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Abstract
Low-Rank Adaptation (LoRA) is widely used
for efficient fine-tuning, but federated settings
pose challenges due to suboptimal adapter av-
eraging. We propose Federated Silver Bullet
(Fed-SB), a scalable and communication-efficient
method for federated fine-tuning based on LoRA-
SB, which introduces a small learnable matrix
R between frozen adapters. By directly averag-
ing R, Fed-SB enables exact aggregation and de-
couples communication cost from the number of
clients. It achieves state-of-the-art performance
across commonsense reasoning, arithmetic rea-
soning, and language inference tasks while reduc-
ing communication costs by up to 230x. Fed-SB
is especially well-suited for private settings, re-
ducing trainable parameters and avoiding noise
amplification. Our code is available at: https:
//github.com/CERT-Lab/fed-sb.

1. Introduction
Large language models (LLMs) excel across diverse tasks
(Achiam et al., 2023; Touvron et al., 2023; Team et al., 2023).
Fine-tuning (FT) is the most effective way to align LLMs
to specific data, but full FT is computationally expensive at
scale. Parameter-efficient fine-tuning (PEFT) methods like
LoRA (Hu et al., 2021) address this by offering a balance
between efficiency and performance.

Federated learning (FL) enables model training on siloed
data without sharing raw information (Konečný et al., 2017;
Kairouz et al., 2021; Bonawitz et al., 2019). Federated fine-
tuning (FT) adapts large pre-trained models to private, dis-
tributed datasets. Most approaches use LoRA-based client

*Equal contribution 1Mohamed bin Zayed University of Ar-
tificial Intelligence, UAE 2Duke University, USA 3University of
Illinois Urbana-Champaign, USA 4Massachusetts Institute of Tech-
nology, USA. Correspondence to: Raghav Singhal <10raghavs-
inghal@gmail.com>.

Proceedings of the 42nd International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

adaptations (Zhang et al., 2024b), but must balance model
performance (Sun et al., 2024) and communication effi-
ciency (Wang et al., 2024; Singhal et al., 2025), requiring
careful tradeoff management.

LoRA-SB (Ponkshe et al., 2024) simulates full fine-tuning
in low-rank space by learning an r× r matrix between fixed
adapters A and B, reducing parameters and improving up-
dates. It achieves 2–4× higher effective rank than LoRA
with 45–90× fewer parameters. We introduce Fed-SB, a
federated variant of LoRA-SB that enables exact aggrega-
tion via simple averaging of the matrix R, offering a highly
efficient solution for (private) federated fine-tuning.

Differential privacy (DP) is essential in federated settings
(Dwork, 2006; Dwork et al., 2014). While DP-SGD (Abadi
et al., 2016) is widely used, its noise can amplify model
divergence in federated fine-tuning (Sun et al., 2024). Fed-
SB improves performance by reducing learnable parameters,
thereby limiting noise injection. Additionally, it avoids
the noise amplification seen in other methods, enhancing
privacy-preserving learning.

Fed-SB pushes the performance vs communication cost
Pareto frontier, offering an extremely efficient and scalable
solution for both private and non-private federated FT, as
shown in Figure 1. It consistently has superior performance
while substantially reducing communication overhead than
other methods. Our key contributions are:

• We propose Fed-SB, a federated fine-tuning method that
achieves exact and optimal aggregation in low-rank adap-
tation without incurring prohibitive communication costs
or performance degradation.

• Fed-SB consistently achieves state-of-the-art results
while significantly reducing communication cost, by up to
230x, by requiring only an r× r matrix to be transmitted.

• We demonstrate that Fed-SB is particularly well-suited
for privacy-preserving (federated) fine-tuning, as it mini-
mizes noise by reducing the number of learnable parame-
ters and leveraging linearity in the aggregate update.

• Extensive experiments show that Fed-SB consistently
outperforms existing methods while drastically reducing
communication overhead in both private and non-private
federated settings, establishing a new Pareto frontier in
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Figure 1: Performance vs. communicated parameter cost for Fed-SB and other federated FT methods in non-private and
private federated settings. Fed-SB advances the performance-communication cost Pareto frontier across all models and
tasks, achieving state-of-the-art accuracy while significantly reducing communication cost.

Table 1: Advantages of Fed-SB over SOTA federated FT
methods (c clients). Denote κ1 := O((m+n)r), κ2 :=
O(min(c(m+n)r,mn)), κ3 := O(mr) and κ4 := O(r2).

Property FedIT FLoRA FedEx-LoRA FFA-LoRA Fed-SB

Exact aggregation ✗ ✓ ✓ ✓ ✓
Learnable params. κ1 κ1 κ1 κ3 κ4
Comm. cost κ1 κ2 κ2 κ3 κ4
No noise ampl. ✗ ✗ ✗ ✓ ✓
Privacy (fewer params.) ✗ ✗ ✗ ✗ ✓
Optimal expressivity ✓ ✓ ✓ ✗ ✓

federated fine-tuning.

