
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

RÉNYI REGULARISED REINFORCEMENT LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

Entropy regularisation has proven effective in reinforcement learning (RL) for
encouraging exploration. Recent work demonstrating the equivalence between
entropy regularised RL and approximate probabilistic inference suggests the po-
tential for improving existing methods by generalising the inference procedure.
We develop the Rényi regularised RL framework by using Rényi variational in-
ference to learn a stochastic policy. We present theoretical results for policy eval-
uation and improvement within this new framework. Additionally, we propose
two novel algorithms, α-SAC and α-SQL, for large-scale RL tasks. We show that
these algorithms attain higher returns on games from the Atari suite relative to an
entropy-regularised benchmark, SAC-Discrete.

1 INTRODUCTION

Success in deep reinforcement learning requires that an algorithm continually refine its behavioural
policy for interacting with the environment. Such refinement often involves collapsing down the
space of viable actions, as the relative values of different actions becomes clearer. However, an
algorithm which interacts with the environment according to a fully deterministic policy will even-
tually fail to learn any further, since it will not gather additional data about alternative actions which
may be superior to those currently being pursued. This is the basic problem of exploration in re-
inforcement learning. Recently, a suite of algorithms (Haarnoja et al., 2017; 2019; Christodoulou,
2019) have attempted to address this exploration problem using entropy regularisation (or more
generally, KL-regularisation) which penalises policies for having very low entropy. This encourages
policies to take a variety of actions, thus exploring new potential strategies in the environment.

Theoretical work has shown that the entropy regularised RL objective is equivalent to a approximate
probabilistic inference problem (Levine, 2018). This insight allows us to move freely between a
regularisation view of the entropy regularised RL problem and a corresponding inference view (See
Fig. 1). Previous research generalising entropy regularised RL has focused on generalising the reg-
ularisation view (Yang et al., 2019). In this paper, we take a fundamentally different approach, by
instead starting from the inference view and considering generalisations of the approximate infer-
ence procedure. Specifically, we will learn a policy via α-Rényi variational inference (Li & Turner,
2016). Doing so gives rise to a novel RL objective. We prove theoretical results for this objective,
and then leverage these results in the design of two novel deep RL algorithms for discrete, determin-
istic environments: α-Soft Actor-Critic (α-SAC) and α-Soft Q-Learning (α-SQL)1. We compare
these with their entropy-regularised counterpart, SAC-Discrete (Christodoulou, 2019), and show
that they are able to achieve a higher return on a range of Atari environments.

Fig. 1 shows the structure of the first half of the paper. In Sec. 2, we recapitulate existing results
elaborating on the connection between KL-regularised RL and probablistic inference. In Sec. 3 we
generalise to the Rényi regularised setting, and state core theoretical results for this setting. In Sec. 4
we use these results to design deep RL algorithms for the non-tabular setting. Finally, we compare
these algorithms against an existing baseline in Sec. 5.

1A link to a GitHub repository containing implementations of these algorithms will be added for the camera
ready version.

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Inference view Regularisation view

Eτ∼π

[
T−1∑
t=0

β r(at, st)−DKL (π(at | st) ∥πb(at | st))

]
Eτ∼qπ [β G(τ)]−DKL (qπ(τ) ∥ p(τ))

Eτ∼qπ [β G(τ)]−Dα (qπ(τ) ∥ p(τ))
1

1− α
logEτ∼π

[
T−1∏
t=0

(
eβ r(st,at) πb(at | st)

π(at | st)

)1−α
]Rényi variational inference

Figure 1: Relationship between KL-regularised reinforcement learning and Rényi regularised
reinforcement learning. In Sec. 2.1 we review the KL-regularised RL objective (top right). In
Sec. 2.2 we move to the inference view (top left), which treats the RL problem as a structured
variational inference problem. In Sec. 2.3 we explain how to generalise this inference objective to
the α-Renyi variational inference objective (bottom left). Finally, we expand this objective in terms
of a policy in Sec. 3 which allows us to formulate the α-Rényi reinforcement learning objective
(bottom right).

CONTRIBUTIONS

Our contributions are as follows:

• The introduction of a novel RL objective, the Rényi regularised RL objective.
• Theoretical results for both policy evaluation and policy improvement for the Rényi regu-

larised RL objective.
• The introduction of two new algorithms for the Rényi regularised RL problem, α-SAC and
α-SQL.

• Empirical evaluations of α-SAC and α-SQL on deterministic discrete RL tasks.

2 PRELIMINARIES AND RELATED WORK

2.1 THE KL-REGULARISED SETTING

The entropy-regularised reinforcement learning problem has been the subject of much attention in
recent years, yielding novel state-of-the-art algorithms such as Soft Actor-Critic (SAC) (Haarnoja
et al., 2019) and Soft Q-Learning (SQL) (Haarnoja et al., 2017). In short, the entropy-regularised RL
problem modifies the standard RL objective by administering additional rewards to the agent for tak-
ing actions that have a low likelihood under its current policy. Below we focus on the more general
KL-regularised reinforcement learning problem, in which penalties are administered to the agent for
pursuing a policy which deviates from a base policy πb(a|s); the entropy-regularised problem can
be obtained from the KL-regularised one by setting the base policy πb(a|s) to be the (unnormalised)
uniform distribution, πb(a|s) = 1.

We consider an episodic Markov Decision Process (MDP) described by an environment with a col-
lection of states S. The agent begins in state s0 ∼ p0(s0), and samples an action a0 from its policy,
a0 ∼ π(a|s0). Following this action, the agent receives a reward r1 = r(s0, a0), and transitions
into a new state s1 according to the dynamics p(s1|s0, a0). This process then repeats, yielding a
sequence of states, actions, and rewards s0, a0, r1, s1, a1, r2, . . . . This sequence terminates at time
T when the agent transitions into a terminal state sT . The sequence of states, actions, and rewards
from the initial state to the terminate state are referred to as a trajectory, τ = (s0, a0, . . . , sT ). The
return of a trajectory is given by G(τ) =

∑T
t=1 rt. We refer the reader to Sutton & Barto (2020) for

a more comprehensive introduction to MDPs.

In the undiscounted case, the KL-regularised reinforcement learning problem is to find a policy π
which maximises:

J(π) := Eτ∼π

[
T−1∑
t=0

βr(at, st)−DKL (π(at|st)||πb(at|st))

]
(1)

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

where DKL is the KL-divergence, defined by:

DKL(π(a|s)||πb(a|s)) :=
∫

π(a|s) log
(

π(a|s)
πb(a|s)

)
da. (2)

Here β is an inverse temperature parameter, which dictates the trade-off between maximising the
return G(τ) and minimising the KL-divergence. We call Eq. (1) the regularisation view of KL-
regularised RL, since the KL-divergence adds a penalty term to the objective which is independent
of environmental rewards. For a more extensive introduction to the KL-regularised RL problem, we
refer the reader to Levine (2018).

Existing work (Yang et al., 2019) has attempted to generalise the KL-regularised RL setting by
starting with the regularisation view, and substituting the KL-divergence penalty in Eq. (1) with the
expectation of a more general function Ω of the policy density, yielding the objective:

JΩ(π) := Eτ∼π

[
T−1∑
t=0

βr(at, st)− Ω (π(at|st))

]
. (3)

In this paper, we adopt a fundamentally different approach. In Sec. 2.2, we show how to move to an
alternative view of KL-regularised RL which we term the inference view. Under the inference view,
KL-regularised RL is understood as a form of approximate inference. This allows us to develop
novel algorithms by generalising the inference procedure, which we do in Sec. 2.3.

