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ABSTRACT

In-context learning (ICL) is an emerging ability of language models, and its effec-
tiveness hinges on the selection of effective in-context examples for every query.
Existing research predominantly rely on retrieval techniques to curate such poten-
tial examples for each query. These examples are then ranked by a specialized
scoring language model, distinguishing between positive (effective) and negative
(ineffective) examples as demonstrations. These results then inform the training of
a dense retriever to select effective demonstrations for queries at test time. Exist-
ing approaches suffers from narrow selection criteria, lack of explainability, and
limited robustness and transferability. This paper introduces a novel approach,
grounded in linguistic principles, which defines the key criteria that effective
demonstrations should meet. These criteria are language model agnostic, demon-
strate superior performance not only in a standard ICL setting but also in domain
adaptation settings and in contexts devoid of task-specific instructions, provide
explanations for selecting demonstrations, and shed light on inherent biases in ex-
isting methods. The proposed approach outperforms five strong baselines across
seven tasks. Notably, it achieves higher performance than explicitly optimized
models for ICL, such as MetaICL, highlighting its potential applications on large
scale models.

1 INTRODUCTION

As the scale of language models (LMs) inflates, in-context learning (ICL) emerges as a new ability of
LMs. In ICL, a handful of labeled training examples (or demonstrations) and a single test example
(or query) are concatenated to prompt the LM to infer the label of the query. Given the context
size limitation of LMs, only a select few examples can serve as demonstrations for each query.
Existing research show that the quality and formatting of demonstrations largely influence the ICL
performance, and proposed techniques for demonstration selection (Li et al., 2023; Levy et al., 2023;
Zhang et al., 2022; Rubin et al., 2022; Liu et al., 2022) and ordering (Zhang et al., 2022; Lu et al.,
2022). The present work focuses on demonstration selection, aiming to select the most informative
and performant demonstrations from labeled examples for strong and stable ICL performance.

Most existing approaches formulate the demonstration selection task as a retrieval problem, where
for each query, k demonstrations are selected from labeled examples based on their similarity to
the query. Some methods adopt heuristic-based approaches, including L2 distance in embedding
space (Liu et al., 2022) or syntactic overlap (Levy et al., 2023). Other approaches pre-select and
label a few seed examples to train a dense retriever (Rubin et al., 2022; Li et al., 2023), or train a
policy network with reinforcement learning (Zhang et al., 2022) for demonstration selection.

Existing methods suffer from three shortcomings: (1): narrow selection criteria: current heuristic-
based approaches focus on particular aspects of demonstrations (e.g., syntax), and dense retriever-
based methods primarily rely on lexical similarity and may be insufficient for tasks that require
deeper features or reasoning (Rubin & Berant, 2021). Recent studies like (Min et al., 2022b; Yoo
et al., 2022) highlight how different factors of demonstrations, e.g. the distribution of inputs and
use of gold labels, can influence ICL performance. (2): Lack of explainability: existing meth-
ods, especially those based on dense retrieval and reinforcement learning, do not provide human-
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comprehensible justifications to rationalize their selection process or insights into which demonstra-
tion factors contribute to their selection. This opacity can hinder adaptability to new tasks and gen-
eralizability of results. (3): Compromised robustness and transferability: existing dense retrieval-
based methods may be sensitive to the choice of scoring LM, and the selected demonstrations may
not seamlessly transfer to another inference LM.

In this paper, we present Linguistically-Grounded and Explainable Demonstration Retrieval
(LGEDR) for In-Context Learning. We propose several linguistically-grounded and human-
understandable criteria that effective demonstrations and prompts need to fulfill. Based on these
criteria, we design two retrieval methods to select demonstrations without the need for task-specific
instructions. Critically, our approach can quantitatively explain which criteria and to which extent
contribute to demonstration selection for each query. This capability not only enhances transparency
but also uncovers different inductive biases of existing demonstration retrieval methods.

