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ABSTRACT

Recent breakthroughs in text-guided image generation have significantly advanced
the field of 3D generation. While generating a single high-quality 3D object is
now feasible, generating multiple objects with reasonable interactions within a
3D space, a.k.a. compositional 3D generation, presents substantial challenges.
This paper introduces COMPGS, a novel generative framework that employs 3D
Gaussian Splatting (GS) for efficient, compositional text-to-3D content generation.
To achieve this goal, two core designs are proposed: (1) 3D Gaussians Initialization
with 2D compositionality: We transfer the well-established 2D compositionality
to initialize the Gaussian parameters on an entity-by-entity basis, ensuring both
consistent 3D priors for each entity and reasonable interactions among multiple
entities; (2) Dynamic Optimization: We propose a dynamic strategy to optimize 3D
Gaussians using Score Distillation Sampling (SDS) loss. COMPGS first automati-
cally decomposes 3D Gaussians into distinct entity parts, enabling optimization at
both the entity and composition levels. Additionally, COMPGS optimizes across
objects of varying scales by dynamically adjusting the spatial parameters of each
entity, enhancing the generation of fine-grained details, particularly in smaller
entities. Qualitative comparisons and quantitative evaluations on T3Bench demon-
strate the effectiveness of COMPGS in generating compositional 3D objects with
superior image quality and semantic alignment over existing methods. COMPGS
can also be easily extended to controllable 3D editing, facilitating complex scene
generation. We hope COMPGS will provide new insights to the compositional 3D
generation. Codes will be released to the research community.

1 INTRODUCTION

3D content creation is essential to the modern media industry, yet it has traditionally been labour-
intensive and necessitated professional expertise. Typically, designing a single 3D object takes
several hours for an experienced designer, and creating complex scenes with multiple 3D objects (as
shown in Fig. 1) requires even more effort. Inspired by the recent success of diffusion models in
the text-to-image generation Ho et al. (2020); Song et al. (2020a); Rombach et al. (2022a); Podell
et al. (2023), much research has focused on exploring 2D diffusion models for text-to-3D generation.
Previous work can be divided into two main methodologies: (1) Feed-forward generation Li et al.
(2023); Hong et al. (2023); Xu et al. (2024), which entails training generalizable diffusion models on
3D data; and (2) Optimization-based generation Poole et al. (2022); Lin et al. (2023); Metzer et al.
(2023); Chen et al. (2023b); Wang et al. (2023a; 2024), which utilizes the pretrained 2D diffusion
guidance to optimize 3D representations via Score Distillation Sampling (SDS) Poole et al. (2022).

While existing work has demonstrated the feasibility of generating single 3D objects, they often
struggle to produce compositional 3D content with multiple objects and complex interactions. For ex-
ample, (1) Feed-forward generation methods struggle in generalizing to complex textual descriptions
since the amount of 3D training data is extremely limited Deitke et al. (2023; 2024), and most of the
data contains only one object; (2) Optimization-based generation methods face significant challenges
with current 2D diffusion guidance when optimizing compositional 3D objects. Typically, using 2D
diffusion guidance to optimize a single object is feasible, as it’s easy to incorporate various attributes
into a single object. However, in compositional 3D generation, 2D guidance struggles to accurately
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an owl an owl perches on a
branch

an owl perches on a
branch near a pinecone

an owl perches on a branch near a
pinecone, with a rat below the

branch

Single 3D Generation Compositional 3D Generation

Rendered ImagesGaussians Initialization with 2D Compositionality 1K iterations 4K iterations

“an owl perches on a branch near a pinecone”

a footballer is kicking a 
soccer ball

a bird is drinking water
from a cup

a photographer is capturing a 
beautiful butterfly with camera

a beautiful butterfly

…
Figure 1: Illustration of compositional 3D Generation and COMPGS. All the contents are
generated by COMPGS. Top row: COMPGS is capable of generating either a single object (e.g., a
butterfly) or generating compositional objects with reasonable interactions (e.g., the rightmost figure
in the top row). Middle row: Beyond text-to-3D generation, COMPGS can be easily extend to 3D
editing by progressively adding objects. The colored texts (e.g., ‘a branch’, ‘a pinecone’, ‘a rat’ in
the rightmost figure) denote the added part compared to its previous asset. Bottom row: COMPGS
achieves compositional text-to-3D by transferring 2D compositionality to initialize 3D Gaussians.
COMPGS is further trained with dynamic SDS optimization to produce plausible results.

compose multiple objects with different attributes and relationships into a coherent scene Huang
et al. (2023). For example, given the prompt ‘a blue bench on the left of a green car,’ distinguishing
different attributes within the implicit 2D diffusion priors is challenging, resulting in misaligning
attributes to different objects or generating incorrect spatial relationships. Thus, optimization-based
compositional generation with standard 2D guidance often causes problems like 3D inconsistencies,
multi-faced objects, semantic drift, etc Shi et al. (2023); He et al. (2023).

In this work, we propose COMPGS, a generative system based on 3D Gaussian Splatting (GS) Kerbl
et al. (2023) for compositional text-to-3D generation. To achieve this, we introduce two core designs:

3D Gaussians Initialization with 2D Compositionality Unlike the implicit representation, i.e.,
NeRF Mildenhall et al. (2021), COMPGS uses 3D Gaussians as the representation, which helps
to achieve feasible parameter initialization with a coarse 3D shape Jun & Nichol (2023); Yi et al.
(2023). As shown in the bottom row of Fig. 1, we first apply a text-to-image model Betker et al.
(2023); Ramesh et al. (2021); Chen et al. (2023a) to generate an image that accurately captures
the compositionality of multiple objects. Then the image is segmented into different sub-objects
(a.k.a. entities) according to the entity information in the given prompt. These segmented entities
are processed through an image-to-3D model Hong et al. (2023); Tochilkin et al. (2024) to obtain
coarse 3D shapes, which are used to roughly initialize the Gaussian parameters in 3D space, thereby
transferring the 2D compositionality to 3D representations.

Dynamic Optimization. Current 2D guidance Poole et al. (2022); Lin et al. (2023); Metzer et al.
(2023) struggles with optimizing multiple 3D objects simultaneously in a scene, often leading to 3D
inconsistencies and semantic shifts. To address these issues, we introduce a dynamic optimization
strategy based on Score Distillation Sampling (SDS) loss, consisting of two key components: (1)
COMPGS dynamically divides the training process to optimize different parts of 3D Gaussians.
Specifically, it alternates between optimizing a single object (entity-level optimization) and the entire
scene (composition-level optimization). This is achieved by labeling and filtering the Gaussian
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parameters for inference, and updating them through masking gradients. (2) COMPGS dynami-
cally trains the entity-level Gaussians within a normalized 3D space, crucial for compositional 3D
generation where object sizes vary. This is particularly challenging when dealing with very small
objects, as optimizing Gaussian parameters in a limited 3D space may not adequately capture detailed
textures. To mitigate this, we first scale the subspace of each entity to a predefined, standardized
volume. Following each training iteration within these standardized volumes, we rescale the Gaussian
parameters back to their original sizes. This method dynamically maintains volume consistency
throughout the training process, thereby facilitating the capture of fine details within smaller objects.

