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ABSTRACT

We prove theoretically that the GRPO RL algorithm induces a non-trivial process
reward model (PRM), under certain assumptions regarding within-group overlap
of token sequences across completions. We then show empirically that these
assumptions are met under real-world conditions: GRPO does in fact induce a
non-trivial PRM. Leveraging the framework of GRPO-as-a-PRM, we identify a
flaw in the GRPO objective: non-uniformly distributed process steps hinder both
exploration and exploitation (under different conditions). We propose a simple
modification to the algorithm to mitigate this defect (λ-GRPO), and show that
LLMs trained with λ-GRPO achieve higher validation accuracy and performance
on downstream reasoning tasks—and reach peak performance more rapidly—than
LLMs trained with standard GRPO. Our results call into question the advantage of
costly, explicitly-defined PRMs for GRPO: we show that it is possible to instead
leverage the hidden, built-in PRM structure within the vanilla GRPO algorithm to
boost model performance with a negligible impact on training time and cost.

1 INTRODUCTION

Process reward models (PRMs)—models that assign reward to intermediate steps (see Section
2.2)—allow for finer-grained reward assignment than outcome-level signals, thereby yielding im-
proved multi-step reasoning performance (Lightman et al., 2024). PRMs are therefore particularly
applicable to RL training for step-by-step processes such as mathematical reasoning.

However, training neural PRMs requires costly, step-level human annotation (Zhang et al., 2025),
and such models are particularly susceptible to reward hacking (Cui et al., 2025). These shortcom-
ings have resulted in the limited adoption of learned PRMs for RL training Setlur et al. (2025),
leading to the development of Monte-Carlo-based and other heuristic, non-neural PRMs (e.g. Wang
et al., 2024; Kazemnejad et al., 2025; Hou et al., 2025).

PRMs are typically employed with RL algorithms such as Proximal Policy Optimization (PPO;
Schulman et al., 2017) that employ a critic model and/or generalized advantage estimation (GAE).
Although Group Relative Policy Optimization (GRPO; Shao et al., 2024) greatly simplifies and
reduces the memory consumption of RL training, leading to its adoption for a wide range of appli-
cations—e.g. tool use (Qian et al., 2025; Sullivan et al., 2025), RLHF (Yang et al., 2025b), and, in
particular, mathematical reasoning (Shao et al., 2024; DeepSeek-AI, 2025)—it does so by eliminat-
ing the critic model and GAE of PPO (see Section 2.1). GRPO has therefore not been widely used
with PRMs: to the best of our knowledge, Shao et al. (2024), Yang et al. (2025a), and Feng et al.
(2025) are the only instances in which GRPO is employed with step-level rewards—and these ap-
proaches necessitate the modification of the algorithm to accommodate finer-grained reward signals.

In this paper, we show that—under certain mild assumptions—GRPO induces a Monte-Carlo-based
PRM (Section 3). Specifically, we prove theoretically that GRPO assigns rewards (and advantages)
derived from outcome-level rewards and Monte-Carlo-sampled completions to sub-trajectories,
whenever subsets of trajectories within each group share identical prefixes. We then show empiri-
cally that this identical-prefix condition is almost always met under real-world conditions, yielding
rich step-level process reward structures. These two findings definitively demonstrate that the GRPO
objective covertly assigns and optimizes for complex, structured step-level rewards and advantages.

An investigation of the properties of GRPO’s hidden PRM reveals a defect in the objective func-
tion that hinders both exploration and exploitation (under different conditions) during RL training
(Section 4): namely, a vulnerability to non-uniformly-distributed process steps within a group. To
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mitigate this shortcoming, we propose including a PRM-aware normalization factor into the GRPO
loss function (λ-GRPO).

We show that λ-GRPO results in higher validation accuracy and a ∼2x training speedup over stan-
dard GRPO (Section 5). On downstream reasoning benchmarks, λ-GRPO consistently improves
over standard GRPO, demonstrating the superiority of our method.

Our findings call into question the utility of dedicated PRMs for GRPO, and suggest that future
work may benefit instead from exploiting the step-level reward signal already available to the GRPO
algorithm.

2 BACKGROUND

2.1 GRPO

GRPO is a variant of PPO that discards the critic model and GAE of the latter. Instead, for each query
q in the training set, GRPO nondeterministically samples a group G of k trajectories (completions
to q) and computes the advantage ai for the completion g(i) ∈ G relative to the mean (outcome)
reward of G, as in Equation 1 (where ri is the reward for g(i)).

ai =
ri − rmean(G)

rstd(G)
(1)

In our theoretical analysis in Section 3, we make two key assumptions: first, we assume the use
of the DAPO token-level policy gradient objective (Yu et al., 2025), rather than sample-level loss.
Although it differs from the original GRPO formulation laid out in Shao et al. (2024), Yu et al.
(2025) show that this objective leads to more stable training, and it is the standard GRPO loss
function employed in commonly-used RL packages (e.g. the TRL GRPO trainer1).

Second, we assume that the number of update iterations per batch (µ) is set to µ = 1. Under this
assumption, the ratio Pi,t is fixed at 1.0 (see Equation 2b), allowing us to ignore the clipping factor
of the GRPO loss function in our theoretical analysis.

Under these two assumptions, the per-group GRPO loss LGRPO(G) reduces to that in Equation 2.

