
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

GRPO IS SECRETLY A PROCESS REWARD MODEL

Anonymous authors
Paper under double-blind review

ABSTRACT

We prove theoretically that the GRPO RL algorithm induces a non-trivial process
reward model (PRM), under certain assumptions regarding within-group overlap
of token sequences across completions. We then show empirically that these
assumptions are met under real-world conditions: GRPO does in fact induce a
non-trivial PRM. Leveraging the framework of GRPO-as-a-PRM, we identify a
flaw in the GRPO objective: non-uniformly distributed process steps hinder both
exploration and exploitation (under different conditions). We propose a simple
modification to the algorithm to mitigate this defect (λ-GRPO), and show that
LLMs trained with λ-GRPO achieve higher validation accuracy and performance
on downstream reasoning tasks—and reach peak performance more rapidly—than
LLMs trained with standard GRPO. Our results call into question the advantage of
costly, explicitly-defined PRMs for GRPO: we show that it is possible to instead
leverage the hidden, built-in PRM structure within the vanilla GRPO algorithm to
boost model performance with a negligible impact on training time and cost.

1 INTRODUCTION

Process reward models (PRMs)—models that assign reward to intermediate steps (see Section
2.2)—allow for finer-grained reward assignment than outcome-level signals, thereby yielding im-
proved multi-step reasoning performance (Lightman et al., 2024). PRMs are therefore particularly
applicable to RL training for step-by-step processes such as mathematical reasoning.

However, training neural PRMs requires costly, step-level human annotation (Zhang et al., 2025),
and such models are particularly susceptible to reward hacking (Cui et al., 2025). These shortcom-
ings have resulted in the limited adoption of learned PRMs for RL training Setlur et al. (2025),
leading to the development of Monte-Carlo-based and other heuristic, non-neural PRMs (e.g. Wang
et al., 2024; Kazemnejad et al., 2025; Hou et al., 2025).

PRMs are typically employed with RL algorithms such as Proximal Policy Optimization (PPO;
Schulman et al., 2017) that employ a critic model and/or generalized advantage estimation (GAE).
Although Group Relative Policy Optimization (GRPO; Shao et al., 2024) greatly simplifies and
reduces the memory consumption of RL training, leading to its adoption for a wide range of appli-
cations—e.g. tool use (Qian et al., 2025; Sullivan et al., 2025), RLHF (Yang et al., 2025b), and, in
particular, mathematical reasoning (Shao et al., 2024; DeepSeek-AI, 2025)—it does so by eliminat-
ing the critic model and GAE of PPO (see Section 2.1). GRPO has therefore not been widely used
with PRMs: to the best of our knowledge, Shao et al. (2024), Yang et al. (2025a), and Feng et al.
(2025) are the only instances in which GRPO is employed with step-level rewards—and these ap-
proaches necessitate the modification of the algorithm to accommodate finer-grained reward signals.

In this paper, we show that—under certain mild assumptions—GRPO induces a Monte-Carlo-based
PRM (Section 3). Specifically, we prove theoretically that GRPO assigns rewards (and advantages)
derived from outcome-level rewards and Monte-Carlo-sampled completions to sub-trajectories,
whenever subsets of trajectories within each group share identical prefixes. We then show empiri-
cally that this identical-prefix condition is almost always met under real-world conditions, yielding
rich step-level process reward structures. These two findings definitively demonstrate that the GRPO
objective covertly assigns and optimizes for complex, structured step-level rewards and advantages.

An investigation of the properties of GRPO’s hidden PRM reveals a defect in the objective func-
tion that hinders both exploration and exploitation (under different conditions) during RL training
(Section 4): namely, a vulnerability to non-uniformly-distributed process steps within a group. To

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

mitigate this shortcoming, we propose including a PRM-aware normalization factor into the GRPO
loss function (λ-GRPO).

We show that λ-GRPO results in higher validation accuracy and a ∼2x training speedup over stan-
dard GRPO (Section 5). On downstream reasoning benchmarks, λ-GRPO consistently improves
over standard GRPO, demonstrating the superiority of our method.

Our findings call into question the utility of dedicated PRMs for GRPO, and suggest that future
work may benefit instead from exploiting the step-level reward signal already available to the GRPO
algorithm.

2 BACKGROUND

2.1 GRPO

GRPO is a variant of PPO that discards the critic model and GAE of the latter. Instead, for each query
q in the training set, GRPO nondeterministically samples a group G of k trajectories (completions
to q) and computes the advantage ai for the completion g(i) ∈ G relative to the mean (outcome)
reward of G, as in Equation 1 (where ri is the reward for g(i)).

ai =
ri − rmean(G)

rstd(G)
(1)

In our theoretical analysis in Section 3, we make two key assumptions: first, we assume the use
of the DAPO token-level policy gradient objective (Yu et al., 2025), rather than sample-level loss.
Although it differs from the original GRPO formulation laid out in Shao et al. (2024), Yu et al.
(2025) show that this objective leads to more stable training, and it is the standard GRPO loss
function employed in commonly-used RL packages (e.g. the TRL GRPO trainer1).

Second, we assume that the number of update iterations per batch (µ) is set to µ = 1. Under this
assumption, the ratio Pi,t is fixed at 1.0 (see Equation 2b), allowing us to ignore the clipping factor
of the GRPO loss function in our theoretical analysis.

Under these two assumptions, the per-group GRPO loss LGRPO(G) reduces to that in Equation 2.

LGRPO(G) =
1∑

g(i)∈G len(g(i))

∑
g(i)∈G

len(g(i))−1∑
t=0

(Pi,t · ai)−Di,t (2a)

Pi,t =
πθ(g

(i)
t | q, g(i):t)

πθold(g
(i)
t | q, g(i):t)

(2b)

Di,t = β ·

(
πθref(g

(i)
t | q, g(i):t)

πθ(g
(i)
t | q, g(i):t)

− ln
πθref(g

(i)
t | q, g(i):t)

πθ(g
(i)
t | q, g(i):t)

− 1

)
(2c)

2.2 PROCESS REWARD MODELS (PRMS)

Given an alphabet Σ (i.e. set of tokens), we formally define a PRM as a function fϕ : Σ
∗ →

(Σ∗ × R)∗ parameterized by ϕ that maps a trajectory g ∈ Σ∗ to the sequence fϕ(g) =

((g:i1 , r
(g)
0), (gi1:i2 , r

(g)
1), . . . , (gin−1:, r

(g)
n−1)) of pairs of process steps (sub-trajectories) gik:ik+1

and
step-level rewards r(g)k .