With these designs, COMPGS is capable of generating high-quality compositional 3D objects (as
shown in the first row of Fig. 1) and progressive 3D editing (as shown in the second row of Fig. 1).
We demonstrate the effectiveness of COMPGS both qualitatively and quantitatively. Qualitative
comparisons through our user study indicate that COMPGS offers superior image quality and semantic
alignment compared to existing models (e.g., Fantasia3D Chen et al. (2023b), ProlificDreamer Wang
et al. (2024), VP3D Chen et al. (2024c), etc.). Besides, COMPGS’s performance on T3Bench He et al.
(2023) quantitatively highlights its advantages in both semantic control and high-fidelity generation.
We hope COMPGS can provide valuable insights into the research of compositional 3D generation.

The contributions of this work are as follows: (1) We introduce COMPGS, a user-friendly generative
system framework for compositional 3D generation based on 3D Gaussians, which produces high-
quality multiple 3D objects with complex interactions. (2) COMPGS transfers 2D compositionality to
facilitate composed 3D generation and incorporates dynamic SDS optimization to address challenges
in maintaining 3D consistency, generating plausible shapes and textures, and formulating reasonable
object interactions. (3) COMPGS demonstrates superior performance compared to previous methods
in compositional text-to-3D generation, both quantitatively and qualitatively, and can be easily
extended to progressive 3D editing.

2 RELATED WORK

Multi-modality 3D Generation Multi-modality 3D generation can basically categorized into the
feed-forward system and optimization-based system. The former one is trained end-to-end on multi-
view dataset Chang et al. (2015); Deitke et al. (2023) for zero-shot generation, typically based on
3D representations, including NeRF Hong et al. (2023); Tochilkin et al. (2024), 3D Gaussians Xu
et al. (2024); Tang et al. (2024), tri-planes Shue et al. (2023); Wang et al. (2023b) and feature
grids Karnewar et al. (2023). Despite the excellent performance achieved, the single-object training
data Deitke et al. (2023); Luo et al. (2024); Deitke et al. (2024); Chang et al. (2015) limits their
generative abilities in scenarios involving multiple objects. Optimization-based 3D systems lift
2D diffusion priors Rombach et al. (2022a;b); Podell et al. (2023); Chen et al. (2023a; 2024a) for
3D generation, and typically train 3D representations on a prompt-by-prompt basis. For example,
DreamFusion Poole et al. (2022) introduces Score Distillation Sampling (SDS) loss to transfer 2D
diffusion models into the 3D domain. Magic3D Qian et al. (2023) employs a coarse-to-fine scheme to
improve both efficiency and effectiveness, while Fantasia3D Chen et al. (2023b) decouples the mod-
elling of geometry and appearance. Despite the advancements of these methods addressing various
challenges, they also usually struggle with compositional 3D generation. T3bench’s examination of
ten prominent optimization-based models Poole et al. (2022); Lin et al. (2023); Metzer et al. (2023);
Wang et al. (2024; 2023a); Chen et al. (2023b); Shi et al. (2023); Yi et al. (2023) revealed frequent
issues in compositional generation. The implicit 2D diffusion guidance used in these methods Poole
et al. (2022); Shi et al. (2023); Wang et al. (2024); Chen et al. (2023b) often fails to maintain 3D
consistency across different views, leading to significant discrepancies in compositional 3D scenes.

Compositional Generation Compositional generation involves creating content involving multiple
objects with logical interactions. These interactions include, but are not limited to, concept rela-
tions Liu et al. (2022a), attribute association with colors Chefer et al. (2023); Feng et al. (2022); Park
et al. (2021), and spatial relationships between objects Wu et al. (2023); Chen et al. (2024b). There is
considerable focus on various aspects of compositional 2D generation, such as learning from human
feedback Zhang et al. (2023); Lee et al. (2023); Dong et al. (2023); Yang et al. (2024), enhancing
image captions Chen et al. (2023a; 2024a); Betker et al. (2023); Dai et al. (2023), designing effective
networks Liu et al. (2022b), and etc. T2I-CompBench Huang et al. (2023) further proposed a com-
prehensive benchmark and boosted the compositionality of text-to-image models. Compared to 2D
compositional generation, its 3D counterpart is under-explored due to 3D geometry and appearance
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complexities. For example, Set-the-Scene Cohen-Bar et al. (2023) and Scenewiz3d Zhang et al.
(2024b) propose to adopt object layouts to generate compositional scenes. However, they are mainly
based on the implicit NeRF representations, so the features between objects cannot be well decoupled,
resulting in a relatively blurred rendering effect. VP3D Chen et al. (2024c) takes a different strategy
to employ visual features for compositional generation. However, its visual features are only used as
implicit supervision, which does not adequately ensure 3D consistency or address the Janus prob-
lems Shi et al. (2023). Besides, LucidDreaming Wang et al. (2023c) requires human-annotated layout
priors for local optimization, which is labour-intensive and inaccurate; while GraphDreamer Gao
et al. (2024) optimizes all interactive objects from scratch, which is time-consuming and difficult to
optimize. The most concurrent works, GALA3D Zhou et al. (2024), propose optimizing the spatial
relationships of well-trained Gaussians for compositional generation. Though it achieves plausible
spatial interactions, it is inefficient in generating complex mutual interactions among objects. More
comparisons are in the appendix. We propose COMPGS to address the above challenges, emphasizing
efficient optimization and the generation of complex interactions.

3 METHODOLOGY

In this section, we revisit 3D Gaussian Splatting Kerbl et al. (2023) and diffusion priors for 3D
generation. We then provide an overview of COMPGS, which includes initializing 3D Gaussians
to incorporate compositionality priors and dynamic SDS optimization to generate high-fidelity, 3D
consistent objects with complex interactions. The notations used in this section are also detailed in
Appendix A.1 for clarity.

3.1 PRELIMINARIES

3D Gaussian Splatting (GS) Kerbl et al. (2023) has recently revolutionized novel-view synthesis
of objects/scenes by its real-time rendering. Specifically, GS represents the 3D objects/scenes by
N explicit anisotropic Gaussians with center positions µi, covariances Σi, opacities αi and colors
ci, where i ∈ N . The color C(p) of image pixel p can be calculated through point-based volume
rendering Kopanas et al. (2021; 2022) by integrating the color and density of the 3D Gaussians
intersected by a ray, as follows:

C(p) =
N∑
i=1

ciσi

i−1∏
j=1

(1− σj) , (1)

σi = αi exp
[
−1

2
(p− µ̂i)

⊤
Σ̂−1

i (p− µ̂i)

]
, (2)

where µ̂i and Σ̂i denote the projected center positions and covariances of the 2D Gaussians, trans-
formed from 3D space to the 2D camera’s image plane. The image plane can be segmented into tiles
during rendering for parallel processing. Unlike implicit representations, such as NeRF Mildenhall
et al. (2021); Barron et al. (2021); Müller et al. (2022), GS offers two key advantages for compo-
sitional 3D generation: (1) 3D Gaussians facilitate localized rendering, allowing for the rendering
of object A in one specific sub-space and object B in another, thus enabling global compositional
generation on a divide-and-conquer basis; (2) 3D Gaussians enable direct parameter initialization,
simplifying the integration of compositional priors at the initialization stage.