LGRPO(G) =
1∑

g(i)∈G len(g(i))

∑
g(i)∈G

len(g(i))−1∑
t=0

(Pi,t · ai)−Di,t (2a)

Pi,t =
πθ(g

(i)
t | q, g(i):t )

πθold(g
(i)
t | q, g(i):t )

(2b)

Di,t = β ·

(
πθref(g

(i)
t | q, g(i):t )

πθ(g
(i)
t | q, g(i):t )

− ln
πθref(g

(i)
t | q, g(i):t )

πθ(g
(i)
t | q, g(i):t )

− 1

)
(2c)

2.2 PROCESS REWARD MODELS (PRMS)

Given an alphabet Σ (i.e. set of tokens), we formally define a PRM as a function fϕ : Σ
∗ →

(Σ∗ × R)∗ parameterized by ϕ that maps a trajectory g ∈ Σ∗ to the sequence fϕ(g) =

((g:i1 , r
(g)
0 ), (gi1:i2 , r

(g)
1 ), . . . , (gin−1:, r

(g)
n−1)) of pairs of process steps (sub-trajectories) gik:ik+1

and
step-level rewards r(g)k .

1https://huggingface.co/docs/trl/main/en/grpo trainer
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G = {g (1), g (2), g (3), g (4), g (5), g (6)
 }

{g (1), g (2)
 } {g (3), g (4), g (5)

 }

{g (1)
 } {g (2)

 } {g (3)
 } {g (4), g (5)

 }

{g (4)
 } {g (5)

 }

g (1) = 

g (2) = 

g (3) = 

g (4) = 

g (5) = 

g (6) = 

0 1 2 3 4 5

0 1 2 3 4 5 6 87

0 1 2 3

4 5

1 2 3 6 74 5

1 2 3

4 5 6

0 1 2 3 4

8

6 7

0

0

{g (6)
 }

Figure 1: Toy example of a group G = {g(1), . . . , g(6)} (left) and its corresponding B(G) tree
(right). Tokens (boxes) are numbered for readability—subscripted numbers within boxes only indi-
cate position. Each process set (node in the B(G) tree) is a set of trajectories that share a common
prefix, and corresponds to a process step (subtrajectory) spanning those shared tokens: in this figure,
colored nodes in B(G) correspond to those subsequences in G that span tokens/boxes of the same
color2. GRPO implicitly assigns a step-level reward and advantage to the tokens of each process
step, which are computed as functions of the mean outcome-level reward of each trajectory in the
corresponding process set.

While PRMs are typically contrasted with outcome reward models (ORMs)—which assign a single
reward to the entire trajectory—under the above definition, an ORM f ′

ϕ′ is simply a trivial PRM:

i.e. f ′
ϕ′(g) = ((g, r

(g)
0 )).

Both the division of the trajectory g into steps and the assignment of rewards to those steps are depen-
dent upon the PRM in question. When trajectories are clearly delineated into individual steps—e.g.
via ReACT-style prompting (Yao et al., 2023) or instructing the model to divide its reasoning into
demarcated steps—the PRM can simply be directed to assign a reward to each pre-defined step
(e.g. Li & Li, 2025). In other cases, trajectories are heuristically split into steps—for example, at
high-entropy tokens (e.g. Hou et al., 2025).

Although the assignment of step-level reward can be performed by a model with learned parameters
ϕ (e.g. Uesato et al., 2022), Kazemnejad et al. (2025) and Hou et al. (2025) combine Monte Carlo
estimation with outcome-level rewards to yield heuristic PRMs that do not require the labor-intensive
annotation of—and are less susceptible to reward-hacking than—their learned counterparts. In cases
such as these in which the PRM fϕ is not learned, we simply consider ϕ to be fixed/trivial.

3 GRPO’S HIDDEN PRM

In Section 3.1, we prove that GRPO theoretically induces a PRM (given the assumptions of Section
2.1) as defined in Section 2.2. However, this PRM is only non-trivial—i.e. not equivalent to an
ORM—if subsets of trajectories within each group share identical initial sub-trajectories.

In Section 3.2, we empirically demonstrate that such rich, overlapping prefix structures arise very
frequently under real-world conditions: this shows that GRPO is “secretly” a non-trivial PRM.

3.1 THEORETICAL ANALYSIS

Let B(G) = {λ ⊆ G | ∃n ≥ 0∀g(i), g(k) ∈ λ : g
(i)
:n = g

(k)
:n } be the set of all process sets: sets

λ ⊆ G of completions such that all g(i) ∈ λ are identical up to the nth token, for some n ≥ 0 (see
Figure 1). Note that there is a natural tree structure on B(G), which is induced by the ⊇ relation.

2Same-colored boxes in G indicate identical sequences of tokens across trajectories only: for example,
g
(3)
:4 = g

(4)
:4 and g

(4)
4:6 = g

(5)
4:6 , but it is not necessarily the case that e.g. g(3)0 = g

(3)
1 .

3
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Each λ ∈ B(G) defines a process step within each g(i) ∈ λ, spanning the subsequence g
(i)
s(λ):e(λ)

from the s(λ)th to the e(λ)th tokens of g(i). The endpoint e(λ) is defined as the largest n such
that g(i):n = g

(k)
:n for all g(i), g(k) ∈ λ, and s(λ) is defined as the endpoint of the immediate parent

PaB(G)(λ) of λ in the tree structure induced on B(G).

e(λ) = max{n ≥ 0 | ∀g(i), g(k) ∈ λ : g(i):n = g(k):n }

s(λ) =

{
0 if λ = root(B(G))

e(PaB(G)(λ)) otherwise

For example, s({g(4), g(5)}) = e({g(3), g(4), g(5)}) = 4 in Figure 1, and e({g(4), g(5)}) = 6: the
process step corresponding to {g(4), g(5)} spans g(4)4:6 and g

(5)
4:6 .