Experiments show that, compared to five strong baselines, the proposed approach yields an average
improvement of 9.7 absolute points (in terms of F1 score and accuracy metrics) across seven NLP
tasks. Notably, our method outperforms MetaICL (Min et al., 2022a), which explicitly trains large
LMs (LLMs) for ICL, without incurring the significant costs of learning from hundreds of NLP
datasets and extensive training.

Our main contributions include

• enriching existing demonstration selection approaches with linguistically-grounded and
human-understandable criteria that effective demonstrations and prompts need to fulfill;

• showing the efficacy of the proposed demonstration selection criteria in case of smaller
LMs, in the absence of task instructions, and in transfer settings; and

• providing explanations for demonstration selection from linguistic perspective.

2 RELATED WORK

Instability and bias in ICL ICL suffers from unstable performance. With different sets of demon-
strations, ICL performance varies and its is not guaranteed to improve when more demonstrations
are added or when larger models are used (Zhao et al., 2021; Zhang et al., 2022). Different ordering
of demonstrations can lead to variant performance (Zhang et al., 2022; Lu et al., 2022). Zhao et al.
(2021) find that GPT-3’s predictions are influenced by majority label, recency, and common token
biases in demonstrations. Majority label bias indicates a skew toward frequently appearing labels
in demonstrations; the more often a label is present, the more likely the model is to produce it. Re-
cency bias indicates bias toward labels of demonstrations that closest to the queries in the prompt.
Common token bias indicates bias toward common tokens in the pre-training corpus. Chen et al.
(2023) find that the sensitivity of a prompt is negatively correlated with its performance. In addition
to demonstrations, the instruction wording can cause the LM to flip its predictions, even in cases
where both instructions are semantically similar to human beings (Chen et al., 2023). The overall
format of the prompt can also have a strong impact on the ICL performance. Min et al. (2022a) find
that replacing the input and the label for each demonstration used can lead to better performance.
To stabilize ICL, Zhao et al. (2021) developed techniques that impose LLMs to assign equal proba-
bility across the outputs in case of context-free prompts, and show that such calibration results in a
more stable performance. Chang & Jia (2023) find a subset of examples based on development set
performance from which arbitrary selection leads to low standard deviation of performance.

Explanation of demonstration Recently, several work have investigated different aspects of
demonstrations affects ICL performance. Min et al. (2022b) observe that replacing ground-truth
labels in demonstrations barely hurts the performance on several classification and multi-choice
tasks, while the label set has a larger influence. On the other hand, Yoo et al. (2022) argue that the
impact of ground-truth labels varies across different experimental setups. Wei et al. (2023) show
that only LLMs have such flexibility to override their prior knowledge and learn from semantically
unrelated labels. Ye et al. (2023) show that a diverse demonstration set can result in a better rea-
soning performance, and computation trace and wording of the explanations can better express the
prompt.
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Figure 1: Illustration of LGEDR. We propose three linguistically-inspired criteria to measure the
quality and rank candidates.

Demonstration selection Previous works mostly formulate demonstration selection as a retrieval
problem, where a set of demonstrations is selected from a large labeled set (usually the training set of
the task), either for a specific text example or for all test examples. Rubin et al. (2022) trains a dense
retriever to select effective demonstrations, where the training data is generated by scoring each pair
of training examples with a scoring LM. However, examples scored positively by the scoring LM
across training pairs does not necessarily indicate their effectiveness in the downstream inference
LM on the test set. Li et al. (2023) iteratively score candidates and train a unified dense retriever
for various NLP tasks with task instructions. However, the performance improvement depends
largely on iterative scoring and training, and the quality of task instructions, which requires domain
knowledge. Besides dense retrievers, heuristic-based metrics are proposed, such as L2 distance (Liu
et al., 2022) and diversity of syntactic structure (Levy et al., 2023). Zhang et al. (2022) formulates
the problem as a sequence of decisions and applies reinforcement learning to determine the optimal
choice of demonstrations at each step. Although the approach introduces a new perspective, it can
be expensive since the action space is exponential with respect to the size of the candidates. Chang
& Jia (2023) score each training example based on its performance on validation set, resulting in
a stable set of examples, where random selection from the set yields good performance. Existing
works are limited by lexical-based candidate filtering and inefficient LM-based candidate scoring,
which is the focus of the present work.

