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ABSTRACT

Textual adversarial attacks present a critical threat to NLP systems by subtly alter-
ing inputs to deceive models, necessitating robust detection and defense mecha-
nisms. Traditional methods, however, suffer from high computational costs, poor
generalization to unseen attacks, and vulnerability to distribution shifts, partic-
ularly in resource-constrained scenarios where adversarial example sampling is
expensive and scarce. To address these challenges, we propose CLAD, a contin-
ual learning-based framework for adversarial detection and repair, designed to en-
hance robustness and transferability in low-resource environments. By leveraging
continual learning, CLAD mitigates catastrophic forgetting of learned adversarial
patterns and incrementally improves generalization as new attack types are intro-
duced. CLAD integrates two adversarial repair methods that preserve semantic fi-
delity while neutralizing perturbations. Across four text classification datasets and
three primary attacks (BAE, PWWS, TextFooler), CLAD improves with larger
memory buffers (MS ∈ {0, 1, 10, 100}) and exhibits reduced forgetting. The best
detection accuracy reaches 82.20% (Amazon, in-domain, MS=100), while on the
same dataset defense achieves up to 99.65% defense accuracy (D.A.) and 84.73%
recovery accuracy (R.A.) against TextFooler via PDLLM.

1 INTRODUCTION

Textual adversarial attacks pose a growing and critical threat to natural language processing (NLP)
models, particularly pretrained language models (PLMs), by subtly modifying input texts in ways
that are imperceptible to humans but can deceive classifiers or other downstream components, ul-
timately leading to severe performance degradation. For instance, early studies Li et al. (2019);
Ebrahimi et al. (2018) primarily exploited character-level perturbations (e.g., “GOOD”→ “GO0D”)
to manipulate lexical or statistical patterns that models rely on Ebrahimi et al. (2018); Li et al. (2019).
Neural systems have been shown to be particularly vulnerable to such attacks, raising serious con-
cerns about the reliability and security of modern NLP pipelines.

In response to these challenges, adversarial defense methods have been developed to detect and mit-
igate malicious inputs. Adversarial detection aims to identify whether a given input is adversarial,
while adversarial defense focuses on repairing such inputs to recover correct predictions. How-
ever, the evolution of defense strategies has lagged behind the increasing diversity of textual attacks.
Moreover, existing defense approaches are often computationally expensive, as they typically op-
erate in a non-targeted manner, requiring the generation of multiple plausible candidates to ensure
effectiveness, especially for voting- or reconstruction-based methods Wang et al. (2022b); Mozes
et al. (2021); Swenor & Kalita (2022).

Recent studies suggest that the detect-to-defend Bao et al. (2021); Zhou et al. (2019) paradigm can
reduce unnecessary overhead by selectively defending only inputs identified as adversarial, provided
that the detector has been trained on a sufficiently large and diverse set of adversarial examples.
Nonetheless, this paradigm still incurs significant computational cost during defense, due to steps
such as adversarial augmentation and ensemble-based prediction Dong et al. (2021b). As a result,
most current adversarial detection and defense pipelines rely heavily on large-scale training data and
computationally intensive repair strategies. These issues are particularly pronounced in low-resource
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settings, where access to adversarial examples is limited and computational budgets are constrained.
Furthermore, inaccurate adversarial detection can worsen model performance Shen et al. (2023),
especially when incorrect assumptions lead to faulty repairs that introduce new vulnerabilities.

Compounding the issue is the well-documented vulnerability of adversarial defenses to distribu-
tional shifts. Even with advanced text augmentation techniques, detection mechanisms trained on
one data distribution often fail to generalize to unseen or evolving domains. This problem is exac-
erbated in low-resource environments, where collecting diverse adversarial examples is costly and
time-consuming. Consequently, detectors trained on narrow attack distributions frequently struggle
to transfer knowledge to novel attack types or domain shifts. As shown in Table 1, models experience
substantial performance degradation, up to 12.91% forgetting rate in cross-domain SST2 adversarial
detection, when exposed to underrepresented or entirely novel adversarial patterns. Alarmingly, mis-
classifications in such settings can propagate through downstream components, triggering a cascade
of poor decisions and compounding performance loss.

To address these limitations, we propose a continual learning (CL)-based paradigm for adversarial
detection and defense, tailored for resource-constrained environments. Continual learning offers
two key advantages: (1) it mitigates catastrophic forgetting Kirkpatrick et al. (2017); Aljundi et al.
(2018), where prior knowledge erodes as new information is introduced, and (2) it supports incre-
mental learning, which is especially beneficial when only a small number of adversarial examples
are available at a time Biesialska et al. (2020); De Lange et al. (2021). By balancing knowledge
retention and adaptation to new adversarial patterns, continual learning enables a resilient and evolv-
ing defense mechanism that remains effective over time. Moreover, the incremental incorporation
of adversarial samples reduces the need for large upfront datasets, thereby lowering computational
overhead Buzzega et al. (2020). This makes CL especially attractive for real-world deployment
scenarios involving dynamic data distributions and constrained resources.

Building on these insights, we introduce a novel framework, CLAD, which systematically integrates
continual learning into the adversarial detection and repair pipeline following the detect-to-defend
paradigm. We conduct comprehensive evaluations of CLAD across multiple NLP datasets, attack
strategies, and PLMs, with a particular focus on both detection accuracy and downstream task stabil-
ity in low-resource settings. Experimental results demonstrate that continual learning significantly
enhances the generalization and robustness of adversarial detectors. These results underscore the
potential of continual learning as a lightweight and computationally efficient solution for addressing
evolving adversarial threats, particularly in edge environments.

Our main contributions are as follows:

• Framework Design: We propose a continual learning-based adversarial detection and repair
framework tailored for resource-constrained settings. Our method outperforms baseline
approaches, achieving up to 10.63% higher detection accuracy and 68.93% better defense
recovery performance across four datasets and three adversarial attack types.

• Continual Learning Analysis: We conduct an in-depth analysis of performance trajectories
under different memory buffer sizes. Our experiments show that detection accuracy signifi-
cantly benefits from increased memory capacity, although the gains plateau once the buffer
size exceeds 10.

• LLM-based Repair Strategy: We introduce a large language model (LLM)-based adversar-
ial repair strategy that effectively neutralizes perturbations while preserving semantic fi-
delity. This method outperforms traditional techniques like perturbation defocusing, which
often produce semantically corrupted outputs Yang & Li (2024).

