GNN-Based Detection of XSS Vulnerabilities to Strengthen Security for
Financial Web Transaction: A Web Browser Extension Approach

Abdelkader Tajtit
University Mohammed First Oujda Morocco
Avenue Mohamed VI, Oujda, Morocco
abdelkader.tajtit.d23@ump.ac.ma

Abstract

The rise of digital financial platforms in Africa has
improved access to services but also increased the risk
of cyberattacks like Cross-Site Scripting (XSS). XSS
attacks inject dangerous JavaScript code into websites,
which can steal user data or cause other harm. To help
protect users, we developed a Firefox extension that de-
tects malicious scripts in real time. This extension uses
a Graph Neural Network (GNN), a type of ATl model we
have already trained on Control Flow Graphs (CFGs),
to find hidden and complex malicious code. The exten-
sion shows a clear alert when it detects suspicious code
and highlights the dangerous part. It also includes a
chatbot assistant based on ChatGPT that explains the
code’s behavior in simple words. We tested the exten-
sion on real African financial websites and with sample
data, and it showed good results. This tool combines
strong Al detection with easy explanations to improve
online safety and user awareness.

1. Introduction

The rapid expansion of digital financial services and
e-commerce in Africa has elevated the region’s eco-
nomic growth, but it has also exposed users and or-
ganizations to escalating cyber threats. In 2024 alone,
the African region experienced over 131.6 million web-
based threat detections, including phishing, malware,
and exploit attempts, marking a 1.2% increase com-
pared to 2023 [1]. Notably, Kenya, South Africa, and
Morocco ranked highest, with nearly 20 million, 17 mil-
lion, and 12.6 million web threat attempts respectively
[1].

On average, African organizations faced 2,960 cy-
berattack attempts per week in Q2 2024, representing
a 37% increase year on year—the highest global rate
during that period [2] (see Figure 2).

Mohammed Serrhini
University Mohammed First Oujda Morocco
Avenue Mohamed VI, Oujda, Morocco

serrhini@gmail.com

Web threat detections in Africa (per country), 2024
Data from Kaspersky Sacurty Natwork
Kenya [19 695 165
south Africa [16 E95 099
Morocco NI 12 617 096
Tanzania | © 445 027
Cote Dveire [INEGNNN 7 516 677
camercon [7 415 530
Rwanda [N ¢ 6&3 T40
Argola [N & 348 503
Nigeria [NNNEGEGEGEEEE 5 547 695
Upanda [N 4 901 492

Figure 1. Web threat detection in Africa (2024).

Region Avg weekly attacks perorg | YoY Change
Africa 2960 37%
Latin America 2667 53%
APAC 2510 23%
Europe 1367 35%
North America 1188 17%

Figure 2. Regional Analysis of Cyber Attacks.

Furthermore, cybercriminal tactics targeting data
theft also surged: spyware attacks rose by 14%, while
password-stealer malware detections surged by 26% be-
tween 2023 and 2024 [3]. Among the most persistent
web-based threats is Cross Site Scripting (XSS)[4] a
type of vulnerability that allows malicious JavaScript
injection, posing severe risks to confidential data and
financial integrity particularly on user-centric web ap-
plications. According to OWASP, XSS remains one
of the top 3 vulnerabilities globally, accounting for ap-
proximately 30% of web application flaws, and has been
exploited in over 76% of organizations as of 2023 [5].
Despite familiarity with XSS, up to 90% of vulnerabil-
ities still evade detection even by advanced IT profes-
sionals [6]. Against this backdrop, web-based financial

platforms which often handle sensitive user credentials
and transaction data are especially vulnerable. Exist-
ing security tools often lack real-time, client-side de-
tection and do not provide user-friendly explanations.
In response, this paper presents a Firefox browser ex-
tension that performs real-time detection of malicious
JavaScript using a machine learning model we have
already developed. This model is based on a Graph
Neural Network (GNN)[7][8] trained on control flow
graph (CFG)[9] representations of obfuscated scripts
to accurately identify complex threats. When suspi-
cious behavior is detected, the extension automatically
generates an alert containing the extracted malicious
code snippet. In addition, the extension includes a
conversational assistant powered by a Large Language
Model (LLM)[10], enabling users to ask questions, re-
ceive semantic explanations, and gain contextual se-
curity guidance about the detected threat. This com-
bined approach integrating a developed GNN-based de-
tection model with natural language explanations im-
proves both accuracy and usability, offering a practi-
cal defense solution for financial web applications in
Africa’s growing digital economy.