2.2 KL-REGULARISED RL AS STRUCTURED VARIATIONAL INFERENCE

Variational Inference (Ganguly et al., 2023) is a popular method in ML for learning approximations
to the posterior of a distribution conditional on observed data. We consider a pair of variables x and
z, described by joint distribution p(x, z). Conditional on an observation of x, we wish to learn an
approximation to the posterior p(z|x). In variational inference, we attempt to learn an approximate
posterior q(z) ≈ p(z|x) by maximising the Evidence Lower Bound (ELBo), given by:

L(q) := Ez∼q

[
log

(
p(x, z)

q(z)

)]
(4)

The ELBo can be re-expressed in the following form:

L(q) = log p(x)−DKL(q(z)||p(z|x)) (5)

Since the KL-divergence term is non-negative, and is equal to zero precisely when q(z) = p(z|x),
we see that the ELBo L is maximised precisely when q(z) = p(x, z). Accordingly, the optimisation
problem of maximising the ELBo corresponds to the inference problem of computing the posterior
for z, conditional on x.

The ELBo can also be written in an equivalent form – used, e.g., in the Variational Auto-Encoder
(Kingma & Welling, 2019) – is given by:

L(q) = Ez∼q [log p(x|z)]−DKL (q(z)||p(z)) . (6)

In this form, the first term acts as an objective which encourages the approximate posterior q(z) to
sample latent variables z under which the data x has a high likelihood, while the second term can
be seen as a regularisation which encourages the approximate posterior q(z) to stay close to the true
latent variable prior p(z). It is this form we will focus on in later derivations.

Having introduced both the KL-regularised RL problem (Sec. 2.1) and variational inference, we
now show how the KL-regularised reinforcement learning objective (Eq. (1)) can be understood as
a special case of variational inference. We term this the inference view of KL-regularised RL. For a
more complete exposition, we refer the reader to Levine (2018).

We begin by introducing an optimality variable,O ∈ {0, 1}, whose conditional probability satisfies:

p(O = 1|τ) ∝ exp (βG(τ)) . (7)

As before β is an inverse temperature parameter, and G(τ) is the return of the trajectory τ . The
optimality variable is named so because it has a higher probability of being ‘on’, i.e. 1, the higher the

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

return of the trajectory. In the inference view of the KL-regularised RL problem, this variable takes
the role of observed variables, x, while the RL trajectory, τ , plays the role of the hidden variables z.
The prior p(τ) over the trajectories is assumed to correspond to that for an RL agent implementing
the base policy policy

p(τ) := p0(s0)

T−1∏
t=0

p(st+1|st, at)πb(at|st). (8)

We will now consider using a special form of variational inference to compute an approximate
posterior q over trajectories, given the observation O = 1. In structured variational inference
(Hoffman & Blei, 2014), an assumption is made regarding the decomposition of q(τ) across the
various sub-variables of τ .

We derive a form for q by assuming that the density over trajectories can be modified only by
pursuing a different (Markovian) policy, and not by changing the environmental dynamics. The
resulting expression is:

qπ(τ) = p0(s0)

T−1∏
t=0

p(st+1|st, at)π(at|st). (9)

In effect, Eq. (9) isolates action selection as the part of the system which is under our control, while
leaving environmental dynamics untouched. Using the likelihood in Eq. (7), the prior in Eq. (8), and
the approximate posterior in Eq. (9) in the form of the ELBo (Eq. (6)) yields:

L(qπ) = Eτ∼qπ [βG(τ)]−DKL(qπ(τ)||p(τ)). (10)

We term Eq. (10) the inference view of KL-regularised RL. Note that the KL-divergence can be
simplified as follows:

DKL(qπ(τ)||p(τ)) = Eτ∼qπ

[
log

(
q(τ)

p(τ)

)]
= Eτ∼qπ

[
log

(
T−1∏
t=0

π(at|st)
πb(at|st)

)]

= Eτ∼qπ

[
T−1∑
t=0

log

(
π(at|st)
πb(at|st)

)]
= Eτ∼qπ

[
T−1∑
t=0

DKL (π(at|st)||πb(at|st))

]
Substituting this expression into Eq. (10) demonstrates the equivalence between the inference view,
Eq. (10), and the regularisation view, Eq. (1), as required. Having now introduced the inference view
of KL-regularised RL, we consider a generalisation of the inference procedure and the corresponding
generalisation of the KL-regularised RL problem.

2.3 RÉNYI DIVERGENCE VARIATIONAL INFERENCE

α-Rényi divergences (van Erven & Harremoës, 2014) form a one-parameter family of discrepancy
measures between pairs of probability distributions. For α ̸= −∞, 1,+∞, the α-Rényi divergence
from density q to density p is given by:

Dα (q||p) := 1

α− 1
logEq

[(
q(z)

p(z)

)α−1
]

(11)

This definition is extended by continuity to −∞, 1,+∞. In particular, the 1-Rényi divergence is
exactly the KL-divergence, Eq. (2).

Before continuing, we briefly note some properties of the α-Rényi divergences. Firstly, the α-
Rényi divergence is non-negative for α > 0 and non-positive for α < 0. For this reason we will
restrict our attention for the rest of this paper to the case α > 0. Secondly, the α-Rényi divergence is
continuous and non-decreasing as a function of α; hence larger α-values lead to greater penalisation.
Lastly, for all α ≥ 1, Dα(q||p) is zero-forcing in q, meaning that, if Dα(q||p) <∞, q = 0 whenever
p = 0. However, for 0 < α < 1, Dα(q||p) is not zero-forcing in q. We refer the reader to (van Erven
& Harremoës, 2014) for a more in-depth discussion of Rényi divergences and their properties.

Rényi divergence variational inference (Li & Turner, 2016) generalises classical variational infer-
ence by replacing the KL-divergence appearing in the ELBo, Eq. (5), with the α-Rényi divergence:

Lα(q) := log (p(x))−Dα (q(z)||p(z|x)) . (12)

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

This is referred to as the Variational Rényi lower bound. Eq. (12) can be rearranged into the follow-
ing equivalent form (cf. with Eq. (4)):

Lα(q) :=
1

1− α
logEz∼q(z)

[(
p(x, z)

q(z)

)1−α
]

(13)

3 THE RÉNYI REGULARISED REINFORCEMENT LEARNING PROBLEM

In Sec. 2.2 we introduced the inference view of KL-regularised RL. In this section, we generalise
the inference procedure by replacing the ELBo in Eq. (10) with the Variational Rényi lower bound.
This yields a new family of RL objectives, parameterised by α:

Lα(qπ) =
1

1− α
logEτ∼qπ(τ)

[(
eβG(τ)p(τ)

qπ(τ)

)1−α
]
. (14)

As in Sec. 2.2, we will once again make the structure assumption, Eq. (9). This gives the following
objective in terms of only a policy, π(a|s):

Lα(qπ) =
1

1− α
logEτ∼qπ(τ)

[
T−1∏
t=0

(
eβr(st,at)πb(at|st)

π(at|st)

)1−α
]
. (15)

We will refer to Eq. (15) as the α-Rényi reinforcement learning objective.