1https://huggingface.co/docs/trl/main/en/grpo trainer

2

https://huggingface.co/docs/trl/main/en/grpo_trainer

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

G = {g (1), g (2), g (3), g (4), g (5), g (6)
 }

{g (1), g (2)
 } {g (3), g (4), g (5)

 }

{g (1)
 } {g (2)

 } {g (3)
 } {g (4), g (5)

 }

{g (4)
 } {g (5)

 }

g (1) =

g (2) =

g (3) =

g (4) =

g (5) =

g (6) =

0 1 2 3 4 5

0 1 2 3 4 5 6 87

0 1 2 3

4 5

1 2 3 6 74 5

1 2 3

4 5 6

0 1 2 3 4

8

6 7

0

0

{g (6)
 }

Figure 1: Toy example of a group G = {g(1), . . . , g(6)} (left) and its corresponding B(G) tree
(right). Tokens (boxes) are numbered for readability—subscripted numbers within boxes only indi-
cate position. Each process set (node in the B(G) tree) is a set of trajectories that share a common
prefix, and corresponds to a process step (subtrajectory) spanning those shared tokens: in this figure,
colored nodes in B(G) correspond to those subsequences in G that span tokens/boxes of the same
color2. GRPO implicitly assigns a step-level reward and advantage to the tokens of each process
step, which are computed as functions of the mean outcome-level reward of each trajectory in the
corresponding process set.

While PRMs are typically contrasted with outcome reward models (ORMs)—which assign a single
reward to the entire trajectory—under the above definition, an ORM f ′

ϕ′ is simply a trivial PRM:

i.e. f ′
ϕ′(g) = ((g, r

(g)
0)).

Both the division of the trajectory g into steps and the assignment of rewards to those steps are depen-
dent upon the PRM in question. When trajectories are clearly delineated into individual steps—e.g.
via ReACT-style prompting (Yao et al., 2023) or instructing the model to divide its reasoning into
demarcated steps—the PRM can simply be directed to assign a reward to each pre-defined step
(e.g. Li & Li, 2025). In other cases, trajectories are heuristically split into steps—for example, at
high-entropy tokens (e.g. Hou et al., 2025).

Although the assignment of step-level reward can be performed by a model with learned parameters
ϕ (e.g. Uesato et al., 2022), Kazemnejad et al. (2025) and Hou et al. (2025) combine Monte Carlo
estimation with outcome-level rewards to yield heuristic PRMs that do not require the labor-intensive
annotation of—and are less susceptible to reward-hacking than—their learned counterparts. In cases
such as these in which the PRM fϕ is not learned, we simply consider ϕ to be fixed/trivial.

3 GRPO’S HIDDEN PRM

In Section 3.1, we prove that GRPO theoretically induces a PRM (given the assumptions of Section
2.1) as defined in Section 2.2. However, this PRM is only non-trivial—i.e. not equivalent to an
ORM—if subsets of trajectories within each group share identical initial sub-trajectories.

In Section 3.2, we empirically demonstrate that such rich, overlapping prefix structures arise very
frequently under real-world conditions: this shows that GRPO is “secretly” a non-trivial PRM.

3.1 THEORETICAL ANALYSIS

Let B(G) = {λ ⊆ G | ∃n ≥ 0∀g(i), g(k) ∈ λ : g
(i)
:n = g

(k)
:n } be the set of all process sets: sets

λ ⊆ G of completions such that all g(i) ∈ λ are identical up to the nth token, for some n ≥ 0 (see
Figure 1). Note that there is a natural tree structure on B(G), which is induced by the ⊇ relation.

2Same-colored boxes in G indicate identical sequences of tokens across trajectories only: for example,
g
(3)
:4 = g

(4)
:4 and g

(4)
4:6 = g

(5)
4:6 , but it is not necessarily the case that e.g. g(3)0 = g

(3)
1 .

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Each λ ∈ B(G) defines a process step within each g(i) ∈ λ, spanning the subsequence g
(i)
s(λ):e(λ)

from the s(λ)th to the e(λ)th tokens of g(i). The endpoint e(λ) is defined as the largest n such
that g(i):n = g

(k)
:n for all g(i), g(k) ∈ λ, and s(λ) is defined as the endpoint of the immediate parent

PaB(G)(λ) of λ in the tree structure induced on B(G).

e(λ) = max{n ≥ 0 | ∀g(i), g(k) ∈ λ : g(i):n = g(k):n }

s(λ) =

{
0 if λ = root(B(G))

e(PaB(G)(λ)) otherwise

For example, s({g(4), g(5)}) = e({g(3), g(4), g(5)}) = 4 in Figure 1, and e({g(4), g(5)}) = 6: the
process step corresponding to {g(4), g(5)} spans g(4)4:6 and g

(5)
4:6 .

For each g(i) ∈ G and each 0 ≤ t < len(g(i)), let λ(i,t) ∈ B(G) denote the unique process set such
that g(i) ∈ λ(i,t) and s(λ(i,t)) ≤ t < e(λ(i,t)). In other words, λ(i,t) is the process step to which
the token g

(i)
t belongs. In Figure 1, λ(i,t) corresponds to the set whose color matches that of g(i)t :

λ(1,0) = {g(1), g(2)}, λ(1,3) = {g(1)}, λ(5,5) = {g(4), g(5)}, etc.

Now, for each process step defined by some λ ∈ B(G), we define the step-level reward R̂(λ) via
Monte Carlo estimation (Equation 3): R̂(λ) is the mean outcome-level reward of each trajectory in
λ. In other words, R̂(λ) is the mean reward of each leaf node dominated by λ in the tree structure
induced on B(G)—i.e. of each sampled completion to the process step defined by λ.

R̂(λ) =

∑
g(i)∈λ ri

|λ|
(3)

For each trajectory g(i) ∈ G and each 0 ≤ t < len(g(i)) define the reward Ri,t for the token g
(i)
t as

the reward of the process step to which g
(i)
t belongs: Ri,t = R̂(λ(i,t)). For example, in Figure 1, the

step-level reward for the sub-trajectories g
(3)
:4 , g(4):4 , g(5):4 is the mean of the outcome-level rewards

for g(3), g(4), and g(5): R3,0 = · · · = R5,3 = mean({r3, r4, r5}).

By the definition given in Section 2.2, Ri,t and B(G) clearly define a PRM: each g(i) ∈ G is mapped
to the sequence (g

(i)
:s(λ1)

, Ri,0), (g
(i)
s(λ1):s(λ2)

, Ri,s(λ1)), . . . , (g
(i)
s(λn):

, Ri,s(λn)), where (λ0 = G) →
· · · → (λn = {g(i)}) is the unique path in the tree structure induced on B(G) from the root G to the
node {g(i)}.