2. Method
Federated Fine-Tuning. Given a pretrained weight matrix
W ∈ Rm×n, the objective in FT is to learn an update ∆W
for a given dataset. LoRA (Hu et al., 2021) remains the
preferred method, where low-rank adapter matrices A ∈
Rr×n and B ∈ Rm×r are learned such that ∆W = BA. In
federated learning, the dataset is distributed across c clients,
and the goal is to learn ∆W without sharing local data
with a central server. To achieve this, each client learns its
own adapter matrices Ai and Bi. The server aggregates
these updates to refine W, along with globally beneficial
representations of A and B, ultimately producing a shared
aggregate model Wagg. Next, each client continues the
local FT process, followed by aggregation at the end of each
round. This cycle repeats over multiple rounds.

Fed-SB: A Silver bullet for (Private) Federated Fine-
Tuning. We propose Fed-SB, an extremely communication-
efficient and high-performing federated adaptation of LoRA-
SB. Instead of reparameterizing updates as a low-rank de-
composition with learnable adapters, the server distributes
frozen adapters B and A, while clients train only a small

Figure 2: Fed-SB: Our method achieves optimal exact ag-
gregation by averaging only the r × r matrices Ri.

matrix R (Figure 2). This enables exact aggregation, as the
global update is simply the average of R across clients. For-
mally, given a pre-trained weight W0 and data distributed
across c clients, each client learns updates of the form:

∆Wi = BRiA. (1)

The server then aggregates the updates by computing the
global R matrix:

Ragg =
1

c

c∑
i=1

Ri,∆Wagg = B

(
1

c

c∑
i=1

Ri

)
A. (2)

We show that Fed-SB effectively resolves all challenges in
(private) federated FT while achieving state-of-the-art com-
munication efficiency and performance. Table 1 highlights
the advantages of Fed-SB over other methods.

Fed-SB: Exact Aggregation. Since only R is trainable,
simple averaging of R across clients ensures exact aggrega-
tion without any updates to any other matrix. Further, the lin-
earity of the global update with respect to the client-specific
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matrices Ri guarantees that exact aggregation occurs within
rank r, preventing communication costs from scaling with
number of clients. This is because the server only needs to
aggregate and transmit R, which can be proven by comput-
ing the global update ∆Wagg:

∆Wagg = B

(
1

c

c∑
i=1

Ri

)
A, (3)

∆Wagg =
1

c

c∑
i=1

BRiA =
1

c

c∑
i=1

∆Wi. (4)

Since the global update is simply the average of the indi-
vidual updates, the aggregation is exact. The key advantage
here is that this exact aggregation does not incur additional
communication overhead like FedEx-LoRA, nor does it
compromise individual update quality like FFA-LoRA.

Fed-SB: Privacy. Privacy-preserving FT with Fed-SB has
two key advantages: 1) Fed-SB avoids noise amplification,
a common issue in LoRA-based methods. 2) Since Fed-SB
requires fewer learnable parameters, the amount of noise
added to enforce DP guarantees is significantly lower.

Avoids Noise Amplification. DP-SGD training in Fed-SB
avoids second-order noise terms, as only R is trainable. This
prevents the introduction of cross terms, thereby eliminating
noise amplification. The difference between the updates
with and without private training is given by:

∆WDP −∆W = B (R+ ξB)A−BRA (5)
=⇒ ∆WDP −∆W = BξBA. (6)

Since the private update remains linear in R, Fed-SB
achieves significant benefits in private settings.

Fewer Learnable Parameters. The noise added for DP en-
forcement increases with the number of trainable parameters
(Bassily et al., 2014; Abadi et al., 2016; Bun et al., 2014),
potentially distorting learning and degrading performance.
Reducing trainable parameters improves DP performance,
provided the model retains sufficient expressivity.

Lemma 2.1. Consider a model with d learnable
parameters trained using DP-SGD. The privacy
parameter ϵ for δ-approximate differential privacy,
given T training steps and a batch size of q, is:

ϵ = O(q
√

Td log(1/δ)) = O(
√
d). (7)

Proof. See Appendix B.

Lemma 2.1 establishes that reducing the number of learn-
able parameters enhances privacy guarantees under the same
training setup. Specifically, achieving an equivalent level
of privacy requires injecting less noise per parameter when

Table 2: Federated fine-tuning of Llama-3.2 3B across eight
commonsense reasoning datasets. # C. denotes the number
of parameters communicated per round (in M).

METHOD # C. ACCURACY (↑)

BOOLQ PIQA SIQA HELLA. WINO. ARC-E ARC-C OBQA AVG.

FEDITr=32 48.6 62.99 81.50 73.13 76.83 71.51 84.89 70.65 70.62 74.02
FFAr=32 24.3 62.87 80.03 68.53 70.02 65.56 82.95 66.38 66.85 70.40
FEDEXr=32 243.1 65.05 82.81 74.67 81.84 76.01 86.32 71.42 73.81 76.49
FLORAr=32 243.1 65.05 82.81 74.67 81.84 76.01 86.32 71.42 73.81 76.49
FED-SBr=120 2.8 64.86 81.66 74.87 81.67 75.22 86.03 70.56 72.25 75.89
FED-SBr=160 5.0 65.57 82.37 76.15 84.10 77.98 86.62 72.10 73.63 77.32
FED-SBr=200 7.8 66.66 83.79 77.22 85.42 79.56 87.46 72.53 76.02 78.58

Table 3: Federated fine-tuning of LLaMA-3.2 3B on com-
monsense reasoning in a highly data-heterogeneous set-
ting, where each client trains on a distinct dataset. Commu-
nication cost (# C.) is in millions of parameters per round.