Having established the α-Rényi RL objective, we seek to develop practical deep RL algorithms
for maximising this objective. To do so, we start by defining the (undiscounted) α-soft state-value
function via:

V π
α (s) :=

1

1− α
logEτ∼qπ(τ)

[
T−1∏
t=0

(
eβr(st,at)πb(at|st)

π(at|st)

)1−α
∣∣∣∣∣s0 = s

]
, (16)

We can learn state-value functions by leveraging Bellman recursion relationships. In App. A.1 we
show that the (undiscounted) α-soft state-value function satisfies the Bellman recursion relationship:

V π
α (s) =

β−1

1− α
logEa∼π(a|s)

[(
eβr(s,a)πb(a|s)

π(a|s)

)1−α

Es′∼p(s′|s,a)

[
eβ(1−α)V π

α (s′)
]]

. (17)

The convergence of practical algorithms which have their basis in recursion relationships like
Eq. (17) typically rely on the introduction of a discount factor γ ∈ (0, 1), which reduces the value of
upcoming states. Accordingly, we will introduce discounting2 by defining the corresponding α-soft
Bellman operator, Bπα, which acts on state-value functions via:

[BπαV ] (s) =
β−1

1− α
logEa∼π(a|s)

[(
eβr(s,a)πb(a|s)

π(a|s)

)1−α

Es′∼p(s′|s,a)

[
eβ(1−α)V (s′)

]γ]
(18)

We also define the action of Bπα on action-value functions Q(s, a) via:

[BπαQ] (s, a) := r(s, a) + γ
β−1

1− α
logEa′,s′∼π(a′|s′)p(s′|s,a)

(eβQ(s′,a′)πb(a
′|s′)

π(a′|s′)

)1−α
 (19)

In the limit as α → 1, this recovers the typical soft Bellman operators for the KL-regularised
setting. We now present the first theoretical result of the paper. This result will be used to define
the discounted α-soft state- and action-value functions, and allow us to perform iterative policy
evaluation to find those functions:

2The role of the discount factor in our algorithm can be understood as a regulariser to allow convergence of
iterative policy evaluation protocols. See Amit et al. (2020) for further discussion.

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Theorem 1 (α-soft policy evaluation). Consider a finite MDP, i.e., |S × A| < ∞. Then (for both
state-value and action-value functions), for any γ ∈ (0, 1), the α-soft Bellman operator is a con-
traction mapping in the ℓ∞ norm with contraction modulus γ. Accordingly, there exist unique fixed
points, which we call the α-soft state- and action-value functions, denoted by V π

α (s) and Qπ
α(s, a)

respectively, to which any sequence of iterates converges in the ℓ∞ norm. Furthermore, these func-
tions are related via:

Qπ
α(s, a) = r(s, a) + γ

β−1

1− α
logEs′∼p(s′|s,a)

[
eβ(1−α)V π

α (s′)
]

(20)

V π
α (s) =

β−1

1− α
logEa∼π(a|s)

[(
eβQ

π
α(s,a)πb(a|s)
π(a|s)

)1−α
]

(21)

The proof of this theorem is given in App. A.2.

Having established a theoretical basis for policy evaluation, we now turn to policy improvement.
Our task is to generalise the notion of greedy action selection to the Rényi regularised setting. We
wish to know, given our current policy’s action-value function, how to define a new policy which
has a greater action-value function. Equation (21) can be alternatively written as

V π
α (s) = V ∗(s)− β−1Dα (π(a|s)||π∗(a|s)) , (22)

where
π∗(a|s) = πb(a|s) exp(β(Qπ

α(s, a)− V ∗(s))) (23)
is the Boltzmann policy with respect to Qπ

α, and

V ∗(s) = β−1 logEa∼πb(a|s)

[
eβQ

π
α(s,a)

]
(24)

is the appropriate log-normalisation factor. From this we can see that improving the value of a state
is equivalent to reducing the α-Rényi divergence between the policy at that state and the Boltzman
policy. We capture this in the following theorem:
Theorem 2 (α-soft policy improvement). Consider a finite MDP, i.e., |S × A| < ∞. Then for any
policy π, let π∗ be the corresponding Boltzmann policy, given by Eq. (23). If πnew satisfies

Dα (πnew(a
′|s′)||π∗(a′|s′)) ≤ Dα (π(a′|s′)||π∗(a′|s′)) , ∀s′ ∈ S, (25)

then Qπnew
α ≥ Qπ

α. Moreover, for any state-action pair (s, a) which has a non-zero probability of
transitioning into a state s′ at which the inequality in Eq. (25) is strict, we have that Qπnew

α (s, a) >
Qπ

α(s, a).

The proof of this theorem is given in App. A.3.

Theorem 2 tells us how we can improve our policy, namely by decreasing the α-Rényi divergence
with the Boltzmann policy at every state. Our last result concerns the generalisation of the value iter-
ation procedure to this new setting. This will allow us to formulate an off-policy algorithm analogous
to Q-learning (Watkins & Dayan, 1992; Mnih et al., 2015). This is done by updating action-values
Q according to a policy that is Boltzmann with respect to the current Q function. Equivalently, we
set the next state-value function in Eq. (20) to be V ∗(s) = β−1Ea∼πb(a|s) [exp(βQ(s, a)], as in
Eq. (24). Doing so gives us an update purely in terms of action-value functions - the α-soft Bellman
optimality operator,

[B∗αQ] (s, a) = r(s, a) + γ
β−1

1− α
logEs′∼p(s′|s,a)

[
Ea′∼πb(a′|s′)

[
eβQ(s′,a′)

]1−α
]

(26)

Theorem 3 (α-soft value iteration). Consider a finite MDP, i.e., |S × A| < ∞. Then for any
γ ∈ (0, 1), the α-soft Bellman optimality operator B∗α is a contraction mapping in the ℓ∞ norm
with contraction modulus γ. Accordingly, there exists a unique fixed point, which we call the α-soft
optimal action-value function, and denote by Q∗

α(s, a), to which any sequence of iterates converges
in the ℓ∞ norm. Furthermore, we have that:

Q∗
α(s, a) = sup

π
Qπ

α(s, a) (27)

The proof of this theorem is given in App. A.4.

Having now established key theoretical results for the Rényi regularised RL setting, we turn our
attention to practical algorithms for the non-tabular case.

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

4 FROM THEORY TO ALGORITHMS

We devise two novel algorithms for the discrete action-space setting, α-Soft Actor-Critic (α-SAC)
and α-Soft Q-Learning (α-SQL). α-SAC and α-SQL both make use a collection of action-value
functions Q(s, a;ϕk), k = 1, . . . ,K, which take in states and output values for each action. We
will take the minimum over these when computing action-values, to compensate for value over-
optimism (Fujimoto et al., 2018). Additionally, α-SAC makes use of a parametric policy network
π(a|s; θ), which takes in states and outputs probabilities over actions. We will also use delayed
action value-functions, Q(s, a;ϕ−

k ), whose parameters ϕ−
k are synchronised with ϕk after a fixed

number of update steps. Both α-SAC and α-SQL are off-policy, and make use of a finite capacity,
first-in-last-out (FILO) memory replay buffer into which (state, action, reward, next state, done)
transitions, (s, a, r, s′, d) are loaded and then resampled.

Full pseudocode for both algorithms is found in App. B.