Diffusion Priors for 3D Generation Diffusion-based generative models (DMs) Dhariwal & Nichol
(2021); Sohl-Dickstein et al. (2015); Song et al. (2020b) have been widely utilized to provide implicit
priors for 3D object generation via score distillation sampling (SDS) Poole et al. (2022). Specifically,
given a 3D model whose parameters are θ, a differentiable rendering process g , the rendered images
could be obtained via x = g(θ). To ensure the rendered images resemble those generated by the DM
ϕ, SDS first formulates the sampled noise ϵ̂ϕ(zt; v, t) with the noisy image zt, text embedding v, and
noise level t. By comparing the difference between the added Gaussian noise ϵ and the predicted
noise ϵ̂ϕ, SDS constructs gradients that could be back-propagated to update θ via:

∇θLSDS(ϕ, x = g(θ)) ≜ Et,ϵ

[
w(t) (ϵ̂ϕ(zt, v, t)− ϵ)

∂x

∂θ

]
, (3)

where w(t) is a weighting function, and the Classifier-free guidance (CFG) Ho & Salimans (2022)
typically amplifies the text conditioning v .
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V=‘an owl perches on a branch near a pinecone’ (𝑣!=‘an owl’; 𝑣"=‘a branch’ ; 𝑣#=‘a pinecone’ )
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SAM

𝑣!

𝑣"

𝑣#

Composition-level Gaussian

𝜃!
𝜃 = 𝜃" + 𝜃# + 𝜃"

Entity-level Gaussian

LLM

Rendering

Gaussian Initialization Dynamic Optimization Gaussian Splatting Rendering

𝜃#

𝜃"
ℒ$%$	(V,𝜃)

ℒ$%$(𝑣!, 𝜃!)

ℒ$%$(𝑣#, 𝜃#)

ℒ$%$(𝑣#, 𝜃#)

SDS Loss

Figure 2: Overall pipeline of COMPGS. Given a compositional prompt V , we first use an LLM
to decompose it into entity-level prompts {vl}, guiding the segmentation of each entity from the
compositional image generated by T2I models. The segmented images initialize entity-level 3D
Gaussians via image-to-3D models Tochilkin et al. (2024); Hong et al. (2023). COMPGS employs a
dynamic optimization strategy, alternating between composition-level optimization of θ and entity-
level optimization of {θl}. For entity-level optimization, COMPGS dynamically maintains volume
consistency to refine the details of each objects, particularly the small one.

3.2 COMPGS

We propose COMPGS for efficiently transferring the 2D compositionality to facilitate compositional
3D generation with 3D Gaussians. The overall framework of COMPGS is shown in Fig. 2. We first
generate a well-composed image from the given complex prompt. After extracting the sub-object
(also named entity) information within the prompt by LLM, we utilize the entity prompt to segment
the composed image into different parts. Each part will be adopted to initialize a specific space
of Gaussians. During the training stage, we propose a dynamic SDS optimization strategy. This
strategy first automatically decomposes the training to optimize either entity-level Gaussians or
composition-level Gaussians. Then, it employs a volume-adaptive strategy to dynamically optimize
varying-sized entities within a consistent 3D space. We detail the initialization process and dynamic
SDS optimization in the following sections.

3.2.1 3D GAUSSIANS INITIALIZATION WITH 2D COMPOSITIONALITY

Unlike the implicit NeRF Mildenhall et al. (2021) representations, explicit 3D Gaussians can be
easily initialized with 3D shapes and colors, which facilitates introducing rough 3D priors to ensure
3D consistency Yi et al. (2023). Although existing text-to-3D or image-to-3D models can generate
a single 3D object, they struggle with compositional 3D generation as mentioned in Sec. 2, which
hinders the creation of compositional 3D priors needed for initialization. Considering this, we propose
initializing the compositional Gaussians on an entity-by-entity basis.

As shown in Fig. 2 (left), given a complex prompt V , (e.g., ‘an owl perches on a branch near a
pinecone’), we first adopt a 2D diffusion model Betker et al. (2023) to generate a composed image I
that faithfully captures the compositionality of multiple objects. We extract each entity information
in prompt V by prompting LLM to obtain L different entity-level prompts (i.e., L = 3 for v1 ‘an owl’
, v2 ‘a branch’ , and v3 ‘a pinecone’ ). These prompts are adopted in a text-guided segmentation
model Kirillov et al. (2023) to decompose image I into various parts {Il}. Until now, each segmented
image has only one entity, facilitating using existing image-based 3D generation models Tochilkin
et al. (2024) to predict a rough triangle mesh ml(l ∈ L) of the corresponding 3D entity l. To initialize
3D Gaussians θl, we index N points from each mesh; the center positions µl

i ∈ R3(i ∈ N, l ∈ L) are
the centers of each vertex of ml, and the texture colors cli ∈ R3(i ∈ N, l ∈ L) are queried from each
vertex of ml. During the image-to-3D process, we did not perform any cropping or padding on the
image Il, ensuring that the spatial positions of each mesh ml correspond to their 2D spatial positions.
Additionally, we have marked the 3D layouts of each entity asset with 3D bounding boxes bboxl
for subsequent optimization. The bounding box coordinates are determined by the outer-most center
positions of the entity Gaussian.
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3.2.2 DYNAMIC SDS OPTIMIZATION

As mentioned in Sec. 2, existing SDS methods Poole et al. (2022); Shi et al. (2023); Wang et al.
(2024); Chen et al. (2023b) struggle in optimizing compositional 3D scenes due to the challenges
of using implicit diffusion priors to maintain multi-objects consistency and interactions. To address
this, we introduce dynamic SDS optimization to enable existing SDS losses to remain effective
in compositional generation. Dynamic SDS optimization is performed through the following two
procedures.

Automatically Decomposing Optimization to Different Levels We adopt the Decomposed Op-
timization (DO) strategy that divides the entire training into L + 1 stages, including L stages for
entity-level optimization to ensure 3D consistency of each L entities, and one stage for composition-
level optimization to refine inter-entity interactions. In each training iteration, we randomly render
either (1) an entity Gaussian θl(l ∈ L) to obtain the entity image xl = g(θl) (θl ∈ bboxl), or (2)
the composed Gaussians θ to obtain the composed image x = g(θ). Here g denotes the Gaussian
Splatting rendering Kerbl et al. (2023) described in Eq. 1.

To update Gaussian parameters, we apply Eq. 3 for gradients backpropagation. Specifically, for
entity-level optimization, we substitute the text embedding v by vl and parameters θ by θl in Eq. 3 to
optimize entity Gaussian. We adopt MVDream Shi et al. (2023) as ϕ, which provides multi-view
diffusion priors that can better maintain consistency in 3D entity modelling. To ensure that other
entity’s parameters remain unchanged, we mask the gradients that are not within the corresponding 3D
bounding boxes bboxl when updating θl. Besides, for composition-level optimization, we integrate
both 2D Rombach et al. (2022a) and 3D diffusion priors Shi et al. (2023) to jointly optimize the
overall Gaussian parameters θ. The rationale is that 2D priors promote geometry exploration Qian
et al. (2023), which enhances the generation of plausible interactions between different entities.

Volume-adaptively Optimizing Entity-level Gaussians Compared to the single object generation,
compositional 3D generation using SDS presents additional challenges. Specifically, when objects
vary in size, optimizing directly in the original 3D space often results in suboptimal generation for
smaller objects, as shown the ‘pinecone’ in Fig. 2. To mitigate this issue, we propose a Volume-
adaptive Optimization (VAO) strategy that enhances optimization across objects of varying sizes by
dynamically standardizing each entity’s space to a standardized volumetric scale. This approach is
especially beneficial for improving the generation of fine-grained texture details in smaller entities.