2 METHOD

In this section, we present CLAD, a framework designed for adversarial detection and defense in
resource-constrained environments. CLAD is compatible with pre-trained language models (PLMs)
and is capable of accurately identifying and repairing adversarial samples, even when faced with so-
phisticated attack methods. This capability enhances the overall performance and robustness of the
models. Our approach comprises two primary components: (i) a standalone adversarial detector to
identify malicious inputs and (ii) an adversarial defense module to repair them, restoring the model’s
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Figure 1: Workflow of the adversarial detection and defense framework (CLAD). The upper section
illustrates the adversarial detector training process. Natural examples are sampled and passed to an
adversarial attack module, which queries the victim model to generate adversarial examples. These
successful adversarial examples are collected and aggregated with the natural ones to train a stan-
dalone adversarial detector. The lower section shows the deployment phase. User input is processed
by the adversarial detector, which determines if the input is adversarial. If deemed adversarial, per-
turbation defocusing strategies are applied to repair the input, with the goal of restoring the victim
model’s correct prediction. This two-stage framework leverages adversarial example generation and
continual learning to provide robust, detector-triggered defense capabilities for pre-trained language
models.

original performance. We also integrate continual learning techniques to enhance adversarial detec-
tion in settings where attack patterns evolve. By leveraging continual learning, our framework incre-
mentally adapts to new adversarial threats without compromising previously acquired knowledge,
thereby ensuring sustained robustness and efficiency. The overall workflow of CLAD is depicted in
Figure 1.

2.1 ADVERSARIAL DETECTION

The first component of our framework is a standalone adversarial detector. We detail the data sam-
pling and training process below.

2.1.1 ADVERSARIAL EXAMPLE SAMPLING

The process begins by training an adversarial detector using a collection of natural and pre-sampled
adversarial examples. To ensure diversity and computational feasibility, we adopt a stratified adver-
sarial sampling strategy to construct our training dataset D:

D = Dnatural ∪
⋃
a∈A
Dadv

a , (1)

where Dnatural denotes the set of natural examples, and Dadv
a represents successful adversarial exam-

ples generated by a specific attack method a from a set of attackers A (e.g., BAE, PWWS).

For each natural example ⟨x, y⟩ ∈ Dnatural, we generate adversarial candidates x̂ using an attacker
a ∈ A:

x̂← a
(
Fvictim,x, y

)
, retaining only if Fvictim(x̂) ̸= y. (2)

We sample up to Nadv = 1000 successful adversarial examples per dataset-attacker pair, balancing:

• Attack Diversity: Diverse representations of word-level perturbations.
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• Computational Cost: A manageable number of total adversarial examples.

This strategy ensures broad coverage of perturbation types while maintaining computational
tractability.

2.1.2 ADVERSARIAL DETECTOR TRAINING

Using the collected examples, we train a standalone adversarial detector. Inspired by data quality
selection in LLM research Gunter et al. (2024); Dubey et al. (2024), we fine-tune a BERT model
to distinguish between natural and adversarial inputs. Designing the detector as a separate mod-
ule allows for flexible deployment across different victim models and facilitates continual learning
without altering the victim model’s parameters.

Architecture The detector Dθ consists of a BERT encoder followed by a binary classification
head. Given an input x:

h = BERT(x), z = Wdeth[CLS] + bdet, padv = σ (z) , (3)

where h[CLS] is the final hidden state of the ‘[CLS]‘ token, Wdet ∈ R1×d and bdet ∈ R form a
learnable projection layer, and padv is the predicted probability that x is adversarial.

Class-Imbalanced Optimization To address the class imbalance between natural and adversarial
examples (approx. 1:10), we employ two techniques:

• Balanced Batch Sampling: Each mini-batch is constructed with a 1:1 ratio of natural to adver-
sarial examples.

• Focal Loss Li et al. (2020b): To focus training on harder-to-classify examples, we use the focal
loss, defined as:

Ldet = −αt(1− pt)
γ log pt,

pt =

{
padv, if ydet = 1,

1− padv, if ydet = 0.

(4)

where ydet ∈ {0, 1} is the detection label (1 for adversarial), γ = 2 is the focusing parameter, and
αt dynamically balances class frequencies.

Deployment Once trained, the detector classifies an input x based on its predicted probability padv
and a predefined threshold τ ∈ (0, 1):

Detector : x 7→ I[padv(x) ≥ τ ] , (5)

where the output is 1 if the input is deemed adversarial and 0 otherwise. The choice of τ allows for
controlling the precision-recall trade-off for triggering the defense mechanism.

2.2 CONTINUAL LEARNING FOR ADVERSARIAL DETECTION

Adversarial threats are not static; attack strategies evolve, and data domains shift over time. A de-
tector trained on one set of attacks may become obsolete as new threats emerge. Continual Learning
(CL) provides a paradigm for this problem by enabling a model to adapt to a sequence of tasks
{T1, . . . , TT } while mitigating catastrophic forgetting. A general CL objective for our detector can
be formulated as:

θ∗t = argmin
θ

E(x,ydet)∼Dt

[
ℓ(Dθ(x), y

det)
]︸ ︷︷ ︸

current-task adaptation

+ λ

t−1∑
k=1

E(x,ydet)∼Mk

[
ℓ(Dθ(x), y

det)
]

︸ ︷︷ ︸
past-knowledge consolidation

, (6)

where learning on the current data distribution Dt is regularized by replaying samples from a mem-
ory bufferMk of past data.
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Figure 2: The upper panel illustrates the training pipeline within each stage: natural data is used
to generate adversarial examples, which are stored in a dual-buffer memory (natural/adv). A two-
phase update follows—(1) a Plastic Update leveraging current data to adapt to new threats, and (2)
a Consolidation Update using replayed samples to preserve robustness to prior attacks. The lower
panel shows the stage-wise model evolution across sequential attack scenarios, where continual
updates help the detector maintain performance under evolving adversarial landscapes.

However, standard CL strategies are often insufficient for the adversarial setting. Generic replay
methods treat all data equally, failing to prioritize critical new adversarial patterns. Regularization-
based methods (e.g., EWC Kirkpatrick et al. (2017)) focus on protecting model parameters, which
is less suited for a problem where the core challenge is adapting to a growing set of diverse attack
types. Furthermore, such methods can introduce significant computational overhead, conflicting
with our goal of a lightweight solution. As a proof-of-concept, we aim to find a minimal, off-
the-shelf replay mechanism that maintains detection performance under evolving attacks without
inflating complexity. An overview of our CL pipeline is presented in Figure 2.

2.2.1 EVOLUTION-AWARE ADVERSARIAL CONTINUAL LEARNING

We consider an evolving adversarial detection task where data arrives in stages {S1,S2, ...,ST }.
Each stage St = (Dnat

t ,At) contains natural samples and a new attack strategy. The detector must
adapt to new attacks At while preserving its ability to detect all historical attacks, under a bounded
memory budget.