3 PROPOSED APPROACH

Problem formulation Given a set of labeled candidates C, a test setQ, and an inference language
model f , we aim to train a dense retriever that, for every test query q ∈ Q, selects k query-specific
training examples from C and constructs them as a prompt P such that f(P) correctly produces the
label of the test query q.

3.1 LINGUISTICALLY-GROUNDED DEMONSTRATION FEATURES

In order to select effective demonstrations, we advocate for the adoption of distinct criteria, as illus-
trated in Figure 1. Unlike existing techniques that rely on a single scoring LM to access the qual-
ity of demonstrations, our approach integrates several linguistically-grounded criteria for a more
comprehensive evaluation. Adopting these criteria results in several advantages over a single scor-
ing LM. First, they augment the traditional scoring LM-based selection with intuitive and human-
understandable attributes. Second, the need for a scoring LM, thus the associated costs, can be
avoided. Third, being independent of any specific scoring LM, our criteria result in better robust-
ness and transferability compared to sole reliance on a single scoring LM.
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Difficulty We hypothesize that a good set of demonstrations should match the difficulty level of
the query, necessitating similar extents of knowledge or reasoning required to predict the label for
the query. Easy demonstrations may not provide sufficient information for hard queries, whereas
hard demonstrations may be excessive for easy queries. Drawing inspiration from previous work
on neural density estimation and curriculum learning (De Cao et al., 2020; Wang et al., 2021), we
characterize the difficulty of an example through the class imbalance of its neighboring examples,
regularized by the number of such neighbors. Specifically, for each test example xi, we first define
its immediate neighbors Ni as the training examples lying within a spherical space of radius r in an
embedding space:

Ni,r = {j
∣∣∣||xj − xi|| ≤ r, ∀xj ∈ C\xi}, (1)

where C is set of training examples; in what follows, we omit the subscript r fromNi,r for simplicity.
As illustrated in Figure 1, if yi is the same as the label of most neighbors yNi

= {yj , j ∈ Ni}, then
xi is deemed easy because its class can be easily inferred from its neighboring examples. However, if
yi is different from the label of most neighbors, then xi is likely to be a hard example. The difficulty
of xi can thus be measured through the class imbalance within Ni. We compute the number of
neighbors that share the same label as xi as:

N |yNi
=yi

=
∑
j∈Ni

1yj=yi
(2)

where 1 is the indicator function. The difficulty of xi can be expressed as its class imbalance:

Diff(xi) = 1−
N |yi=yNi

|Ni|+ ϵ
, (3)

where ϵ is used to regularize the number of neighboring examples of xi, which varies considerably
across training examples and needs to be taken into account for difficulty measurement. Examples
with few neighbors tend to be difficult due to lack of sufficient information about them. Given the
maximum and minimum neighbor counts for training examples, we define a regularization term ϵi
for each xi using the following geometric mean:

ϵ =
( 1

|C|
max

j
|Nj |

)(1−γ)

×
( 1

|C|
min
j
|Nj |

)γ

, (4)

where γ ∈ [0, 1] is a hyperparameter to weight the maximum and minimum number of neighbors.

Coverage We hypothesize that a good set of demonstrations should cover the breadth and diversity
of the training examples, thereby enabling the LM to reconstruct the latent concepts and underlying
nuances of the labels. A higher coverage is more likely to describe the classes and their boundaries
to the LM in a more systematic manner. To quantify this coverage, we use the minimum area of a
surface (an circle or ellipse) in the embedding space. For a set of k demonstrations, we can compute
their coverage as:

Cov({xi}k−1
i=0 ) = min

M∈M

∮
M({F (xi)}k−1

i=0 ), (5)

where F denotes a pre-trained feature extractor and M denotes the manifold on which the k demon-
strations reside.