For each g(i) ∈ G and each 0 ≤ t < len(g(i)), let λ(i,t) ∈ B(G) denote the unique process set such
that g(i) ∈ λ(i,t) and s(λ(i,t)) ≤ t < e(λ(i,t)). In other words, λ(i,t) is the process step to which
the token g

(i)
t belongs. In Figure 1, λ(i,t) corresponds to the set whose color matches that of g(i)t :

λ(1,0) = {g(1), g(2)}, λ(1,3) = {g(1)}, λ(5,5) = {g(4), g(5)}, etc.

Now, for each process step defined by some λ ∈ B(G), we define the step-level reward R̂(λ) via
Monte Carlo estimation (Equation 3): R̂(λ) is the mean outcome-level reward of each trajectory in
λ. In other words, R̂(λ) is the mean reward of each leaf node dominated by λ in the tree structure
induced on B(G)—i.e. of each sampled completion to the process step defined by λ.

R̂(λ) =

∑
g(i)∈λ ri

|λ|
(3)

For each trajectory g(i) ∈ G and each 0 ≤ t < len(g(i)) define the reward Ri,t for the token g
(i)
t as

the reward of the process step to which g
(i)
t belongs: Ri,t = R̂(λ(i,t)). For example, in Figure 1, the

step-level reward for the sub-trajectories g
(3)
:4 , g(4):4 , g(5):4 is the mean of the outcome-level rewards

for g(3), g(4), and g(5): R3,0 = · · · = R5,3 = mean({r3, r4, r5}).

By the definition given in Section 2.2, Ri,t and B(G) clearly define a PRM: each g(i) ∈ G is mapped
to the sequence (g

(i)
:s(λ1)

, Ri,0), (g
(i)
s(λ1):s(λ2)

, Ri,s(λ1)), . . . , (g
(i)
s(λn):

, Ri,s(λn)), where (λ0 = G) →
· · · → (λn = {g(i)}) is the unique path in the tree structure induced on B(G) from the root G to the
node {g(i)}.

Now, define the step-level advantage Ai,t for the token g
(i)
t in an analogous manner to the original

GRPO definition in Equation 1—i.e. as the normalized difference between the step-level reward Ri,t

for g(i)t and the mean reward of G: Ai,t = (Ri,t − rmean(G))/rstd(G).

Replacing the term ai with Ai,t in Equation 2a yields a PRM-aware RL objective (Equation 4).

LPRM(G) =
1∑

g(i)∈G len(g(i))

∑
g(i)∈G

len(g(i))−1∑
t=0

(Pi,t · Ai,t )−Di,t (4)

We now show that the standard GRPO objective defined in Equation 2a with outcome-level rewards
(LGRPO) is equivalent to the PRM defined in Equations 3-4 (LPRM).

Theorem 1. For any query q, policy πθ, and group G ∼ πθ(– | q) with outcome-level rewards
{ri}g(i)∈G: LGRPO(G) = LPRM(G).

4
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Proof. Let λ be any process set in B(G), and let t be any integer such that s(λ) ≤ t < e(λ). We
first prove that the sum of the PRM loss terms Pi,t · Ai,t −Di,t for each trajectory g(i) ∈ λ at the
token t is equivalent to the sum of the standard GRPO loss terms Pi,t · ai −Di,t (Equation 5).

Recall that for any g(i), g(k) ∈ λ, g(i):t+1 = g
(k)
:t+1 by definition: therefore, Pi,t = Pk,t and Di,t =

Dk,t (Equations 2b-2c). Again by definition, g(i), g(k) ∈ λ implies that Ri,t = Rk,t = R̂(λ)

(Equation 3), and so Ai,t = Ak,t. As such, we may define P̂t(λ) = Pk,t, D̂t(λ) = Dk,t, and
Â(λ) = Ak,t in Equation 5, choosing any arbitrary g(k) ∈ λ.

∑
g(i)∈λ

(Pi,t ·Ai,t)−Di,t = |λ| · ((P̂t(λ) · Â(λ))− D̂t(λ))

= |λ| ·

((
P̂t(λ) ·

R̂(λ)− rmean(G)

rstd(G)

)
− D̂t(λ)

)
= |λ| ·

((
P̂t(λ) ·

∑
g(i)∈λ

ri
|λ| − rmean(G)

rstd(G)

)
− D̂t(λ)

)

=

(
P̂t(λ)

|λ|(
∑

g(i)∈λ
ri
|λ| − rmean(G))

rstd(G)

)
− |λ|D̂t(λ) =

(
P̂t(λ)

∑
g(i)∈λ ri −

∑
g(i)∈λ rmean(G)

rstd(G)

)
− |λ|D̂t(λ)

=

 ∑
g(i)∈λ

Pi,t
ri − rmean(G)

rstd(G)

−
∑

g(i)∈λ

Di,t =
∑

g(i)∈λ

(Pi,t · ai)−Di,t

(5)

Now, letting tmax = maxg(i)∈G len(g(i)), for each 0 ≤ t < tmax we can define a partition Xt ⊆ B(G)

of {g(i) ∈ G | len(g(i)) ≤ t} such that Xt = {λ ∈ B(G) | s(λ) ≤ t < e(λ)} is the set of all process
sets corresponding to a token span containing the index t. The GRPO loss term LGRPO(G) (Equation
2a) can be equivalently expressed as in Equation 6 (and analogously for LPRM(G) of Equation 4).

