-level reward.

Experimental Setup. We trained two DeepSeek-R1-Distill-Qwen-1.5B models (DeepSeek-AI, 2025) on the OpenRS (Dang & Ngo, 2025) dataset using the standard GRPO algorithm and objective of Equation 2. We selected 125 OpenRS examples at random to serve as a validation set.

The first model trained for 1675 steps with a group size of six and a learn rate of 6×10^{-6} . The second was trained with a group size of 36 and a learn rate of 10^{-6} for 275 steps (due to the larger group size). Both models were trained with a maximum new token limit of 4096, a batch size of four, and a temperature of 0.75. Additional training details are located in Appendix B.

Results. Figure 2 shows that both path depth and intermediate proportion increase drastically as validation reward saturates, for group sizes of six and 36. These results are supported by Yu et al. (2025), who find that entropy decreases sharply as GRPO training progresses: this indicates that increasingly rich PRM-inducing structures arise as the model converges on a locally optimal policy.

In addition, found that only twelve of 6,700 $\mathcal{B}(\mathbb{G})$ structures were trivial with a group size of six ($\sim 0.2\%$). With a group size of 36, zero trivial $\mathcal{B}(\mathbb{G})$ structures arose out of the 1,100 generated groups. Examples of non-trivial $\mathcal{B}(\mathbb{G})$ structures from this experiment are given in Appendix C.

In conjunction with the theoretical analysis of Section 3.1, the results of this experiment demonstrate that GRPO induces a non-trivial PRM under real-world conditions. In Section 4, we show that this induced PRM carries a serious flaw that is detrimental to RL training, and propose a minor modification to the GRPO algorithm to mitigate this shortcoming.

4 PROPOSED APPROACH: λ -GRPO

Viewing the GRPO objective in terms of process set partitions \mathbb{X}_t (see Equation 6), we note that the contribution of each trajectory $g^{(i)} \in \mathbb{G}$ to the loss at index t is identical to that of all other trajectories in the process set $\lambda^{(i,t)}$ (where $\hat{P}_t(\lambda)$, $\hat{D}_t(\lambda)$, and $\hat{A}(\lambda)$ are defined as in Equation 5):

$$\begin{aligned} \frac{1}{\sum_{g^{(i)} \in \mathbb{G}} \text{len}(g^{(i)})} \cdot \sum_{g^{(i)} \in \mathbb{G}} \sum_{t=0}^{\text{len}(g^{(i)})-1} (P_{i,t} \cdot a_i) - D_{i,t} &= \frac{1}{\sum_{g^{(i)} \in \mathbb{G}} \text{len}(g^{(i)})} \cdot \sum_{t=0}^{t_{\max}-1} \sum_{\lambda \in \mathbb{X}_t} \sum_{g^{(i)} \in \lambda} (P_{i,t} \cdot A_{i,t}) - D_{i,t} \\ &= \frac{1}{\sum_{g^{(i)} \in \mathbb{G}} \text{len}(g^{(i)})} \cdot \sum_{t=0}^{t_{\max}-1} \sum_{\lambda \in \mathbb{X}_t} |\lambda| \cdot ((\hat{P}_t(\lambda) \cdot \hat{A}(\lambda)) - \hat{D}_t(\lambda)) \end{aligned} \quad (7)$$

The contribution of each process set $\lambda \in \mathcal{B}(\mathbb{G})$ to the overall loss, $\hat{P}_t(\lambda) \cdot \hat{A}(\lambda) - \hat{D}_t(\lambda)$, is scaled by $|\lambda|$: this carries the danger of harming exploration (for $\hat{A}(\lambda) < 0$) and exploitation (for $\hat{A}(\lambda) > 0$). Consider some process set λ with $|\lambda| \gg 1$. If $\hat{A}(\lambda) > 0$, then the increase in probability assigned to the process step corresponding to λ by π_θ under GRPO is compounded by a factor of $|\lambda|$, decreasing the likelihood of exploring process steps that are dissimilar from λ in subsequent training episodes.

Conversely, if $\hat{A}(\lambda) < 0$, then the *decrease* in probability assigned to λ under GRPO is compounded by a factor of $|\lambda|$, decreasing the likelihood of exploiting high-reward trajectories in λ . To illustrate, consider the group \mathbb{G} in Figure 1, assume $r_1 = r_2 = r_6 = 0.5$, $r_4 = r_5 = 0$, $r_3 = 1$, and let $\lambda = \{g^{(3)}, g^{(4)}, g^{(5)}\}$. Then $\hat{A}(\lambda) = -0.22$: despite the fact that $g^{(3)}$ has the highest reward, the probability of the sub-trajectory $g_{:4}^{(3)}$ is *decreased* under the GRPO objective, thereby decreasing the overall likelihood of generating the completion $g^{(3)}$. The term $|\lambda|$ in Equation 7 then scales this decrease in probability by a factor of three.