Semantic shift We hypothesize that a good set of demonstrations should exhibit a cohesive and
smooth semantic relationship, both among themselves and in relation to the query. Such similarity
aids in collectively steering the LM toward a correct prediction. Moreover, semantic consistency
within a prompt can help determine the predictability of the next token. We measure this consistency
by quantifying semantic shift between successive demonstrations and between demonstrations and
the query. Given two examples xi and xj , we use the L2 distance between their sentence embeddings
as a proxy of semantic shift:

Shift(xi, xj) = ||F (xi)− F (xj)||. (6)
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3.2 DEMONSTRATION RETRIEVAL

For each query, we rank the candidates with the above three linguistic criteria, and average the
relative order to obtain a final ranked list of candidates, where the top and the bottom examples
are labeled as positive and negative examples for the query respectively. Then, we train a dense
retriever (Karpukhin et al., 2020) to select demonstrations for an input query using a contrastive loss.
Specifically, for each query qi, we sample one positive example x+

i and several negative examples
{x−

0 , . . . , x
−
Nneg−1} and optimize the following contrastive loss:

L = −log esim(qi,x
+)

sim(qi, x+) +
∑

j sim(qi, x
+
j )

, (7)

where sim(xi, xj) = E(xi)
TE(xj) and E is the encoder of the dense retriever. At inference time,

we propose two retrieval methods to use the trained retriever and select the k demonstrations.

3.2.1 BATCH AND SEQUENTIAL RETRIEVAL

As shown in Algorithm 1, given a query q for prediction, batch retrieval selects k demonstrations
directly in a single step. The retrieved demonstrations are ordered according to the inverse ranking
provided by the retriever. On the other hand, as shown in Algorithm 2, sequential retrieval selects one
demonstration at a time for a given query. After selection, the most recently selected demonstration
is treated as the new query for retrieval. The demonstrations are ordered according to the reverse
order that they are retrieved.

Batch retrieval provides a holistic view, giving the LM all demonstrations at once, while sequential
retrieval provides an incremental view. This incremental approach might allow the LM to build upon
each piece of information step by step, making the impact of the above criteria more pronounced

Algorithm 1 Batch retrieval
Require: Query q, labeled candidates C,

trained retriever R, number of demon-
strations to select k

Ensure: P ▷ prompt
1: P ← ∅
2: Cranked ← R(q, C) ▷ rank candidates
3: for i in 1 to k do
4: di ← Cranked[i] ▷ closest candidate
5: P ← di ⊕ P ▷ prepend di to P
6: end for

Algorithm 2 Sequential retrieval
Require: Query q, labeled candidates C,

trained retriever R, number of demon-
strations to select k

Ensure: P ▷ prompt
1: P ← ∅
2: for i in 1 to k do
3: Cranked ← R(q, C)
4: di ← Cranked[0] ▷ closest candidate
5: C ← C\di ▷ remove di
6: P ← di ⊕ P ▷ prepend di to P
7: q ← di ▷ set current query to di
8: end for

4 EXPERIMENTAL SETUP

Setup Following previous work, we adopt a minimal prompt template in which input and its label
are simply concatenated and no auxiliary words or task instructions are added. We evaluate each
method with k = 4 similar to previous work (Zhang et al., 2022), using on GPT-2 (Radford et al.,
2019) and GPT-J-6B (Wang & Komatsuzaki, 2021) models. For LGEDR, we apply the retriever in
sequential and batch manner, denoted as LGEDR-Seq and LGEDR-Batch, respectively.

Dataset We evaluate our method on a range of NLP tasks and datasets, leveraging datasets com-
monly cited in prior studies. For sentiment analysis, we test on SST2 (Socher et al., 2013) and Rotten
Tomatoes (Pang & Lee, 2005). For natural language inference, we use RTE (Wang et al., 2019) and
WNLI (Wang et al., 2019). For paraphrase identification, we use MRPC (Dolan & Brockett, 2005).
For linguistic acceptability, we use CoLA (Warstadt et al., 2019).
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Table 1: In-context learning performance on all test sets with different demonstration selection meth-
ods on GPT-2. Bold and underline indicate highest and second highest performance, respectively.