Now, define the step-level advantage Ai,t for the token g
(i)
t in an analogous manner to the original

GRPO definition in Equation 1—i.e. as the normalized difference between the step-level reward Ri,t

for g(i)t and the mean reward of G: Ai,t = (Ri,t − rmean(G))/rstd(G).

Replacing the term ai with Ai,t in Equation 2a yields a PRM-aware RL objective (Equation 4).

LPRM(G) =
1∑

g(i)∈G len(g(i))

∑
g(i)∈G

len(g(i))−1∑
t=0

(Pi,t · Ai,t)−Di,t (4)

We now show that the standard GRPO objective defined in Equation 2a with outcome-level rewards
(LGRPO) is equivalent to the PRM defined in Equations 3-4 (LPRM).

Theorem 1. For any query q, policy πθ, and group G ∼ πθ(– | q) with outcome-level rewards
{ri}g(i)∈G: LGRPO(G) = LPRM(G).

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Proof. Let λ be any process set in B(G), and let t be any integer such that s(λ) ≤ t < e(λ). We
first prove that the sum of the PRM loss terms Pi,t · Ai,t −Di,t for each trajectory g(i) ∈ λ at the
token t is equivalent to the sum of the standard GRPO loss terms Pi,t · ai −Di,t (Equation 5).

Recall that for any g(i), g(k) ∈ λ, g(i):t+1 = g
(k)
:t+1 by definition: therefore, Pi,t = Pk,t and Di,t =

Dk,t (Equations 2b-2c). Again by definition, g(i), g(k) ∈ λ implies that Ri,t = Rk,t = R̂(λ)

(Equation 3), and so Ai,t = Ak,t. As such, we may define P̂t(λ) = Pk,t, D̂t(λ) = Dk,t, and
Â(λ) = Ak,t in Equation 5, choosing any arbitrary g(k) ∈ λ.

∑
g(i)∈λ

(Pi,t ·Ai,t)−Di,t = |λ| · ((P̂t(λ) · Â(λ))− D̂t(λ))

= |λ| ·

((
P̂t(λ) ·

R̂(λ)− rmean(G)

rstd(G)

)
− D̂t(λ)

)
= |λ| ·

((
P̂t(λ) ·

∑
g(i)∈λ

ri
|λ| − rmean(G)

rstd(G)

)
− D̂t(λ)

)

=

(
P̂t(λ)

|λ|(
∑

g(i)∈λ
ri
|λ| − rmean(G))

rstd(G)

)
− |λ|D̂t(λ) =

(
P̂t(λ)

∑
g(i)∈λ ri −

∑
g(i)∈λ rmean(G)

rstd(G)

)
− |λ|D̂t(λ)

=

 ∑
g(i)∈λ

Pi,t
ri − rmean(G)

rstd(G)

−
∑

g(i)∈λ

Di,t =
∑

g(i)∈λ

(Pi,t · ai)−Di,t

(5)

Now, letting tmax = maxg(i)∈G len(g(i)), for each 0 ≤ t < tmax we can define a partition Xt ⊆ B(G)

of {g(i) ∈ G | len(g(i)) ≤ t} such that Xt = {λ ∈ B(G) | s(λ) ≤ t < e(λ)} is the set of all process
sets corresponding to a token span containing the index t. The GRPO loss term LGRPO(G) (Equation
2a) can be equivalently expressed as in Equation 6 (and analogously for LPRM(G) of Equation 4).

LGRPO(G) =
1∑

g(i)∈G len(g(i))
·
tmax−1∑
t=0

∑
λ∈Xt

∑
gi∈λ

(Pi,t · ai)−Di,t (6)

We then have the following equalities by Equations 5 and 6:

LGRPO(G) =
1∑

g(i)∈G len(g(i))
·
∑

g(i)∈G

len(g(i))−1∑
t=0

(Pi,t · ai)−Di,t =

1∑
g(i)∈G len(g(i))

·
tmax−1∑
t=0

∑
λ∈Xt

∑
g(i)∈λ

(Pi,t · ai)−Di,t =
1∑

g(i)∈G len(g(i))
·
tmax−1∑
t=0

∑
λ∈Xt

∑
g(i)∈λ

(Pi,t ·Ai,t)−Di,t

=
1∑

g(i)∈G len(g(i))
·
∑

g(i)∈G

len(g(i))−1∑
t=0

(Pi,t ·Ai,t)−Di,t = LPRM(G)

In other words, the standard GRPO objective defined in Equation 2a automatically induces the PRM
and PRM-aware objective defined in Equations 3-4.

3.2 EMPIRICAL ANALYSIS

The theoretical analysis in Section 3.1 shows that the GRPO objective induces a PRM: it remains to
be shown, however, that this induced PRM is non-trivial. We refer to the set B(G) of process sets
as trivial if it contains only singleton sets3—i.e. B(G) = {G} ∪ {{g(i)} | g(i) ∈ G}.

3And, by definition, G itself, with s(G) = e(G) = 0.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Figure 2: Validation reward (exact-match accuracy; left), B(G) root-to-terminal path depth (cen-
ter), and proportions of trajectories spanned by intermediate (non-terminal) process steps (right) for
GRPO runs with group sizes of 36 (top) and 6 (bottom).

If B(G) is trivial, then there are no meaningful process steps within each trajectory, and only the
outcome reward has an effect on learning. On the other hand, if B(G) is not trivial, then Theorem 1
entails that the standard GRPO objective of Equation 2a induces a non-trivial PRM.

To analyze the complexity of real-world, GRPO-derived step-level rewards, we empirically evalu-
ated B(G) structures generated during standard GRPO training: for each group G, we computed its
B(G) tree, and measured the number of intermediate nodes between the root G and each terminal
node {g(i)} (path depth), as a proxy for the complexity of the B(G) structure.

In addition, for each completion g(i) ∈ G, we counted the number of tokens n
(i)
term = e({g(i)}) −

s({g(i)}) contained in the process step corresponding to the terminal node {g(i)}—i.e. the number
of tokens unique to g(i)—and calculated the intermediate proportion pi of g(i): pi = (len(g(i)) −
n
(i)
term)/len(g(i)). Higher values of pi indicate that a greater proportion of the trajectory g(i) belongs

to intermediate process steps and is therefore assigned non-trivial step-level reward.

Experimental Setup. We trained two DeepSeek-R1-Distill-Qwen-1.5B models (DeepSeek-AI,
2025) on the OpenRS (Dang & Ngo, 2025) dataset using the standard GRPO algorithm and objective
of Equation 2. We selected 125 OpenRS examples at random to serve as a validation set.