METHOD # C. ACCURACY (↑)

BOOLQ PIQA SIQA HELLA. WINO. ARC-E ARC-C OBQA AVG.

FEDITr=32 48.6 60.89 78.22 69.92 73.18 67.88 81.21 67.04 66.91 70.80
FFAr=32 24.3 60.73 76.91 65.37 65.18 61.89 79.41 62.92 63.12 67.17
FEDEXr=32 243.1 62.55 79.36 71.41 78.12 72.45 82.89 67.88 70.25 73.13
FLORAr=32 243.1 62.55 79.36 71.41 78.12 72.45 82.89 67.88 70.25 73.13
FED-SBr=120 2.8 61.41 78.13 71.02 78.24 71.78 82.45 67.12 68.83 72.65
FED-SBr=160 5.0 62.34 79.05 72.39 80.52 74.67 83.18 68.64 70.12 73.98
FED-SBr=200 7.8 63.28 80.34 73.56 82.07 76.01 84.01 69.02 72.46 75.21

fewer parameters are trained. Since LoRA-SB optimally
approximates full fine-tuning gradients, its updates remain
as effective as those in LoRA while benefiting from lower
noise per update, resulting in a superior privacy-utility trade-
off. More generally, any reparameterization that reduces
trainable parameters leads to a smaller accumulated privacy
parameter ϵ, thereby improving performance, provided the
reduction does not compromise learning.

Fed-SB: Pushing the Pareto Frontier. Fed-SB has sig-
nificantly less communication costs than other federated
FT methods. This is due to two key reasons: 1) LoRA-SB
achieves performance comparable to or better than LoRA
while requiring 45-90x fewer trainable parameters. 2) Fed-
SB aggregates only the r × r trainable matrix R, ensuring
exact aggregation without additional communication over-
head. This allows Fed-SB to leverage higher-rank updates
without increasing communication costs. LoRA-SB typi-
cally operates at ranks 2–4x higher than LoRA, enabling
Fed-SB to capture richer updates. Retaining high-rank in-
formation is crucial in FL (Mahla et al., 2025) and a key
factor in achieving improved performance.

3. Experiments & Results
Overview. We fine-tune Mistral-7B (Jiang et al., 2023),
Gemma-2 9B (Team et al., 2024), Llama-3.2 3B (Dubey
et al., 2024), and BERT-base (Devlin, 2018) across three
diverse benchmarks. Detailed experimental and dataset spec-
ifications are provided in Appendix E and F, respectively.

Baselines. We evaluate Fed-SB against several SOTA fed-
erated FT approaches, considering private and non-private
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Table 4: Federated fine-tuning of Mistral-7B and Gemma-2
9B on GSM8K and MATH. Communication cost (# Comm.)
is in millions of parameters per round.

MODEL METHOD RANK # COMM. ACCURACY (↑)

GSM8K MATH

MISTRAL-7B

FEDIT 32 83.88 52.91 12.26
FFA-LORA 32 41.94 53.67 12.46
FEDEX-LORA 32 2097.34 54.28 12.92
FLORA 32 2097.34 54.28 12.92
FED-SB 120 3.22 54.44 14.06
FED-SB 160 5.73 54.81 13.74
FED-SB 200 8.96 56.18 13.76

GEMMA-2 9B

FEDIT 32 108.04 74.22 36.30
FFA-LORA 32 54.02 75.06 35.44
FEDEX-LORA 32 2701.12 74.68 36.70
FLORA 32 2701.12 74.68 36.70
FED-SB 120 4.23 74.75 36.36
FED-SB 160 7.53 76.88 36.94
FED-SB 200 11.76 77.03 37.56

settings. Specifically, we compare it with FedIT (Zhang
et al., 2024b), FedEx-LoRA (Singhal et al., 2025), FLoRA
(Wang et al., 2024), and FFA-LoRA (Wang et al., 2024).

3.1. Instruction Tuning

Details. We conduct experiments in the federated non-
private setting across two reasoning tasks: common-
sense reasoning and arithmetic reasoning. For common-
sense reasoning, we fine-tune Llama-3.2 3B on COMMON-
SENSE170K, a dataset aggregating eight commonsense rea-
soning corpora (Hu et al., 2023), and evaluate across all
constituent datasets. The experiments are performed in a
cross-silo federated learning setup involving 5 clients.

We also evaluate Fed-SB under extreme data heterogene-
ity. Instead of randomly sampling examples for each client,
we assign each constituent dataset to a distinct client, result-
ing in a highly non-IID 8-client setup. Each client trains on
a distinct distribution, with varying dataset sizes.

For arithmetic reasoning, we fine-tune Mistral-7B and
Gemma-2 9B on 20K samples from MetaMathQA (Yu et al.,
2024) and test on the GSM8K (Cobbe et al., 2021) and
MATH (Hendrycks et al., 2021) benchmarks. In this setup,
we distribute the federated training across 25 clients. In
both cases, we apply LoRA modules to the key, query, value,
attention output, and all fully connected weights.