2. System Overview

This system is a browser extension for Firefox
that helps users detect and understand dangerous
JavaScript code on websites, especially code that can
cause Cross-Site Scripting (XSS) attacks. We have al-
ready developed and trained the detection model us-
ing Graph Neural Networks (GNNs), and this trained
model is now integrated into the Firefox extension. The
system also uses Large Language Models (LLMs) like
ChatGPT to explain detected threats in simple lan-
guage. At the center of the system is a code extraction
module. This part of the extension scans the web page
and collects all JavaScript code. Then, the code is sent
to two components:

B The GNN detection engine: It converts the code
into a graph and uses the trained model to decide
if the code is safe or dangerous.

B The ChatGPT assistant: If the system finds dan-
gerous code, it highlights it and activates a chat-
bot. The user can ask questions like “Why is this
code dangerous?” and get clear answers in real
time.

One important feature of the system is its focus on
the user. Instead of just blocking code or showing con-
fusing alerts, it explains the risk clearly. This helps
users understand what is happening and learn about

web security. Here are some real examples of how this
system works:

B Scenario 1: Protecting a Bank Account Page

Figure 7 illustrates a step-by-step cyberattack us-
ing Cross-Site Scripting (XSS) against an online
banking website. The target is a bank in Africa
that provides digital services such as account bal-
ance checks, fund transfers, and bill payments.
The attack begins when a cybercriminal creates
malicious JavaScript code (Step 1) and sets up a
separate “drop site” at xxx.com to collect stolen
data (Step 2). Exploiting a security flaw in the
bank’s website (bank.com), the attacker injects
the harmful code into its pages (Step 3). When
a customer named Ali visits the bank’s site (Step
4), the page loads the malicious script, which
runs silently in his browser (Step 5). Without his
knowledge, the script sends sensitive information,
such as session cookies, from bank.com to the at-
tacker’s server (Step 6). Without protection, this
could allow the attacker to take control of Ali’s
account, transfer money, or misuse his personal
data.

In this case, a browser extension detects the ma-
licious JavaScript, highlights the dangerous code,
and warns Ali. The ChatGPT assistant explains
that the script is trying to send private data to
an untrusted server. Understanding the risk, Ali
avoids logging in and remains safe. This scenario
shows the importance of secure coding, regular
website security audits, and user awareness, es-
pecially for online banks in Africa where digital
banking adoption is growing but some systems still
lack modern security protections.

B Scenario 2: Unsafe African Government or Fi-
nance Website
Figure 8 illustrates a step-by-step cyberattack us-
ing Cross-Site Scripting (XSS) against an official
African government or finance website. The tar-
get is a site where users can submit documents or
manage mobile money accounts. The attack starts
when a cybercriminal crafts malicious JavaScript
code that steals session cookies and sets up a re-
mote server to collect this data. Exploiting a vul-
nerability in the website, the attacker injects the
harmful script into a user-editable form or pro-
file field. When a legitimate user visits the page,
the embedded script runs silently in their browser.
Without the user’s knowledge, the script trans-
mits the session cookie (PHPSESSID=...) to the
attacker’s server, which can then hijack the user’s
session and perform unauthorized actions.

This scenario highlights the critical need for se-
cure coding practices, vigilant monitoring of user
inputs, and user awareness tools especially on gov-
ernment and finance websites in Africa, where dig-
ital services are expanding but security measures
can lag behind evolving threats.

This example shows why such tools are important
in regions where websites may not follow modern
security practices. The system helps protect users
and also teaches them about security threats.

Figure 3 illustrates the architecture of the system,
highlighting the interaction between the extrac-
tion module, ChatGPT assistant and the user in-
terface components.