We propose scaling the token-level loss for $g_t^{(i)}$ by $|\lambda^{(i,t)}|^{-1}$ (λ -GRPO; Equation 8): this has the effect of canceling out the term $|\lambda|$ in Equation 7, so that each process set contributes equally to the loss at index t .

$$\begin{aligned} L_{\lambda\text{-GRPO}}(\mathbb{G}) &= \frac{1}{\sum_{g^{(i)} \in \mathbb{G}} \text{len}(g^{(i)})} \cdot \sum_{g^{(i)} \in \mathbb{G}} \sum_{t=0}^{\text{len}(g^{(i)})-1} \frac{(P_{i,t} \cdot a_i) - D_{i,t}}{|\lambda^{(i,t)}|} \\ &= \frac{1}{\sum_{g^{(i)} \in \mathbb{G}} \text{len}(g^{(i)})} \cdot \sum_{t=0}^{t_{\max}-1} \sum_{\lambda \in \mathbb{X}_t} (\hat{P}_t(\lambda) \cdot \hat{A}(\lambda)) - \hat{D}_t(\lambda) \end{aligned} \quad (8)$$

5 EXPERIMENTS

To evaluate our proposed approach, we trained DeepSeek-R1-Distill-Qwen-1.5B and Llama-3.2-1B-Instruct⁴ with the λ -GRPO (Equation 8) objective on the OpenRS dataset of Section 3.2, and compared them to standard GRPO (Equation 2a) models trained with an identical setup. All models were evaluated on an OpenRS validation set and five downstream reasoning benchmarks (see Section 5.1).

⁴<https://huggingface.co/meta-llama/Llama-3.2-1B-Instruct>

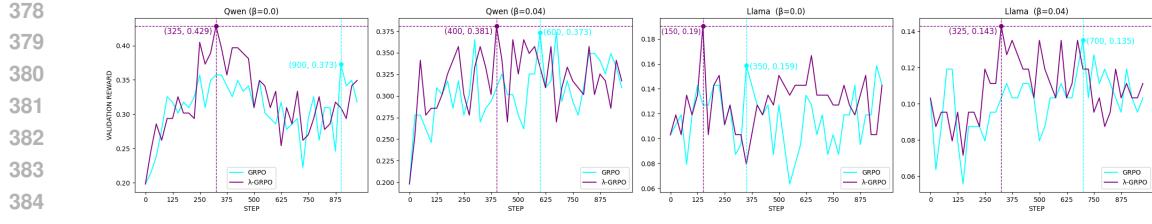


Figure 3: Models’ validation accuracy across training steps. Peak accuracy is highlighted by vertical, dashed lines.

Model	β	Version	AIME24	MATH-500	AMC23	Minerva	OB	Avg.
Qwen	—	Base	0.2000 ± 0.0743	0.8300 ± 0.0168	0.7500 ± 0.0693	0.2978 ± 0.0278	0.5096 ± 0.0193	0.5175
	0.0	GRPO	0.3333 ± 0.0875	0.7660 ± 0.0190	0.6250 ± 0.0775	0.2500 ± 0.0263	0.4444 ± 0.0191	0.4837
	0.0	λ -GRPO (ours)	<u>0.3667 ± 0.0895</u>	<u>0.8460 ± 0.0162</u>	<u>0.7500 ± 0.0693</u>	<u>0.2904 ± 0.0276</u>	<u>0.5348 ± 0.0192</u>	0.5576
	0.04	GRPO	0.3000 ± 0.0851	0.8660 ± 0.0152	0.7500 ± 0.0693	0.2610 ± 0.0267	0.5200 ± 0.0192	0.5394
Llama	—	Base	0.0000 ± 0.0000	0.2280 ± 0.0188	0.0750 ± 0.0422	0.0478 ± 0.0130	0.0563 ± 0.0089	0.0814
	0.0	GRPO	0.0000 ± 0.0000	0.2300 ± 0.0188	0.0750 ± 0.0422	0.0551 ± 0.0130	0.0607 ± 0.0089	0.0842
	0.0	λ -GRPO (ours)	<u>0.0000 ± 0.0000</u>	<u>0.2620 ± 0.0197</u>	<u>0.1250 ± 0.0530</u>	<u>0.0515 ± 0.0134</u>	<u>0.0622 ± 0.0092</u>	0.1001
	0.04	GRPO	0.0000 ± 0.0000	0.2180 ± 0.0185	0.1750 ± 0.0608	0.0515 ± 0.0134	0.0533 ± 0.0087	0.0996
	0.04	λ -GRPO (ours)	<u>0.0333 ± 0.0333</u>	<u>0.2560 ± 0.0195</u>	<u>0.0750 ± 0.0422</u>	<u>0.0735 ± 0.0159</u>	<u>0.0489 ± 0.0083</u>	0.0973

Table 1: Exact-match accuracy for the base and GRPO- λ -GRPO-trained Llama and Qwen models on downstream reasoning datasets (OB = OlympiadBench). The best results in each column are indicated in **bold**, and the best results within each model type (i.e. Llama or Qwen) are underlined. Confidence intervals are subscripted. For each λ -GRPO-trained model, results are given in **green** if it outperforms its GRPO-trained counterpart and the base model; **yellow** if it outperforms only its GRPO-trained counterpart; **orange** if it only improves over the base model; and **red** if it fails to outperform either model (see Table 2 in the Appendix for exact differences).