Results (Tables 2, 3, 4). Our method achieves state-of-
the-art performance, outperforming all previous baselines
in both accuracy and communication efficiency across all
models and benchmarks. Figure 3 further illustrates this
significant improvement.

Commonsense Reasoning (Table 2). Fed-SB (r = 200)
achieves an average improvement of 4.56% over FedIT
while requiring 6× lower communication cost. Additionally,
Fed-SB (r = 200) surpasses the previous SOTA perfor-
mance methods FedEx-LoRA/FLoRA by 2.09%, while re-
ducing communication cost by an impressive 31×. Notably,

Table 5: Centralized (Cent.) private fine-tuning of BERT-
base on SNLI under varying privacy budgets ϵ. Trainable
parameters (# Params.) are in thousands.

METHOD RANK # PARAMS. ACCURACY (↑)

ϵ=1 ϵ=3 ϵ=5 ϵ=7.5 ϵ=10

CENT. LORA 32 1181.96 66.49 67.79 68.17 70.78 70.81
CENT. FFA-LORA 32 592.13 74.40 75.02 75.02 76.14 76.60
CENT. FED-SB 32 26.88 73.99 75.09 74.45 77.01 76.24
CENT. FED-SB 48 57.59 75.98 75.70 76.58 76.77 77.96
CENT. FED-SB 64 100.61 75.81 77.07 77.59 78.75 78.08

Table 6: Federated private fine-tuning of BERT-base on
SNLI under varying privacy budgets ϵ. Communication cost
(# Comm.) is in thousands of parameters per round.

METHOD RANK # COMM. ACCURACY (↑)

ϵ=1 ϵ=3 ϵ=5 ϵ=7.5 ϵ=10

FEDIT 32 1181.96 49.57 51.29 48.53 55.63 60.96
FFA-LORA 32 592.13 70.11 71.49 72.69 73.27 74.02
FEDEX-LORA 32 3541.26 67.38 69.68 72.92 71.89 74.33
FLORA 32 3541.26 67.38 69.68 72.92 71.89 74.33
FED-SB 32 26.88 70.33 72.68 73.57 73.62 73.85
FED-SB 48 57.59 73.70 74.74 73.66 74.75 75.02
FED-SB 64 100.61 73.83 74.88 76.27 75.75 75.86

while the communication cost of FedEx-LoRA/FLoRA
scales linearly with the number of clients, our method main-
tains a constant, client-independent communication cost.

Highly Data-Heterogenous Setting (Table 3). Fed-SB sig-
nificantly outperforms all other methods even in this highly
non-IID setting. Specifically, Fed-SB (r = 200) surpasses
the previous state-of-the-art methods, FedEx-LoRA and
FLoRA, by 2.08% in accuracy while achieving a remark-
able 31× reduction in communication cost.

Arithmetic Reasoning (Table 4). For Mistral-7B, Fed-SB
(r = 200) outperforms FedEx-LoRA/FLoRA on GSM8K
by 1.90%, while achieving a 234× reduction in communica-
tion cost. Additionally, Fed-SB (r = 200) surpasses FFA-
LoRA on GSM8K by 2.51%, with approximately 5× lower
communication cost. For Gemma-2 9B, Fed-SB (r = 200)
outperforms FedEx-LoRA/FLoRA on MATH by 0.86%,
while reducing communication cost by 230×.

3.2. (Federated) Private Fine-Tuning

Details. We fine-tune BERT-base on SNLI (Bowman et al.,
2015), a standard language inference benchmark. Following
LoRA(Hu et al., 2021), we apply LoRA modules only to
the self-attention layers. Our evaluation considers two DP
settings: a centralized private setup and a federated pri-
vate setup. To enforce DP guarantees, we use the Opacus
library (Yousefpour et al., 2021) with the DP-SGD opti-
mizer (Abadi et al., 2016). In the federated setting, training
is conducted in a cross-silo setup with 3 clients.

Results (Tables 5, 6). Fed-SB consistently outperforms
all prior baselines in both accuracy and communica-
tion/parameter efficiency across all privacy budgets in
both settings. Figures 4, 5, and 6 further illustrate this.
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Centralized Private (Table 5). Fed-SB showcases signif-
icant improvement over other methods while using only a
fraction of the parameters, across all ϵ values. For instance,
at ϵ = 3, Fed-SB (r = 64) surpasses centralized LoRA and
centralized FFA-LoRA by 9.28% and 2.05%, respectively,
while using ≈ 12x and 6x fewer parameters.

Federated Private (Table 6). Fed-SB consistently outper-
forms all methods across all values of ϵ, while significantly
reducing communication costs. For instance, at ϵ = 1, Fed-
SB (r = 64) outperforms FedIT, FedEx-LoRA/FLoRA, and
FFA-LoRA by 24.26%, 6.48%, and 2.72%, respectively,
while reducing communication cost by approximately 12x,
35x, and 6x. FedIT performs significantly worse in the fed-
erated private setting compared to the federated non-private
setting. We hypothesize that this is due to increased de-
viation in updates under DP constraints and added noise,
leading to greater divergence from the ideal.