To scale the 3D bounding box of an entity Gaussian θl with a standardized volumetric space bboxstd,
we first determine the necessary transformations for the centre positions µ. Specifically, we calculate
the shift parameters β, and scale parameters λ, as follows:

β = Mean(bboxl); λ = bboxstd/bboxl, (4)

where Mean computes the center coordinates of the given bounding box, and bboxstd is the target
standardized space. Then, we zoom-in the entity Gaussian on its center positions by µ̂ = λ(µ− β),
where µ̂ denotes the transformed center positions of entity Gaussian. We substitute all µ to µ̂ in Eq. 1
for SDS optimization. After each training iteration, we perform zooming-back via µ = µ̂/λ+β. The
proposed transformation ensures dynamically conducting SDS optimization on each entity Gaussian
at a standardized and consistent scale. Experiments in Sec. 4.3 demonstrate its effectiveness in
generating high-quality 3D assets.

3.3 PROGRESSIVE EDITING WITH COMPGS

The dynamic SDS optimization enables COMPGS to explicitly control the generation of different
parts in the 3D scene. This capability can be utilized for progressive 3D editing in compositional
generation. Specifically, given well-trained 3D Gaussians θ, we begin by rendering an image from
the front view, denoted as x = g(θ). Unlike previous works that directly edit 3D objects Cheng et al.
(2024), we adopt MagicBrush Zhang et al. (2024a) to edit the 2D rendered image x. The edited 2D
image can then be utilized to initialize new Gaussians θ̂ in the original 3D space. We further train the
added 3D Gaussians to finally introduce new objects into the compositional scenes. For example,
as shown in Fig. 1, given well-trained 3D Gaussians (e.g., ‘an owl’), we progressively edit the 2D
images to add new objects, such as the ‘branch’ and ‘pinecone.’ We then train the corresponding 3D
Gaussians via dynamic SDS optimization to incorporate these new elements into the 3D scenes.
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4 EXPERIMENTS

4.1 EXPERIMENTAL SETTINGS

Implementation Details We implemented COMPGS using ThreeStudio Guo et al. (2023).
We use DALL·E Betker et al. (2023) to generate the well-established 2D compositionality,
LangSAM Medeiros (2024) to segment the entity image, and TripoSR Tochilkin et al. (2024) to
generate a preliminary 3D prior (i.e., mesh) from each entity image, respectively. During the training,
we employed MVDream Shi et al. (2023) to optimize entity-level Gaussians, and both MVDream Shi
et al. (2023) and stabilityai/stablediffusion-2-1-base Rombach et al. (2022b) to optimize composition-
level Gaussians. The guidance scale for diffusion models was set as 50. Timestamps were uniformly
selected from 0.02 to 0.55 for the first 1,000 iterations and then adjusted to a range from 0.02 to
0.15 for subsequent iterations. We initialized the Gaussian points at N = 10k, and progressively
increased the density to a maximum of 1000k points. We optimized the overall compositional scenes
through 10k iterations to achieve optimal results. However, it is worth noting that we empirically
found that training with 5k iterations already produces plausible 3D assets. The learning rates are
detailed in Appendix A.3. We set the camera parameters, including radius, azimuth, elevation and
FoV (field of view) to be the same as Shi et al. (2023). Experiments were conducted on NVIDIA
A100 GPUs(40G). Our code will be released.

Evaluation Metrics In addition to user studies and qualitative comparisons, we utilize T3Bench He
et al. (2023) to render 300 prompts in order to evaluate compositional 3D generation on two criteria:
(1) the visual quality of the 3D objects and (2) the alignment between the 3D objects and the input
prompt. For quality evaluation, we captured multi-focal and multi-view images and sent them to
text-image scoring models, CLIP Radford et al. (2021), to obtain an average quality score of the
generated 3D scene. Regarding the textual alignment, we first followed Luo et al. (2024) to perform
3D captioning via BLIP Li et al. (2022) and GPT4, and then computed the recall of the original
prompt within the generated caption via ROUGE-L Lin (2004).

4.2 PERFORMANCE COMPARISONS AND ANALYSIS

Qualitative Evaluation In Fig. 3, we present qualitative comparisons of compositional 3D generation.
Our model, COMPGS, is compared with several open-source methods, including DreamFusion Poole
et al. (2022), Magic3D Qian et al. (2023), Latent-NeRF Metzer et al. (2023), Fantasia3D Chen
et al. (2023b), SJC Wang et al. (2023a), and ProlificDreamer Wang et al. (2024), as well as methods
specifically designed to handle intricate text prompts, VP3D Chen et al. (2024c) in Fig. 3. The
results demonstrate that COMPGS generates compositional 3D objects with superior quality, greater
consistency, and more plausible interactions. DreamFusion, for example, fails to generate reasonable
multi-objects from compositional prompts, revealing limitations in SDS loss for optimizing multiple
objects simultaneously. Magic3D and Latent-NeRF, though guided by a 3D mesh prior, struggle
with generating complex and compositional 3D geometry. Despite employing advanced SDS loss,
Fantasia3D, SJC, and ProlificDreamer only improve the appearance of the content but do not
fundamentally address multi-object generation. Notably, VP3D employs features from compositional
images and human feedback to guide compositional 3D generation. However, it often produces
unexpected artifacts (e.g., redundant dots in the top two rows of Fig. 3) or less plausible interactions
(e.g., strange spatial relationships in the fourth row). This is likely due to the insufficient utilization of
2D compositionality, as VP3D adopts the implicit image features to guide optimization. In contrast,
COMPGS generates high-quality and composed content that strictly aligns with the given complex
prompts, demonstrating its effectiveness over others. We provide more visual comparisons with
both the close-source and open-source methods (including GALA3D Zhou et al. (2024) in Fig. 9,
GraphDreamer Gao et al. (2024), DreamGaussian Tang et al. (2023) in Fig. 10, etc.) in Appendix A.4
as well as the attached video.

We also demonstrate COMPGS’s capabilities in generating more diverse contents in Fig. 4. COMPGS
accurately generates both simple spatial relationships (shown in the first row), and more complex
interactions, where objects should react to each other (shown in the second row). Besides, COMPGS
is not limited to generating just two objects, it can generate multiple objects by expanding the number
of entity-level Gaussians. For example, in the third row, COMPGS generates scenes with three and
four entities, each with high-quality 3D shapes and textures.
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‘A florist is making a bouquet with fresh flowers’

‘An artist is painting on a blank canvas’

‘Hot popcorn jump out from the red striped popcorn maker’

‘A half-eaten sandwich sits next to a lukewarm thermos’

‘Two silken, colorful scarves are knotted together’

DreamFusion Magic3D LatentNeRF Fantasia3D SJC ProlificDreamer VP3D COMPGS (ours)

Figure 3: Qualitative comparisons between COMPGS and other text-to-3D models on T3Bench
(multiple objects track). Compared to others, COMPGS is better at generating highly-composed,
high-quality 3D contents that strictly align with the given texts. Watch the animations by clicking
them (Not all PDF readers support playing animations. Best viewed in Acrobat/Foxit Reader).

a brightly lit birthday cake is set near a closed wrapped gift an untouched slice of pizza is cooling beside a half-drunk can 

of soda

a girl is reading a hardcover book in her room a student is typing on his laptop

two boys are playing soccer (3 entities) a parrot talks besides a perch and two bowls (4 entities)

Figure 4: More generated samples by COMPGS. Four views are shown. COMPGS can generate
high-quality contents with reasonable interactions given two, three or more entities.