4.1 VALUE LEARNING

To fit the value function parameters ϕk we obtain gradient from the mean-squared error:

L(ϕk) =
1

N

N∑
i=1

(yi −Q(si, ai;ϕk))
2 (28)

where yi = y(ri, s
′
i, di) are regression targets, and the sum is taken over a mini-batch of N tran-

sitions sampled from the memory replay buffer, {(si, ai, ri, s′i, di)}Ni=1. The regression targets are
derived from either the α-soft Bellman operator, Eq. (19), in the case of α-SAC, or the α-soft Bell-
man optimality operator, Eq. (26), in the case of α-SQL. Note that both of these updates involve an
expectation over transitions. We will therefore concentrate only on the case of deterministic envi-
ronments, for which a single sample suffices for transition dynamics. The α-SAC regression targets
are given by:

yi = ri + γ
β−1

1− α
logEa′

i∼π(a′
i|s′i;θ)

(eβmink Q(s′i,a
′
i;ϕ

−
k )πb(a

′
i|s′i)

π(a′i|s′i; θ)

)1−α
 , (29)

where the expectation is computed by summing over the finite collection of actions. The minimum
over action-value functions is applied to combat value overoptimism (Fujimoto et al., 2018). To find
the α-SQL regression targets, we note that, for a deterministic environment, the outer expectation
over next states in the α-soft Bellman optimality operator, Eq. (26), collapses to a single sample.
The regression targets are therefore given by:

yi = ri + γβ−1 logEa′
i∼πb(a′

i|s′i)

[
eβmink Q(s′i,a

′
i;ϕ

−
k )
]
. (30)

Note that this is independent of α. Thus, the parameter α only effects policy learning in α-SQL.

4.2 POLICY LEARNING

Policy gradients for α-SAC are obtained by performing ascent on the average value of states sampled
from the memory replay buffer, as given by Eq. (21):

J(θ) =
1

N

N∑
i=1

β−1

1− α
logEai∼π(ai|si;θ)

[(
eβmink Q(si,ai;ϕk)πb(ai|si)

π(ai|si; θ)

)1−α
]
. (31)

Once again, the expectation is computed by summing over the available actions. By Theorem 2,
we know that if the action-value function were correct, then increasing this objective at every state
yields a strictly better policy. We settle instead for sampling states from the memory replay buffer
and doing ascent at those states. In light of Eq. (22), we can alternatively interpret ascent on this
objective as minimising the α-Rényi divergence between the policy network and the Boltzmann
policy given by the current action-value function at a sample of states.

For α-SQL, we simply take our policy to be Boltzmann with respect to the current action-value
function, i.e.,

π(a|s) = πb(a|s)eβmink Q(s,a;ϕk)∑
ã πb(ã|s)eβmink Q(s,ã;ϕk)

(32)

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

4.3 AUTOMATIC REWARD SCALING ADJUSTMENT

Finally, we consider a mechanism which automatically adjusts the parameter β. We denote by D̄
an average target divergence that we wish to maintain. For both α-SAC and α-SQL, we adjust the
inverse temperature β−1 by doing descent on the following loss:

L(β−1) = β−1

(
D̄ − 1

N

N∑
i=1

D(si)

)
(33)

where D(si) is the Rényi divergence at state si, which for α-SAC is computed as

D(s) =
1

α− 1
logEa∼π(a|s;θ)

[(
π(a|s; θ)
πb(a|s)

)α−1
]
. (34)

For α-SQL, we have an analytic form of the α-Rényi divergence, expressed in terms of the action-
value function:

D(s) =
1

α− 1

(
logEa∼πb(a|s)

[
eαβmink Q(s,a;ϕk)

]
− α logEa∼πb(a|s)

[
eβmink Q(s,a;ϕk)

])
. (35)

This procedure mimics the automatic temperature adjustment mechanism used in SAC Haarnoja
et al. (2019) and SAC-Discrete (Christodoulou, 2019).

5 RESULTS

We test α-SAC and α-SQL on four Atari environments in the Gymnasium package (Mnih et al.,
2015; Brockman et al., 2016; Towers et al., 2024) - Qbert, Ms Pacman, Assault, and Space In-
vaders . For all of these we use the version 5 environment. As a baseline, we compare to our
re-implementation of SAC-Discrete (Christodoulou, 2019). We examine the behaviour of α-SAC
and α-SQL for two values of α below and above 1 (which corresponds to the KL-regularised case):
α = 0.95 and α = 1.05, respectively. To allow a faithful comparison, the only hyperparameters
we tune are α and the target divergence D̄, leaving all other hyperparameters identical to those used
by SAC-Discrete (Christodoulou, 2019). Note that the target divergence D̄ is not tuned individu-
ally for each environment, but rather set to be a multiple of the log(|A|) where, |A| is the number
of actions in the environment. The network architecture, training hyperparameters, and additional
pre-processing details can be found in App. C. For each environment we average results over 10
random seeds. We train for a total of 500, 000 environment steps. Every 4000 environment steps,
we evaluate the policy by averaging the empirical return over 5 episodes.

In Fig. 2 we compare the performance of our algorithms α-SAC and α-SQL to SAC-D across four
environments. We see that our methods are able to learn in all four environments. The biggest
different in performance is between the α-SQL methods and the SAC methods. We see that α-SQL
consistently achieves higher returns than SAC in all four environments. We additionally note that
α-SQL has a lower compute cost compared to the SAC algorithms, since it uses only action-value
networks, and not a policy network. Among the SAC methods, we see that α-SAC is competitive
with SAC-D in both Qbert and Space Invaders, and is able to outperform SAC-D for both Ms Pacman
and Assault. Moreover, in those environments, we see that α = 1.05 tends to outperform α = 0.95.
The value of α appears less importance for α-SQL; this is likely because in α-SQL, α affects only
temperature adjustment, but not regression target formation.

6 DISCUSSION

Our work builds upon and extends important foundational work in RL which relates regularised RL
to approximate probabilistic inference. Our main goal in this paper has been to theoretically illus-
trate the potential of this framework for developing novel RL algorithms. Indeed, unlike previous
work, we take probabilistic inference as the starting point for new development, rather than reward
regularisation. We hope that future work can extend this core idea by using other variational approx-
imate inference methods, such as importance weighted variational inference (Burda et al., 2016) and
f-divergence variational inference (Wan et al., 2020), in the RL setting.

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

0.0 0.1 0.2 0.3 0.4 0.5

200

400

600

800
R

et
u

rn

Qbert

SAC-Discrete

α-SAC, α=0.95

α-SAC, α=1.05

α-SQL, α=0.95

α-SQL, α=1.05

0.0 0.1 0.2 0.3 0.4 0.5

200

400

600

800

1000

1200

Ms Pacman

0.0 0.1 0.2 0.3 0.4 0.5

Million Frames

250

300

350

400

450

R
et

u
rn

Assault

0.0 0.1 0.2 0.3 0.4 0.5

Million Frames

150

200

250

300

Space Invaders

Figure 2: The performance of α-SAC and α-SQL on four Atari environments. In each panel,
the dashed lines give the empirical returns averaged over 10 random seeds. The solid lines are give
smoothed versions of the returns, obtained by Gaussian smoothing. The shaded area indicates the
smoothed returns ± the smoothed standard error.

For our practical algorithms, we have considered only regularisation towards a (potentially un-
normalised) uniform base policy. However, many applications of KL-regularisation use a non-
uniform base policy, for example, the behavioural policy (or an approximation to it) in offline RL
(Figueiredo Prudencio et al., 2024), or a pre-trained policy in Reinforcement Learning from Hu-
man Feedback applied to language models (Zheng et al., 2023). These situations provide additional
possible uses for Rényi regularised RL. Note that, following the discussion in Sec. 2.3, varying α
varies the extent to which we penalise our new policy for generating trajectories that have low (or
zero) probability under the old policy. Thus, by varying α independently from the target divergence
value, we can control not only the strength of regularisation but also its form, and in particular how
severely it penalises trajectories which are out-of-distribution with respect to the base policy.

Unlike in the original formulation of α-Rényi variational inference, we have only formulated the
α-SAC and α-SQL algorithms for the fixed α values. We hope that future work may extend our
formalism to include automatic adjustments of α according to some other criterion.