4. Conclusion
Fed-SB is a communication-efficient federated adaptation
of LoRA-SB that ensures exact aggregation by training
only a small r × r matrix and using direct averaging. This
eliminates high-rank update costs and keeps communication
overhead independent of the number of clients. Its linearity
avoids noise amplification, and its compact parameterization
reduces the noise needed for differential privacy. Fed-SB
achieves up to 230× lower communication costs and sets a
new state-of-the-art across all models and tasks, making it
ideal for scalable (private) federated fine-tuning.
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Appendix

A. Preliminaries and Motivation
We summarize some of the state-of-the-art federated FT methods below.

Fed-IT (Zhang et al., 2024b) updates the adapters A and B using the standard FedAvg (McMahan et al., 2017) algorithm:

Aagg =
1

c

c∑
i=1

Ai, Bagg =
1

c

c∑
i=1

Bi. (8)

FedEx-LoRA (Singhal et al., 2025) follows the same aggregation but introduces an additional error correction matrix Werr
of rank min(cr,m, n):

Werr = (
1

c

c∑
i=1

AiBi)− (
1

c

c∑
i=1

Ai)(
1

c

c∑
i=1

Bi). (9)

FLoRA (Wang et al., 2024) follows the same principle as FedEx-LoRA but achieves it by stacking the adapter matrices, and
reinitializes them randomly at the end of each communication round. FFA-LoRA (Sun et al., 2024) keeps A fixed while
training (and aggregating) only B matrices.

Bagg =
1

c

c∑
i=1

Bi. (10)

(Approximate) Differential Privacy. DP, introduced by (Dwork, 2006), is a widely adopted mathematical framework for
privacy preservation. A randomized mechanism M : D → R, mapping a domain D to a range R, satisfies (ϵ, δ)-differential
privacy if, for any two adjacent inputs d, d′ ∈ D and any subset of outputs S ⊆ R, the following holds:

Pr[M(d) ∈ S] ≤ eϵ Pr[M(d′) ∈ S] + δ. (11)

DP-SGD. DP-SGD (Abadi et al., 2016) is a privacy-preserving variant of stochastic gradient descent (SGD) designed to
ensure DP during training. It enforces privacy by clipping per-sample gradients to a fixed norm C to limit their sensitivity
and then adding isotropic Gaussian noise N

(
0, σ2C2I

)
, where σ controls the noise magnitude. The cumulative privacy loss

over iterations is quantified using the moments accountant (Wang et al., 2019) and Rényi DP (Mironov, 2017), which offer a
tight bound on the final privacy parameter ϵ.

Exact Aggregation in Fed. LoRA: Tradeoff b/w Performance and Communication Costs.

Standard federated averaging of individual LoRA adapters (FedIT (Zhang et al., 2024b)) introduces inexactness in aggrega-
tion, as the ideal update should be the average of client updates.

W0 +
1

c

c∑
i=1

Bi ×
1

c

c∑
i=1

Ai︸ ︷︷ ︸
Vanilla aggregation in LoRA (FedIT)

̸= W0 +
1

c

c∑
i=1

(BiAi)︸ ︷︷ ︸
Ideal aggregation

. (12)

The inexactness arises because the ideal averaged updates, given by
∑c

i=1 BiAi, often exceed rank r, violating the low-rank
constraint imposed by LoRA. To address this, FedEx-LoRA and FLoRA introduce Werr as a higher-rank correction term
within the pre-trained weight matrix W0, which is inherently high-rank. This correction ensures exact aggregation, leading
to consistently improved performance over FedIT.

This, however, comes at the cost of increased communication. Since the error matrix is high rank, it substantially increases
the amount of data transmitted per round. The communication cost is determined by the number of parameters sent during
aggregation, which, for an m× n matrix, is proportional to its rank. As a result, in FedEx-LoRA and similar methods that
enforce exact aggregation, communication cost scales linearly with the number of clients relative to Fed-IT. This becomes
particularly concerning when the number of clients grows large, potentially requiring the transmission of the entire
model’s weights.
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FFA-LoRA addresses inexact aggregation by keeping only B trainable while fixing A uniformly across clients. However,
this comes at the cost of reduced expressivity and limits the benefits of jointly optimizing A and B. As a result, performance
degrades, as demonstrated previously (Singhal et al., 2025). This stems from two factors: suboptimal individual updates
and the need for higher-rank adaptations. Freezing A leads to suboptimal updates, even in centralized training, where
FFA-LoRA underperforms compared to LoRA. Additionally, recent work (Mahla et al., 2025) shows that models trained
using FFA-LoRA progressively deviate from the optimal hypothesis. Empirical evidence shows that the advantages of
exactness are outweighed by the degradation caused by these factors.

Private Fine-Tuning. Pre-training on public data followed by FT on user-specific private data1 is a common approach for
adapting models under privacy constraints (Yu et al., 2021; Tang et al., 2024). This two-stage process enhances performance
in private learning while preserving user data privacy. FL naturally improves privacy by keeping data decentralized. However,
even without direct data sharing, client-specific model updates can still leak sensitive information (Truong et al., 2021).
Thus, developing privacy-preserving FT methods for FL is essential to ensure strong privacy guarantees while maintaining
performance.