We conduct a user study for further evaluation. We randomly selected 15 prompts in T3Bench,
and collected the 3D assets generated by different models. These collected 3D assets were then
distributed to individuals for ranking the models based on (1) 3D visual quality and (3) text-3D
alignment. We average the ranking of different models as their scores. Results in Tab. 1 show that
representative optimization-based models received relatively low average scores, highlighting their
limitations in compositional generation. VP3D Chen et al. (2024c) outperforms its predecessors due
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to the incorporation of image features but still ranks lower than COMPGS, which further validates
our effectiveness.

Table 1: Quantitative comparisons on T3Bench He et al.
(2023) and user studies show COMPGS outperforms feed-
forward, optimization-based, and compositional generation
models.

Method T3Bench (Multiple Objects) User Study
Quality↑ Alignment↑ Average↑ Ranking Score↑

OpenLRM Hong et al. (2023) 15.2 25.5 20.4 -
TripoSR Tochilkin et al. (2024) 16.7 28.6 22.7 -

DreamFusion Poole et al. (2022) 17.3 14.8 16.1 4.54
SJC Wang et al. (2023a) 17.7 5.8 11.7 3.08
LatentNeRF Metzer et al. (2023) 21.7 19.5 20.6 4.14
Fantasia3D Chen et al. (2023b) 22.7 14.3 18.5 2.43
ProlificDreamer Wang et al. (2024) 45.7 25.8 35.8 3.56
Magic3D Lin et al. (2023) 26.6 24.8 25.7 4.30

Set-the-Scene Cohen-Bar et al. (2023) 20.8 29.9 25.4 -
VP3D Chen et al. (2024c) 49.1 31.5 40.3 6.71

COMPGS (ours) 54.2 (+5.1) 37.9(+6.4) 46.1(+5.8) 7.23

Quantitative Evaluation In Tab. 1,
we benchmark the representative mod-
els on T3Bench, focusing on the
multi-objects track. Results indi-
cate COMPGS achieves superior per-
formance in both quality and tex-
tual alignment. Compared with feed-
forward methods in the first block,
COMPGS significantly improves the
generation quality by a large margin.
Though COMPGS is initialized from
the 3D priors obtained from Tochilkin
et al. (2024), COMPGS still enhances
text-3D alignment, likely due to the
dynamic optimization on composition-
level Gaussians. Furthermore, compared with the optimization-based methods, COMPGS shows
significant advantages in both two metrics. Even when compared to methods specifically designed
for compositional generation, e.g., VP3D Chen et al. (2024c) and Set-the-Scene Cohen-Bar et al.
(2023), COMPGS demonstrates clear improvements, indicating the effectiveness of our designs. Note
that COMPGS is not limited to compositional generation; the results in the track of single-object
generation are included in Appendix A.4.

Runtime Comparisons Though COMPGS is trained with 10k steps, we observed that training
the model for 5k iterations already produces high-quality content with minimal loss of texture
details. We show runtime comparisons with other models in Tab. 2. In fact, compositional 3D
generation (left) requires a longer training time than single-object generation (right) due to its
complexity. Compositional 3D involves optimizing individual objects and ensuring the consistency of
compositional scenes, making them more intricate. The runtime is generally relative to the number of
objects involved. Compared to open-source compositional 3D methods such as Set-the-Scene Cohen-
Bar et al. (2023), Progressive3D Cheng et al. (2023), and GraphDraemer Gao et al. (2024), our
proposed COMPGS is more efficient in training. For instance, given the prompt "a parrot talks beside
a perch and two bowls," Progressive3D takes approximately 250 minutes for 3D generation, while
Set-the-Scene requires around 110 minutes. Since many compositional scene generation methods
are not open-sourced, we also present the training steps listed in the papers for straightforward
comparisons. In addition, CompGS demonstrates comparable and even superior efficiency over other
methods in text-to-single object generation. For example, methods such as Magic3D Lin et al. (2023)
and Fantastic3D Chen et al. (2023b) require over five hours to optimize a single object. In contrast,
CompGS can achieve the same task in approximately 30 minutes.

Table 2: Runtime comparisons on both compositional generation and single object generation show
the efficiency of COMPGS.

Compositional Generation Single Object Generation

Method Open-source 3D
Representations

Training
Steps

Training Time
(minutes) Method Open-source 3D

Representations
Training

Steps
Training Time

(minutes)

Progressive3D Cheng et al. (2023) ✓ NeRF 40,000 220 DreamFusion Poole et al. (2022) ✓ NeRF - 360
Set-the-scene Cohen-Bar et al. (2023) ✓ NeRF 15,000 110 Magic3D Lin et al. (2023) ✓ NeRF - 340
CompNeRF Driess et al. (2023) × NeRF 13,000 - Fantastic3D Chen et al. (2023b) ✓ NeRF - 380
SceneWiz3D Zhang et al. (2024b) × NeRF 20,000 420 ProlificDreamer Wang et al. (2024) ✓ NeRF - 520
GraphDreamer Gao et al. (2024) ✓ NeRF 20,000 420 GaussianDreamer Yi et al. (2023) ✓ 3D Gaussians - 14

CompGS-10k (Ours) - 3D Gaussians 10,000 70 CompGS-10k (Ours) - 3D Gaussians 10,000 70
CompGS-5k (Ours) - 3D Gaussians 5,000 30 CompGS-5k (Ours) - 3D Gaussians 5,000 30

Extended Applications: 3D Editing COMPGS allows progressive 3D editing for compositional
scenes. We present 3D editing examples in Fig. 5. These examples demonstrate that by transferring
edited 2D compositionality and employing dynamic SDS optimization, COMPGS can progressively
incorporate new 3D entities into the original 3D scenes. For example, COMPGS can generate the

‘chair’, ‘panda’, ‘hat’ and ‘plant’ step by step as shown in Fig. 5.
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a Victorian-

style wooden 

chair
Panda a wizard hat

looking at a Ficus 

in a pot

Figure 5: 3D Editing examples of COMPGS.
More examples could be found in Appendix A.9.

Full Setting w/o Gaussian Initialization

w/o Decomposed Optimization w/o Volume-adaptive Optimization

Figure 6: Visual results of the ablation studies on
three key designs in COMPGS.

4.3 ABLATION STUDY

We conduct ablation studies to validate the effectiveness of three key designs in COMPGS: Gaussian
parameters initialization, decomposed optimization (DO), and volume-adaptive optimization (VAO).
We randomly choose 20 prompts from T3Bench for the quantitative evaluation. Meanwhile, we use
Fig. 6 to visualize the effect of each component.

Table 3: Ablation Studies on T3Bench He et al.
(2023).