5.1 EXPERIMENTAL SETUP

All models were trained for 1,000 steps with a group size of six, a batch size of four, a maximum of 4,096 new tokens, and a temperature of 0.75. We conducted two sets of trials across the two models (for a total of four trials): in the first, we set the KL coefficient $\beta = 0.0$, and in the second $\beta = 0.04$. The Qwen models were trained with a learn rate of 10^{-6} ; the Llama models were trained with a learn rate of 5×10^{-7} for the $\beta = 0.0$ trial and 10^{-7} for $\beta = 0.04$ (as training was highly unstable with higher learn rates for Llama). Additional training details are located in Appendix B.

We evaluated the models on the AIME24⁵, MATH-500 (Hendrycks et al., 2021; Lightman et al., 2024), AMC23⁶, Minerva (Lewkowycz et al., 2022), and OlympiadBench (He et al., 2024) benchmarks, using the LightEval framework Habib et al. (2023); Dang & Ngo (2025). All models were evaluated at the checkpoint corresponding to the step at which they achieved maximum validation accuracy. As in the experiment in Section 3.2, we withheld 125 examples as a validation set.

5.2 RESULTS AND DISCUSSION

All four λ -GRPO models reach a higher validation accuracy in fewer steps than their GRPO counterparts (see Figure 3): on average, λ -GRPO represents a more than 10% increase over the standard GRPO validation accuracy—in less than half of the number of training steps.

This increase in validation accuracy corresponds to improved performance on downstream reasoning tasks (see Table 1). In total, the λ -GRPO models outperform standard GRPO on 15/20 cells (excluding average performance) in Table 1, and they improve over the base Llama/Qwen models on 14/20 cells. Only the Llama λ -GRPO model with $\beta = 0.04$ failed to outperform its GRPO counterpart on average downstream performance—this model still outperformed standard GRPO on a majority (3/5) of the tasks.

⁵<https://huggingface.co/datasets/AI-MO/aimo-validation-aime>

⁶<https://huggingface.co/datasets/AI-MO/aimo-validation-amc>

432 In addition, these performance gains result in effectively zero training slowdown: as we are merely
 433 *detecting* $\mathcal{B}(\mathbb{G})$ structures that occur during training—rather than *generating* them (e.g. Kazemnejad
 434 et al., 2025; Hou et al., 2025; Yang et al., 2025a)—the added computational cost from λ -GRPO (vs.
 435 standard GRPO) is negligible.

437 6 RELATED WORK

438 **Monte Carlo Sampling for Finer-Grained Rewards.** As discussed in Section 2.2, the labor-
 439 intensive human annotation required to obtain step-level rewards for PRM training has driven the
 440 development of heuristic methods for PRMs and PRM-like finer-grained reward signals, in particular
 441 those based on Monte Carlo estimation. Kazemnejad et al. (2025) replace the critic model in PPO
 442 with Monte Carlo estimation: multiple completions are sampled for each step, and the value for
 443 that step is derived from their mean outcome reward. On the other hand, Wang et al. (2024) train a
 444 neural PRM, using Monte Carlo estimation in a similar manner to Kazemnejad et al. (2025) in order
 445 to obtain step-level training rewards, and thereby avoid the need for costly human annotation.

446 Xie et al. (2024) generate step-level preference data for Direct Preference Optimization (DPO;
 447 Rafailov et al., 2023) training via Monte Carlo Tree Search and outcome-level rewards: sequences
 448 of overlapping trajectories are obtained by forking trajectories at defined split points to construct tree
 449 structures similar to the $\mathcal{B}(G)$ trees introduced in Section 3.1. The daughter nodes with the highest
 450 and lowest mean reward are then selected as the preferred and dispreferred (respectively) sequences
 451 for step-level DPO. Similarly, Hou et al. (2025) construct $\mathcal{B}(G)$ -like trees by splitting generated tra-
 452 jectories at high-entropy tokens to create multiple completions to the same initial trajectory prefix.
 453 Subtrajectory rewards are then derived from the mean reward of the corresponding node’s daughters
 454 in the tree structure. Yang et al. (2025a) employ an analogous approach to generate step-level re-
 455wards for GRPO training. Unlike standard GRPO, however, the advantages for each node (step) are
 456 computed relative to the rewards of node’s sisters in the tree structure, rather than the entire group.

457 These methods are orthogonal to our approach: they apply Monte Carlo estimation to explicitly
 458 construct step-level reward signals from outcome-level rewards, while we leverage the implicit step-
 459 level rewards already present in standard GRPO.

460 **PRMs with GRPO.** Aside from Yang et al. (2025a), GRPO has been employed with PRMs in
 461 Shao et al. (2024) and Feng et al. (2025). Shao et al. (2024) modify the advantage computation of
 462 GRPO to account for step-level rewards: normalized rewards are computed relative to all step-level
 463 rewards of all trajectories in the group, and the advantage for each step is the sum of the normalized
 464 reward of each subsequent step in its trajectory. Feng et al. (2025) construct a two-level variant of
 465 GRPO, in which standard, trajectory-level GRPO advantage is combined with a step-level GRPO
 466 advantage, and step-level groups are dynamically computed according to the similarity of steps
 467 across trajectories.