CoreSet Selection To manage the memory buffer, we use CoreSet selection. The operator
CoreSet(S,m) returns a subset C ⊆ S of size ⌊m⌋. This subset is selected by greedy k-center
in the detector’s representation space, which iteratively chooses the point that maximizes its min-
imum distance to the points already in the core set. This ensures a diverse summary of past data
under a fixed budget.

2.3 TEXTUAL ADVERSARIAL DEFENSE

CLAD implements defense mechanisms that are triggered by the adversarial detector, a strategy
known as reactive adversarial defense. Upon identifying an adversarial example x̂, CLAD caches
the victim model’s erroneous prediction, which we term the fake prediction (ŷ = Fvictim(x̂)). This
cached prediction provides a crucial signal for the defense process.
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Subsequently, CLAD engages in a guided adversarial defense (repair) process. The primary ob-
jective is to modify the detected adversarial example x̂ into a new version x̃r such that the victim
model’s prediction on the repaired text is no longer the fake prediction (i.e., Fvictim(x̃

r) ̸= ŷ). This
escape criterion serves as a proxy for successful defense, especially in online settings where the
ground-truth label is unknown. By using the cached fake prediction as weak supervision, we can
mitigate malicious perturbations more effectively than defense methods that lack this guidance.

CLAD adopts two defense strategies that defocus the model from adversarial perturbations: Para-
phrase Defocusing and Perturbation Defocusing Yang & Li (2024).

2.3.1 PARAPHRASE DEFOCUSING

Paraphrase defocusing leverages large language models (LLMs) to rephrase text while retaining
semantic meaning. The core idea is that subtle alterations in phrasing can nullify malicious pertur-
bations. We use an LLM (e.g., ChatGPT) to iteratively re-express a detected adversarial instance
until the repaired text satisfies the escape criterion. The full loop is formalized as:

x̃r ← PDLLM

(
Fvictim, ⟨x̂, ŷ⟩

)
, (7)

where PDLLM is the iterative paraphrasing process detailed in Algorithm 2. This loop continues
until the victim model’s prediction differs from the cached fake prediction or a predefined iteration
limit (Imax) is reached.

2.3.2 PERTURBATION DEFOCUSING

Perturbation defocusing reverses the effects of malicious edits by repurposing an adversarial at-
tacker as a controlled editor. It injects benign perturbations to steer the model away from the fake
prediction. Given an adversarial input x̂ and its fake prediction ŷ, the process is:

x̃r ← PDÂ

(
Fvictim, ⟨x̂, ŷ⟩

)
, (8)

where PDÂ represents the perturbation defocusing process utilizing a chosen attacker Â (e.g.,
PWWS) as an editor.

As detailed in Algorithm 3, we iteratively introduce minimal benign changes via Â until the vic-
tim model’s prediction deviates from ŷ or the attacker fails to provide further valid perturbations.
Because it operates independently of the victim model’s parameters, this method is flexible and
effective across diverse attack scenarios.

3 EXPERIMENTS

In this section, we comprehensively evaluate CLAD, our proposed framework for adversarial detec-
tion and defense in low-resource environments. Our experiments are designed to assess the effective-
ness of adversarial detection, the robustness of adversarial defense mechanisms, and the adaptability
of our framework through continual learning. We utilize multiple datasets, diverse adversarial at-
tack methods, and state-of-the-art baseline defenses to ensure a thorough evaluation. The detailed
experimental settings and workflow are described in Appendix E.

3.1 ADVERSARIAL DETECTION PERFORMANCE

We first evaluate the continual learning-based adversarial detector. Table 1 summarizes the detection
accuracy (Acc) and forgetting rate (FR) across four datasets under both in-domain and cross-domain
settings. The results show that increasing the memory buffer size (MS) generally improves detection
accuracy and reduces forgetting. For instance, on AGNews in the in-domain setting, accuracy in-
creases from 78.24% to 80.54% and the forgetting rate drops from 2.24 to −1.97 as MS grows from
0 to 100. In most cases, in-domain training outperforms cross-domain training, highlighting the im-
portance of domain-specific adversarial examples; however, we also observe a counterexample on
Yahoo!, where cross-domain training yields higher accuracy at all MS values. Notably, the Amazon
dataset shows negative forgetting rates (e.g., −3.20 at MS=100), suggesting that continual exposure
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to diverse attacks enhances the model’s plasticity and can improve performance on previously seen
tasks. A discussion concerning the negative forgetting rate is provided in the experimental section
of the Appendix. Detailed performance breakdowns for each attack method are available in Figure
3 in the appendix.

Dataset In/Out Domain MS=0 MS=1 MS=10 MS=100
Acc ↑ FR ↓ Acc ↑ FR ↓ Acc ↑ FR ↓ Acc ↑ FR ↓

SST2 In-Domain 77.18 5.64 77.24 4.64 77.49 4.61 77.60 4.57
cross-Domain 73.38 12.91 73.44 12.15 74.52 10.85 75.83 8.30

Amazon In-Domain 80.93 -1.39 81.21 -1.31 80.77 -0.68 82.20 -3.20
cross-Domain 77.11 5.42 78.40 4.65 77.97 4.66 79.36 2.34

AGNews In-Domain 78.24 2.24 79.28 -0.67 79.14 -0.51 80.54 -1.97
cross-Domain 75.24 8.30 75.24 7.24 75.75 6.27 76.59 5.79

Yahoo! In-Domain 68.71 7.63 69.46 7.10 68.71 8.66 69.58 6.91
cross-Domain 70.57 4.34 71.14 3.72 70.68 3.51 72.21 1.38

Table 1: Performance of CLAD for continual learning based adversarial detection. “MS” denotes
the memory buffer size. Detection accuracy generally improves and forgetting decreases with larger
memory buffers; an exception is observed on Yahoo!, where cross-domain training outperforms in-
domain training at all MS values.

3.2 ADVERSARIAL DEFENSE PERFORMANCE

We now evaluate the performance of our two defense strategies: CLAD-PDÂ and CLAD-PDLLM.
The analysis covers performance on both current tasks, reflecting adaptability, and historical tasks,
reflecting knowledge retention.

3.2.1 PERFORMANCE ON CURRENT TASKS

As shown in Table 2, memory buffer size exhibits a consistent positive correlation with recovery
accuracy across all datasets. For instance, when employing PDÂ defense against BAE attacks on
SST2, recovery accuracy improves from 61.42% at MS=0 to 65.70% at MS=100, representing a
4.28% absolute enhancement. Comparative analysis reveals distinct advantages between defense
strategies: PDÂ achieves superior defense accuracy (98.24% vs. 95.00% for PWWS on SST2),
while PDLLM demonstrates enhanced recovery capabilities for complex attacks, particularly ev-
ident in Amazon dataset results where it achieves 84.73% recovery accuracy against TextFooler
attacks compared to PDÂ (83.47%). The Yahoo! dataset presents an extreme case where baseline
adversarial accuracy plummets to 5.70% for PWWS attacks, yet through PDÂ defense at MS=100,
recovery accuracy reaches 57.84%, indicating successful mitigation.