Component Quality Alignment Average

Full Setting 53.8 38.0 45.9
- w/o GS Init. 22.8 18.7 20.8
- w/o DO Strategy 46.8 35.2 41.0
- w/o VAO Strategy 50.8 36.4 43.6

Initialization Instead of initializing Gaussian
parameters using 2D compositionality, we con-
duct random initialization within a predefined 3D
bounding box for each entity Gaussian. A signif-
icant decrease in the quality and alignment metric
is observed in Tab. 3. Besides, the visualization
in Fig. 6 confirms that training from random ini-
tialization with predefined layouts may result in
low-quality textures (e.g., owl’s face) and missing
entities (e.g., the branch).

Decomposed Optimization We analyze the decomposed training by discarding the entity-level
optimization. Results in Tab. 3 and Fig 6 both indicate that removing decomposed training leads to
low-fidelity generation. For example, in Fig. 6, optimizing composition-level Gaussians results in a
relatively blurred generation on the owl’s fur and the pinecone, validating that optimization on each
single entity is necessary to effectively leverage 2D diffusion priors to guide 3D generation.

Volume-adaptive Optimization To evaluate the effectiveness of volume-adaptive optimization, we
choose to optimize the entity Gaussians in their original 3D space. We observed that optimizing
different entities within varying sizes of 3D space slightly decreased in quality and alignment, which
is noticeable for smaller objects in the compositional scene. For instance, the ‘pinecone’ and ‘branch’
trained without volume-adaptive optimization exhibited fewer fine-grained details, shown as the
green leaves on the branch and the shadow on the pinecone in Fig. 6.

5 CONCLUSION

In this paper, we introduced COMPGS, a user-friendly, optimization-based framework, which achieves
compositional text-to-3D generation utilizing Gaussian Splatting. Our three core designs, including
initializing 3D Gaussians with 2D compositionality, decomposed optimization for either entity-level
or composition-level Gaussians, and volume-adaptive optimization, contribute to the success of
COMPGS. Through both qualitative and quantitative experiments, we demonstrate COMPGS is
capable of generating complex interactions between multiple entities in 3D scene. We hope that our
work inspires further innovation and advancements in the compositional 3D generation.

Impacts and Limitations As a text-to-3D model, we do not foresee obvious undesirable ethical/social
impacts. One limitation is that when the given prompt includes backgrounds (e.g., ground, sky),
COMPGS may fail to generate these elements adequately. This is due to the current text-guided
segmentation model’s inability to segment such abstract concepts. We leave it for future exploration.
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A APPENDIX / SUPPLEMENTAL MATERIAL

In this supplementary material, we first clarify the notations used in this paper and then revisit the
proposed COMPGS in Algorithms 1. The training details of COMPGS will also be provided. Besides,
we provide more numerical and visual evaluations to further validate the effectiveness of our model.
We have provided a demo video in the attachment to display more visual comparisons between
COMPGS and other methods. We will make code public.

A.1 NOTATIONS

We compile a comprehensive list of all the notations utilized in this paper, as shown in Table 4.

Table 4: Notations.

Notation Description

L Total number of entities
V Complex prompt (e.g., ’an owl perches on a branch near a pinecone’)
I Composed image generated by the 2D diffusion model
vl Entity-level prompt for entity l, (l ∈ L)
Il Segmented image containing entity l, (l ∈ L)
ml Rough triangle mesh of the 3D entity l, (l ∈ L)
θl 3D Gaussians for the entity l, (l ∈ L)
θ Composed 3D Gaussians l
N Number of points indexed from each mesh
µl
i Center positions of each vertex of mesh ml in R3

cli Texture colors queried from each vertex of mesh ml in R3

bboxl 3D bounding box for entity l, used for optimization
bboxstd Standardized volumetric space for scaling
µ Center positions of each vertex in the original 3D space
µ̂ Transformed center positions of entity Gaussian after scaling
β Shift parameters for the center positions of the bounding box
λ Scale parameters for standardizing the volumetric space
x Rendered image from 3D Gaussians
g(·) Gaussian Splatting rendering function
β the shift parameters for volume-adaptive optimization
λ the scale parameters for volume-adaptive optimization
Mean(·) the operator computing the center coordinates of the given bounding box
θ̂ New Gaussians initialized from the edited 2D image

A.2 ALGORITHM

We provide pseudocode in Algorithm 1. Two core designs, including 3D Gaussian initialization with
2D compositionality and dynamic SDS optimization, are detailed.

A.3 ADDITIONAL TRAINING DETAILS

COMPGS is implemented in ThreeStudio Guo et al. (2023). We use DALL·E 3 Betker et al. (2023),
LangSAM Medeiros (2024) and TripoSR Tochilkin et al. (2024) to implement the text-to-image,
text-guided segmentation, and image-to-mesh, respectively. For entity-level optimization, we adopt
MVDream Shi et al. (2023) as the 3D diffusion prior; while for composition-level optimization,
we employ stabilityai/stablediffusion-2-1-base Rombach et al. (2022b) as the 2D diffusion prior.
We set all the diffusion guidance as 50. For all Gaussian parameters, we linearly decreased the
learning rate for position µ from 10−3 to 10−5, for scale from 10−2 to 10−3, and for color c from
10−2 to 10−3, respectively. Besides, we fixed the learning rate for opacity a to be 0.05, and for
rotation to be 0.001. Additionally, we use a consistent batch size of 4 for both training and test, and
a rendered resolution fixed at 1024× 1024. Camera settings during training are set with distances
ranging from 0.8 to 1.0 relative units, a field of view between 15 and 60 degrees, and elevation
ranging up to 30 degrees. Additionally, there are no perturbations applied to camera position, center,
or orientation, maintaining a controlled imaging environment. For test, we set the resolution of
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Algorithm 1 COMPGS: 3D Gaussian Initialization and Dynamic SDS Optimization V, {vl}(l ∈ L):
Input prompt and entity-level prompts.
{ml}(l ∈ L): Entity-level meshes.
θ, {θl}(l ∈ L): Composition-level Gaussian parameters and entity-level Gaussian parameters.
bboxstd: Standardized volumetric space.
L: The number of entities.
N : The number of Gaussian parameters.
T2I: Text-to-Image models.
TGS: Text-guided segmentation models.
I2M: Image-to-Mesh models.
Zoom↑, Zoom↓: Zoom-in and Zoom-back operators in Eq. 4.
η: Learning rate.
T : Total training iterations.

Stage 1: Initializing 3D Gaussians with 2D Compositionality.
I = T2I(V ) ▷ Generate well-composed Image from the given prompt
{vl} = LLM(V ) ▷ Obtain entity-level prompts via LLM
{ml} = I2M(TGS({vl}, I)) ▷ Obtain entity-level meshes
µi(i ∈ N), ci(i ∈ N)← ml(l ∈ L) ▷ Positions and colors of the 3D Gaussians.
D ← µi(i ∈ N) ▷ Distance between the nearest two positions.
Σi(i ∈ N), αi(i ∈ N)← D, 0.1 ▷ Covariance and opacity of the 3D Gaussians.
bboxl(l ∈ L)← µi(i ∈ N) ▷ Boundary of bounding box

Stage 2: Dynamic SDS Optimization.
for t = 1 to T do

l← randint(1, L) ▷ Randomly select an integer l from the range 1 to L
if i = 0 then