468 Our results in Sections 3 and 5 call into question the necessity of adapting GRPO to step-level
 469 rewards, given the rich step-level reward signal already present in the outcome-level variant of the
 470 algorithm.

471 **Connections between PRMs and Outcome-level Reward.** (Rafailov et al., 2024) prove that DPO
 472 can learn any token-level reward function—expressed as the difference in conditional log probability
 473 between the policy and reference models—given an appropriate training dataset. In contrast, we
 474 prove that GRPO with a given outcome reward function r is equivalent to a PRM-sensitive RL
 475 algorithm with a PRM whose process rewards are given by an on-policy Monte Carlo estimate of
 476 the expected reward under r for the process step in question.

477 7 CONCLUSION

478 In this paper, we demonstrated both theoretically and empirically that the standard GRPO algorithm
 479 induces a PRM that derives step-level rewards via Monte Carlo estimation. We then showed that this
 480 hidden PRM is faulty, and as a result is potentially detrimental to exploration and exploitation. To
 481 mitigate this flaw, we introduced a process-step-aware scaling factor to GRPO to derive the λ -GRPO

486 objective. Models trained with λ -GRPO reach higher validation accuracy faster than with standard
 487 GRPO, and achieve improved performance on downstream reasoning tasks.
 488

489 Our results indicate that it is possible to leverage the existing PRM structure inherent in the outcome-
 490 based GRPO algorithm, rather than employing costly, explicitly-defined PRMs. The limitations of
 491 this work are discussed in Appendix A.

492 REPRODUCIBILITY STATEMENT

495 We provide the complete proof of Theorem 1 in the main body of the paper. All settings and hyper-
 496 parameters for the experiments conducted in this work are given in Sections 3.2/ 5.1 and Appendix
 497 B. We will make all relevant code available upon acceptance.

498 REFERENCES

501 Ganqu Cui, Lifan Yuan, Zefan Wang, Hanbin Wang, Wendi Li, Bingxiang He, Yuchen Fan, Tianyu
 502 Yu, Qixin Xu, Weize Chen, Jiarui Yuan, Huayu Chen, Kaiyan Zhang, Xingtai Lv, Shuo Wang,
 503 Yuan Yao, Xu Han, Hao Peng, Yu Cheng, Zhiyuan Liu, Maosong Sun, Bowen Zhou, and Ning
 504 Ding. Process reinforcement through implicit rewards. *arXiv preprint arXiv:2502.01456*, 2025.

505 Quy-Anh Dang and Chris Ngo. Reinforcement learning for reasoning in small llms: What works
 506 and what doesn't. *arXiv preprint arXiv:2503.16219*, 2025.

508 DeepSeek-AI. Deepseek-r1: Incentivizing reasoning capability in llms via reinforcement learning.
 509 *arXiv preprint arXiv:2501.12948*, 2025.

511 Lang Feng, Zhenghai Xue, Tingcong Liu, and Bo An. Group-in-group policy optimization for llm
 512 agent training. *arXiv preprint arXiv:2505.10978*, 2025.

513 Nathan Habib, Clémentine Fourrier, Hynek Kydlíček, Thomas Wolf, and Lewis Tunstall. Lighte-
 514 val: A lightweight framework for llm evaluation, 2023. URL <https://github.com/huggingface/lighteval>.
 516

517 Chaoqun He, Renjie Luo, Yuzhuo Bai, Shengding Hu, Zhen Thai, Junhao Shen, Jinyi Hu, Xu Han,
 518 Yujie Huang, Yuxiang Zhang, Jie Liu, Lei Qi, Zhiyuan Liu, and Maosong Sun. OlympiadBench:
 519 A challenging benchmark for promoting AGI with olympiad-level bilingual multimodal scientific
 520 problems. In *Proceedings of the 62nd Annual Meeting of the Association for Computational
 521 Linguistics (Volume 1: Long Papers)*, pp. 3828–3850, 2024.

522 Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn
 523 Song, and Jacob Steinhardt. Measuring mathematical problem solving with the MATH dataset.
 524 In *Thirty-fifth Conference on Neural Information Processing Systems Datasets and Benchmarks
 525 Track (Round 2)*, 2021.

527 Zhenyu Hou, Ziniu Hu, Yujiang Li, Rui Lu, Jie Tang, and Yuxiao Dong. TreeRL: LLM reinforce-
 528 ment learning with on-policy tree search. In *Proceedings of the 63rd Annual Meeting of the
 529 Association for Computational Linguistics (Volume 1: Long Papers)*, pp. 12355–12369, 2025.

531 Amirhossein Kazemnejad, Milad Aghajohari, Eva Portelance, Alessandro Sordoni, Siva Reddy,
 532 Aaron Courville, and Nicolas Le Roux. VinePPO: Refining credit assignment in RL training
 533 of LLMs. In *Forty-second International Conference on Machine Learning*, 2025.