The first model trained for 1675 steps with a group size of six and a learn rate of 6 × 10−6. The
second was trained with a group size of 36 and a learn rate of 10−6 for 275 steps (due to the larger
group size). Both models were trained with a maximum new token limit of 4096, a batch size of
four, and a temperature of 0.75. Additional training details are located in Appendix B.

Results. Figure 2 shows that both path depth and intermediate proportion increase drastically as
validation reward saturates, for group sizes of six and 36. These results are supported by Yu et al.
(2025), who find that entropy decreases sharply as GRPO training progresses: this indicates that
increasingly rich PRM-inducing structures arise as the model converges on a locally optimal policy.

In addition, found that only twelve of 6,700 B(G) structures were trivial with a group size of six
(∼0.2%). With a group size of 36, zero trivial B(G) structures arose out of the 1,100 generated
groups. Examples of non-trivial B(G) structures from this experiment are given in Appendix C.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

In conjunction with the theoretical analysis of Section 3.1, the results of this experiment demonstrate
that GRPO induces a non-trivial PRM under real-world conditions. In Section 4, we show that
this induced PRM carries a serious flaw that is detrimental to RL training, and propose a minor
modification to the GRPO algorithm to mitigate this shortcoming.

4 PROPOSED APPROACH: λ-GRPO

Viewing the GRPO objective in terms of process set partitions Xt (see Equation 6), we note that
the contribution of each trajectory g(i) ∈ G to the loss at index t is identical to that of all other
trajectories in the process set λ(i,t) (where P̂t(λ), D̂t(λ), and Â(λ) are defined as in Equation 5):

1∑
g(i)∈G len(g(i))

·
∑

g(i)∈G

len(g(i))−1∑
t=0

(Pi,t · ai)−Di,t =
1∑

g(i)∈G len(g(i))
·
tmax−1∑
t=0

∑
λ∈Xt

∑
g(i)∈λ

(Pi,t ·Ai,t)−Di,t

=
1∑

g(i)∈G len(g(i))
·
tmax−1∑
t=0

∑
λ∈Xt

|λ| · ((P̂t(λ) · Â(λ))− D̂t(λ))

(7)

The contribution of each process set λ ∈ B(G) to the overall loss, P̂t(λ) ·Â(λ)−D̂t(λ), is scaled by
|λ|: this carries the danger of harming exploration (for Â(λ) < 0) and exploitation (for Â(λ) > 0).
Consider some process set λ with |λ| ≫ 1. If Â(λ) > 0, then the increase in probability assigned to
the process step corresponding to λ by πθ under GRPO is compounded by a factor of |λ|, decreasing
the likelihood of exploring process steps that are dissimilar from λ in subsequent training episodes.

Conversely, if Â(λ) < 0, then the decrease in probability assigned to λ under GRPO is compounded
by a factor of |λ|, decreasing the likelihood of exploiting high-reward trajectories in λ. To illustrate,
consider the group G in Figure 1, assume r1 = r2 = r6 = 0.5, r4 = r5 = 0, r3 = 1, and let
λ = {g(3), g(4), g(5)}. Then Â(λ) = −0.22: despite the fact that g(3) has the highest reward, the
probability of the sub-trajectory g

(3)
:4 is decreased under the GRPO objective, thereby decreasing

the overall likelihood of generating the completion g(3). The term |λ| in Equation 7 then scales this
decrease in probability by a factor of three.

We propose scaling the token-level loss for g(i)t by |λ(i,t)|−1 (λ-GRPO; Equation 8): this has the
effect of canceling out the term |λ| in Equation 7, so that each process set contributes equally to the
loss at index t.

Lλ-GRPO(G) =
1∑

g(i)∈G len(g(i))
·
∑

g(i)∈G

len(g(i))−1∑
t=0

(Pi,t · ai)−Di,t

|λ(i,t)|

=
1∑

g(i)∈G len(g(i))
·
tmax−1∑
t=0

∑
λ∈Xt

(P̂t(λ) · Â(λ))− D̂t(λ)

(8)

5 EXPERIMENTS

To evaluate our proposed approach, we trained DeepSeek-R1-Distill-Qwen-1.5B and Llama-3.2-
1B-Instruct4 with the λ-GRPO (Equation 8) objective on the OpenRS dataset of Section 3.2, and
compared them to standard GRPO (Equation 2a) models trained with an identical setup. All models
were evaluated on an OpenRS validation set and five downstream reasoning benchmarks (see Section
5.1).

4https://huggingface.co/meta-llama/Llama-3.2-1B-Instruct

7

https://huggingface.co/meta-llama/Llama-3.2-1B-Instruct

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Figure 3: Models’ validation accuracy across training steps. Peak accuracy is highlighted by vertical,
dashed lines.

Model β Version AIME24 MATH-500 AMC23 Minerva OB Avg.

Qwen

— Base 0.2000±0.0743 0.8300±0.0168 0.7500±0.0693 0.2978±0.0278 0.5096±0.0193 0.5175

0.0 GRPO 0.3333±0.0875 0.7660±0.0190 0.6250±0.0775 0.2500±0.0263 0.4444±0.0191 0.4837
λ-GRPO (ours) 0.3667±0.0895 0.8460±0.0162 0.7500±0.0693 0.2904±0.0276 0.5348±0.0192 0.5576

0.04 GRPO 0.3000±0.0851 0.8660±0.0152 0.7500±0.0693 0.2610±0.0267 0.5200±0.0192 0.5394
λ-GRPO (ours) 0.4000±0.0910 0.8340±0.0167 0.8000±0.0641 0.2978±0.0278 0.5378±0.0192 0.5739

Llama

— Base 0.0000±0.0000 0.2280±0.0188 0.0750±0.0422 0.0478±0.0130 0.0563±0.0089 0.0814

0.0 GRPO 0.0000±0.0000 0.2300±0.0188 0.0750±0.0422 0.0551±0.0130 0.0607±0.0089 0.0842
λ-GRPO (ours) 0.0000±0.0000 0.2620±0.0197 0.1250±0.0530 0.0515±0.0134 0.0622±0.0092 0.1001

0.04 GRPO 0.0000±0.0000 0.2180±0.0185 0.1750±0.0608 0.0515±0.0134 0.0533±0.0087 0.0996
λ-GRPO (ours) 0.0333±0.0333 0.2560±0.0195 0.0750±0.0422 0.0735±0.0159 0.0489±0.0083 0.0973

Table 1: Exact-match accuracy for the base and GRPO-/λ-GRPO-trained Llama and Qwen models
on downstream reasoning datasets (OB = OlympiadBench). The best results in each column are
indicated in bold, and the best results within each model type (i.e. Llama or Qwen) are underlined.
Confidence intervals are subscripted. For each λ-GRPO-trained model, results are given in green
if it outperforms its GRPO-trained counterpart and the base model; yellow if it outperforms only
its GRPO-trained counterpart; orange if it only improves over the base model; and red if it fails to
outperform either model (see Table 2 in the Appendix for exact differences).