In this paper, we have only investigated Rényi regularised algorithms for the discrete action setting,
rather than for continuous action spaces. In the continuous setting, the regression targets used for
learning action-values (Eq. (29) and Eq. (30)) must make use of Monte-Carlo approximations for
the expectations over actions. Initial experiments revealed that, although the algorithm was able to
learn, the number of samples necessary for generating faithful approximations made these method
prohibitively costly, and so we decided to focus on the discrete setting. It remains to be seen if other

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

variance reduction techniques could be used to mitigate this problem and make this method viable
for the continuous action setting.

CONCLUSION

We have extended the “RL as probabilistic inference” framework by considering an alternative to the
approximate inference objective which uses α-Rényi variational inference. This lead us to formulate
the α-Rényi RL objective. This objective generates its own set of Bellman recursion relationships
and backup operators, for which we provided theoretical results for both policy evaluation and im-
provement. We then leveraged these results in the formulation of two new algorithms, α-SAC and α-
SQL. We gave concrete implementations of these methods in the case of discrete action-spaces, and
demonstrated that they perform favourably against their KL-regularised counterpart, SAC-Discrete.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Ron Amit, Ron Meir, and Kamil Ciosek. Discount Factor as a Regularizer in Reinforcement Learn-
ing, July 2020. URL http://arxiv.org/abs/2007.02040. arXiv:2007.02040 [cs, stat].

Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie Tang,
and Wojciech Zaremba. OpenAI Gym, June 2016. URL http://arxiv.org/abs/1606.
01540. arXiv:1606.01540 [cs].

Yuri Burda, Roger Grosse, and Ruslan Salakhutdinov. Importance Weighted Autoencoders, Novem-
ber 2016. URL http://arxiv.org/abs/1509.00519. arXiv:1509.00519 [cs, stat].

Petros Christodoulou. Soft Actor-Critic for Discrete Action Settings, October 2019. URL http:
//arxiv.org/abs/1910.07207. arXiv:1910.07207 [cs, stat].

Rafael Figueiredo Prudencio, Marcos R. O. A. Maximo, and Esther Luna Colombini. A Survey
on Offline Reinforcement Learning: Taxonomy, Review, and Open Problems. IEEE Trans-
actions on Neural Networks and Learning Systems, 35(8):10237–10257, August 2024. ISSN
2162-237X, 2162-2388. doi: 10.1109/TNNLS.2023.3250269. URL https://ieeexplore.
ieee.org/document/10078377/.

Scott Fujimoto, Herke van Hoof, and David Meger. Addressing Function Approximation Error
in Actor-Critic Methods, October 2018. URL http://arxiv.org/abs/1802.09477.
arXiv:1802.09477 [cs, stat].

Ankush Ganguly, Sanjana Jain, and Ukrit Watchareeruetai. Amortized Variational Inference: A
Systematic Review. Journal of Artificial Intelligence Research, 78:167–215, October 2023. ISSN
1076-9757. doi: 10.1613/jair.1.14258. URL http://arxiv.org/abs/2209.10888.
arXiv:2209.10888 [cs, math, stat].

Tuomas Haarnoja, Haoran Tang, Pieter Abbeel, and Sergey Levine. Reinforcement Learning with
Deep Energy-Based Policies, July 2017. URL http://arxiv.org/abs/1702.08165.
arXiv:1702.08165 [cs].

Tuomas Haarnoja, Aurick Zhou, Kristian Hartikainen, George Tucker, Sehoon Ha, Jie Tan, Vikash
Kumar, Henry Zhu, Abhishek Gupta, Pieter Abbeel, and Sergey Levine. Soft Actor-Critic Al-
gorithms and Applications, January 2019. URL http://arxiv.org/abs/1812.05905.
arXiv:1812.05905 [cs, stat].

Matthew D. Hoffman and David M. Blei. Structured Stochastic Variational Inference, November
2014. URL http://arxiv.org/abs/1404.4114. arXiv:1404.4114 [cs].

Diederik P. Kingma and Max Welling. An Introduction to Variational Autoencoders. Foundations
and Trends® in Machine Learning, 12(4):307–392, 2019. ISSN 1935-8237, 1935-8245. doi:
10.1561/2200000056. URL http://arxiv.org/abs/1906.02691. arXiv:1906.02691
[cs, stat].

Sergey Levine. Reinforcement Learning and Control as Probabilistic Inference: Tutorial and Re-
view, May 2018. URL http://arxiv.org/abs/1805.00909. arXiv:1805.00909 [cs,
stat].

Yingzhen Li and Richard E. Turner. R\’enyi Divergence Variational Inference, October 2016. URL
http://arxiv.org/abs/1602.02311. arXiv:1602.02311 [cs, stat].

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A. Rusu, Joel Veness, Marc G. Belle-
mare, Alex Graves, Martin Riedmiller, Andreas K. Fidjeland, Georg Ostrovski, Stig Petersen,
Charles Beattie, Amir Sadik, Ioannis Antonoglou, Helen King, Dharshan Kumaran, Daan Wier-
stra, Shane Legg, and Demis Hassabis. Human-level control through deep reinforcement learning.
Nature, 518(7540):529–533, February 2015. ISSN 1476-4687. doi: 10.1038/nature14236. URL
https://www.nature.com/articles/nature14236. Publisher: Nature Publishing
Group.

11

http://arxiv.org/abs/2007.02040
http://arxiv.org/abs/1606.01540
http://arxiv.org/abs/1606.01540
http://arxiv.org/abs/1509.00519
http://arxiv.org/abs/1910.07207
http://arxiv.org/abs/1910.07207
https://ieeexplore.ieee.org/document/10078377/
https://ieeexplore.ieee.org/document/10078377/
http://arxiv.org/abs/1802.09477
http://arxiv.org/abs/2209.10888
http://arxiv.org/abs/1702.08165
http://arxiv.org/abs/1812.05905
http://arxiv.org/abs/1404.4114
http://arxiv.org/abs/1906.02691
http://arxiv.org/abs/1805.00909
http://arxiv.org/abs/1602.02311
https://www.nature.com/articles/nature14236


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Richard S. Sutton and Andrew Barto. Reinforcement learning: an introduction. Adaptive computa-
tion and machine learning. The MIT Press, Cambridge, Massachusetts London, England, second
edition edition, 2020. ISBN 978-0-262-03924-6.

Mark Towers, Ariel Kwiatkowski, Jordan Terry, John U. Balis, Gianluca De Cola, Tristan Deleu,
Manuel Goulão, Andreas Kallinteris, Markus Krimmel, Arjun KG, Rodrigo Perez-Vicente, An-
drea Pierré, Sander Schulhoff, Jun Jet Tai, Hannah Tan, and Omar G. Younis. Gymnasium:
A Standard Interface for Reinforcement Learning Environments, July 2024. URL http:
//arxiv.org/abs/2407.17032. arXiv:2407.17032 [cs].

Tim van Erven and Peter Harremoës. R\’enyi Divergence and Kullback-Leibler Divergence. IEEE
Transactions on Information Theory, 60(7):3797–3820, July 2014. ISSN 0018-9448, 1557-
9654. doi: 10.1109/TIT.2014.2320500. URL http://arxiv.org/abs/1206.2459.
arXiv:1206.2459 [cs, math, stat].

Neng Wan, Dapeng Li, and NAIRA HOVAKIMYAN. f-Divergence Variational Inference. In
Advances in Neural Information Processing Systems, volume 33, pp. 17370–17379. Curran
Associates, Inc., 2020. URL https://proceedings.neurips.cc/paper_files/
paper/2020/hash/c928d86ff00aeb89a39bd4a80e652a38-Abstract.html.