Training a model with DP-SGD introduces noise into the gradient, and consequently, into the model update itself. In the
case of LoRA, this deviation from the ideal update is more pronounced than in full FT due to second-order noise terms.
To illustrate this, let A and B represent the adapter updates learned without privacy. Under DP-SGD, these updates are
perturbed by noise terms ξA and ξB , respectively. The difference between the ideal update ∆W and the noisy update
∆WDP is:

∆WDP −∆W = (B+ ξB) (A+ ξA)−BA (13)
= ξBA+BξA + ξBξA. (14)

The first-order noise term, ξBA+BξA, is expected and occurs even in full FT with DP-SGD. However, the second-order
noise term, ξBξA, causes noise amplification, leading to further performance degradation in LoRA-based methods (Sun
et al., 2024). This issue is exacerbated in FL, as individual client updates deviate even further from the ideal global update.
FFA-LoRA avoids this problem by freezing A, preventing the introduction of additional noise terms.

A Silver Bullet Indeed. The bilinear parameterization in LoRA introduces two key challenges: inexact aggregation and
noise amplification. FedEx-LoRA/FLoRA addresses the inexactness issue by enabling exact aggregation, but at the cost of
communication overhead that scales prohibitively with the number of clients. FFA-LoRA mitigates inexact aggregation and
excessive communication but sacrifices performance, as it operates in a low-rank space and has reduced expressivity. An
ideal method would efficiently learn higher-rank updates while inherently enabling exact aggregation without increasing
communication costs. However, any LoRA-based formulation that attempts to resolve these challenges must inevitably trade
off expressivity, ultimately compromising performance. We prove that LoRA-SB provides an optimal reparameterization of
the updates, effectively overcoming all limitations of LoRA in both non-private and privacy-preserving federated settings.

B. Proof of Lemma 2.1

Lemma. Consider a model with d learnable parameters trained using DP-SGD. The privacy parameter ϵ for
δ-approximate differential privacy, given T training steps and a batch size of q, is expressed as:

ϵ = O(q
√

Td log(1/δ)) = O(
√
d). (15)

Proof. The following result (Abadi et al., 2016) describes the relationship between noise variance, privacy parameters,
number of optimization steps, batch size, and sample size in DP-SGD.

Theorem. There exist constants c1 and c2 such that, given the sampling probability q = L/N and the number of optimization
steps T , for any ϵ < c1q

2T , DP-SGD is (ϵ, δ)-differentially private for any δ > 0 if the noise scale satisfies:

σ ≥ c2
q
√
T log(1/δ)

ϵ
. (16)

1Although pre-training data may be public, it often contains sensitive or proprietary information, raising privacy concerns. However,
any privacy loss from pre-training has already occurred upon the model’s release.
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Each DP-SGD step introduces noise following N
(
0, σ2C2Id

)
and satisfies (α, α/(2σ2))-RDP (Rényi DP) for the Gaussian

mechanism. For a function with ℓ2-sensitivity ∆2, the Gaussian mechanism satisfies (α, ϵ)-RDP with:

ϵ(α) =
α∆2

2

2σ2
noise

. (17)

Since DP-SGD has ∆2 = C and σnoise = σC, applying privacy amplification due to sampling probability q results in each
step satisfying (α, γ)-RDP, where, for small q:

γ = O

(
q2α

σ2

)
. (18)

Using composition over T steps, the total RDP privacy parameter becomes:

γtotal = O

(
q2Tα

σ2

)
. (19)

Converting this RDP bound back to (ϵ, δ)-DP and setting α proportional to 1/
√
d, given that the ℓ2-norm of the gradient

scales as
√
d, we obtain:

ϵ = O

(
q2Tα

σ2
+

log(1/δ)

α− 1

)
. (20)

Substituting σ ∝ 1/
√
d, we derive:

ϵ = O(q
√
Td log(1/δ)) = O(

√
d). (21)

C. Related Work
Parameter-Efficient Fine-Tuning (PEFT). LoRA (Hu et al., 2021) has become ubiquitous for fine-tuning LLMs (Zhang
et al., 2024a) by modeling weight updates as product of low-rank matrices. Several variants have been proposed to improve
efficiency, stability, and adaptability. QLoRA (Dettmers et al., 2024) enables efficient fine-tuning through quantization
strategies, reducing memory usage while maintaining performance. AdaLoRA (Zhang et al., 2023) dynamically allocates a
layer-specific rank budget by assigning importance scores to individual weight matrices. LoRA-XS (Bałazy et al., 2024)
further reduces trainable parameters by inserting a trainable matrix between frozen LoRA matrices. VeRA (Kopiczko et al.,
2024) enhances parameter efficiency by learning shared adapters across layers. DoRA (Liu et al., 2024) decomposes the
pre-trained matrix into two parts—magnitude and direction—and applies LoRA modules only to the direction component.
PiSSA (Meng et al., 2024) improves adaptation by initializing adapters using the singular value decomposition (SVD)
of pre-trained weights. rsLoRA (Kalajdzievski, 2023) introduces a rank-scaling factor to stabilize learning. LoRA-SB
(Ponkshe et al., 2024) provably approximates gradients optimally in low-rank spaces, achieving superior performance with
significantly higher parameter efficiency.