Model SST2 RT CoLA RTE WNLI MRPC Trec Average

Random 62.1 55.8 59.7 47.6 55.0 37.8 18.1 48.0
KATE 45.9 53.3 62.8 41.1 52.4 31.6 17.3 43.4
COVER-LS 33.7 48.4 44.7 46.5 38.7 49.0 17.5 39.9
EPR 56.8 60.1 63.4 47.9 50.5 52.1 16.4 49.6
UDR 59.6 63.3 68.1 50.4 55.8 63.7 17.6 54.1
AES 71.3 54.7 52.5 43.2 35.7 38.6 40.1 48.1

LGEDR-Batch (ours) 68.2 65.3 68.8 52.3 57.7 63.8 39.2 59.3
LGEDR-Seq (ours) 67.3 62.4 67.3 56.3 57.1 68.3 40.2 59.8

Baseline We compare LGEDR with the following methods:

• Random (Liu et al., 2022) (heuristic-based): randomly selects k examples from training data
C as demonstrations.

• KATE (Liu et al., 2022) (heuristic-based): encodes q and C as embeddings and retrieves k
nearest neighbors of q based on L2 distance as demonstrations.

• COVER-LS (Levy et al., 2023) (heuristic-based): selects a subset of examples that collectively
achieve diverse syntactic structure of input utterances as demonstrations.

• EPR (Rubin et al., 2022) (dense retriever-based): selects potentially useful candidates using a
traditional retrieval model (BM25), concatenates each candidate with the query and scores
it with a scoring LM, where the candidates ranked top are treated as positive samples and
the candidates ranked bottom are treated as negative samples. A dense retriever is trained
with the data and used to retrieve demonstrations at test time.

• UDR (Li et al., 2023) (dense retriever-based): iteratively retrieves candidates similar to task
instructions and trains the dense retriever. To make a fair comparison with our method, we
only train it once.

• ASE (Zhang et al., 2022) (reinforcement learning-based): trains a reinforcement learning pol-
icy to select demonstrations from a pool of candidates and label them.

5 RESULTS

LGEDR selects informative demonstrations Table 1 compares our method with baselines on
several datasets. On average across all datasets, LGEDR outperforms random selection by 11.6 ab-
solute points. Compared to dense retrieval approaches, LGEDR outperforms EPR and UDR by 10.0
and 5.4 absolute points respectively. Compared to heuristic-based approaches, it outperforms KATE
and COVER-LS by 16.1 and 19.6 absolute points respectively. It also outperforms AES by 17.7.
The mediocre performances of EPR, UDR, and COVER-LS can be attributed to their dependency
on lexical-based methods to retrieve demonstrations. EPR and UDR adopt BM25 to label relevant
candidates for training the dense retriever and COVER-LS computes lexical diversity. Lexical over-
lap or diversity may be a good indicator of the quality of training examples on natural language
utterance datasets, but it may not be a good indicator on tasks like NLI that require sophisticated
reasoning capability. In fact, as many previous works (Karimi Mahabadi et al., 2020; Gao et al.,
2022) point out, lexical overlap leads to dataset biases and can be misleading for NLI tasks. In
addition, LGEDR outperforms two heuristic-based approaches KATE and COVER-LS by 16.2 and
19.7 points respectively. These results indicate that a single heuristic may not always select effective
demonstrations, which depends on both the dataset and the inference LM. For UDR, we notice that
its performance drops significantly compared to the performance reported in the original paper (Li
et al., 2023). This may be due to (a): no iterative scoring plus retriever training and (b): different
scoring and inference LMs. We argue that having access to the downstream inference LM and apply-
ing it to score a large number of candidates is not a practically applicable setting. This comparison
highlights the advantages of LGEDR because it does not depend on a scoring LM to examine the
demonstration quality.
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Table 2: Ablation study on linguistic criteria for demonstration selection.