Christopher J. C. H. Watkins and Peter Dayan. Q-learning. Machine Learning, 8(3):279–292, May
1992. ISSN 1573-0565. doi: 10.1007/BF00992698. URL https://doi.org/10.1007/
BF00992698.

Wenhao Yang, Xiang Li, and Zhihua Zhang. A Regularized Approach to Sparse Optimal Policy in
Reinforcement Learning. In Advances in Neural Information Processing Systems, volume 32.
Curran Associates, Inc., 2019. URL https://proceedings.neurips.cc/paper_
files/paper/2019/hash/3f4366aeb9c157cf9a30c90693eafc55-Abstract.
html.

Rui Zheng, Shihan Dou, Songyang Gao, Yuan Hua, Wei Shen, Binghai Wang, Yan Liu, Senjie Jin,
Qin Liu, Yuhao Zhou, Limao Xiong, Lu Chen, Zhiheng Xi, Nuo Xu, Wenbin Lai, Minghao Zhu,
Cheng Chang, Zhangyue Yin, Rongxiang Weng, Wensen Cheng, Haoran Huang, Tianxiang Sun,
Hang Yan, Tao Gui, Qi Zhang, Xipeng Qiu, and Xuanjing Huang. Secrets of RLHF in Large
Language Models Part I: PPO, July 2023. URL http://arxiv.org/abs/2307.04964.
arXiv:2307.04964 [cs].

12

http://arxiv.org/abs/2407.17032
http://arxiv.org/abs/2407.17032
http://arxiv.org/abs/1206.2459
https://proceedings.neurips.cc/paper_files/paper/2020/hash/c928d86ff00aeb89a39bd4a80e652a38-Abstract.html
https://proceedings.neurips.cc/paper_files/paper/2020/hash/c928d86ff00aeb89a39bd4a80e652a38-Abstract.html
https://doi.org/10.1007/BF00992698
https://doi.org/10.1007/BF00992698
https://proceedings.neurips.cc/paper_files/paper/2019/hash/3f4366aeb9c157cf9a30c90693eafc55-Abstract.html
https://proceedings.neurips.cc/paper_files/paper/2019/hash/3f4366aeb9c157cf9a30c90693eafc55-Abstract.html
https://proceedings.neurips.cc/paper_files/paper/2019/hash/3f4366aeb9c157cf9a30c90693eafc55-Abstract.html
http://arxiv.org/abs/2307.04964


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

A PROOFS OF THEORETICAL RESULTS

A.1 BELLMAN RECURSION RELATIONSHIP FOR THE α-SOFT STATE-VALUE FUNCTION

eβ(1−α)V π
α (s0) = E

[
T−1∏
t=0

(
eβr(st,at)πb(at|st)

π(at|st)

)(1−α)
∣∣∣∣∣s0
]

= E

[(
eβr(s0,a0)πb(a0|s0)

π(a0|s0)

)1−α T−1∏
t=1

(
eβr(st,at)πb(at|st)

π(at|st)

)(1−α)
∣∣∣∣∣s0
]

= E

[(
eβr(s0,a0)πb(a0|s0)

π(a0|s0)

)1−α

E

[
T−1∏
t=1

(
eβr(st,at)πb(at|st)

π(at|st)

)1−α
∣∣∣∣∣s1
]∣∣∣∣∣s0

]

= E

(eβr(s0,a0)πb(a0|s))
π(a0|s0)

)1−α

eβ(1−α)V π
α (s1)

∣∣∣∣∣∣s0


= E

[(
eβr(s0,a0)πb(a0|s0)

π(a0|s0)

)1−α

E
[
eβ(1−α)V π

α (s1)
∣∣∣s0, a0]

∣∣∣∣∣s0
]

A.2 PROOF OF THE α-SOFT POLICY EVALUATION THEOREM

We will show that the α-soft Bellman operator defined by Eq. (18) is a contraction mapping in the
ℓ∞ norm over action-value functions. We begin by defining the density p̂(s′, a′|s, a) given by:

p̂(s′, a′|s, a) = 1

Z(s, a)
π(a′|s′)p(s′|s, a)

(
πb(a

′|s′)
π(a′|s′)

)1−α

(36)

where Z(s, a) > 0 is a normalisation constant. We will additionally reduce notational clutter by
letting Q̄ := β(1 − α)Q. Then we can re-write the α-soft Bellman operator acting on action-value
functions as:[

BπαQ̄
]
(s, a) := r̄(s, a) + logZ(s, a) + γ logEa′,s′∼p̂(s′,a′|s,a)

[
eQ̄(s′,a′)

]
(37)

We will show that this is a contraction map by contradiction. Suppose not. Then for some choice of
Q(s, a) and U(s, a), we can say that

sup
s,a∈S×A

|[BπαQ](s, a)− [BπαU ](s, a)| > γ sup
s′,a′∈S×A

|Q(s′, a′)− U(s′, a′)| (38)

In particular, (w.l.o.g., by exchanging Q and U ), we can say that:[
BπαQ̄

]
(s, a)−

[
BπαŪ

]
(s, a) > γQ̄(s′, a′)− γŪ(s′, a′), ∀(s′, a′) ∈ S ×A (39)

We can now apply Eq. (37) to say that:

γ logEa′,s′∼p̂(s′,a′|s,a)

[
eQ̄(s′,a′)

]
− γ logEa′,s′∼p̂(s′,a′|s,a)

[
eŪ(s′,a′)

]
>

γQ̄(s′, a′)− γŪ(s′, a′), ∀(s′, a′) ∈ S ×A (40)

We now divide through by the discount factor γ, and apply exp(•) to both sides. As this is strictly
increasing, this implies that:

Ea′,s′∼p̂(s′,a′|s,a)

[
eQ̄(s′,a′)

]
eŪ(s′,a′) >

Ea′,s′∼p̂(s′,a′|s,a)

[
eŪ(s′,a′)

]
eQ̄(s′,a′), ∀(s′, a′) ∈ S ×A (41)

We now take expectations of both sides with respect to p̂(s′, a′|s, a) to arrive at a contradiction.

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

The proof strategy for the case of state-value functions is very similar. We first define the modified
density

p̂(a|s) = 1

Z(s)

(
eβr(s,a)πb(a|s)

π(a|s)

)1−α

π(a|s), (42)

where Z(s) > 0 is a normalisation constant. Then we can re-express the α-soft Bellman operator
defined in Eq. (18) using p̂(a|s) as follows:[

BπαV̄
]
(s) = logZ(s) + logEa∼p̂(a|s)

[
E
[
eV̄ (s′)|s, a

]γ]
(43)

We will once again argue by contradiction. Then for some choice of V̄ and Ū , and s ∈ S, we have[
BπαV̄

]
(s)−

[
BπαŪ

]
(s) > γV̄ (s′)− γŪ(s′), ∀s′ ∈ S (44)

We divide both sides by γ and use Eq. (43) to obtain:

logEa∼p̂(a|s)

[
E
[
eV̄ (s′)|s, a

]γ]1/γ
− logEa∼p̂(a|s)

[
E
[
eŪ(s′)|s, a

]γ]1/γ
>

V̄ (s′)− Ū(s′), ∀s′ ∈ S (45)

We now apply exp(•) to both sides, and then take expectations with respect to p(s′|s, a) to obtain
that:

Ea∼p̂(a|s)

[
E
[
eV̄ (s′)|s, a

]γ]1/γ
E
[
eŪ(s′)|s, a

]
>

Ea∼p̂(a|s)

[
E
[
eŪ(s′)|s, a

]γ]1/γ
E
[
eV̄ (s′)|s, a

]
,∀a ∈ A (46)

To complete the proof, we exploit strict monotonicity to raise both sides to the power of γ, and then
take expectations over p̂(a|s) to arrive at a contradiction. This completes the first half of the proof,
and shows that the α-soft state- and action- value functions are indeed well-defined as unique fixed
points of the corresponding Bellman operators. Furthermore, we have that any sequence of iterates
converges in the ℓ∞-norm to these fixed points.