5.1 EXPERIMENTAL SETUP

All models were trained for 1,000 steps with a group size of six, a batch size of four, a maximum of
4,096 new tokens, and a temperature of 0.75. We conducted two sets of trials across the two models
(for a total of four trials): in the first, we set the KL coefficient β = 0.0, and in the second β = 0.04.
The Qwen models were trained with a learn rate of 10−6; the Llama models were trained with a
learn rate of 5× 10−7 for the β = 0.0 trial and 10−7 for β = 0.04 (as training was highly unstable
with higher learn rates for Llama). Additional training details are located in Appendix B.

We evaluated the models on the AIME245, MATH-500 (Hendrycks et al., 2021; Lightman et al.,
2024), AMC236, Minerva (Lewkowycz et al., 2022), and OlympiadBench (He et al., 2024) bench-
marks, using the LightEval framework Habib et al. (2023); Dang & Ngo (2025). All models were
evaluated at the checkpoint corresponding to the step at which they achieved maximum validation
accuracy. As in the experiment in Section 3.2, we withheld 125 examples as a validation set.

5.2 RESULTS AND DISCUSSION

All four λ-GRPO models reach a higher validation accuracy in fewer steps than their GRPO coun-
terparts (see Figure 3): on average, λ-GRPO represents a more than 10% increase over the standard
GRPO validation accuracy—in less than half of the number of training steps.

This increase in validation accuracy corresponds to improved performance on downstream reason-
ing tasks (see Table 1). In total, the λ-GRPO models outperform standard GRPO on 15/20 cells
(excluding average performance) in Table 1, and they improve over the base Llama/Qwen models
on 14/20 cells. Only the Llama λ-GRPO model with β = 0.04 failed to outperform its GRPO
counterpart on average downstream performance—this model still outperformed standard GRPO on
a majority (3/5) of the tasks.

5https://huggingface.co/datasets/AI-MO/aimo-validation-aime
6https://huggingface.co/datasets/AI-MO/aimo-validation-amc

8

https://huggingface.co/datasets/AI-MO/aimo-validation-aime
https://huggingface.co/datasets/AI-MO/aimo-validation-amc

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

In addition, these performance gains result in effectively zero training slowdown: as we are merely
detecting B(G) structures that occur during training—rather than generating them (e.g. Kazemnejad
et al., 2025; Hou et al., 2025; Yang et al., 2025a)—the added computational cost from λ-GRPO (vs.
standard GRPO) is negligible.

6 RELATED WORK

Monte Carlo Sampling for Finer-Grained Rewards. As discussed in Section 2.2, the labor-
intensive human annotation required to obtain step-level rewards for PRM training has driven the
development of heuristic methods for PRMs and PRM-like finer-grained reward signals, in particular
those based on Monte Carlo estimation. Kazemnejad et al. (2025) replace the critic model in PPO
with Monte Carlo estimation: multiple completions are sampled for each step, and the value for
that step is derived from their mean outcome reward. On the other hand, Wang et al. (2024) train a
neural PRM, using Monte Carlo estimation in a similar manner to Kazemnejad et al. (2025) in order
to obtain step-level training rewards, and thereby avoid the need for costly human annotation.

Xie et al. (2024) generate step-level preference data for Direct Preference Optimization (DPO;
Rafailov et al., 2023) training via Monte Carlo Tree Search and outcome-level rewards: sequences
of overlapping trajectories are obtained by forking trajectories at defined split points to construct tree
structures similar to the B(G) trees introduced in Section 3.1. The daughter nodes with the highest
and lowest mean reward are then selected as the preferred and dispreferred (respectively) sequences
for step-level DPO. Similarly, Hou et al. (2025) construct B(G)-like trees by splitting generated tra-
jectories at high-entropy tokens to create multiple completions to the same initial trajectory prefix.
Subtrajectory rewards are then derived from the mean reward of the corresponding node’s daughters
in the tree structure. Yang et al. (2025a) employ an analogous approach to generate step-level re-
wards for GRPO training. Unlike standard GRPO, however, the advantages for each node (step) are
computed relative to the rewards of node’s sisters in the tree structure, rather than the entire group.

These methods are orthogonal to our approach: they apply Monte Carlo estimation to explicitly
construct step-level reward signals from outcome-level rewards, while we leverage the implicit step-
level rewards already present in standard GRPO.

PRMs with GRPO. Aside from Yang et al. (2025a), GRPO has been employed with PRMs in
Shao et al. (2024) and Feng et al. (2025). Shao et al. (2024) modify the advantage computation of
GRPO to account for step-level rewards: normalized rewards are computed relative to all step-level
rewards of all trajectories in the group, and the advantage for each step is the sum of the normalized
reward of each subsequent step in its trajectory. Feng et al. (2025) construct a two-level variant of
GRPO, in which standard, trajectory-level GRPO advantage is combined with a step-level GRPO
advantage, and step-level groups are dynamically computed according to the similarity of steps
across trajectories.

Our results in Sections 3 and 5 call into question the necessity of adapting GRPO to step-level
rewards, given the rich step-level reward signal already present in the outcome-level variant of the
algorithm.

Connections between PRMs and Outcome-level Reward. (Rafailov et al., 2024) prove that DPO
can learn any token-level reward function—expressed as the difference in conditional log probability
between the policy and reference models—given an appropriate training dataset. In contrast, we
prove that GRPO with a given outcome reward function r is equivalent to a PRM-sensitive RL
algorithm with a PRM whose process rewards are given by an on-policy Monte Carlo estimate of
the expected reward under r for the process step in question.

7 CONCLUSION

In this paper, we demonstrated both theoretically and empirically that the standard GRPO algorithm
induces a PRM that derives step-level rewards via Monte Carlo estimation. We then showed that this
hidden PRM is faulty, and as a result is potentially detrimental to exploration and exploitation. To
mitigate this flaw, we introduced a process-step-aware scaling factor to GRPO to derive the λ-GRPO

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

objective. Models trained with λ-GRPO reach higher validation accuracy faster than with standard
GRPO, and achieve improved performance on downstream reasoning tasks.

Our results indicate that it is possible to leverage the existing PRM structure inherent in the outcome-
based GRPO algorithm, rather than employing costly, explicitly-defined PRMs. The limitations of
this work are discussed in Appendix A.