LGRPO(G) =
1∑

g(i)∈G len(g(i))
·
tmax−1∑
t=0

∑
λ∈Xt

∑
gi∈λ

(Pi,t · ai)−Di,t (6)

We then have the following equalities by Equations 5 and 6:

LGRPO(G) =
1∑

g(i)∈G len(g(i))
·
∑

g(i)∈G

len(g(i))−1∑
t=0

(Pi,t · ai)−Di,t =

1∑
g(i)∈G len(g(i))

·
tmax−1∑
t=0

∑
λ∈Xt

∑
g(i)∈λ

(Pi,t · ai)−Di,t =
1∑

g(i)∈G len(g(i))
·
tmax−1∑
t=0

∑
λ∈Xt

∑
g(i)∈λ

(Pi,t ·Ai,t)−Di,t

=
1∑

g(i)∈G len(g(i))
·
∑

g(i)∈G

len(g(i))−1∑
t=0

(Pi,t ·Ai,t)−Di,t = LPRM(G)

In other words, the standard GRPO objective defined in Equation 2a automatically induces the PRM
and PRM-aware objective defined in Equations 3-4.

3.2 EMPIRICAL ANALYSIS

The theoretical analysis in Section 3.1 shows that the GRPO objective induces a PRM: it remains to
be shown, however, that this induced PRM is non-trivial. We refer to the set B(G) of process sets
as trivial if it contains only singleton sets3—i.e. B(G) = {G} ∪ {{g(i)} | g(i) ∈ G}.

3And, by definition, G itself, with s(G) = e(G) = 0.

5
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Figure 2: Validation reward (exact-match accuracy; left), B(G) root-to-terminal path depth (cen-
ter), and proportions of trajectories spanned by intermediate (non-terminal) process steps (right) for
GRPO runs with group sizes of 36 (top) and 6 (bottom).

If B(G) is trivial, then there are no meaningful process steps within each trajectory, and only the
outcome reward has an effect on learning. On the other hand, if B(G) is not trivial, then Theorem 1
entails that the standard GRPO objective of Equation 2a induces a non-trivial PRM.

To analyze the complexity of real-world, GRPO-derived step-level rewards, we empirically evalu-
ated B(G) structures generated during standard GRPO training: for each group G, we computed its
B(G) tree, and measured the number of intermediate nodes between the root G and each terminal
node {g(i)} (path depth), as a proxy for the complexity of the B(G) structure.

In addition, for each completion g(i) ∈ G, we counted the number of tokens n
(i)
term = e({g(i)}) −

s({g(i)}) contained in the process step corresponding to the terminal node {g(i)}—i.e. the number
of tokens unique to g(i)—and calculated the intermediate proportion pi of g(i): pi = (len(g(i)) −
n
(i)
term)/len(g(i)). Higher values of pi indicate that a greater proportion of the trajectory g(i) belongs

to intermediate process steps and is therefore assigned non-trivial step-level reward.

Experimental Setup. We trained two DeepSeek-R1-Distill-Qwen-1.5B models (DeepSeek-AI,
2025) on the OpenRS (Dang & Ngo, 2025) dataset using the standard GRPO algorithm and objective
of Equation 2. We selected 125 OpenRS examples at random to serve as a validation set.

The first model trained for 1675 steps with a group size of six and a learn rate of 6 × 10−6. The
second was trained with a group size of 36 and a learn rate of 10−6 for 275 steps (due to the larger
group size). Both models were trained with a maximum new token limit of 4096, a batch size of
four, and a temperature of 0.75. Additional training details are located in Appendix B.

Results. Figure 2 shows that both path depth and intermediate proportion increase drastically as
validation reward saturates, for group sizes of six and 36. These results are supported by Yu et al.
(2025), who find that entropy decreases sharply as GRPO training progresses: this indicates that
increasingly rich PRM-inducing structures arise as the model converges on a locally optimal policy.

In addition, found that only twelve of 6,700 B(G) structures were trivial with a group size of six
(∼0.2%). With a group size of 36, zero trivial B(G) structures arose out of the 1,100 generated
groups. Examples of non-trivial B(G) structures from this experiment are given in Appendix C.

6
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In conjunction with the theoretical analysis of Section 3.1, the results of this experiment demonstrate
that GRPO induces a non-trivial PRM under real-world conditions. In Section 4, we show that
this induced PRM carries a serious flaw that is detrimental to RL training, and propose a minor
modification to the GRPO algorithm to mitigate this shortcoming.

4 PROPOSED APPROACH: λ-GRPO

Viewing the GRPO objective in terms of process set partitions Xt (see Equation 6), we note that
the contribution of each trajectory g(i) ∈ G to the loss at index t is identical to that of all other
trajectories in the process set λ(i,t) (where P̂t(λ), D̂t(λ), and Â(λ) are defined as in Equation 5):

1∑
g(i)∈G len(g(i))

·
∑

g(i)∈G

len(g(i))−1∑
t=0

(Pi,t · ai)−Di,t =
1∑

g(i)∈G len(g(i))
·
tmax−1∑
t=0

∑
λ∈Xt

∑
g(i)∈λ

(Pi,t ·Ai,t)−Di,t

=
1∑

g(i)∈G len(g(i))
·
tmax−1∑
t=0

∑
λ∈Xt

|λ| · ((P̂t(λ) · Â(λ))− D̂t(λ))

(7)

The contribution of each process set λ ∈ B(G) to the overall loss, P̂t(λ) ·Â(λ)−D̂t(λ), is scaled by
|λ|: this carries the danger of harming exploration (for Â(λ) < 0) and exploitation (for Â(λ) > 0).
Consider some process set λ with |λ| ≫ 1. If Â(λ) > 0, then the increase in probability assigned to
the process step corresponding to λ by πθ under GRPO is compounded by a factor of |λ|, decreasing
the likelihood of exploring process steps that are dissimilar from λ in subsequent training episodes.