N Detects Malicious
—_— Target Website ;
Access to

Triggers

User

<script>
alert(d: .cookie)
</script>

i ChatGPT- (The script attempts to access cookies, Display
i Powered which indicates potential XSS behavior.
\ Assistant

Figure 3. Architecture of the system.

3. Experimental Implementation

To validate our proposed architecture, we devel-
oped a functional Firefox browser extension integrat-
ing a Graph Neural Network (GNN) model for real-
time detection of malicious JavaScript code, particu-
larly Cross-Site Scripting (XSS) attacks. The model
was trained on a curated dataset initially containing
37,605 samples, sourced from Kaggle, the OWASP XSS
Cheat Sheet, and common JavaScript libraries. After
preprocessing (deduplication, normalization, and qual-
ity filtering), the final dataset consisted of 19,359 sam-
ples, including 12,038 benign (62.18%) and 7,321 ma-
licious (37.82%) scripts. Figure 4 presents the compo-
sition and origin of the collected data.

Dataset Benign code XSS payload Total
Kaggle 6313 7373 13 686
JS library source code 11 120 - 11 120
XSS Cheat Sheet - 6047 6047
Materialize JS library 6752 - 6 752
Total 24 185 13 420 37 605

Figure 4. Sources and composition of the collected dataset.

To better simulate real-world scenarios, we enriched
the dataset with synthetic obfuscated XSS payloads
generated using a controlled language model. Each
script real or synthetic was transformed into a Con-
trol Flow Graph (CFG), allowing the model to capture

structural and semantic properties of the code. The
dataset was split into 80% training and 20% testing
sets, and the encoded CFGs were used to train the
GNN classifier embedded in the extension.

Upon detecting suspicious behavior, the system trig-
gers two main mechanisms:

B Real-time alert system: The extension displays a
warning to the user, clearly highlighting the pres-
ence of a potentially malicious script and identify-
ing its source within the web page (see Fig 5).

evalib)jemeebil(c=s . evalb. toString
(1dhiretern cfiowa=function{a){return a.repl

ace{fE([~: 12} ; g.Tunc

Figure 5. Real-time Alert.

B ChatGPT-powered assistant: A dialog interface is
launched, providing an easy-to-understand expla-
nation of the detected script’s behavior to increase
user awareness, even for those without cybersecu-
rity expertise (see Fig 6).

ewal(b)jc===bll{c=8.eval{b.toString
Jireturn cliows=function{aj{return s.repl

T e [T T

The JavaSzsriper code uses evallb), which exec

utes the string b ai code—a major security

isk. I b comtaims wser fnput, this allows a
trackers ta rum arbiTrary sercipts in the bro
wser, The conditlion ¢ === b AR (c = &.eval

(b.taStrimgl}3) Turther fncreases the rizsh b
v executimg the ssme code sgsin in snother o
ontext. This cean help bypass certain secwrit
yw Tilters. The owa Tumctiom tries to decods
HTHL entities, but itz dncomplete, possibly

Figure 6. ChatGPT Analysis.

Additionally, we conducted experiments on real-
world websites, including publicly accessible pages of
financial platforms and banking institutions operating
in Africa. These tests covered online services such as
money transfers, digital wallets, and user authentica-
tion forms. The goal was to evaluate the extension’s

- 1- Artacker crafts a
’ malicious javascript

-
s
!
r 3- Artacker injects the lavaScript
I into a victim website (Bank com)
L} by exploiting its vulnerability

AT Mmoo

— o — — — — — — — — — — —

P XX X.COM

2- Attacker sets up a
drop site(xoo.com) to
collect user data

l 4~ Al visits bank.com I

_;1-

5- Malicious JavaScript is
loaded from bank.com and
executed by Ali's web browser

T o e e o e e e W

—— — — — — — — — — — — — —

Browser will execute the
embedded script & thus the
logged in sessiom 1D s
passed to the attacker.