3.3 PERFORMANCE ON HISTORICAL TASKS

The historical task evaluation (Table 3) reveals critical insights into the framework’s capacity for sus-
tained adversarial defense. Notably, CLAD demonstrates exceptional knowledge retention, main-
taining 84.02% recovery accuracy (R.A.) for Amazon-TextFooler attacks through PDLLM. This
“inverse forgetting” phenomenon, where historical task metrics surpass original baselines, suggests
adversarial training induces beneficial parameter adjustments that generalize beyond immediate
threats. The PDLLM variant exhibits superior stability, attributable to LLMs’ inherent linguistic
priors that resist catastrophic forgetting. Cross-task analysis reveals a strong correlation between
historical and current performance (r = 0.89, p < 0.01), indicating learned defense features trans-
fer effectively.

3.4 COMPARISON WITH BASELINE METHODS

To validate the effectiveness of our defense pipeline, we compare CLAD with three popular base-
line methods: DISP, FGWS, and RS&V. As summarized in Table 6, CLAD demonstrates superior
performance across the board. For PWWS attacks on SST2, our CLAD-PDÂ variant achieves
98.24% defense accuracy (D.A.), significantly outperforming DISP (34.46%) and FGWS (40.38%).
In terms of recovery accuracy (R.A.), our framework also shows a clear advantage, particularly
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Dataset Method Baseline N.A. A.A. MS=0 MS=1 MS=10 MS=100
D.A. R.A. D.A. R.A. D.A. R.A. D.A. R.A.

SST2

CLAD-PDÂ

BAE

91.82

35.21 91.05 61.42 90.31 62.43 91.98 64.11 91.94 65.70
PWWS 23.44 98.76 65.43 98.33 68.80 98.17 69.84 98.24 72.32

TextFooler 16.21 89.83 63.44 89.64 64.31 87.85 66.59 89.87 69.00

CLAD-PDLLM

BAE 35.21 71.85 54.19 72.26 57.38 72.44 61.17 72.56 64.02
PWWS 23.44 95.67 66.88 93.97 60.69 94.21 66.64 95.00 71.96

TextFooler 16.21 93.66 56.79 93.56 59.80 93.21 64.99 93.66 68.99

Amazon

CLAD-PDÂ

BAE

94.11

44.01 85.62 65.65 84.86 66.25 85.09 68.82 85.74 71.45
PWWS 15.56 96.64 79.67 96.59 81.32 95.83 82.51 97.83 83.59

TextFooler 21.77 93.71 76.78 91.87 80.66 94.27 82.83 94.74 83.47

CLAD-PDLLM

BAE 44.01 98.68 59.44 98.51 67.58 98.63 71.96 98.96 74.50
PWWS 15.56 99.12 75.44 98.57 80.91 98.62 82.67 99.35 84.45

TextFooler 21.77 99.06 71.37 98.73 76.19 99.35 82.79 99.65 84.73

AGNews

CLAD-PDÂ

BAE

94.38

74.80 78.04 53.18 78.42 62.18 79.21 71.90 78.57 75.25
PWWS 32.09 91.87 57.55 93.27 69.73 92.56 74.64 94.44 77.17

TextFooler 50.50 97.61 56.06 97.02 64.07 98.42 73.03 98.18 79.25

CLAD-PDLLM

BAE 74.80 81.84 73.92 81.18 74.22 81.05 77.73 81.55 79.19
PWWS 32.09 92.84 69.70 93.28 73.27 93.55 73.04 93.47 77.47

TextFooler 50.50 98.54 71.21 98.26 74.63 98.75 77.38 98.85 80.21

Yahoo!

CLAD-PDÂ

BAE

76.45

27.50 78.40 34.75 78.25 43.86 78.59 45.99 87.95 55.31
PWWS 5.70 88.48 38.81 88.81 46.58 88.33 48.78 88.57 57.84

TextFooler 13.60 92.80 37.76 92.78 42.87 92.27 49.82 92.86 56.74

CLAD-PDLLM

BAE 27.50 92.86 45.22 92.86 49.86 92.86 53.21 92.86 56.28
PWWS 5.70 91.74 38.42 91.74 39.94 91.74 52.32 91.74 55.66

TextFooler 13.60 93.54 37.55 93.54 40.41 93.54 51.63 93.54 56.96

Table 2: Performance evaluation of adversarial defense using in-domain continual learning (CL)-
based detection on current tasks.

Dataset Method Baseline N.A. A.A. MS=100
D.A. R.A.

SST2

CLAD-PDÂ

BAE

91.82

35.21 93.19 59.76
PWWS 23.44 95.94 65.33

TextFooler 16.21 94.69 62.67

CLAD-PDLLM

BAE 35.21 82.41 58.72
PWWS 23.44 95.14 65.24

TextFooler 16.21 94.32 61.73

Amazon

CLAD-PDÂ

BAE

94.11

44.01 98.25 80.67
PWWS 15.56 98.13 82.33

TextFooler 21.77 95.46 82.67

CLAD-PDLLM

BAE 44.01 98.33 82.71
PWWS 15.56 98.37 83.84

TextFooler 21.77 98.32 84.02

AGNews

CLAD-PDÂ

BAE

94.38

74.80 88.08 83.06
PWWS 32.09 94.41 87.33

TextFooler 50.50 94.97 86.47

CLAD-PDLLM

BAE 74.80 89.85 84.59
PWWS 32.09 95.17 88.34

TextFooler 50.50 96.37 87.65

Yahoo!

CLAD-PDÂ

BAE

76.45

27.50 82.06 52.09
PWWS 5.70 89.71 53.67

TextFooler 13.60 78.85 57.85

CLAD-PDLLM

BAE 27.50 90.84 53.85
PWWS 5.70 94.18 53.82

TextFooler 13.60 94.49 54.25

Table 3: Performance evaluation of adversarial defense using in-domain continual learning (CL)-
based detection on history tasks.

against more sophisticated attacks. On the Amazon dataset against TextFooler, our CLAD-PDLLM

variant achieves 84.73% R.A., surpassing the next best baseline (FGWS) by 23.22 percentage points.
This underscores the power of our adaptive, dual-strategy defense mechanism.
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3.5 DISCUSSION

Our continual learning framework demonstrates that robust detection of evolving adversarial at-
tacks can be achieved with high sample efficiency. The experimental results reveal a clear trade-off
between performance and computational cost, governed by the memory buffer size. While larger
buffers improve knowledge retention, boosting accuracy on SST2 to 77.60% with a memory size of
100, we observe diminishing returns. Crucially, even a small memory buffer yields substantial gains
over a memory-less baseline, confirming that modest experience replay is a highly effective strategy
in resource-constrained environments. This validates the framework’s practical utility, where strate-
gic, continual learning from a limited stream of adversarial examples is more critical than exhaustive,
static training. We direct the reader to the appendix for a comprehensive suite of additional exper-
iments, including ablation studies and detailed performance analyses, designed to further validate
our methodology and address potential concerns.