Federated Fine-Tuning. Federated Learning (FL) consists of a centralized global model and multiple clients, each with its
own local dataset and computational capacity. The global model is updated by aggregating client updates (Kairouz et al.,
2021). FedBERT (Tian et al., 2022) focuses on federated pre-training, while other methods work on federated fine-tuning
(Zhang et al., 2022; Kuang et al., 2024; Babakniya et al., 2023). Fed-IT (Zhang et al., 2024c) aggregates low-rank adapters
across clients using standard federated averaging (McMahan et al., 2017) before updating the global model. To address
inexact aggregation, FedEx-LoRA (Singhal et al., 2025) introduces an error matrix to correct residual errors, ensuring
more precise updates. FLoRA (Wang et al., 2024) follows the same exact aggregation principle by stacking matrices and
extends this approach to heterogeneous rank settings. FFA-LoRA (Sun et al., 2024) mitigates aggregation inexactness
by freezing A and updating only the trainable low-rank adapter, averaging the latter to compute the global update. In
some scenarios, clients require heterogeneous LoRA ranks due to varying computational budgets (Zhao et al., 2018; Li
et al., 2019). Methods like HetLoRA (Cho et al., 2024) enable rank heterogeneity through self-pruning and sparsity-aware
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aggregation strategies, but incur significant overhead.

Differential Privacy (DP) and FL. A common limitation of standard FL frameworks is their susceptibility to privacy attacks,
as clients publicly share model updates with a central server. To address this issue, DP is incorporated into FL methods
to ensure the privacy of client updates. This work follows the approximate DP framework (Dwork, 2006; Dwork et al.,
2014), which provides formal privacy guarantees for model updates. Privacy is enforced during training using the DP-SGD
optimizer (Abadi et al., 2016), which applies gradient clipping and noise injection to protect individual contributions. Since
DP is preserved under composition and post-processing (Dwork, 2006; Li et al., 2021), the final global model update also
retains DP guarantees. Prior methods, such as Fed-IT and FedEx-LoRA, did not explicitly incorporate DP. This study
extends these approaches to DP settings and benchmarks them alongside FFA-LoRA and the proposed method.

D. Memory and Training Time Details
D.1. Memory and Training Time

Memory. Fed-SB, being derived from LoRA-SB, requires less training memory (per client) during training due to its
significantly reduced number of trainable parameters, resulting in memory savings compared to other methods. We
benchmark the peak per-client training memory for all models and configurations used in our study in Table 7. Notably,
these results reflect the worst-case setting for Fed-SB, with the highest rank (r = 200) used in our experiments.

Table 7: Peak per-client training memory (in GB) for different methods across the various models used in this work. Fed-SB
consistently exhibits lower memory usage across all model configurations.

Method Peak Memory (GB)

Mistral-7B Gemma-2 9B LLaMA-3.2 3B

FedIT 15.92 19.99 7.71
FFA-LoRA 15.51 19.44 7.46
FedEx-LoRA 15.92 19.99 7.71
FLoRA 15.92 19.99 7.71
Fed-SB 15.18 19.03 7.30

Training Time. Fed-SB introduces a negligible training time overhead compared to other methods, primarily due to its
lightweight initialization process. To quantify this, we measure the additional training time introduced by Fed-SB relative to
the average per-epoch training time per client in baseline methods. These measurements are conducted across the various
experimental settings described in our paper. As shown in Table 8, the overhead remains consistently minimal, approximately
2%, across multiple model configurations.

Table 8: Training time overhead introduced by Fed-SB relative to the average per-epoch training time per client in baseline
methods. The overhead is minimal (≈ 2%) across different model configurations.

Model Fed-SB Overhead (mm:ss) Avg. Epoch Time / Client (mm:ss)

Mistral-7B 00:13 09:22
Gemma-2 9B 00:16 12:43
LLaMA-3.2 3B 01:43 62:54

E. Experiment Details
Our experiments consider both performance and communication efficiency. For federated data distribution, we adopt a
standard protocol where client datasets are randomly sampled, following established practice in FL (Sun et al., 2024; He
et al., 2020; Lai et al., 2022). We conduct experiments on a single NVIDIA A6000 GPU (48 GB) and report the average
results from three independent runs. All non-private models are trained using the AdamW optimizer (Loshchilov & Hutter,
2019).

To optimize memory efficiency, all base models (except BERT) are loaded in torch.bfloat16. In line with LoRA-SB
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(Ponkshe et al., 2024), we initialize the adapter matrices using just 1/1000 of the respective training dataset size.

Instruction Tuning. Table 9 presents the key hyperparameters and configurations for Mistral-7B, Gemma-2 9B, and
Llama-3.2 3B. Our setup closely follows previous works (Hu et al., 2023; Ponkshe et al., 2024), ensuring consistency with
established best practices. For the baseline experiments, we further set α = 16, consistent with prior literature (Singhal
et al., 2025; Sun et al., 2024). We additionally perform a sweep over the learning rate for our experiments.