Model Full model W/o Difficulty W/o Coverage W/o Semantic Shift

LGEDR-Batch 59.3 55.6 (-3.7) 56.3 (-3.0) 55.2 (-4.1)
LGEDR-Seq 59.8 54.7 (-5.1) 56.5 (-3.3) 55.3 (-4.5)

All linguistic criteria have contributions Through ablation analysis, we find out that all the lin-
guistic criteria we developed for demonstration selection significantly influence downstream ICL
performance. On average, removing semantic shift, coverage, and difficulty criteria lead to perfor-
mance drop of 4.3, 3.2 and 4.4 absolute points respectively, see Table 2. The decline in performance
for LGEDR-Batch is smaller than LGEDR-Seq, suggesting that sequential retrieval benefits more
from the proposed criteria than batch retrieval. We attribute this to the iterative and incremental
nature of sequential retrieval, which makes it more sensitive to the quality and relevance of demon-
strations as any misstep in one selection can cause subsequent retrievals to deviate from the optimal
path. Among the linguistic criteria, coverage appears to be the least important for both retrieval
methods. This is perhaps because coverage seeks to increase diversity in demonstrations and an
overemphasis on diversity might introduce less relevant or misleading examples. In fact, a more
focused depth on specific areas could offer better understanding than superficial breadth, especially
for tasks with a narrower focus. In addition, after covering the primary concepts, expanding cov-
erage may yield diminishing returns, as further demonstrations might not significantly enhance the
model’s performance. Finally, difficulty is the most important criterion for sequential retrieval, while
semantic shift is most important for batch retrieval. This is perhaps because sequential retrieval se-
lects demonstrations one at a time, making it crucial to prioritize examples based on their difficulty
level to ensure a progressive and coherent prompt. On the other hand, batch retrieval selects demon-
strations all at once, emphasizing the importance of minimizing semantic shifts to maintain cohesion
and consistency in the prompt.

LGEDR is good at domain adaptation We also evaluate LGEDR under domain adaptation set-
ting, where the training and test sets are from different domains, for example selecting demonstra-
tions from SST2 and making inference on Rotten Tomatoes. As Table 3 shows, LGEDR maintains
robust performance in this evaluation setting, outperforming KATE and COVER-LS by 9.7 and 4.5
absolute points respectively. Among the baselines, ASE and UDR notably outperform others. We
hypothesis that their strong performance is potentially due to the fact that they mix together training
sets of multiple datasets for training their demonstration selector.

LGEDR selects transferable demonstrations To assess whether the selected demonstrations can
be readily applied to a different inference LM, we evaluate the performance of the same set of
demonstrations selected by each method on GPT-J (6B) and GPT-2 (142M) and report their gap.
Results in Table 4 show that using the same demonstrations, LGEDR suffers from a modest perfor-
mance drop of 3.3 absolute points, which is much smaller than that of UDR, EPR, and KATE. We
attribute this strong transferability to the linguistically-grounded criteria that are agnostic to both
scoring LM and inference LM. It is worth noting that KATE can select informative demonstrations
based on L2 distances on GPT-3, but such demonstrations do not work for GPT-2, which is a con-
siderably smaller model.

LGEDR is robust to the choice of feature extractor One of the bottlenecks of existing dense
retrieval-based methods is that they rely on scoring candidates with a scoring LM. High performance
on the candidates with a specific scoring LM does not necessarily indicate high performance on
the test set with another inference LM. Adopting the same scoring LM as the inference LM, as in
UDR (Li et al., 2023), is not practical in many cases, such as when working with close-source LLMs
such as GPT-3. Appendix Table 6 presents the average performance of using three different scoring
LMs and another inference LM with EPR and UDR. For LGEDR, we also use three different pre-
trained models to generate embeddings. The results show that LGEDR has standard deviation of
3.3 across different embedding methods, much smaller than that of EPR and UDR, 8.3 and 10.7
respectively. This result highlights the strong robustness of the proposed criteria.
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Table 3: Performance under domain adaptation setting on GPT-2.