REPRODUCIBILITY STATEMENT

We provide the complete proof of Theorem 1 in the main body of the paper. All settings and hyper-
parameters for the experiments conducted in this work are given in Sections 3.2/ 5.1 and Appendix
B. We will make all relevant code available upon acceptance.

REFERENCES

Ganqu Cui, Lifan Yuan, Zefan Wang, Hanbin Wang, Wendi Li, Bingxiang He, Yuchen Fan, Tianyu
Yu, Qixin Xu, Weize Chen, Jiarui Yuan, Huayu Chen, Kaiyan Zhang, Xingtai Lv, Shuo Wang,
Yuan Yao, Xu Han, Hao Peng, Yu Cheng, Zhiyuan Liu, Maosong Sun, Bowen Zhou, and Ning
Ding. Process reinforcement through implicit rewards. arXiv preprint arXiv:2502.01456, 2025.

Quy-Anh Dang and Chris Ngo. Reinforcement learning for reasoning in small llms: What works
and what doesn’t. arXiv preprint arXiv:2503.16219, 2025.

DeepSeek-AI. Deepseek-r1: Incentivizing reasoning capability in llms via reinforcement learning.
arXiv preprint arXiv:2501.12948, 2025.

Lang Feng, Zhenghai Xue, Tingcong Liu, and Bo An. Group-in-group policy optimization for llm
agent training. arXiv preprint arXiv:2505.10978, 2025.

Nathan Habib, Clémentine Fourrier, Hynek Kydlı́ček, Thomas Wolf, and Lewis Tunstall. Lighte-
val: A lightweight framework for llm evaluation, 2023. URL https://github.com/
huggingface/lighteval.

Chaoqun He, Renjie Luo, Yuzhuo Bai, Shengding Hu, Zhen Thai, Junhao Shen, Jinyi Hu, Xu Han,
Yujie Huang, Yuxiang Zhang, Jie Liu, Lei Qi, Zhiyuan Liu, and Maosong Sun. OlympiadBench:
A challenging benchmark for promoting AGI with olympiad-level bilingual multimodal scientific
problems. In Proceedings of the 62nd Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pp. 3828–3850, 2024.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn
Song, and Jacob Steinhardt. Measuring mathematical problem solving with the MATH dataset.
In Thirty-fifth Conference on Neural Information Processing Systems Datasets and Benchmarks
Track (Round 2), 2021.

Zhenyu Hou, Ziniu Hu, Yujiang Li, Rui Lu, Jie Tang, and Yuxiao Dong. TreeRL: LLM reinforce-
ment learning with on-policy tree search. In Proceedings of the 63rd Annual Meeting of the
Association for Computational Linguistics (Volume 1: Long Papers), pp. 12355–12369, 2025.

Amirhossein Kazemnejad, Milad Aghajohari, Eva Portelance, Alessandro Sordoni, Siva Reddy,
Aaron Courville, and Nicolas Le Roux. VinePPO: Refining credit assignment in RL training
of LLMs. In Forty-second International Conference on Machine Learning, 2025.

Aitor Lewkowycz, Anders Andreassen, David Dohan, Ethan Dyer, Henryk Michalewski, Vinay Ra-
masesh, Ambrose Slone, Cem Anil, Imanol Schlag, Theo Gutman-Solo, Yuhuai Wu, Behnam
Neyshabur, Guy Gur-Ari, and Vedant Misra. Solving quantitative reasoning problems with lan-
guage models. Advances in Neural Information Processing Systems, 35:3843–3857, 2022.

Wendi Li and Yixuan Li. Process reward model with q-value rankings. In The Thirteenth Interna-
tional Conference on Learning Representations, 2025.

10

https://github.com/huggingface/lighteval
https://github.com/huggingface/lighteval

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Hunter Lightman, Vineet Kosaraju, Yuri Burda, Harrison Edwards, Bowen Baker, Teddy Lee, Jan
Leike, John Schulman, Ilya Sutskever, and Karl Cobbe. Let’s verify step by step. In The Twelfth
International Conference on Learning Representations, 2024.

Michael Luo, Sijun Tan, Justin Wong, Xiaoxiang Shi, William Y. Tang, Manan Roongta, Colin Cai,
Jeffrey Luo, Li Erran Li, Raluca Ada Popa, and Ion Stoica. Deepscaler: Surpassing o1-preview
with a 1.5b model by scaling rl. https://pretty-radio-b75.notion.site/DeepScaleR-Surpassing-O1-
Preview-with-a-1-5B-Model-by-Scaling-RL-19681902c1468005bed8ca303013a4e2, 2025. No-
tion Blog.

Niklas Muennighoff, Zitong Yang, Weijia Shi, Xiang Lisa Li, Li Fei-Fei, Hannaneh Hajishirzi, Luke
Zettlemoyer, Percy Liang, Emmanuel Candès, and Tatsunori Hashimoto. s1: Simple test-time
scaling. arXiv preprint arXiv:2501.19393, 2025.

Cheng Qian, Emre Can Acikgoz, Qi He, Hongru Wang, Xiusi Chen, Dilek Hakkani-Tür, Gokhan
Tur, and Heng Ji. Toolrl: Reward is all tool learning needs. arXiv preprint arXiv:2504.13958,
2025.

Rafael Rafailov, Archit Sharma, Eric Mitchell, Stefano Ermon, Christopher D Manning, and Chelsea
Finn. Direct preference optimization: Your language model is secretly a reward model. In Pro-
ceedings of the 37th International Conference on Neural Information Processing Systems, pp.
53728–53741, 2023.

Rafael Rafailov, Joey Hejna, Ryan Park, and Chelsea Finn. From r to Q∗: Your language model is
secretly a q-function. In First Conference on Language Modeling, 2024.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

Amrith Setlur, Chirag Nagpal, Adam Fisch, Xinyang Geng, Jacob Eisenstein, Rishabh Agarwal,
Alekh Agarwal, Jonathan Berant, and Aviral Kumar. Rewarding progress: Scaling automated
process verifiers for LLM reasoning. In The Thirteenth International Conference on Learning
Representations, 2025.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
Mingchuan Zhang, YK Li, Yang Wu, and Daya Guo. Deepseekmath: Pushing the limits of
mathematical reasoning in open language models. arXiv preprint arXiv:2402.03300, 2024.

Michael Sullivan, Mareike Hartmann, and Alexander Koller. Procedural environment generation for
tool-use agents. arXiv preprint arXiv:2506.11045, 2025.