∇θL2d
SDS(ϕ, x = g(θ)) ≜ Et,ϵ

[
w(t) (ϵ̂ϕ(zt, V, t)− ϵ) ∂x

∂θ

]
▷ Obtain the gradients via SDS loss with 2D priors

∇θL3d
SDS(ϕ, x = g(θ)) ≜ Et,ϵ

[
w(t) (ϵ̂ϕ(zt, v, t)− ϵ) ∂x

∂θ

]
▷ Obtain the gradients via SDS loss with 3D priors

θ ← θ − η(∇θL2d
SDS +∇θL3d

SDS)
▷ Update the compositional Gaussian parameters via back-propagation

else
θ̂l ← Zoom↑(θl,bboxl,bboxstd)

▷ Dynamically zoom-in Gaussian parameters from bboxl to a standardized space bboxstd

∇θ̂l
L3d

SDS(ϕ, x = g(θ̂l)) ≜ Et,ϵ

[
w(t) (ϵ̂ϕ(zt, vl, t)− ϵ) ∂x

∂θ̂l

]
▷ Obtain the gradients via SDS loss with 3D priors

θ̂l ← θ̂l − η∇θ̂l
L3d

SDS
▷ Update the compositional Gaussian parameters via back-propagation

θl ← Zoom↓(θ̂l,bboxl,bboxstd)
▷ Dynamically zoom-back Gaussian parameters from the standardized space bboxstd to bboxl

end for
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‘A dripping paintbrush stands poised above a half-finished canvas’

‘An intricately-carved wooden chess set’

‘An old brass key sits next to an intricate, dust-covered lock’

‘A scientist is examining a specimen under a microscope’

‘A fisherman is throwing the fishing rod in the sea’

‘A chessboard is set up, the king and queen standing in opposition’

‘A brown horse in a green pasture’

DreamFusion Magic3D LatentNeRF Fantasia3D SJC ProlificDreamer VP3D COMPGS (ours)

Figure 7: Qualitative comparisons between COMPGS and other text-to-3D models on T3Bench
(multiple objects track). COMPGS is better at generating highly-composed, high-quality 3D contents
that strictly align with the given texts. Watch the animations by clicking them (Not all PDF readers
support playing animations. Best viewed in Acrobat/Foxit Reader).

rendered image as 1024× 1024 with specific camera distance and field of view for validation set to
3.5 units and 40 degrees, respectively. For each prompt, we train the model on an NVIDIA A100
GPU (40G) for 10,000 iterations, which takes approximately 70 minutes. We observed that training
the model for 5,000 iterations already produces high-quality content with minimal loss of texture
details. This indicates that the training duration can be shortened to around 30 minutes. However, to
achieve high-quality 3D textures, we use 10,000 iterations for training in this paper, unless otherwise
specified.
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‘A castle-shaped sandcastle’

‘A cherry red vintage lipstick tube’

‘A fluffy, orange cat’

‘A fuzzy pink flamingo lawn ornament’

‘A hot air balloon in a clear sky’

‘A paint-splattered easel’

‘A rustic wrought-iron candle holder’

DreamFusion Magic3D LatentNeRF Fantasia3D SJC ProlificDreamer VP3D COMPGS (ours)

Figure 8: Qualitative comparisons between COMPGS and other text-to-3D models on T3Bench
(single object track). COMPGS is better at generating high-quality 3D assets that strictly align
with the given texts. Watch the animations by clicking them (Not all PDF readers support playing
animations. Best viewed in Acrobat/Foxit Reader).

A.4 EXTENDED EXPERIMENTS ON QUALITATIVE COMPARISONS

Qualitative Model Comparisons on Multi-objects Generation Fig. 7 showcases additional 3D
assets produced by COMPGS. The prompts are selected from T3Bench (multiple objects track).
Compared to previous methods, COMPGS not only generates multiple objects but also produces
more plausible interactions while maintaining 3D consistency among the objects. For example, in
the first row, previous methods such as DreamFusion, Magic3D, LatentNeRF, Fantasia3D, SJC,
and ProlificDreamer all fail to generate the canvas described in the given prompt. Although both
VP3D and COMPGS can generate the two entities (paintbrush and canvas), VP3D fails to maintain
3D consistency, as the back view of the canvas is not visually plausible. In this case, COMPGS
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Table 5: Quantitative comparisons with baselines on T3Bench He et al. (2023) (all three tracks).
COMPGS is compared with feed-forward models, optimization-based models, and models specifically
designed for compositional generation.

Method Single Object Single Object with Surroundings Multiple Objects
Quality Alignment Average Quality Alignment Average Quality Alignment Average

LRM Hong et al. (2023) 29.4 38.2 33.8 20.3 35.1 27.7 15.2 25.5 20.4
TripoSR Tochilkin et al. (2024) 34.3 38.9 36.6 21.8 37.2 29.5 16.7 28.6 22.7

DreamFusion Poole et al. (2022) 24.9 24.0 24.4 19.3 29.8 24.6 17.3 14.8 16.1
SJC Wang et al. (2023a) 26.3 23.0 24.7 17.3 22.3 19.8 17.7 5.8 11.7
LatentNeRF Metzer et al. (2023) 34.2 32.0 33.1 23.7 37.5 30.6 21.7 19.5 20.6
Fantasia3D Chen et al. (2023b) 29.2 23.5 26.4 21.9 32.0 27.0 22.7 14.3 18.5
ProlificDreamer Wang et al. (2024) 51.1 47.8 49.4 42.5 47.0 44.8 45.7 25.8 35.8
Magic3D Lin et al. (2023) 38.7 35.3 37.0 29.8 41.0 35.4 26.6 24.8 25.7

Set-the-Scene Cohen-Bar et al. (2023) 32.9 31.9 32.4 30.2 45.8 35.5 20.8 29.9 25.4
VP3D Chen et al. (2024c) 54.8 52.2 53.5 45.4 50.8 48.1 49.1 31.5 40.3

COMPGS 55.1 52.5 53.8 43.2 46.8 45.0 54.2 37.9 46.1

successfully captures both the key entities described in the prompt and generates reasonable spatial
relationships and interactions between the two objects. This phenomenon can also be observed in
other cases, such as the key and lock in the third row, and the fisherman in the sea in the fifth row,
and so on. Besides the issue of 3D consistency, we found that COMPGS performs better in texture
alignment. For example, in the second-to-last row, other methods failed to display the combination
of chessboard, king, and queen. Specifically, VP3D did not recognize the king and queen as chess
pieces. In contrast, COMPGS generates these entity details more accurately. Overall, the comparisons
in both visual quality and textural alignment with previous methods demonstrate the effectiveness of
the proposed COMPGS.

Qualitative Model Comparisons on Single-object Generation Though COMPGS is specifically
designed for compositional generation, it can naturally handle single-object generation as well. We
present the qualitative comparisons between COMPGS and previous works in Fig. 8. It is observed
that COMPGS performs better in maintaining multi-view consistency and generating fine-grained
details of the object. For example, in the last row of Fig. 8, COMPGS is capable of generating a 3D
consistent candle holder, including detailed copper textures. In contrast, other methods either fail to
produce the corresponding shape Chen et al. (2023b), only generate rough outlines without detailed
textures Poole et al. (2022); Lin et al. (2023); Metzer et al. (2023); Wang et al. (2023a), or produce
3D patterns with discontinuities Wang et al. (2024); Chen et al. (2024c).