Model SST2 →RT RT →SST2 RTE →WNLI WNLI →RTE

Random 50.6 47.8 49.5 46.0
KATE 39.3 40.8 44.6 41.3
COVER-LR 40.7 45.3 50.0 46.5
EPR 55.7 51.3 49.5 46.6
UDR 61.0 57.2 51.7 43.8
ASE 53.3 64.8 35.1 42.9

LGEDR-Batch 61.4 57.6 52.7 50.4
LGEDR-Seq 60.3 58.4 53.5 51.6

Table 4: Performances of the same set of demonstrations on GPT-J (6B) and GPT-2 (124M).

Model On GPT-J (6B) On GPT-2 (124M) Gap

Random 50.4 48.0 1.6
KATE 48.8 43.4 5.4
COVER-LR 43.8 39.9 3.9
EPR 56.3 49.6 6.7
UDR 60.2 54.1 6.1
ASE 52.6 48.1 4.5

LGEDR-Batch 64.6 59.3 5.3
LGEDR-Seq 63.5 59.8 3.7

Batch vs. Sequential There is not a retrieval pattern that is always better than the other one. On
average, sequential retrieval outperforms batch retrieval by 0.5 absolute points, specifically on RTE,
MRPC, and Trec. On the rest of the datasets, batch retrieval has a better performance. We notice that
Batch is less sensitive the selection criteria, where dropping criteria leads to a larger performance
degradation, see Table 2. Batch also selects demonstrations with better transferability, see Table 4.

LGEDR is efficient LGEDR saves 1.5 and 2.8 hours of training time compared to EPR and UDR
respectively, see Table 7 in Appendix. One major improvement is that LGEDR avoids expensive
LM-based pairwise candidate scoring. Instead, the linguistic criteria can be pre-computed and in-
dexed with efficient techniques, such as FAISS (Johnson et al., 2021), for all examples. This allows
the model to quickly generate data to train the retriever. ASE formulates the problem as sequential
decision making, requiring the highest training time, with 6.5 hours for trajectory generation and 8.1
hours for policy training. All costs are measured on an NVIDIA A100 GPU with 42G RAM.

6 DISCUSSION: WHAT IS IMPORTANT FOR ICL PERFORMANCE?

Explanations by LGEDR The proposed linguistic criteria offer insights that can explain the se-
lection mechanism of any demonstration selection method. Figure 2 illustrates the normalized con-
tribution of each criteria obtained from demonstrations selected by each model. For heuristic-based
approaches like KATE and COVER-LS, their respective primary heuristics, i.e. semantic shift and
coverage respectively, dominate their demonstration selection process. In contrast, dense retrieval-
based methods show a more balanced contribution of all linguistic criteria, which explain their better
performance than heuristic-based approaches.

Demonstration retrieval vs. explicit ICL training In addition to demonstration selection, several
previous works focus on explicitly optimizing language models with an ICL objective to increase
a model’s ICL ability. Examples include MetaICL (Min et al., 2022a), In-Context Tuning (Chen
et al., 2022) and Pre-training for ICL (Gu et al., 2023). However, the training demand of these
models is substantial. They require collecting and pre-processing hundreds of datasets (e.g., 142
datasets in case of MetaICL), significant GPU memory, and hundreds of GPU hours. Conversely,
demonstration selection techniques consume far fewer resources compared to explicit optimization.
Table 5 show that most demonstration retrieval methods outperforms MetaICL, with LGEDR outper-
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Figure 2: Explanation provided by LGEDR in terms of normalized contributions of the proposed
demonstration selection criteria. For each method, we obtain the 4 demonstrations and compute the
resulted difficulty, coverage and semantic shift. We normalize it so that the total contributions sum
to 1.