534 Aitor Lewkowycz, Anders Andreassen, David Dohan, Ethan Dyer, Henryk Michalewski, Vinay Ra-
 535 masesh, Ambrose Sloane, Cem Anil, Imanol Schlag, Theo Gutman-Solo, Yuhuai Wu, Behnam
 536 Neyshabur, Guy Gur-Ari, and Vedant Misra. Solving quantitative reasoning problems with lan-
 537 guage models. *Advances in Neural Information Processing Systems*, 35:3843–3857, 2022.

539 Wendi Li and Yixuan Li. Process reward model with q-value rankings. In *The Thirteenth Interna-
 540 tional Conference on Learning Representations*, 2025.

540 Hunter Lightman, Vineet Kosaraju, Yuri Burda, Harrison Edwards, Bowen Baker, Teddy Lee, Jan
 541 Leike, John Schulman, Ilya Sutskever, and Karl Cobbe. Let's verify step by step. In *The Twelfth*
 542 *International Conference on Learning Representations*, 2024.

543 Michael Luo, Sijun Tan, Justin Wong, Xiaoxiang Shi, William Y. Tang, Manan Roongta, Colin Cai,
 544 Jeffrey Luo, Li Erran Li, Raluca Ada Popa, and Ion Stoica. Deepscaler: Surpassing o1-preview
 545 with a 1.5b model by scaling rl. <https://pretty-radio-b75.notion.site/DeepScaleR-Surpassing-O1-Preview-with-a-1-5B-Model-by-Scaling-RL-19681902c1468005bed8ca303013a4e2>, 2025. No-
 546 tion Blog.

547 Niklas Muennighoff, Zitong Yang, Weijia Shi, Xiang Lisa Li, Li Fei-Fei, Hannaneh Hajishirzi, Luke
 548 Zettlemoyer, Percy Liang, Emmanuel Candès, and Tatsunori Hashimoto. s1: Simple test-time
 549 scaling. *arXiv preprint arXiv:2501.19393*, 2025.

550 Cheng Qian, Emre Can Acikgoz, Qi He, Hongru Wang, Xiusi Chen, Dilek Hakkani-Tür, Gokhan
 551 Tur, and Heng Ji. Toolrl: Reward is all tool learning needs. *arXiv preprint arXiv:2504.13958*,
 552 2025.

553 Rafael Rafailov, Archit Sharma, Eric Mitchell, Stefano Ermon, Christopher D Manning, and Chelsea
 554 Finn. Direct preference optimization: Your language model is secretly a reward model. In *Pro-
 555 ceedings of the 37th International Conference on Neural Information Processing Systems*, pp.
 556 53728–53741, 2023.

557 Rafael Rafailov, Joey Hejna, Ryan Park, and Chelsea Finn. From r to Q^* : Your language model is
 558 secretly a q-function. In *First Conference on Language Modeling*, 2024.

559 John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
 560 optimization algorithms. *arXiv preprint arXiv:1707.06347*, 2017.

561 Amrit Setlur, Chirag Nagpal, Adam Fisch, Xinyang Geng, Jacob Eisenstein, Rishabh Agarwal,
 562 Alekh Agarwal, Jonathan Berant, and Aviral Kumar. Rewarding progress: Scaling automated
 563 process verifiers for LLM reasoning. In *The Thirteenth International Conference on Learning
 564 Representations*, 2025.

565 Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
 566 Mingchuan Zhang, YK Li, Yang Wu, and Daya Guo. Deepseekmath: Pushing the limits of
 567 mathematical reasoning in open language models. *arXiv preprint arXiv:2402.03300*, 2024.

568 Michael Sullivan, Mareike Hartmann, and Alexander Koller. Procedural environment generation for
 569 tool-use agents. *arXiv preprint arXiv:2506.11045*, 2025.

570 Jonathan Uesato, Nate Kushman, Ramana Kumar, Francis Song, Noah Siegel, Lisa Wang, Antonia
 571 Creswell, Geoffrey Irving, and Irina Higgins. Solving math word problems with process- and
 572 outcome-based feedback. *arXiv preprint arXiv:2211.14275*, 2022.

573 Peiyi Wang, Lei Li, Zhihong Shao, Runxin Xu, Damai Dai, Yifei Li, Deli Chen, Yu Wu, and Zhifang
 574 Sui. Math-shepherd: Verify and reinforce LLMs step-by-step without human annotations. In *Pro-
 575 ceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume
 576 1: Long Papers)*, pp. 9426–9439, 2024.

577 Yuxi Xie, Anirudh Goyal, Wenyue Zheng, Min-Yen Kan, Timothy P Lillicrap, Kenji Kawaguchi,
 578 and Michael Shieh. Monte carlo tree search boosts reasoning via iterative preference learning. In
 579 *The First Workshop on System-2 Reasoning at Scale, NeurIPS'24*, 2024.

580 Zhicheng Yang, Zhijiang Guo, Yinya Huang, Xiaodan Liang, Yiwei Wang, and Jing Tang. Treerpo:
 581 Tree relative policy optimization. *arXiv preprint arXiv:2506.05183*, 2025a.