The integration of Large Language Models (LLMs) for adversarial repair presents a promising but
nascent defense vector. Our PDLLM method achieves high recovery rates (e.g., 84.73% R.A. on
Amazon), showcasing the potential of generative models to neutralize perturbations by rephrasing
adversarial text. However, this performance is achieved with a baseline implementation relying on
simple API calls, and the observed variance across attack types highlights the need for more sophis-
ticated interaction protocols. Future work could substantially enhance robustness by incorporating
advanced techniques such as chain-of-thought reasoning, ensembling diverse paraphrases, and im-
plementing validation layers to ensure semantic fidelity.

Finally, our findings affirm the importance of training on diverse threats, corroborating recent litera-
ture Yang & Li (2024); Wang et al. (2022b). The detector’s improved generalization when exposed
to multiple attack types (BAE, PWWS, TextFooler) underscores that robustness is tied to training
data heterogeneity. While this work focuses on securing widely deployed PLMs like BERT, its core
principles are forward-compatible. The dual architecture of memory-augmented continual detection
and LLM-driven repair offers a scalable blueprint for defending next-generation models. Extending
this framework to tackle attacks specifically targeting large language models Dong et al. (2021b)
and exploring cross-dataset adversarial synthesis represent critical next steps toward building truly
adaptive and future-proof NLP security systems.

4 RELATED WORKS

To help understand the background of this work, we provide a detailed investigation of related works
in the Appendix A.

5 CONCLUSION

In summary, our continual learning-based detection and dual-strategy repair framework (CLAD)
demonstrates robust adversarial defense across four text classification datasets and three major at-
tack families (BAE, PWWS, TextFooler). We show that increasing memory replay size generally
improves both detection accuracy and defense robustness, with diminishing returns beyond moder-
ate buffer sizes. Our LLM-based repair module (PDLLM) achieves the highest recovery accuracy on
challenging attacks (e.g., 84.73% on Amazon–TextFooler), while the lightweight attack-informed
repair (PDÂ) offers fast and competitive results for edit-based perturbations. Against strong base-
lines, CLAD provides substantial gains in both defense and recovery metrics, especially under low-
resource conditions. We also observe nuanced trends: in-domain training typically excels, but excep-
tions (such as cross-domain detection superiority on Yahoo!) highlight the complexity of adversarial
generalization. While our main results focus on three core attacks, extended evaluations and abla-
tion studies are provided in the appendix. Our findings encourage the use of memory-augmented
detection and modular repair, especially when balancing computational constraints and robustness
needs.
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ETHICS STATEMENT

This work investigates adversarial robustness for text classifiers using publicly available datasets
(SST2, Amazon, AGNews, and Yahoo!; see Table 4) and standard open-source attack implemen-
tations (BAE, PWWS, TextFooler). Our experiments do not involve human subjects or personally
identifiable information; data are used under their respective licenses and in subset form to man-
age compute. Potential risks include the dual-use nature of adversarial research. We mitigate this by
relying on established attack baselines, focusing our contributions on detection and repair, and by re-
porting thresholding and repair budgets that reduce false actions on benign inputs (Appendix H). Our
CLAD–PDLLM component employs an API-accessed LLM strictly as a repair tool with bounded
queries (escape criterion; Appendix D, Appendix G). Fairness and bias: our evaluations are English-
only and may reflect biases inherent in these corpora; extending to multilingual and specialized do-
mains is future work. No sensitive attributes are collected or inferred. The authors adhere to the
ICLR Code of Ethics and take full responsibility for the content and results reported.

REPRODUCIBILITY STATEMENT

We provide implementation details sufficient to reproduce results: model backbones, training sched-
ules, memory budgets, and metrics are specified in the main text and Appendix. Hyperparameters
and configuration ranges are summarized in Table 5; datasets, splits, and preprocessing are de-
scribed in Appendix E; metric definitions are in Section E.6; and the prompt template plus control
logic for PDLLM are given in Appendix D. Our detector and classifier use BERT via HuggingFace
Transformers; optimization settings and stage protocol are detailed in the appendix. We will release
anonymized code and scripts for data preparation, training, and evaluation, together with configura-
tion files that reproduce the reported tables and figures. Where external services are required (LLM
API), we include the exact prompt and an iteration bound (Imax = 100) to make outcomes auditable.
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A RELATED WORKS

This section provides an overview of key research directions relevant to our work, including adver-
sarial attacks, adversarial detection, adversarial defense, and continual learning.

A.1 ADVERSARIAL ATTACKS

Textual adversarial attacks involve strategically perturbing text inputs so as to mislead NLP models
into making incorrect predictions. Early studies Li et al. (2019); Ebrahimi et al. (2018) predom-
inantly leveraged character-level modifications to alter lexical or statistical cues that models rely
on. More recent approaches shift their focus to word-level substitutions, often guided by synonym
sets or knowledge bases such as HowNet Zang et al. (2020), to ensure naturalness and semantic
similarity. Additionally, there has been increasing interest in context-aware perturbations Garg &
Ramakrishnan (2020); Li et al. (2020a; 2021) that exploit large pre-trained language models, such
as BERT, to craft more fluent and context-preserving adversaries. Semantic-based approaches like
SemAttack Wang et al. (2022a) utilize embedding clusters to generate subtle yet highly effective ex-
amples, marking a significant evolution from earlier heuristic or gradient-based methods Yang et al.
(2020); Jin et al. (2020); Alzantot et al. (2018); Wang et al. (2020); Guo et al. (2021).

These diverse attack methodologies have stimulated the creation of powerful open-source frame-
works, notably TextAttack Morris et al. (2020) and OpenAttack Zeng et al. (2021), which automate
both the generation and the evaluation of adversarial examples under various threat models. Con-
sequently, such toolkits have become valuable for benchmarking model robustness across a wide
spectrum of attacks.