Conversely, if Â(λ) < 0, then the decrease in probability assigned to λ under GRPO is compounded
by a factor of |λ|, decreasing the likelihood of exploiting high-reward trajectories in λ. To illustrate,
consider the group G in Figure 1, assume r1 = r2 = r6 = 0.5, r4 = r5 = 0, r3 = 1, and let
λ = {g(3), g(4), g(5)}. Then Â(λ) = −0.22: despite the fact that g(3) has the highest reward, the
probability of the sub-trajectory g

(3)
:4 is decreased under the GRPO objective, thereby decreasing

the overall likelihood of generating the completion g(3). The term |λ| in Equation 7 then scales this
decrease in probability by a factor of three.

We propose scaling the token-level loss for g(i)t by |λ(i,t)|−1 (λ-GRPO; Equation 8): this has the
effect of canceling out the term |λ| in Equation 7, so that each process set contributes equally to the
loss at index t.

Lλ-GRPO(G) =
1∑

g(i)∈G len(g(i))
·
∑

g(i)∈G

len(g(i))−1∑
t=0

(Pi,t · ai)−Di,t

|λ(i,t)|

=
1∑

g(i)∈G len(g(i))
·
tmax−1∑
t=0

∑
λ∈Xt

(P̂t(λ) · Â(λ))− D̂t(λ)

(8)

5 EXPERIMENTS

To evaluate our proposed approach, we trained DeepSeek-R1-Distill-Qwen-1.5B and Llama-3.2-
1B-Instruct4 with the λ-GRPO (Equation 8) objective on the OpenRS dataset of Section 3.2, and
compared them to standard GRPO (Equation 2a) models trained with an identical setup. All models
were evaluated on an OpenRS validation set and five downstream reasoning benchmarks (see Section
5.1).

4https://huggingface.co/meta-llama/Llama-3.2-1B-Instruct
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Figure 3: Models’ validation accuracy across training steps. Peak accuracy is highlighted by vertical,
dashed lines.

Model β Version AIME24 MATH-500 AMC23 Minerva OB Avg.

Qwen

— Base 0.2000±0.0743 0.8300±0.0168 0.7500±0.0693 0.2978±0.0278 0.5096±0.0193 0.5175

0.0 GRPO 0.3333±0.0875 0.7660±0.0190 0.6250±0.0775 0.2500±0.0263 0.4444±0.0191 0.4837
λ-GRPO (ours) 0.3667±0.0895 0.8460±0.0162 0.7500±0.0693 0.2904±0.0276 0.5348±0.0192 0.5576

0.04 GRPO 0.3000±0.0851 0.8660±0.0152 0.7500±0.0693 0.2610±0.0267 0.5200±0.0192 0.5394
λ-GRPO (ours) 0.4000±0.0910 0.8340±0.0167 0.8000±0.0641 0.2978±0.0278 0.5378±0.0192 0.5739

Llama

— Base 0.0000±0.0000 0.2280±0.0188 0.0750±0.0422 0.0478±0.0130 0.0563±0.0089 0.0814

0.0 GRPO 0.0000±0.0000 0.2300±0.0188 0.0750±0.0422 0.0551±0.0130 0.0607±0.0089 0.0842
λ-GRPO (ours) 0.0000±0.0000 0.2620±0.0197 0.1250±0.0530 0.0515±0.0134 0.0622±0.0092 0.1001

0.04 GRPO 0.0000±0.0000 0.2180±0.0185 0.1750±0.0608 0.0515±0.0134 0.0533±0.0087 0.0996
λ-GRPO (ours) 0.0333±0.0333 0.2560±0.0195 0.0750±0.0422 0.0735±0.0159 0.0489±0.0083 0.0973

Table 1: Exact-match accuracy for the base and GRPO-/λ-GRPO-trained Llama and Qwen models
on downstream reasoning datasets (OB = OlympiadBench). The best results in each column are
indicated in bold, and the best results within each model type (i.e. Llama or Qwen) are underlined.
Confidence intervals are subscripted. For each λ-GRPO-trained model, results are given in green
if it outperforms its GRPO-trained counterpart and the base model; yellow if it outperforms only
its GRPO-trained counterpart; orange if it only improves over the base model; and red if it fails to
outperform either model (see Table 2 in the Appendix for exact differences).

5.1 EXPERIMENTAL SETUP

All models were trained for 1,000 steps with a group size of six, a batch size of four, a maximum of
4,096 new tokens, and a temperature of 0.75. We conducted two sets of trials across the two models
(for a total of four trials): in the first, we set the KL coefficient β = 0.0, and in the second β = 0.04.
The Qwen models were trained with a learn rate of 10−6; the Llama models were trained with a
learn rate of 5× 10−7 for the β = 0.0 trial and 10−7 for β = 0.04 (as training was highly unstable
with higher learn rates for Llama). Additional training details are located in Appendix B.