582 Zonglin Yang, Zhexuan Gu, Houduo Qi, and Yancheng Yuan. Accelerating rlhf training with reward
 583 variance increase. *arXiv preprint arXiv:2505.23247*, 2025b.

584 Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik Narasimhan, and Yuan Cao.
 585 React: Synergizing reasoning and acting in language models. In *The Eleventh International
 586 Conference on Learning Representations*, 2023.

594 Qiying Yu, Zheng Zhang, Ruofei Zhu, Yufeng Yuan, Xiaochen Zuo, Yu Yue, Weinan Dai, Tiantian
 595 Fan, Gaohong Liu, Lingjun Liu, et al. Dapo: An open-source llm reinforcement learning system
 596 at scale. *arXiv preprint arXiv:2503.14476*, 2025.

597 Zhenru Zhang, Chujie Zheng, Yangzhen Wu, Beichen Zhang, Runji Lin, Bowen Yu, Dayiheng Liu,
 598 Jingren Zhou, and Junyang Lin. The lessons of developing process reward models in mathematical
 599 reasoning. *arXiv preprint arXiv:2501.07301*, 2025.

Model	β	Version	AIME24	MATH-500	AMC23	Minerva	OB	Avg.
Qwen	0.0	Base	+0.1667	+0.0160	0.0000	-0.0074	+0.0252	+0.0401
		GRPO	+0.0334	+0.0800	+0.1250	+0.0404	+0.0904	+0.0738
	0.04	Base	+0.2000	+0.0040	+0.0500	0.0000	+0.0282	+0.0564
		GRPO	+0.1000	-0.0320	+0.0500	+0.0368	+0.0178	+0.0345
Llama	0.0	Base	0.0000	+0.0340	+0.0500	+0.0037	+0.0059	+0.0187
		GRPO	0.0000	+0.0320	+0.0500	-0.0036	+0.0015	+0.0160
	0.04	Base	+0.0333	+0.0280	0.0000	+0.0257	-0.0074	+0.0159
		GRPO	+0.0333	+0.0380	-0.1000	+0.0220	-0.0044	-0.0022

601
 602 Table 2: Difference in accuracy between the λ -GRPO-trained models, and their corresponding base
 603 models and standard-GRPO-trained counterparts. Positive differences (i.e. λ -GRPO outperforms
 604 the comparison model) are highlighted in **green**; negative differences (i.e. the comparison model
 605 outperforms λ -GRPO) are highlighted in **red**. For example, the top-most entry in the AIME24
 606 column indicates that the λ -GRPO Qwen model with $\beta = 0.0$ outperformed the base DeepSeek-R1-
 607 Distill-Qwen-1.5B by 0.1667 on the AIME24 benchmark.

A LIMITATIONS

618 Due to computational resource constraints, we were only able to conduct the experiments in Sections 3.2 and 5 with relatively small models: 1.5 billion (Qwen) and 1 billion (Llama) parameters.
 619 Similarly, we only use one dataset for RL training in both experiments—although OpenRS is a
 620 combination of the s1 (Muennighoff et al., 2025) and DeepScaleR Luo et al. (2025) datasets. Future
 621 work should extend our findings regarding the non-triviality of the GRPO-induced PRM and the
 622 effectiveness of λ -GRPO to larger models and more diverse (training) datasets.

623 Finally, the objective of this work is to expose the PRM induced by the GRPO algorithm, and to
 624 highlight the deficiencies of that PRM as described in Section 4. To that end, our proposed λ -GRPO
 625 method does not actually remedy the anti-exploitation effect of the GRPO-induced PRM—it merely
 626 lessens its impact. In future work, we intend to investigate more extensive modifications to the
 627 GRPO algorithm, with the goal of entirely solving the problems laid out in Section 4.