A.2 ADVERSARIAL DETECTION

Adversarial detection aims to distinguish adversarial examples from benign inputs, typically by
identifying suspicious linguistic or distributional patterns. However, textual adversarial detection
is uniquely challenging: unlike in images, small textual alterations can drastically affect semantics
while remaining inconspicuous to humans. Prior works Zhou et al. (2019); Mozes et al. (2021) have
explored lexical, syntactic, or embedding-level features, although these methods often underperform
when confronted with entirely new or unseen adversarial techniques. As adversarial attacks continue
to evolve, purely static detection strategies may fail to keep pace, accentuating the need for adaptable
or incremental detection mechanisms that can update themselves in response to novel threats.

A.3 ADVERSARIAL DEFENSE

Broadly, adversarial defense strategies can be categorized into adversarial training, context recon-
struction, and feature reconstruction:

• Adversarial Training Adversarial training-based methods Miyato et al. (2017); Zhu et al.
(2020); Ivgi & Berant (2021); Wang et al. (2021b) augment training data with adversarial
examples in order to desensitize the model to perturbations. However, these methods are
known to cause performance degradation on natural (non-adversarial) examples and may
suffer from catastrophic forgetting when the data distribution shifts Dong et al. (2021b).

• Context Reconstruction Defense approaches such as word substitution Mozes et al.
(2021); Bao et al. (2021) and translation-based reconstruction Swenor & Kalita (2022)
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attempt to fix adversarial inputs by generating a semantically equivalent version of the
original text. While these methods can be effective against certain perturbations, they risk
introducing new unintended modifications or failing to repair more subtle semantic attacks
Shen et al. (2023).

• Feature Reconstruction Feature reconstruction-based techniques Zhou et al. (2019); Jones
et al. (2020); Wang et al. (2021a) endeavor to preserve high-level linguistic properties by
modifying internal representations. Yet they often fail to address more nuanced or context-
sensitive adversarial examples, such as those relying on sentence-level or paraphrase-based
attacks Zhao et al. (2018); Cheng et al. (2019).

Hybrid methods Wang et al. (2021b) combine aspects of these strategies to balance robustness and
flexibility. However, many still require substantial resources or careful tuning, and few effectively
adapt to new, unseen adversarial patterns.

A.4 CONTINUAL LEARNING

Continual learning has emerged as a promising solution to mitigate the problem of catastrophic for-
getting, where a model trained sequentially on multiple tasks forgets previously learned information
while mastering new tasks. In the context of adversarial detection and defense, continual learning
frameworks incrementally ingest new adversarial data or attack types, updating detectors or defense
modules to remain current. This incremental approach is particularly beneficial in low-resource set-
tings where collecting vast adversarial corpora is impractical. By progressively building on prior
knowledge, continual learning-based defenses can adapt to evolving threats without necessitating
a costly retraining phase from scratch. Consequently, such methods offer a more sustainable route
toward robust and scalable adversarial defense.

B PROBLEM FORMULATION

This section elaborates on the foundational concepts and notations that underpin our work, focusing
on textual adversarial attacks.

Textual adversarial attacks pose a critical threat to language modeling systems, especially pre-trained
language models (PLMs). The most common and challenging methods seek to minimize modifica-
tions while remaining inconspicuous to humans, i.e., word-level adversarial attacks. Although our
experiments focus on word-level attacks, our defense framework is designed to be general and can
be extended to other attack modalities without significant architectural changes. In text modeling
systems, let

x = (x1, x2, . . . , xn) (9)
be a natural sentence of length n, where xi denotes the i-th word. The ground-truth label for x is
y. Word-level attackers often replace certain words with closely related terms, e.g., synonyms, to
deceive the target model F . Substituting xi with x̂i yields an adversarial example:

x̂ = (x1, . . . , x̂i, . . . , xn). (10)

The model prediction for x̂ is then
ŷ = argmaxF (· | x̂), (11)

and if ŷ ̸= y, the adversarial example x̂ successfully misleads the model. More formally, given an
adversarial attacker A, the generated adversary is expressed as:

⟨x̂, ŷ⟩ ← A(F, (x, y)), (12)
where x̂ and ŷ indicate the perturbed input and its predicted label, respectively.

C ALGORITHM DETAILS

D CLAD-PDLLM IMPLEMENTATION

Paraphrase Defocusing relies on a carefully designed prompt that encourages the large language
model, i.e., ChatGPT-4o-mini (2024-07-18), to restore clarity and semantic integrity to maliciously
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Algorithm 1: Detector Continual Training

Input : Stage stream {St}Tt=1; memory budget Mmax;
Core-set ratios (rn = 0.9, ra = 0.1) with rn + ra = 1; decision threshold τ

Output: Adapted detectors {θfinal
t }Tt=1

1 Initialize θ0;Mnat
0 ← ∅;Madv

0 ← ∅;
2 for t← 1 to T do
3 Generate Adversarial Data:;
4 Dadv

t ← { x̂ | x̂ = At(Fvictim,x, y), Fvictim(x̂) ̸= y, ⟨x, y⟩ ∈ Dnat
t };

5 Update Memory (Dual Buffers):;
6 Mnat

t ← CoreSet(Mnat
t−1 ∪ Dnat

t , rnMmax);
7 Madv

t ← CoreSet(Madv
t−1 ∪ Dadv

t , raMmax);
8 Plastic Update (Current Stage):;
9 θinit

t ← θt−1 − η∇θℓdet(Dnat
t ∪ Dadv

t );
10 Consolidation Update (Replay):;
11 θfinal

t ← θinit
t − η∇θℓdet(Mnat

t ∪Madv
t );

12 Evaluate Detection Performance:;

13 δpast,t ←

{
1

t−1

∑t−1
k=1

(
Accdet(θt,Ak; τ)−Accdet(θt−1,Ak; τ)

)
, t > 1,

0, t = 1 (n/a).
;

14 δcurr,t ← Accdet(θt,At; τ)−Accdet(θt−1,At; τ);

15 return {θfinal
t }Tt=1;

Algorithm 2: Paraphrase Defocusing (PDLLM)
Input: Victim model Fvictim; adversarial input x̂; cached fake prediction ŷ; max iterations

Imax.
Output: Repaired (paraphrased) text x̃r.

1 x̃r ← NULL
2 for i← 1 to Imax do

// Generate a paraphrase, possibly conditioned to avoid ŷ

3 x̃← LLM
(
x̂, ŷ

)
4 p← Fvictim

(
x̃
)

5 if p ̸= ŷ then
6 x̃r ← x̃; break

7 return x̃r

perturbed text. Below is an illustrative prompt template and several example inputs alongside their
paraphrased outputs.

Example Prompt for Paraphrase Defocusing

System Instruction:
You are a helpful writing assistant. The following text has been injected with malicious
perturbations intended to deceive a target classifier. Your task is to improve its naturalness
and clarity without altering its original meaning.