We evaluated the models on the AIME245, MATH-500 (Hendrycks et al., 2021; Lightman et al.,
2024), AMC236, Minerva (Lewkowycz et al., 2022), and OlympiadBench (He et al., 2024) bench-
marks, using the LightEval framework Habib et al. (2023); Dang & Ngo (2025). All models were
evaluated at the checkpoint corresponding to the step at which they achieved maximum validation
accuracy. As in the experiment in Section 3.2, we withheld 125 examples as a validation set.

5.2 RESULTS AND DISCUSSION

All four λ-GRPO models reach a higher validation accuracy in fewer steps than their GRPO coun-
terparts (see Figure 3): on average, λ-GRPO represents a more than 10% increase over the standard
GRPO validation accuracy—in less than half of the number of training steps.

This increase in validation accuracy corresponds to improved performance on downstream reason-
ing tasks (see Table 1). In total, the λ-GRPO models outperform standard GRPO on 15/20 cells
(excluding average performance) in Table 1, and they improve over the base Llama/Qwen models
on 14/20 cells. Only the Llama λ-GRPO model with β = 0.04 failed to outperform its GRPO
counterpart on average downstream performance—this model still outperformed standard GRPO on
a majority (3/5) of the tasks.

5https://huggingface.co/datasets/AI-MO/aimo-validation-aime
6https://huggingface.co/datasets/AI-MO/aimo-validation-amc
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In addition, these performance gains result in effectively zero training slowdown: as we are merely
detecting B(G) structures that occur during training—rather than generating them (e.g. Kazemnejad
et al., 2025; Hou et al., 2025; Yang et al., 2025a)—the added computational cost from λ-GRPO (vs.
standard GRPO) is negligible.

6 RELATED WORK

Monte Carlo Sampling for Finer-Grained Rewards. As discussed in Section 2.2, the labor-
intensive human annotation required to obtain step-level rewards for PRM training has driven the
development of heuristic methods for PRMs and PRM-like finer-grained reward signals, in particular
those based on Monte Carlo estimation. Kazemnejad et al. (2025) replace the critic model in PPO
with Monte Carlo estimation: multiple completions are sampled for each step, and the value for
that step is derived from their mean outcome reward. On the other hand, Wang et al. (2024) train a
neural PRM, using Monte Carlo estimation in a similar manner to Kazemnejad et al. (2025) in order
to obtain step-level training rewards, and thereby avoid the need for costly human annotation.

Xie et al. (2024) generate step-level preference data for Direct Preference Optimization (DPO;
Rafailov et al., 2023) training via Monte Carlo Tree Search and outcome-level rewards: sequences
of overlapping trajectories are obtained by forking trajectories at defined split points to construct tree
structures similar to the B(G) trees introduced in Section 3.1. The daughter nodes with the highest
and lowest mean reward are then selected as the preferred and dispreferred (respectively) sequences
for step-level DPO. Similarly, Hou et al. (2025) construct B(G)-like trees by splitting generated tra-
jectories at high-entropy tokens to create multiple completions to the same initial trajectory prefix.
Subtrajectory rewards are then derived from the mean reward of the corresponding node’s daughters
in the tree structure. Yang et al. (2025a) employ an analogous approach to generate step-level re-
wards for GRPO training. Unlike standard GRPO, however, the advantages for each node (step) are
computed relative to the rewards of node’s sisters in the tree structure, rather than the entire group.

These methods are orthogonal to our approach: they apply Monte Carlo estimation to explicitly
construct step-level reward signals from outcome-level rewards, while we leverage the implicit step-
level rewards already present in standard GRPO.

PRMs with GRPO. Aside from Yang et al. (2025a), GRPO has been employed with PRMs in
Shao et al. (2024) and Feng et al. (2025). Shao et al. (2024) modify the advantage computation of
GRPO to account for step-level rewards: normalized rewards are computed relative to all step-level
rewards of all trajectories in the group, and the advantage for each step is the sum of the normalized
reward of each subsequent step in its trajectory. Feng et al. (2025) construct a two-level variant of
GRPO, in which standard, trajectory-level GRPO advantage is combined with a step-level GRPO
advantage, and step-level groups are dynamically computed according to the similarity of steps
across trajectories.

Our results in Sections 3 and 5 call into question the necessity of adapting GRPO to step-level
rewards, given the rich step-level reward signal already present in the outcome-level variant of the
algorithm.

Connections between PRMs and Outcome-level Reward. (Rafailov et al., 2024) prove that DPO
can learn any token-level reward function—expressed as the difference in conditional log probability
between the policy and reference models—given an appropriate training dataset. In contrast, we
prove that GRPO with a given outcome reward function r is equivalent to a PRM-sensitive RL
algorithm with a PRM whose process rewards are given by an on-policy Monte Carlo estimate of
the expected reward under r for the process step in question.

7 CONCLUSION

In this paper, we demonstrated both theoretically and empirically that the standard GRPO algorithm
induces a PRM that derives step-level rewards via Monte Carlo estimation. We then showed that this
hidden PRM is faulty, and as a result is potentially detrimental to exploration and exploitation. To
mitigate this flaw, we introduced a process-step-aware scaling factor to GRPO to derive the λ-GRPO
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objective. Models trained with λ-GRPO reach higher validation accuracy faster than with standard
GRPO, and achieve improved performance on downstream reasoning tasks.

Our results indicate that it is possible to leverage the existing PRM structure inherent in the outcome-
based GRPO algorithm, rather than employing costly, explicitly-defined PRMs. The limitations of
this work are discussed in Appendix A.