B EXPERIMENTAL SETUP

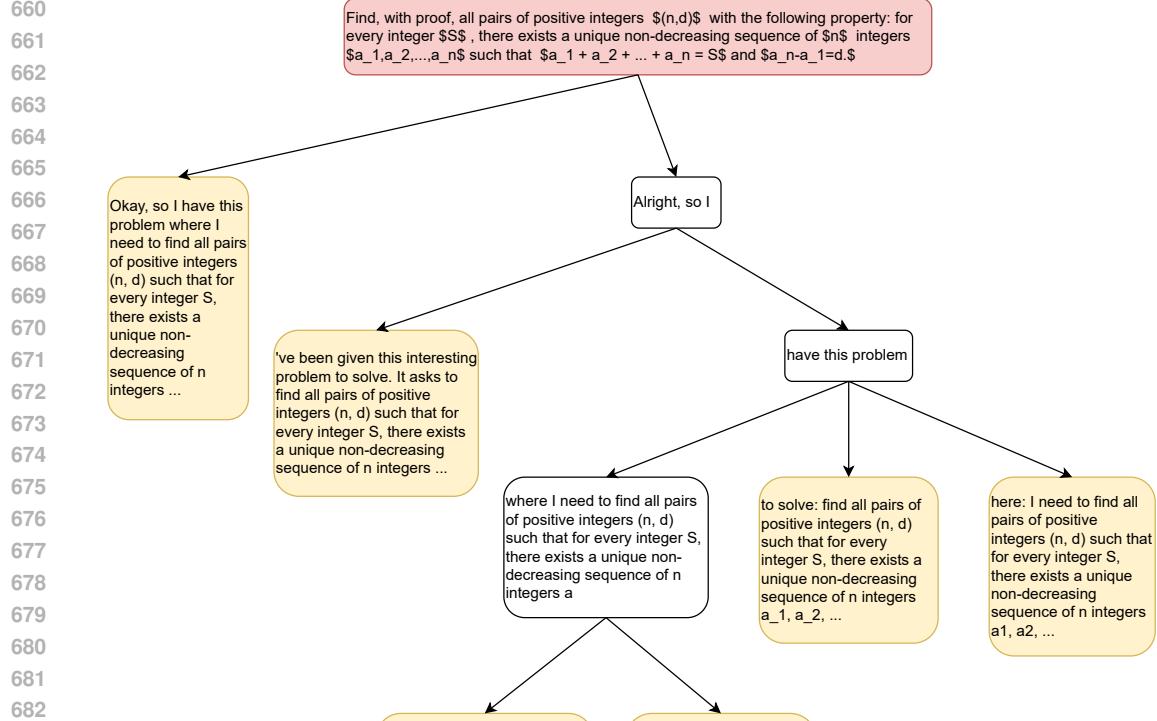
632 All experiments were conducted on a single NVIDIA H100 GPU. We trained all models with 24
 633 gradient accumulation steps per step and a generation batch size of 6. The models were evaluated
 634 on the validation split every 25 training steps.

635 We additionally hard-coded the generation procedure to halt after “\boxed{...}” was detected: this
 636 was to prevent the model from generating multiple boxed answers for a single prompt.

C $\mathcal{B}(\mathbb{G})$ STRUCTURE EXAMPLES

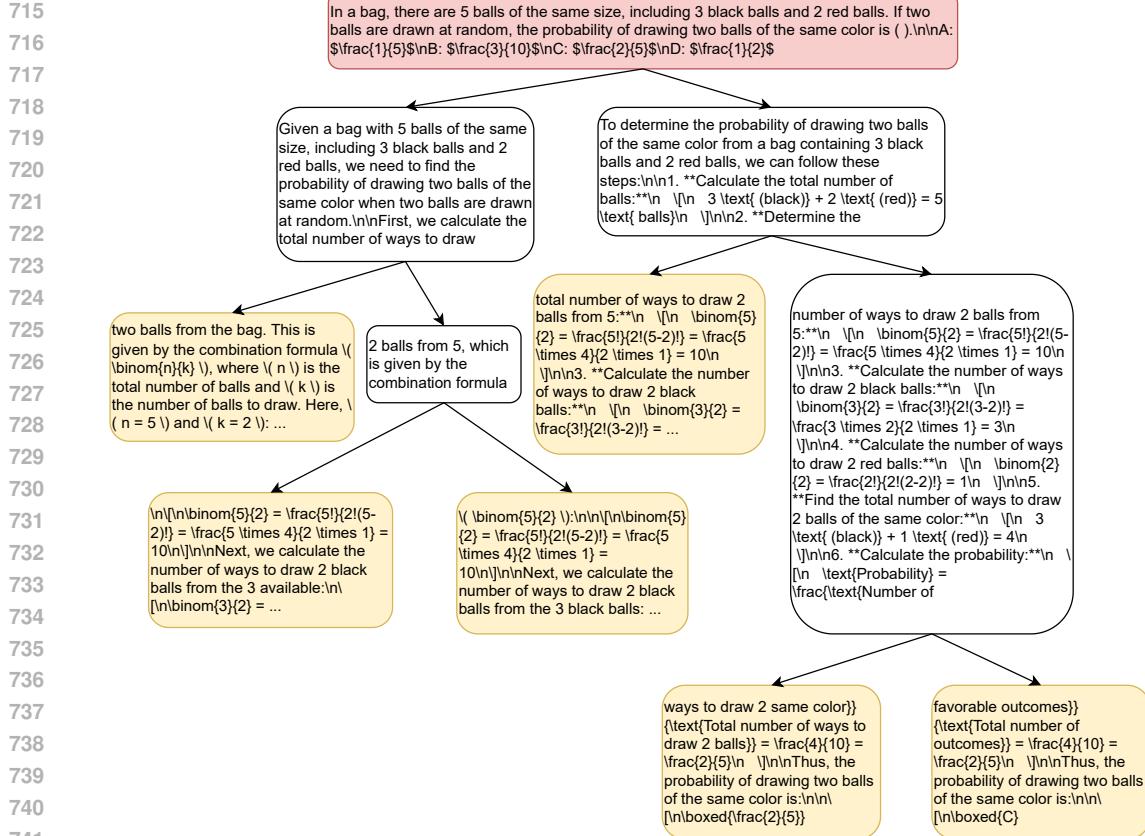
643 The following (Figures 4, 5, 6) represent $\mathcal{B}(\mathbb{G})$ structures on groups generated during the group size
 644 6 trial of the experiment in Section 3.2. A full trajectory is reconstructed by tracing the unique path
 645 from the root to a terminal node. The root (red) corresponds to the prompt/query q . Terminal nodes
 646 (yellow) denote singleton process steps $\{g^{(i)}\}$; each non-terminal node λ (white; including the root)
 647 denotes the process step corresponding to the set of all terminal nodes dominated by λ . For the sake
 648 of presentation, overlong terminal steps are truncated with “...”.