Table 5: Comparison against the MetaICL model that is explicitly optimized for ICL. For MetaICL,
we use the publicly available checkpoints for all settings where the dataset is not present in the
training split. Experiments are conducted on GPT-2 Large to match MetaICL’s checkpoints.

Model SST2 RT CoLA RTE WNLI MRPC Trec Average

MetaICL 76.4 75.7 57.4 49.5 53.8 31.6 22.2 52.9

LGEDR-Seq 71.3 75.8 68.8 52.7 60.1 69.1 40.1 62.9
LGEDR-Batch 71.1 75.2 67.8 52.1 59.4 68.3 39.3 62.3

forming MetaICL by 9.7 absolute points across datasets. Given its superior efficacy and efficiency,
demonstration retrieval is generally more advantageous than explicit ICL training. However, explicit
optimization models like MetaICL might be valuable in cases where obtaining high quality labeled
examples is expensive, either for direct ICL applications or for bootstrapping demonstrations.

Calibration does not always help Zhao et al. (2021) reported that biases in GPT-3’s predictions
can be reduced using calibration with context-free inputs. However, as Figure 3 in Appendix shows,
such calibration isn’t universally beneficial. For smaller models (such as GPT-2), the effect on ICL
performance stabilization is inconsistent and can sometimes negatively affect task performance, as
seen with CoLA. This might stem from the smaller model’s constrained ICL capabilities, which
diminishes the overall influence of bias and calibration. For example, while calibration boosts GPT-
2’s performance by 4.9 absolute points on SST2, it leads to a decrease of 5.6 points on CoLA.

Balanced labels does not always help Several previous works have found that the label space
can impact the ICL performance (Min et al., 2022b; Yoo et al., 2022). We experiment with label
balanced and non-balanced demonstrations on GPT-2 and find that balanced label do not always
help. Specifically, using balanced label on SST-2 results in a decrease by 0.9 absolute points. While
on CoLA, using a label-balanced demonstration set can lead to an increase of 2.3 absolute points.

7 CONCLUSION

We introduce three linguistically-grounded and interpretable criteria to evaluate the quality of
demonstrations for in-context learning (ICL). By ranking candidates, our approach eliminates the
need for expensive LM-based candidate scoring while enable the training of a dense retriever for
in-context demonstration selection. Experimental results demonstrate that the proposed linguistic
criteria outperform both existing heuristic-driven and dense retrieval-based methods across multiple
datasets and under various settings. Crucially, our proposed method–LGEDR–show greater robust-
ness than existing methods, whose performance tends to fluctuate with changing scoring LM. Fur-
thermore, LGEDR excels in choosing demonstrations that are more effectively transferable across
various inference LMs. Finally, our approach also offers quantitative insights into the rationale
behind demonstration selection methods.
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A APPENDIX

A.1 ADDITIONAL RESULTS

We present the performance across three different scoring LMs in Table 6. The training time com-
parison is shown in Table 7. Performance comparison of calibration vs. non-calibration is shown in
Figure 3.

Table 6: Average performance across three different scoring LMs.

Model Ave. (Std.)

Random 46.3 ±0.0
KATE 45.1 ±5.1
COVER-LS 39.9 ±0.0
EPR 54.2 ±8.3
UPR 62.4 ±10.7
ASE 52.6 ±6.8

LGEDR-Batch 61.9 ±3.1
LGEDR-Seq 62.8 ±3.5
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Table 7: Training time of different methods

Model Training time (hr)

KATE N/A
COVER-LR N/A
EPR 3.8
UPR 5.1
ASE 14.6

LGEDR 2.3

2 4 8

40

60

SST2

2 4 8

50

60

70

Rotten Tomatoes

2 4 8

50

60

70

CoLA

2 4 8

47.5

50.0

52.5

RTE

2 4 8
40

45

50

55

WNLI

2 4 8

40

60

MRPC

2 4 8

15

20

25

30

Trec

Calibrated Not Calibrated

Figure 3: Performance comparison of calibration (red) vs on-calibration (blue) on GPT-2.
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