REPRODUCIBILITY STATEMENT

We provide the complete proof of Theorem 1 in the main body of the paper. All settings and hyper-
parameters for the experiments conducted in this work are given in Sections 3.2/ 5.1 and Appendix
B. We will make all relevant code available upon acceptance.
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Model β Version AIME24 MATH-500 AMC23 Minerva OB Avg.

Qwen

0.0 Base +0.1667 +0.0160 0.0000 -0.0074 +0.0252 +0.0401
GRPO +0.0334 +0.0800 +0.1250 +0.0404 +0.0904 +0.0738

0.04 Base +0.2000 +0.0040 +0.0500 0.0000 +0.0282 +0.0564
GRPO +0.1000 -0.0320 +0.0500 +0.0368 +0.0178 +0.0345

Llama

0.0 Base 0.0000 +0.0340 +0.0500 +0.0037 +0.0059 +0.0187
GRPO 0.0000 +0.0320 +0.0500 -0.0036 +0.0015 +0.0160

0.04 Base +0.0333 +0.0280 0.0000 +0.0257 -0.0074 +0.0159
GRPO +0.0333 +0.0380 -0.1000 +0.0220 -0.0044 -0.0022

Table 2: Difference in accuracy between the λ-GRPO-trained models, and their corresponding base
models and standard-GRPO-trained counterparts. Positive differences (i.e. λ-GRPO outperforms
the comparison model) are highlighted in green; negative differences (i.e. the comparison model
outperforms λ-GRPO) are highlighted in red. For example, the top-most entry in the AIME24
column indicates that the λ-GRPO Qwen model with β = 0.0 outperformed the base DeepSeek-R1-
Distill-Qwen-1.5B by 0.1667 on the AIME24 benchmark.

A LIMITATIONS

Due to computational resource constraints, we were only able to conduct the experiments in Sec-
tions 3.2 and 5 with relatively small models: 1.5 billion (Qwen) and 1 billion (Llama) parameters.
Similarly, we only use one dataset for RL training in both experiments—although OpenRS is a
combination of the s1 (Muennighoff et al., 2025) and DeepScaleR Luo et al. (2025) datasets. Future
work should extend our findings regarding the non-triviality of the GRPO-induced PRM and the
effectiveness of λ-GRPO to larger models and more diverse (training) datasets.

Finally, the objective of this work is to expose the PRM induced by the GRPO algorithm, and to
highlight the deficiencies of that PRM as described in Section 4. To that end, our proposed λ-GRPO
method does not actually remedy the anti-exploitation effect of the GRPO-induced PRM—it merely
lessens its impact. In future work, we intend to investigate more extensive modifications to the
GRPO algorithm, with the goal of entirely solving the problems laid out in Section 4.

B EXPERIMENTAL SETUP

All experiments were conducted on a single NVIDIA H100 GPU. We trained all models with 24
gradient accumulation steps per step and a generation batch size of 6. The models were evaluated
on the validation split every 25 training steps.

We additionally hard-coded the generation procedure to halt after “\boxed{...}” was detected: this
was to prevent the model from generating multiple boxed answers for a single prompt.

C B(G) STRUCTURE EXAMPLES

The following (Figures 4, 5, 6) represent B(G) structures on groups generated during the group size
6 trial of the experiment in Section 3.2. A full trajectory is reconstructed by tracing the unique path
from the root to a terminal node. The root (red) corresponds to the prompt/query q. Terminal nodes
(yellow) denote singleton process steps {g(i)}; each non-terminal node λ (white; including the root)
denotes the process step corresponding to the set of all terminal nodes dominated by λ. For the sake
of presentation, overlong terminal steps are truncated with “...”.
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Find, with proof, all pairs of positive integers  $(n,d)$  with the following property: for
every integer $S$ , there exists a unique non-decreasing sequence of $n$  integers 
$a_1,a_2,...,a_n$ such that  $a_1 + a_2 + ... + a_n = S$ and $a_n-a_1=d.$

Alright, so I

have this problem

here: I need to find all
pairs of positive
integers (n, d) such that
for every integer S,
there exists a unique
non-decreasing
sequence of n integers
a1, a2, ...

to solve: find all pairs of
positive integers (n, d)
such that for every
integer S, there exists a
unique non-decreasing
sequence of n integers
a_1, a_2, ...

where I need to find all pairs
of positive integers (n, d)
such that for every integer S,
there exists a unique non-
decreasing sequence of n
integers a

1, a2, ..., an where the sum
of these integers is S and
the difference between the
last and the first term is d.
Hmm, okay, let me try to
unpack this step by
step.\n\nFirst, let me make
sure I understand ...

_1, a_2, ..., a_n where the sum
of these a_i's is S, and the
difference between the last
term a_n and the first term a_1
is equal to d.\n\nOkay, let me
parse this again. We need
pairs (n, d) where:\n\n1. ...

Okay, so I have this
problem where I
need to find all pairs
of positive integers
(n, d) such that for
every integer S,
there exists a
unique non-
decreasing
sequence of n
integers ...

've been given this interesting
problem to solve. It asks to
find all pairs of positive
integers (n, d) such that for
every integer S, there exists
a unique non-decreasing
sequence of n integers ...