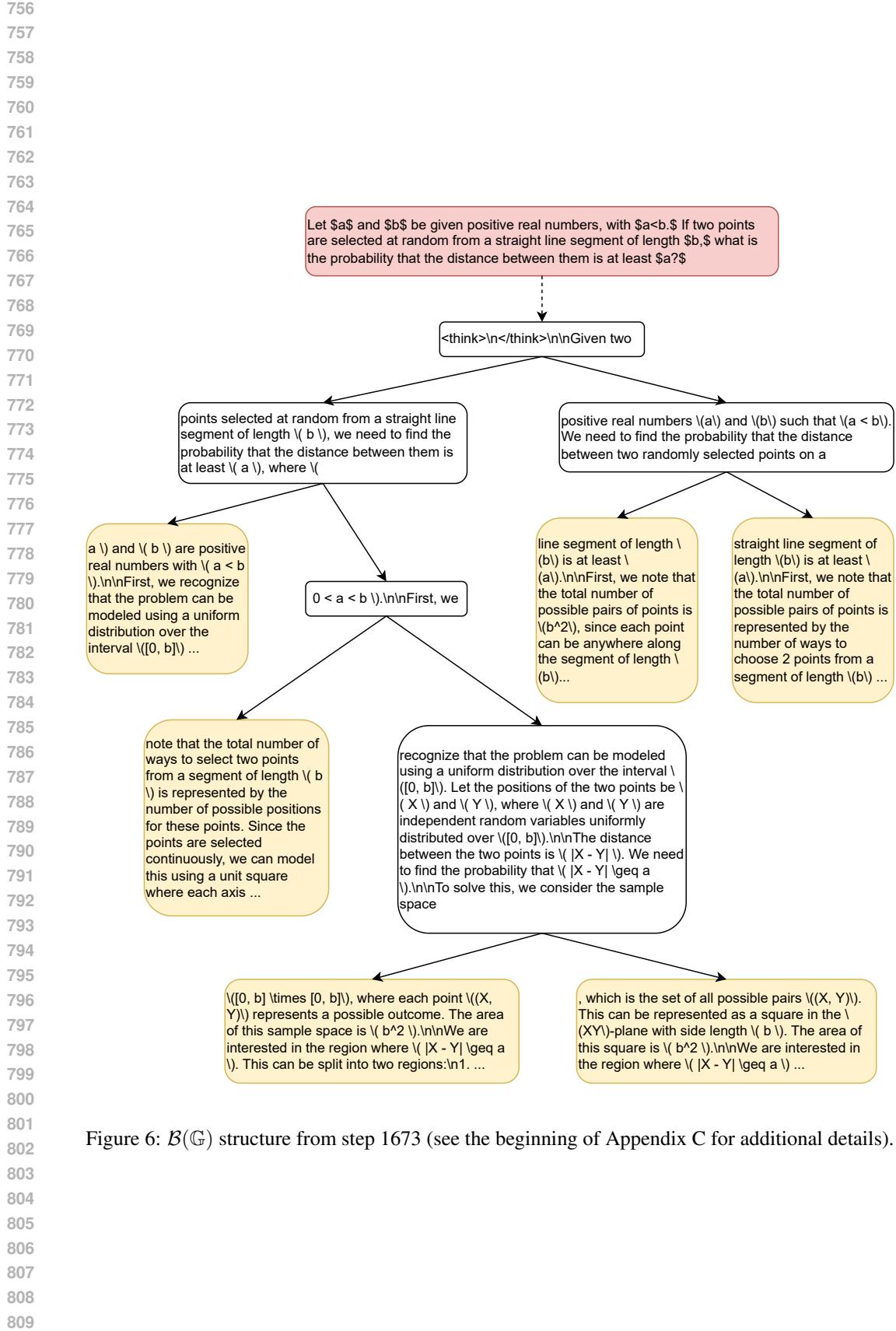
648
649
650
651
652
653
654
655
656
657
658
659

Figure 4: $\mathcal{B}(\mathbb{G})$ structure from step 1 (see the beginning of Appendix C for additional details).

690
691
692
693
694
695
696
697
698
699
700
701

702
703
704
705
706
707
708
709
710
711
712
713
714

Figure 5: $\mathcal{B}(\mathbb{G})$ structure from step 1001 (see the beginning of Appendix C for additional details).

Figure 6: $\mathcal{B}(\mathbb{G})$ structure from step 1673 (see the beginning of Appendix C for additional details).