Qualitative Model Comparisons with Scene-generation Methods We also compare COMPGS with
closed-source models Zhou et al. (2024); Cohen-Bar et al. (2023) that generate 3D scenes. Figures
were selected from Zhou et al. (2024) and are presented in Fig. 9. The results indicate that COMPGS
excels in generating high-fidelity texture details and complex interactions. In the second row of
Fig. 9, COMPGS produces more detailed textures for table legs and rabbit fur. Regarding interaction
generation, Set-the-Scene Cohen-Bar et al. (2023) fails to create complex spatial relationships,
as shown with the dog and the Great Pyramid in the first row. Although GALA3D can generate
reasonable spatial relationships, it fails to incorporate mutual interactions between objects. This is
because it performs compositional generation by optimizing the layout of each object individually,
neglecting other inter-interactions such as the rabbit’s mouth on the cake and the dog’s paw on the
plate. In contrast, COMPGS generates higher-fidelity textures (e.g., the table body, rabbit fur) and
more realistic interactions among objects (e.g., the dog’s paw hanging off the plate rather than just
resting on top).

Qualitative Model Comparisons with Other Compositional Generation Methods In the main
paper, we have compared COMPGS with both open-sourced compositional 3D generation baselines
(Set-the-scene and VP3D) in Table 1, and close-sourced baselines (GALA3D) in Figure 9. Results
show that the 3D assets generated by COMPGS are not only high-quality in appearance, but also
align with the given prompts more strictly. We have included qualitative comparisons with both
GraphDreamer Gao et al. (2024) and DreamGaussian Tang et al. (2023) in Fig. 10. Results show that
COMPGS demonstrates superior performance on both generation quality and text-3d alignment.

A.5 QUANTITATIVE MODEL COMPARISONS

Tab. 5 presents the complete quantitative comparisons on all three tracks of T3Bench. The results
indicate that COMPGS achieved state-of-the-art performance in compositional generation and slightly
outperformed competitors in the single object track. For instance, in the multiple object track,
our model surpassed the second-best work Chen et al. (2024c) by 5.1 in quality and 6.4 in texture
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‘A puppy lying on the iron plate on the top of Great Pyramid’

‘a rabbit is eating a birthday cake at the dining table’

‘Panda in a wizard hat sitting on a Victorian-style wooden chair and looking at a Ficus in a pot’

Set-the-Scene Cohen-Bar et al. (2023) GALA3D Zhou et al. (2024) COMPGS (Ours)

Figure 9: Qualitative Comparisons Between COMPGS and 3D Scene Generation Methods. We
selected the figures from Zhou et al. (2024) for these comparisons due to the unavailability of the
code. COMPGS performs better in generating object textures and complex interactions.

GraphDreamer CompGS (Ours)

‘A florist is making a bouquet with fresh flowers’

DreamGaussian CompGS (Ours)
‘A half-eaten sandwich sits next to a lukewarm thermos’

Figure 10: Extended comparisons with GraphDreamer Gao et al. (2024) and DreamGaussian Tang
et al. (2023).

alignment. In the single object track, our model also slightly outperformed the second-best work Chen
et al. (2024c) by 0.3 in both quality and alignment.

However, it is worth noting that our model did not achieve state-of-the-art performance in generating
single objects with surroundings. This is attributed to the text-guided segmentation model we use,
which does not effectively segment the background (e.g., ground, sky, etc.). We have explained this
in Sec. 5 and leave it for future improvement. Despite a slight decline in our texture alignment metric
in this track, our model still performed significantly better than other methods Tochilkin et al. (2024);
Hong et al. (2023); Poole et al. (2022); Wang et al. (2023a); Metzer et al. (2023); Chen et al. (2023b);
Wang et al. (2024); Lin et al. (2023); Cohen-Bar et al. (2023), except for VP3D.
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A.6 EXAMPLES IN USER STUDY

We provide examples of images and scenes used in our user study. In particular, we present concate-
nated rendering videos and ask participants to rank the eight methods shown in the video based on the
overall quality of the 3D objects and the alignment between the text and the 3D models. We average
the rank number as its ranking score for comparisons in Tab. 1.

‘An intricately-carved wooden chess set’

‘An old brass key sits next to an intricate, dust-covered lock’

Figure 11: Examples used in our user study.

A.7 ROBUSTNESS

We empirically found that COMPGS demonstrates the ability to address certain deficits caused by
off-the-shelf model priors (e.g., T2I and segmentation priors). Here are some illustrative examples:
(1) If certain parts of the target objects are not correctly segmented, COMPGS can complete the
unsegmented part with correct 3D information. This is demonstrated in Fig. ???12(left), where the
swing has not been segmented but has been generated by COMPGS correctly. This is facilitated
through the Entity-level Optimization procedure proposed in the DO strategy. (2) If the T2I models
fail to generate proper intra-object interactions, COMPGS can correct the multi-object interactions.
This is shown in Fig. ???12(right), where the spatial relationships in the given image are incorrect
and then corrected in the text-to-3D process. This is achieved by the Composition-level Optimization
in the proposed DO strategy.

T2I Image view-1 view-2 T2I Image view-1 view-2
‘A worn-out rubber tire swing’ ‘A dripping paintbrush stands poised above a half-finished canvas’

Figure 12: CompGS demonstrates the ability to address certain deficits caused by off-the-shelf priors.

A.8 FAILURE CASES

As discussed in Sec. 5, COMPGS exhibits limitations in generating backgrounds, such as ground and
sky. This is likely due to the current text-guided segmentation model’s inability to effectively segment
these abstract concepts. When the background is not well-segmented, we lose the corresponding
2D compositionality needed for initializing 3D Gaussians. This leads to two failure cases: (1) the
absence of background in the compositional 3D scenes, as seen with the missing grass in the second
column of Fig. 13, or (2) background generation of poor visual quality, such as the vague and unclear
depiction of grass in the first column of Fig. 13. It’s crucial to note that such limitations, whilst exist,
are not the focus of this work. These shortcomings can be overcome by enhancing the capabilities of
off-the-shelf models, effectively mitigating the manifested issues.
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‘a camping scene with a tent on the grassland and bench near a campfire’ ‘a butterfly is flying towards a flower in the grass’

‘A gardener is watering plants with a hose’ ‘A fuzzy pink flamingo lawn ornament on the water’

Figure 13: Failure Cases of COMPGS in background generation When text-guided segmentation
mode fails to segment the backgrounds, COMPGS may generate background with poor visual quality
or fails to generate background.

A.9 3D EDITING EXAMPLES

COMPGS offers a user-friendly approach to progressively conduct 3D editing for compositional 3D
generation. More visual examples are presented in Fig. ???14. For instance, given a compositional
prompt such as ‘A puppy lying on the iron plate on the top of the Great Pyramid, with a pharaoh
nearby’, we divide the generation process into four stages. Initially, we generate ‘the Great Pyramid’
on the left, then progressively add ‘the plate’, ‘the puppy’, and ‘the pharaoh’ to complete the 3D
scene. Notably, both the interactions and texture details can be well-produced during the editing
pipeline of COMPGS.

Overall prompt: ‘an owl perches on a branch near a pinecone, with a rat below the branch’

an owl perches on a branch near a pinecone a rat below the branch

Overall prompt: ‘A puppy lying on the iron plate on the top of Great Pyramid, with a pharaoh nearby’

the Great Pyramid an iron plate a puppy with a pharaoh nearby

Figure 14: More examples of 3D Editing. COMPGS provides a user-friendly way to progressively
edit on 3D scenes for compositional generation.
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