For the second half of the proof, we establish recursion relationships that holds between the α-soft
state- and action-value functions, V π

α (s) and Qπ
α. We will start by showing Eq. (20). Let us define:

Q(s, a) = r(s, a) + γ
β−1

1− α
logEs′∼p(s′|s,a)

[
eβ(1−α)V α

θ (s′)
]
. (47)

We will show that this is a fixed point of the α-soft Bellman operator over action-value functions,
and thus is equal to Qπ

α(s, a). We proceed as follows:

[BπαQ] (s, a) = r(s, a) + γ
β−1

1− α
logE

(eβQ(s′,a′)πb(a
′|s′)

π(a′|s′)

)1−α
∣∣∣∣∣∣s, a


= r(s, a) + γ

β−1

1− α
logE

[(
πb(a

′|s′)
π(a′|s′)

)1−α

eβ(1−α)Q(s′,a′)

∣∣∣∣∣s, a
]

= r(s, a) + γ
β−1

1− α
logE

[(
πb(a

′|s′)
π(a′|s′)

)1−α

eβ(1−α)r(s′,a′)E
[
eβ(1−α)V π

α (s′′)
∣∣∣s′, a′]γ∣∣∣∣∣s, a

]

= r(s, a) + γ
β−1

1− α
logE

E
(eβr(s

′,a′)πb(a
′|s′)

π(a′|s′)

)1−α

E
[
eβ(1−α)V π

α (s′′)
∣∣∣s′, a′]γ

∣∣∣∣∣∣s′
∣∣∣∣∣∣s, a


= r(s, a) + γ

β−1

1− α
logE

[
eβ(1−α)V π

α (s′)
∣∣∣s, a]

= Q(s, a)

as required. We will now establish the converse relationship, given by Eq. (21). To do this, we will
define:

V (s) =
β−1

1− α
logEa∼π(a|s)

[(
eβQ

π
α(s,a)πb(a|s)
π(a|s)

)1−α
]
. (48)

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

As before, we show that V is a fixed point of the α-soft Bellman operator over state-value functions,
and is thus equal to V π

α (s). First, note that:

eβ(1−α)r(s,a)E
[
eβ(1−α)V (s′)

∣∣∣s, a]γ = eβ(1−α)r(s,a)E

E
(eβQ

π
α(s′,a′)πb(a

′|s′)
π(a′|s′)

)1−α
∣∣∣∣∣∣s′
∣∣∣∣∣∣s, a

γ

= eβ(1−α)r(s,a)E

(eβQ
π
α(s′,a′)πb(a

′|s′)
π(a′|s′)

)1−α
∣∣∣∣∣∣s, a

γ

= eβ(1−α)Qπ
α(s,a).

We now apply this result to simplify the α-soft Bellman operator applied to V :

[BπαV ] (s) =
β−1

1− α
logE

[(
eβr(s,a)πb(a|s)

π(a|s)

)1−α

E
[
eβ(1−α)V (s′)

∣∣∣s, a]γ∣∣∣∣∣s
]

=
β−1

1− α
logE

[(
πb(a|s)
π(a|s)

)1−α

eβ(1−α)Qπ
α(s,a)

∣∣∣∣∣s
]

=
β−1

1− α
logE

[(
eβQ

π
α(s,a)πb(a|s)
π(a|s)

)1−α
∣∣∣∣∣s
]

= V (s).

Therefore V (s) = V π
α (s), as claimed.

A.3 POLICY IMPROVEMENT

Here we prove the α-soft policy improvement theorem. We will first prove a more general lemma,
before turning to the main result.

Lemma 1. Let Q(s, a) be an action-value function with corresponding Boltzmann policy
π∗(a′|s′) = πb(a

′|s′) exp(β(Q(s′, a′)− V ∗(s′))), where V ∗ serves to normalise the density. Then
consider any two policies π1 and π2, which satisfy:

Dα(π1(a
′|s′)||π∗(a′|s′)) ≤ Dα(π2(a

′|s′)||π∗(a′|s′)) ∀s′ ∈ S (49)

then [Bπ1
α Q] (s, a) ≥ [Bπ2

α Q] (s, a), with strict inequality at any (s, a) which has non-zero probabil-
ity of transitioning into s′ at which the inequality is strict in Eq. (49).

Proof. First, note that the α-soft Bellman operator acting on action-value functions can be re-
expressed as:

[BπαQ] (s, a) = r(s, a) + γ
β−1

1− α
logEs′∼p(s′|s,a)

[
e(1−α)[βV ∗(s′)−Dα(π(a′|s′)||π∗(a′|s′))]

]
(50)

From here, the proof is relatively straightforward. In the case 1 − α > 0, we note that it suffices to
show that

eγ
−1β(1−α)[Bπ1

α Q](s,a) − eγ
−1β(1−α)[Bπ2

α Q](s,a) ≥ 0 (51)

But, using Eq. (50), this is equivalent to

Es′∼p(s′|s,a)

[
e(1−α)[βV ∗(s′)−Dα(π1(a

′|s′)||π∗(a′|s′))]
]
≥

Es′∼p(s′|s,a)

[
e(1−α)[βV ∗(s′)−Dα(π2(a

′|s′)||π∗(a′|s′))]
]

(52)

which holds because of Eq. (49), with strict inequality if there is a non-zero probability of s, a
transitioning to s′ where Eq. (49) holds strictly. The argument for 1 − α < 0 is almost identical,
after exchanging π1 and π2 in both Eq. (51) and Eq. (52).

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

The stated result in Theorem 2 now follows almost immediately from Lemma 1. Take Q = Qπ
α,

π1 = π, and π2 = πnew satisfying Eq. (25). Then we have that

[Bπnew
α Qπ

α] (s, a) ≥ [BπαQπ
α] (s, a) = Qπ

α(s, a) (53)

with strict inequality whenever s, a has a non-zero probability of transitioning into s′ where the
inequality in Eq. (25) is strict. Note that the α-soft Bellman operators are increasing, in the sense
that if Q ≥ U , then Bπnew

α Q ≥ Bπnew
α U . We can thus argue that:

[Bπnew
α ]

2
Qπ

α ≥ Bπnew
α Qπ

α ≥ Qπ
α. (54)

Inductively, we see that for any n ≥ 0, we must have that

[[Bπnew
α ]

n
Qπ

α] (s, a) ≥ [Bπnew
α Qπ

α] (s, a) ≥ Qπ
α(s, a), (55)

where the second inequality is strict inequality wherever s, a has non-zero probability of transition-
ing into s′ at which the inequality in Eq. (25) is strict. We can now take the limit as n → ∞ to
achieve the desired result.

A.4 PROOF OF THE α-SOFT VALUE ITERATION THEOREM

Again, this theorem has two main parts - showing that B∗α is a contraction mapping (in the ℓ∞ norm,
with modulus γ), and then showing that the corresponding fixed point is optimal, in the sense of
dominating all other action-value functions and being attained for some policy.