Figure 4: B(G) structure from step 1 (see the beginning of Appendix C for additional details).
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In a bag, there are 5 balls of the same size, including 3 black balls and 2 red balls. If two
balls are drawn at random, the probability of drawing two balls of the same color is ( ).\n\nA:
$\frac{1}{5}$\nB: $\frac{3}{10}$\nC: $\frac{2}{5}$\nD: $\frac{1}{2}$

To determine the probability of drawing two balls
of the same color from a bag containing 3 black
balls and 2 red balls, we can follow these
steps:\n\n1. **Calculate the total number of
balls:**\n   \[\n   3 \text{ (black)} + 2 \text{ (red)} = 5
\text{ balls}\n   \]\n\n2. **Determine the

number of ways to draw 2 balls from
5:**\n   \[\n   \binom{5}{2} = \frac{5!}{2!(5-
2)!} = \frac{5 \times 4}{2 \times 1} = 10\n 
 \]\n\n3. **Calculate the number of ways
to draw 2 black balls:**\n   \[\n 
 \binom{3}{2} = \frac{3!}{2!(3-2)!} =
\frac{3 \times 2}{2 \times 1} = 3\n 
 \]\n\n4. **Calculate the number of ways
to draw 2 red balls:**\n   \[\n   \binom{2}
{2} = \frac{2!}{2!(2-2)!} = 1\n   \]\n\n5.
**Find the total number of ways to draw
2 balls of the same color:**\n   \[\n   3
\text{ (black)} + 1 \text{ (red)} = 4\n 
 \]\n\n6. **Calculate the probability:**\n   \
[\n   \text{Probability} =
\frac{\text{Number of

favorable outcomes}}
{\text{Total number of
outcomes}} = \frac{4}{10} =
\frac{2}{5}\n   \]\n\nThus, the
probability of drawing two balls
of the same color is:\n\n\
[\n\boxed{C}

ways to draw 2 same color}}
{\text{Total number of ways to
draw 2 balls}} = \frac{4}{10} =
\frac{2}{5}\n   \]\n\nThus, the
probability of drawing two balls
of the same color is:\n\n\
[\n\boxed{\frac{2}{5}}

total number of ways to draw 2
balls from 5:**\n   \[\n   \binom{5}
{2} = \frac{5!}{2!(5-2)!} = \frac{5
\times 4}{2 \times 1} = 10\n 
 \]\n\n3. **Calculate the number
of ways to draw 2 black
balls:**\n   \[\n   \binom{3}{2} =
\frac{3!}{2!(3-2)!} = ...

Given a bag with 5 balls of the same
size, including 3 black balls and 2
red balls, we need to find the
probability of drawing two balls of the
same color when two balls are drawn
at random.\n\nFirst, we calculate the
total number of ways to draw

two balls from the bag. This is
given by the combination formula \(
\binom{n}{k} \), where \( n \) is the
total number of balls and \( k \) is
the number of balls to draw. Here, \
( n = 5 \) and \( k = 2 \): ...

2 balls from 5, which
is given by the
combination formula

\( \binom{5}{2} \):\n\n\[\n\binom{5}
{2} = \frac{5!}{2!(5-2)!} = \frac{5
\times 4}{2 \times 1} =
10\n\]\n\nNext, we calculate the
number of ways to draw 2 black
balls from the 3 black balls: ...

\n\[\n\binom{5}{2} = \frac{5!}{2!(5-
2)!} = \frac{5 \times 4}{2 \times 1} =
10\n\]\n\nNext, we calculate the
number of ways to draw 2 black
balls from the 3 available:\n\
[\n\binom{3}{2} = ...

Figure 5: B(G) structure from step 1001 (see the beginning of Appendix C for additional details).
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Let $a$ and $b$ be given positive real numbers, with $a<b.$ If two points
are selected at random from a straight line segment of length $b,$ what is
the probability that the distance between them is at least $a?$

<think>\n</think>\n\nGiven two

positive real numbers \(a\) and \(b\) such that \(a < b\).
We need to find the probability that the distance
between two randomly selected points on a

straight line segment of
length \(b\) is at least \
(a\).\n\nFirst, we note that
the total number of
possible pairs of points is
represented by the
number of ways to
choose 2 points from a
segment of length \(b\) ...

line segment of length \
(b\) is at least \
(a\).\n\nFirst, we note that
the total number of
possible pairs of points is
\(b^2\), since each point
can be anywhere along
the segment of length \
(b\)...

points selected at random from a straight line
segment of length \( b \), we need to find the
probability that the distance between them is
at least \( a \), where \(

a \) and \( b \) are positive
real numbers with \( a < b
\).\n\nFirst, we recognize
that the problem can be
modeled using a uniform
distribution over the
interval \([0, b]\) ...

0 < a < b \).\n\nFirst, we

recognize that the problem can be modeled
using a uniform distribution over the interval \
([0, b]\). Let the positions of the two points be \
( X \) and \( Y \), where \( X \) and \( Y \) are
independent random variables uniformly
distributed over \([0, b]\).\n\nThe distance
between the two points is \( |X - Y| \). We need
to find the probability that \( |X - Y| \geq a
\).\n\nTo solve this, we consider the sample
space

note that the total number of
ways to select two points
from a segment of length \( b
\) is represented by the
number of possible positions
for these points. Since the
points are selected
continuously, we can model
this using a unit square
where each axis ...

\([0, b] \times [0, b]\), where each point \((X,
Y)\) represents a possible outcome. The area
of this sample space is \( b^2 \).\n\nWe are
interested in the region where \( |X - Y| \geq a
\). This can be split into two regions:\n1. ...

, which is the set of all possible pairs \((X, Y)\).
This can be represented as a square in the \
(XY\)-plane with side length \( b \). The area of
this square is \( b^2 \).\n\nWe are interested in
the region where \( |X - Y| \geq a \) ...

Figure 6: B(G) structure from step 1673 (see the beginning of Appendix C for additional details).
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