L)
= e The page needs permission to I
work properly. Let’s allow it 1

| PHPSESSID= 45sjhhajhjhsqdj9qsd]

<seript>
sre=""http://mysite.in?+document.cookie;

-

(et s =ee 4F this
helps the page

! </script>
*

Figure 8. Scenario of Unsafe African Government or Finance Website.

performance in high-risk, real-use scenarios typical of
the African fintech sector. Initial results showed that
integrating an Al model into a browser extension is
technically feasible and effective for real-time detection
of malicious client-side scripts. The combination of au-
tomatic detection with natural language explanations
provided by ChatGPT makes the tool especially useful
in low-digital-literacy environments, where users may
not fully understand security alerts. This experimen-
tal implementation demonstrates the practical poten-
tial of Al-driven browser security tools in real-world
applications, especially in regions where digital finance
is growing but user-side protections remain limited.

4. Conclusion

In this work, we proposed and implemented a novel
Firefox browser extension aimed at detecting and ex-
plaining malicious JavaScript code, with a particular
focus on Cross-Site Scripting (XSS) attacks. Our ap-
proach combines Al-based detection mechanisms with

a natural language assistant powered by ChatGPT,
providing both technical protection and user-friendly
explanations. The system architecture was designed
for real-time operation, seamlessly integrated within
the browser environment. Experimental testing on
real-world financial websites, including African bank-
ing platforms, demonstrated the feasibility and effec-
tiveness of our solution. The extension accurately iden-
tified suspicious scripts and alerted users, while also
offering valuable contextual insights to promote user
awareness and trust. Our work shows the potential of
combining machine learning and large language models
(LLMs) to address client-side web security challenges
in a transparent and explainable way. This is espe-
cially important in emerging digital ecosystems like
those across Africa, where fintech adoption is growing
fast but often lacks adequate end-user protection tools.

References

1]

Kaspersky Lab, “14% increase in spyware attacks on
African businesses: Kaspersky presents a cyberthreat
landscape report at Gitex Africa in Morocco,” 2025.
Available: https://shorturl.at/sJUQd

Check Point Software, “Africa sees 37% surge in cyber
attacks,” 2025. Available: https://shorturl.at/FhAlb

Technext24, “10 Nigerian startups to watch in 2025,”
Apr. 11, 2025. Available: https://shorturl.at/x072Y

P. M. D. Nagarjun and S. Shakeel Ahamad.
Cross-site scripting research: A review. Inter-
national Journal of Advanced Computer Sci-
ence and Applications (IJACSA), 11(4), 2020.
http://dx.doi.org/10.14569/IJACSA.2020.0110481.

SiteGuarding, “Top 10 website security threats in 2025
and how to protect against them,” 2025. Available:
https://shorturl.at/HP36i

Vigilance Security Magazine, “90% of XSS web vulner-
abilities still fool advanced IT experts,” 2025. Available:
https://shorturl.at/np705

Jie Zhou, Ganqu Cui, Shengding Hu, Zhengyan
Zhang, Cheng Yang, Zhiyuan Liu, Lifeng Wang,
Changcheng Li, Maosong Sun. Graph neural
networks: A review of methods and applica-
tions. AI Open, 1:57-81, 2020. ISSN 2666-6510.
https://doi.org/10.1016/j.aiopen.2021.01.001.

B. Khemani, S. Patil, K. Kotecha, et al. A re-
view of graph neural networks: concepts, architec-
tures, techniques, challenges, datasets, applications,
and future directions. J Big Data, 11:18, 2024.
https://doi.org/10.1186/s40537-023-00876-4.

K. Sendjaja, S. A. Rukmono, and R. S. Per-
dana. Evaluating control-flow graph similarity for
grading programming exercises. In 2021 Interna-
tional Conference on Data and Software Engineering
(ICoDSE), Bandung, Indonesia, 2021, pp. 1-6. doi:
10.1109/ICoDSE53690.2021.9648464.

[10] M. A. K. Raiaan et al. A review on large language

models: Architectures, applications, taxonomies, open
issues and challenges. IEEE Access, 12:26839-26874,
2024. doi: 10.1109/ACCESS.2024.3365742.

https://shorturl.at/sJUQd
https://shorturl.at/FhAlb
https://shorturl.at/x072Y
https://shorturl.at/HP36i
https://shorturl.at/np705