Jonathan Uesato, Nate Kushman, Ramana Kumar, Francis Song, Noah Siegel, Lisa Wang, Antonia
Creswell, Geoffrey Irving, and Irina Higgins. Solving math word problems with process- and
outcome-based feedback. arXiv preprint arXiv:2211.14275, 2022.

Peiyi Wang, Lei Li, Zhihong Shao, Runxin Xu, Damai Dai, Yifei Li, Deli Chen, Yu Wu, and Zhifang
Sui. Math-shepherd: Verify and reinforce LLMs step-by-step without human annotations. In Pro-
ceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume
1: Long Papers), pp. 9426–9439, 2024.

Yuxi Xie, Anirudh Goyal, Wenyue Zheng, Min-Yen Kan, Timothy P Lillicrap, Kenji Kawaguchi,
and Michael Shieh. Monte carlo tree search boosts reasoning via iterative preference learning. In
The First Workshop on System-2 Reasoning at Scale, NeurIPS’24, 2024.

Zhicheng Yang, Zhijiang Guo, Yinya Huang, Xiaodan Liang, Yiwei Wang, and Jing Tang. Treerpo:
Tree relative policy optimization. arXiv preprint arXiv:2506.05183, 2025a.

Zonglin Yang, Zhexuan Gu, Houduo Qi, and Yancheng Yuan. Accelerating rlhf training with reward
variance increase. arXiv preprint arXiv:2505.23247, 2025b.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik Narasimhan, and Yuan Cao.
React: Synergizing reasoning and acting in language models. In The Eleventh International
Conference on Learning Representations, 2023.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Qiying Yu, Zheng Zhang, Ruofei Zhu, Yufeng Yuan, Xiaochen Zuo, Yu Yue, Weinan Dai, Tiantian
Fan, Gaohong Liu, Lingjun Liu, et al. Dapo: An open-source llm reinforcement learning system
at scale. arXiv preprint arXiv:2503.14476, 2025.

Zhenru Zhang, Chujie Zheng, Yangzhen Wu, Beichen Zhang, Runji Lin, Bowen Yu, Dayiheng Liu,
Jingren Zhou, and Junyang Lin. The lessons of developing process reward models in mathematical
reasoning. arXiv preprint arXiv:2501.07301, 2025.

Model β Version AIME24 MATH-500 AMC23 Minerva OB Avg.

Qwen

0.0 Base +0.1667 +0.0160 0.0000 -0.0074 +0.0252 +0.0401
GRPO +0.0334 +0.0800 +0.1250 +0.0404 +0.0904 +0.0738

0.04 Base +0.2000 +0.0040 +0.0500 0.0000 +0.0282 +0.0564
GRPO +0.1000 -0.0320 +0.0500 +0.0368 +0.0178 +0.0345

Llama

0.0 Base 0.0000 +0.0340 +0.0500 +0.0037 +0.0059 +0.0187
GRPO 0.0000 +0.0320 +0.0500 -0.0036 +0.0015 +0.0160

0.04 Base +0.0333 +0.0280 0.0000 +0.0257 -0.0074 +0.0159
GRPO +0.0333 +0.0380 -0.1000 +0.0220 -0.0044 -0.0022

Table 2: Difference in accuracy between the λ-GRPO-trained models, and their corresponding base
models and standard-GRPO-trained counterparts. Positive differences (i.e. λ-GRPO outperforms
the comparison model) are highlighted in green; negative differences (i.e. the comparison model
outperforms λ-GRPO) are highlighted in red. For example, the top-most entry in the AIME24
column indicates that the λ-GRPO Qwen model with β = 0.0 outperformed the base DeepSeek-R1-
Distill-Qwen-1.5B by 0.1667 on the AIME24 benchmark.

A LIMITATIONS

Due to computational resource constraints, we were only able to conduct the experiments in Sec-
tions 3.2 and 5 with relatively small models: 1.5 billion (Qwen) and 1 billion (Llama) parameters.
Similarly, we only use one dataset for RL training in both experiments—although OpenRS is a
combination of the s1 (Muennighoff et al., 2025) and DeepScaleR Luo et al. (2025) datasets. Future
work should extend our findings regarding the non-triviality of the GRPO-induced PRM and the
effectiveness of λ-GRPO to larger models and more diverse (training) datasets.

Finally, the objective of this work is to expose the PRM induced by the GRPO algorithm, and to
highlight the deficiencies of that PRM as described in Section 4. To that end, our proposed λ-GRPO
method does not actually remedy the anti-exploitation effect of the GRPO-induced PRM—it merely
lessens its impact. In future work, we intend to investigate more extensive modifications to the
GRPO algorithm, with the goal of entirely solving the problems laid out in Section 4.

B EXPERIMENTAL SETUP

All experiments were conducted on a single NVIDIA H100 GPU. We trained all models with 24
gradient accumulation steps per step and a generation batch size of 6. The models were evaluated
on the validation split every 25 training steps.

We additionally hard-coded the generation procedure to halt after “\boxed{...}” was detected: this
was to prevent the model from generating multiple boxed answers for a single prompt.

C B(G) STRUCTURE EXAMPLES

The following (Figures 4, 5, 6) represent B(G) structures on groups generated during the group size
6 trial of the experiment in Section 3.2. A full trajectory is reconstructed by tracing the unique path
from the root to a terminal node. The root (red) corresponds to the prompt/query q. Terminal nodes
(yellow) denote singleton process steps {g(i)}; each non-terminal node λ (white; including the root)
denotes the process step corresponding to the set of all terminal nodes dominated by λ. For the sake
of presentation, overlong terminal steps are truncated with “...”.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Find, with proof, all pairs of positive integers (n,d) with the following property: for
every integer S , there exists a unique non-decreasing sequence of n integers
$a_1,a_2,...,a_n$ such that $a_1 + a_2 + ... + a_n = S$ and $a_n-a_1=d.$

Alright, so I

have this problem

here: I need to find all
pairs of positive
integers (n, d) such that
for every integer S,
there exists a unique
non-decreasing
sequence of n integers
a1, a2, ...

to solve: find all pairs of
positive integers (n, d)
such that for every
integer S, there exists a
unique non-decreasing
sequence of n integers
a_1, a_2, ...

where I need to find all pairs
of positive integers (n, d)
such that for every integer S,
there exists a unique non-
decreasing sequence of n
integers a

1, a2, ..., an where the sum
of these integers is S and
the difference between the
last and the first term is d.
Hmm, okay, let me try to
unpack this step by
step.\n\nFirst, let me make
sure I understand ...

_1, a_2, ..., a_n where the sum
of these a_i's is S, and the
difference between the last
term a_n and the first term a_1
is equal to d.\n\nOkay, let me
parse this again. We need
pairs (n, d) where:\n\n1. ...