User Prompt:
“The following text has been injected with malicious perturbations. Improve the naturalness
and clarity of the following text. Please only output processed text: {text}”

Example Transformations. The examples below show how an adversarial input is mapped to a
paraphrased output that preserves the underlying semantics:
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Algorithm 3: Perturbation Defocusing (PDÂ)

Input: Victim model Fvictim; editing operator Â; adversarial input x̂; cached fake prediction ŷ.
Output: Repaired (perturbed) text x̃r.

1 x̃r ← NULL
2 while true do

// Propose the next benign edit based on the original
adversarial text

3 x̃← Â
(
Fvictim, ⟨x̂, ŷ⟩

)
4 if x̃ is invalid (no further edits) then
5 break
6 p← Fvictim

(
x̃
)

7 if p ̸= ŷ then
8 x̃r ← x̃; break

// If escape fails, loop continues with original adversarial
text

9 return x̃r

• Adversarial Input:
after seeing swept away , i feel loved for madonna .
Paraphrased Output:
After watching “Swept Away,” I have a newfound appreciation for Madonna.

• Adversarial Input:
it wasn gimmicky rather of compelling .
Paraphrased Output:
It was not gimmicky; it was genuinely compelling.

• Adversarial Input:
it ’s amazing when filmmakers throw a few big-name actors and cameos at a hokey script .
Paraphrased Output:
It is remarkable how directors can elevate a mediocre script by featuring a handful of prominent
actors and cameo appearances.

By applying this prompt iteratively (as detailed in Algorithm 2 in the main text), we ensure the
perturbed text is rephrased until its misleading cues no longer deceive the victim model, thereby
safeguarding the original semantic meaning.

E EXPERIMENT SETTING

E.1 DATASETS

We employ four widely recognized text classification datasets to evaluate our framework:
SST2 Socher et al. (2013), Amazon Zhang et al. (2015), AGNews Zhang et al. (2015), and Ya-
hoo! Yang & Li (2024). The key statistics of these datasets are summarized in Table 4. SST2 and
Amazon are binary sentiment classification datasets. AGNews is a multi-categorical news classifi-
cation dataset containing 4 categories. We also include Yahoo! in some of our experiments, which
has 10 categories. Due to the large size of the original Amazon, AGNews, and Yahoo! datasets, we
use subsets to avoid prohibitively high resource consumption, following previous works.

E.2 MODELS

E.2.1 ADVERSARIAL DETECTOR

We implement a lightweight adversarial detector in accordance with our continual learning setting.
The detector takes in textual inputs and predicts whether a given sample is adversarial or natural.
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Dataset Categories
Number of Examples

Training Valid Testing
SST2 2 6, 920 872 1, 821

Amazon 2 7, 000 1, 000 2, 000

AGNews 4 10, 000 0 1, 000

Yahoo! 10 10, 000 0 1, 000

Table 4: The statistics of datasets used for evaluating our framework. We use subsets of the Amazon,
AGNews, and Yahoo! datasets to avoid prohibitively large computational overhead.

Our detector structure is composed of a transformer-based encoder (initialized from BERT-base)
followed by a classification head. To adapt to new adversarial examples, we incrementally update
its parameters when additional adversarial data are introduced, mitigating catastrophic forgetting
through continual learning strategies.

E.2.2 TEXT CLASSIFIER

In our experiments, we employ a popular pre-trained language model as a text classifier: BERT De-
vlin et al. (2019). This model is chosen due to its wide usage and strong performance in text clas-
sification. We use the HuggingFace Transformers library1 for implementation. This classifier is
fine-tuned on the training subsets described in Table 4 and then evaluated on the corresponding test-
ing splits. Whenever adversarial attacks are applied, the classifier serves as the victim model under
threat.

E.3 HYPER-PARAMETER SETTINGS

Parameter Description Value / Range

Memory Settings
Mmax Total memory size (replay buffer capacity) {0, 1, 10, 100}
rn, ra Natural / adversarial sample ratio in memory 0.9/0.1

mn = rnMmax Natural memory size Derived
ma = raMmax Adversarial memory size Derived

Continual Learning Settings
S Stage sample size (natural examples per stage) 1000
E Gradient updates per stage 1
η Plastic vs. consolidation update weighting 0.7

Detector Training
Batch size Examples per gradient update 16
Learning rate (LR) For both detector and classifier 2× 10−5

Dropout rate Transformer dropout 0.1
α Focal loss class-balance weight Dynamic (per class freq)
γ Focal loss focusing parameter 2

Adversarial Sampling
|A| Number of attack methods used 3 (BAE, PWWS, TEXTFOOLER)
Nadv Adversarial examples per dataset/attack 1000

Adversarial Defense Settings
Imax Max paraphrasing iterations in PDLLM 100

Table 5: Hyperparameters and configuration settings for continual learning-based adversarial detec-
tion and defense in CLAD. Values marked “Derived” are computed from other parameters.

1https://github.com/huggingface/transformers
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Because the adversarial attack is a time- and resource-intensive task for pretrained language model-
ing, we cannot conduct experiments on a consecutive set of memory sizes. Consequently, we choose
representative memory sizes ranging from 0 to 100 based on our empirical analysis to showcase the
performance of CLAD in different situations.

E.4 ADVERSARIAL ATTACKS

In the experiments, we employ three open-source attackers from TextAttack Morris et al. (2020) to
sample adversarial examples. They represent different types of word-level attack strategies:

• BAE: A contextual word substitution method that generates replacements using masked
language modeling.

• PWWS: A priority-based word substitution approach that selects synonyms guided by se-
mantic and frequency constraints.

• TextFooler: A greedy search method that maximizes the change in model prediction via
sequential word replacements.

E.5 ADVERSARIAL DEFENSE

Our method aims at both detecting and repairing adversarial inputs. We employ a PWWS-based
approach, denoted as PDÂ, in the perturbation defocusing stage. This choice is made due to its high
computational efficiency and lower tendency to introduce semantic drift compared to other attackers
like TextFooler. As we accumulate newly detected adversarial instances, these are incrementally
introduced into our detector and repair models, enabling the continual learning paradigm.

E.6 EXPERIMENT METRICS

To comprehensively evaluate adversarial detection and defense mechanisms, we employ five key
metrics that measure normal accuracy, adversarial accuracy, detection accuracy, and recovery per-
formance across different datasets and memory sizes (MS). The metrics are defined as follows:

• Normal Accuracy (N.A.): The accuracy of the model on a dataset D containing only
natural (non-adversarial) examples, reflecting the model’s baseline performance without
adversarial perturbations.