(Federated) Private Fine-Tuning. Table 10 outlines the key hyperparameters and configurations for BERT-base in both
centralized private and federated private settings. We train our models using the Opacus library (Yousefpour et al., 2021) with
the DP-SGD optimizer (Abadi et al., 2016). Following standard DP practices, we set the privacy parameter as δ = 1

|trainset| .
To ensure adherence to best practices, we adopt hyperparameter choices from prior works (Singhal et al., 2025; Hu et al.,
2021). For baseline experiments, we additionally set α = 16, aligning with previous literature (Singhal et al., 2025; Sun
et al., 2024). We additionally perform a sweep over the learning rate and maximum gradient norm in DP-SGD for our
experiments.

Table 9: Hyperparameter settings for Mistral-7B, Gemma-2 9B, and Llama-3.2 3B.

Mistral-7B Gemma-2 9B Llama-3.2 3B

Optimizer AdamW AdamW AdamW
Learning Rate 5e−4 5e−4 2e−4
LR Scheduler Cosine Cosine Linear
Warmup Ratio 0.02 0.02 0.02
Batch Size 1 1 8
Grad Acc. Steps 32 32 24
Max. Seq. Len 512 512 256
Dropout 0 0 0
# Clients 25 25 5
Local Epochs 1 2 2
Rounds 1 1 1

Table 10: Hyperparameter settings for BERT-base in centralized private and federated private setups.

BERT-base (centralized) BERT-base (federated)

Optimizer DP-SGD DP-SGD
Learning Rate 5e−4 5e−4
LR Scheduler - -
Warmup Ratio 0 0
Batch Size 32 32
Max. Phy. Batch Size 8 8
Max. Seq. Len 128 128
Dropout 0.05 0.05
Max. Grad. Norm 0.1 0.1
Epochs 3 -

# Clients - 3
Local Epochs - 6
Rounds - 1
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F. Dataset Details
COMMONSENSE170K is a large-scale dataset that brings together eight benchmarks designed to assess various aspects of
commonsense reasoning (Hu et al., 2023). Below is an overview of its constituent datasets:

1. PIQA (Bisk et al., 2020) evaluates physical commonsense by asking models to determine the most reasonable action in
a given scenario.

2. ARC Easy (ARC-e) (Clark et al., 2018) consists of elementary-level science questions, serving as a fundamental test
of a model’s reasoning abilities.

3. OBQA (Mihaylov et al., 2018) presents knowledge-intensive, open-book multiple-choice questions that require
multi-step reasoning and retrieval.

4. HellaSwag (Zellers et al., 2019) tests contextual reasoning by asking models to predict the most plausible continuation
of a passage from a set of candidates.

5. SIQA (Sap et al., 2019) examines social intelligence, requiring models to predict human actions and their social
consequences.

6. ARC Challenge (ARC-c) (Clark et al., 2018) includes difficult multiple-choice science questions that demand deeper
logical inference beyond statistical co-occurrence.

7. BoolQ (Clark et al., 2019) consists of naturally occurring yes/no questions, requiring models to infer relevant
information from provided contexts.

8. WinoGrande (Sakaguchi et al., 2021) assesses commonsense knowledge through binary-choice sentence completion
tasks that require resolving ambiguities.

The MetaMathQA dataset (Yu et al., 2024) constructs mathematical questions by reformulating them from different
viewpoints while preserving their original knowledge content. We assess its performance using two well-established
benchmarks: (1) GSM8K (Cobbe et al., 2021), a collection of grade-school-level math problems requiring step-by-step
reasoning to reach a solution, and (2) MATH (Hendrycks et al., 2021), which consists of high-difficulty, competition-style
problems designed to test advanced mathematical skills.

Stanford Natural Language Inference (SNLI) is a widely used benchmark for assessing textual entailment models in
natural language understanding. It contains approximately 570,000 sentence pairs, each categorized into one of three classes:
entailment, contradiction, or neutral, requiring models to infer the relationship between a given premise and hypothesis.
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G. Additional Plots

(a) Mistral-7B (GSM8K) (b) Gemma-2 9B (MATH) (c) Llama-3.2 3B (Commonsense)

Figure 3: Performance vs. number of communicated parameters (in log scale) for various methods in federated fine-tuning
across multiple models on arithmetic and commonsense reasoning tasks.

(a) Centralized Private (b) Federated Private

Figure 4: Performance comparison of various methods in centralized (Cent.) private and federated private fine-tuning
(BERT-base) on SNLI across varying values of ϵ.
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(a) ϵ = 1 (b) ϵ = 3

(c) ϵ = 5 (d) ϵ = 7.5

(e) ϵ = 10

Figure 5: Performance vs. number of trainable parameters (in log scale) for various methods in centralized private fine-tuning
(BERT-base) across different privacy budgets (ϵ).
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(a) ϵ = 1 (b) ϵ = 3

(c) ϵ = 5 (d) ϵ = 7.5

(e) ϵ = 10

Figure 6: Performance vs. number of communicated parameters (in log scale) for various methods in federated private
fine-tuning (BERT-base) across different privacy budgets (ϵ).
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