Okay, so I have this
problem where I
need to find all pairs
of positive integers
(n, d) such that for
every integer S,
there exists a
unique non-
decreasing
sequence of n
integers ...

've been given this interesting
problem to solve. It asks to
find all pairs of positive
integers (n, d) such that for
every integer S, there exists
a unique non-decreasing
sequence of n integers ...

Figure 4: B(G) structure from step 1 (see the beginning of Appendix C for additional details).

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

In a bag, there are 5 balls of the same size, including 3 black balls and 2 red balls. If two
balls are drawn at random, the probability of drawing two balls of the same color is ().\n\nA:
$\frac{1}{5}$\nB: $\frac{3}{10}$\nC: $\frac{2}{5}$\nD: $\frac{1}{2}$

To determine the probability of drawing two balls
of the same color from a bag containing 3 black
balls and 2 red balls, we can follow these
steps:\n\n1. **Calculate the total number of
balls:**\n \[\n 3 \text{ (black)} + 2 \text{ (red)} = 5
\text{ balls}\n \]\n\n2. **Determine the

number of ways to draw 2 balls from
5:**\n \[\n \binom{5}{2} = \frac{5!}{2!(5-
2)!} = \frac{5 \times 4}{2 \times 1} = 10\n
 \]\n\n3. **Calculate the number of ways
to draw 2 black balls:**\n \[\n
 \binom{3}{2} = \frac{3!}{2!(3-2)!} =
\frac{3 \times 2}{2 \times 1} = 3\n
 \]\n\n4. **Calculate the number of ways
to draw 2 red balls:**\n \[\n \binom{2}
{2} = \frac{2!}{2!(2-2)!} = 1\n \]\n\n5.
**Find the total number of ways to draw
2 balls of the same color:**\n \[\n 3
\text{ (black)} + 1 \text{ (red)} = 4\n
 \]\n\n6. **Calculate the probability:**\n \
[\n \text{Probability} =
\frac{\text{Number of

favorable outcomes}}
{\text{Total number of
outcomes}} = \frac{4}{10} =
\frac{2}{5}\n \]\n\nThus, the
probability of drawing two balls
of the same color is:\n\n\
[\n\boxed{C}

ways to draw 2 same color}}
{\text{Total number of ways to
draw 2 balls}} = \frac{4}{10} =
\frac{2}{5}\n \]\n\nThus, the
probability of drawing two balls
of the same color is:\n\n\
[\n\boxed{\frac{2}{5}}

total number of ways to draw 2
balls from 5:**\n \[\n \binom{5}
{2} = \frac{5!}{2!(5-2)!} = \frac{5
\times 4}{2 \times 1} = 10\n
 \]\n\n3. **Calculate the number
of ways to draw 2 black
balls:**\n \[\n \binom{3}{2} =
\frac{3!}{2!(3-2)!} = ...

Given a bag with 5 balls of the same
size, including 3 black balls and 2
red balls, we need to find the
probability of drawing two balls of the
same color when two balls are drawn
at random.\n\nFirst, we calculate the
total number of ways to draw

two balls from the bag. This is
given by the combination formula \(
\binom{n}{k} \), where \(n \) is the
total number of balls and \(k \) is
the number of balls to draw. Here, \
(n = 5 \) and \(k = 2 \): ...

2 balls from 5, which
is given by the
combination formula

\(\binom{5}{2} \):\n\n\[\n\binom{5}
{2} = \frac{5!}{2!(5-2)!} = \frac{5
\times 4}{2 \times 1} =
10\n\]\n\nNext, we calculate the
number of ways to draw 2 black
balls from the 3 black balls: ...

\n\[\n\binom{5}{2} = \frac{5!}{2!(5-
2)!} = \frac{5 \times 4}{2 \times 1} =
10\n\]\n\nNext, we calculate the
number of ways to draw 2 black
balls from the 3 available:\n\
[\n\binom{3}{2} = ...

Figure 5: B(G) structure from step 1001 (see the beginning of Appendix C for additional details).

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Let a and b be given positive real numbers, with $a<b.$ If two points
are selected at random from a straight line segment of length $b,$ what is
the probability that the distance between them is at least $a?$

<think>\n</think>\n\nGiven two

positive real numbers \(a\) and \(b\) such that \(a < b\).
We need to find the probability that the distance
between two randomly selected points on a

straight line segment of
length \(b\) is at least \
(a\).\n\nFirst, we note that
the total number of
possible pairs of points is
represented by the
number of ways to
choose 2 points from a
segment of length \(b\) ...

line segment of length \
(b\) is at least \
(a\).\n\nFirst, we note that
the total number of
possible pairs of points is
\(b^2\), since each point
can be anywhere along
the segment of length \
(b\)...

points selected at random from a straight line
segment of length \(b \), we need to find the
probability that the distance between them is
at least \(a \), where \(

a \) and \(b \) are positive
real numbers with \(a < b
\).\n\nFirst, we recognize
that the problem can be
modeled using a uniform
distribution over the
interval \([0, b]\) ...

0 < a < b \).\n\nFirst, we

recognize that the problem can be modeled
using a uniform distribution over the interval \
([0, b]\). Let the positions of the two points be \
(X \) and \(Y \), where \(X \) and \(Y \) are
independent random variables uniformly
distributed over \([0, b]\).\n\nThe distance
between the two points is \(|X - Y| \). We need
to find the probability that \(|X - Y| \geq a
\).\n\nTo solve this, we consider the sample
space

note that the total number of
ways to select two points
from a segment of length \(b
\) is represented by the
number of possible positions
for these points. Since the
points are selected
continuously, we can model
this using a unit square
where each axis ...

\([0, b] \times [0, b]\), where each point \((X,
Y)\) represents a possible outcome. The area
of this sample space is \(b^2 \).\n\nWe are
interested in the region where \(|X - Y| \geq a
\). This can be split into two regions:\n1. ...

, which is the set of all possible pairs \((X, Y)\).
This can be represented as a square in the \
(XY\)-plane with side length \(b \). The area of
this square is \(b^2 \).\n\nWe are interested in
the region where \(|X - Y| \geq a \) ...

Figure 6: B(G) structure from step 1673 (see the beginning of Appendix C for additional details).

15

	Introduction
	Background
	GRPO
	Process Reward Models (PRMs)

	GRPO's Hidden PRM
	Theoretical Analysis
	Empirical Analysis

	Proposed Approach: -GRPO
	Experiments
	Experimental Setup
	Results and Discussion

	Related Work
	Conclusion
	Limitations
	Experimental Setup
	B(G) Structure Examples