We begin with the contraction mapping proof, which is very similar in structure to the proofs in
App. A.2. In particular, we assume a contradiction for some functions Q, U at (s, a). Then we can
say that:

γ
β−1

1− α
logE

[
Eπb

[
eβQ(s′,a′)

∣∣∣s′]1−α
∣∣∣∣s, a]− γ

β−1

1− α
logE

[
Eπb

[
eβQ(s′,a′)

∣∣∣s′]1−α
∣∣∣∣s, a]

> γQ(s′, a′)− γU(s′, a′), ∀(s′, a′) ∈ S ×A (56)

We now divide through by γ and multiply through by β. We apply exp(•) to both sides of the
equation, and take the expectation over a′ ∼ πb(a

′|s′) to obtain the following inequality:

E
[
Eπb

[
eβQ(s′,a′)

∣∣∣s′]1−α
∣∣∣∣s, a] 1

1−α

Eπb

[
eβU(s′,a′)

∣∣∣s′] >
E
[
Eπb

[
eβU(s′,a′)

∣∣∣s′]1−α
∣∣∣∣s, a] 1

1−α

Eπb

[
eβQ(s′,a′)

∣∣∣s′] (57)

We now apply the mapping x 7→ x1−α to both sides. Note that, depending on whether 1−α > 0 or
1 − α < 0, the mapping x 7→ x1−α will be either strictly increasing or decreasing respectively. In
either case, we retain a strict inequality. We can now take expectations over s′ ∼ p(s′|s, a) to arrive
at a contradiction. This completes the contraction mapping portion of the proof, and establishes the
existence of Q∗

α.

We now turn to showing optimality. Let πopt be the policy which is everywhere Boltzmann with
respect to Q∗

α. Then by Eq. (22), we can see that V α
πopt

= V ∗ everywhere. Then by Eq. (20) and
Eq. (24), we have that Bαπopt

Qα
πopt

= B∗αQα
πopt

. From this we can conclude that Qα
πopt

is a fixed
point of the α-soft Bellman optimality operator, and therefore that Q∗

α = Qα
πopt

. This shows that the
supremum is attained somewhere. So it suffices only to show dominance.

To show the dominance relationship, we consider an arbitrary other policy π̃. We start by showing
that B∗αQ ≥ Bπ̃αQ for any action-value function Q. We let π∗ be Boltzmann with respect to Q. Then
we apply Lemma 1 with π1 = π∗ and π2 = π̃, using the fact that the left-hand side of Eq. (49) is
always zero and therefore the required inequality holds everywhere. This tells us that

B∗αQ = Bπ
∗

α Q ≥ Bπ̃αQ. (58)

From this we can conclude that
Q∗

α = B∗αQ∗
α ≥ Bπ̃αQ∗

α (59)

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Since B∗α is increasing as an operator (as can be seen by inspection of the definition), we can apply
the result in Eq. (58) with Q = Bπ̃αQ∗

α to Eq. (59) to obtain

Q∗
α = B∗αQ∗

α ≥ B∗αBπ̃αQ∗
α ≥

[
Bπ̃α
]2

Q∗
α (60)

Proceeding inductively, we have that Q∗
α ≥

[
Bπ̃α
]n

Q∗
α for n ≥ 0. We can then take the limit as

n→∞ and apply Theorem 1 to say that

Q∗
α ≥ Qπ̃

α, (61)

as required.

B PSEUDOCODE FOR THE α-SAC AND α-SQL ALGORITHMS

Algorithm 1 The α-SAC and α-SQL algorithms
Initialise value networks, Q(s, a;ϕk), k = 1, . . . ,K
Initialise parameters of target network, ϕ−

k ← ϕk

For α-SAC, Initialise policy network, π(a|s; θ)
Initialise D as an empty FILO memory replay buffer with finite capacity
Load learning starts transitions sampled according to the uniform policy into D
for each training step do

Interact with the environment
for environment steps per update do

Sample action a ∼ π(a|s; θ) for α-SAC and from π(a|s) given by Eq. (32) for α-SQL
Get next state and reward, s′(s, a), r(s, a)
d← 1 if s′ is terminal, otherwise d← 0
Load the transition (s, a, r, d, s′) into memory replay buffer D
if d = 1 then

Sample initial state s ∼ p0(s)
else

Set s← s′

end if
end for
Update parameters of the value networks, ϕk

Sample {(si, ai, di, ri, s′i)}Ni=1 from D
for i = 1, . . . , N do

Form regression targets yi using Eq. (29) for α-SAC and Eq. (30) for α-SQL.
end for
Take gradients of losses L(ϕk), Eq. (28)
Update ϕk according to the Adam optimiser (or another optimiser).
For α-SAC, update parameters of the policy network, θ
Take gradients on the policy objective J(θ), Eq. (31).
Update θ according to the Adam optimiser (or another optimiser) in the ascent direction.
Update the reward scaling parameter β
Take gradient of the reward scaling loss, L(β−1), Eq. (33)
Update β according to the Adam optimiser (or another optimiser).
Update target network parameters
if it’s time to update the target networks then

ϕ−
k ← ϕk

end if
end for

C HYPERPARAMETERS

C.1 ENVIRONMENT PRE-PROCESSING

We perform standard (Mnih et al., 2015) pre-processing on the Atari environments as follows:

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

1. The Atari frames are converted to grayscale.
2. Grayscale inputs are scaled linearly from [0, 255] 7→ [0, 1]

3. The frames are down-sampled to 84× 84.
4. The observations sent to the agent are stacks of four consecutive frames.
5. During training, the rewards are binned based on their sign to {−1, 0,+1}. For evaluation

rollouts, the reward clipping is removed.

C.2 NETWORK ARCHITECTURE

For both the action-value and policy networks we use a convolutional neural network feature extrac-
tor, followed by an MLP which maps to a number of outputs each to the number of actions available
for each state. ReLU non-linearities are applied between each linear layer. For the policy network,
a final soft-max non-linearity is applied over the outputs, such that the output from the network is a
categorical distribution over actions. The details of the architecture are shown in Table 1.

Table 1: Network architecture used for both the action-value and policy networks.
Network hyperparameter Value

Convolutional channels per layer [32, 64, 64]
Convolutional kernel sizes per layer [8, 4, 3]

Convolutional strides per layer [4, 2, 1]
Convolutional padding per layer [0, 0, 0]

MLP hidden layer units [512, number of actions]
Non-linearity ReLU

C.3 TRAINING HYPERPARAMETERS

Table 2: Hyperparameters used for the α-SAC, α-SQL, and SAC-Discrete algorithms
Hyperparameter Value

Batch size 64
Replay buffer capacity 250000

Discount factor γ 0.99
Environment steps per network update 4

Learning rate 0.0003
Optimiser Adam

Environment steps per target network update 8000
Learning starts 20000

Number of networks K 2

SAC-Discrete specific hyperparameters
Target policy entropy 0.98× log(|A|)

α-SAC specific hyperparameters
Regularisation policy πb Unnormalised uniform, πb(a|s) = 1
Target α-Divergence D̄ −0.9× log(|A|)

α-SQL specific hyperparameters
Regularisation policy πb Normalised uniform, πb(a|s) = 1/|A|
Target α-Divergence D̄ 0.1× log(|A|)

18


	Introduction
	Preliminaries and related work
	The KL-regularised setting
	KL-regularised RL as structured variational inference
	Rényi divergence variational inference

	The Rényi regularised reinforcement learning problem
	From Theory to Algorithms
	Value learning
	Policy learning
	Automatic reward scaling adjustment

	Results
	Discussion
	Proofs of theoretical results
	Bellman recursion relationship for the -soft state-value function
	Proof of the -soft policy evaluation theorem
	Policy improvement
	Proof of the -soft value iteration theorem

	Pseudocode for the -SAC and -SQL algorithms
	Hyperparameters
	Environment pre-processing
	Network architecture
	Training hyperparameters