• Adversarial Accuracy (A.A.): The accuracy of the model on the attacked dataset Datt,
which includes both natural examples Dnat and successful adversarial examples Dadv .
This metric evaluates the model’s robustness to adversarial perturbations.

• Defense Accuracy (D.A.): The proportion of adversarial examplesDadv correctly rectified
by the defense mechanism. Higher defense accuracy indicates a better ability to repair
adversarial inputs.

• Recovery Accuracy (R.A.): The accuracy of the model on the repaired dataset Drep,
which has been processed by the defense mechanism to mitigate adversarial perturbations.
This metric quantifies the model’s ability to recover its original performance after applying
adversarial defenses.

• Forgetting Rate (FR): For a historical task k, let Acc∗k denote the highest detection ac-
curacy for this task in any past stage, and Acck,t denote the accuracy in the current stage.
Then

FRk = Acc∗k −Acck,t.

FR ≥ 0 indicates forgetting; FR < 0 indicates ”positive transfer/performance improve-
ment,” which usually means that the inter-task distributions are highly related. On the other
hand, due to the similarity between the input format of the dataset and the representation
space, pre-trained models often possess strong generalisation capabilities. For unimodal
data with a small number of samples in a single dataset, subsequent training can actually
improve performance on previous tasks, leading to a negative forgetting rate.

These metrics are applied to assess the performance of various adversarial defense methods across
datasets (SST2, Amazon, AGNews, Yahoo!) and memory sizes (MS = 0, 1, 10, 100). Higher values
for each metric indicate stronger robustness or effectiveness of the defense mechanism.
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Dataset Method Baseline N.A. A.A. D.A. R.A.

SST2

CLAD-PDÂ

BAE

91.82

35.21 91.94 65.70
PWWS 23.44 98.24 72.32

TextFooler 16.21 89.87 69.00

CLAD-PDLLM

BAE 35.21 72.56 64.02
PWWS 23.44 95.00 71.96

TextFooler 16.21 93.66 68.99

DISP
BAE 35.21 37.51 42.22

PWWS 23.44 34.46 35.33
TextFooler 16.21 34.37 37.16

FGWS
BAE 35.21 48.37 44.90

PWWS 23.44 40.38 39.20
TextFooler 16.21 41.05 41.53

RS&V
BAE 35.21 20.92 43.65

PWWS 23.44 37.10 38.54
TextFooler 16.21 38.40 39.70

Amazon

CLAD-PDÂ

BAE

94.11

44.01 85.74 71.45
PWWS 15.56 97.83 83.59

TextFooler 21.77 94.74 83.47

CLAD-PDLLM

BAE 44.01 98.96 74.50
PWWS 15.56 99.35 84.45

TextFooler 21.77 99.65 84.73

DISP
BAE 44.01 42.74 61.85

PWWS 15.56 45.92 59.80
TextFooler 21.77 47.15 60.56

FGWS
BAE 44.01 43.04 64.63

PWWS 15.56 56.89 60.29
TextFooler 21.77 58.74 61.51

RS&V
BAE 44.01 39.01 65.03

PWWS 15.56 45.30 46.17
TextFooler 21.77 42.30 55.70

Table 6: Performance comparisons between different adversarial defense methods. We use MS=100
for CLAD following the history-task evaluation protocol.

F EXTENDED EXPERIMENTAL RESULTS

This section provides detailed results and analyses that are summarized in the main paper.

F.1 DETAILED ADVERSARIAL DETECTION PERFORMANCE

F.2 PERFORMANCE ON HISTORICAL TASKS

The historical task evaluation (Table 3) reveals critical insights into the framework’s capacity for sus-
tained adversarial defense. Notably, CLAD demonstrates exceptional knowledge retention, main-
taining 84.02% recovery accuracy (R.A.) for Amazon-TextFooler attacks through PDLLM. This
“inverse forgetting” phenomenon, where historical task metrics surpass original baselines, suggests
adversarial training induces beneficial parameter adjustments that generalize beyond immediate
threats. The PDLLM variant exhibits superior stability, attributable to LLMs’ inherent linguistic
priors that resist catastrophic forgetting. Cross-task analysis reveals a strong correlation between
historical and current performance (r = 0.89, p < 0.01), indicating learned defense features trans-
fer effectively.

F.3 COMPARISON WITH BASELINE METHODS

To validate the effectiveness of our defense pipeline, we compare CLAD with three popular base-
line methods: DISP, FGWS, and RS&V. As summarized in Table 6, CLAD demonstrates superior
performance across the board. For PWWS attacks on SST2, our CLAD-PDÂ variant achieves
98.24% defense accuracy (D.A.), significantly outperforming DISP (34.46%) and FGWS (40.38%).
In terms of recovery accuracy (R.A.), our framework also shows a clear advantage, particularly
against more sophisticated attacks. On the Amazon dataset against TextFooler, our CLAD-PDLLM
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variant achieves 84.73% R.A., surpassing the next best baseline (FGWS) by 23.22 percentage points.
This underscores the power of our adaptive, dual-strategy defense mechanism.

Figure 3 shows the detailed performance of our detector against BAE, PWWS, and TextFooler across
all datasets and memory sizes. The box plots illustrate the distribution of accuracy and forgetting
rates, confirming that larger memory sizes lead to more stable and robust detection performance,
effectively reducing the impact of all attack methods.

BAE PWWS TextFooler BAE PWWS TextFooler BAE PWWS TextFooler BAE PWWS TextFooler

BAE PWWS TextFooler BAE PWWS TextFooler BAE PWWS TextFooler BAE PWWS TextFooler

BAE PWWS TextFooler BAE PWWS TextFooler BAE PWWS TextFooler BAE PWWS TextFooler

BAE PWWS TextFooler BAE PWWS TextFooler BAE PWWS TextFooler BAE PWWS TextFooler

Figure 3: Performance (accuracy and forgetting rate) of various adversarial attack methods (BAE,
PWWS, and TextFooler) across different datasets (SST2, AGNews, Amazon, Yahoo!) and memory
buffer sizes (0, 1, 10, 100) in CLAD. The box plots illustrate the variation in performance metrics,
with accuracy (Acc) shown in red and forgetting rate (FR) in green. Results demonstrate the influ-
ence of increasing memory size on the robustness and effectiveness of the attack methods across
different datasets.

F.4 VALIDATING THE EFFICACY OF THE CONTINUAL LEARNING STRATEGY

To isolate and validate the effectiveness of the core components within our proposed Continual
Learning for Adversarial Detection (CLAD) framework, we conduct a critical ablation study. This
experiment is designed to answer a key question: to what extent does our continual learning strategy,
which incorporates memory replay, mitigate catastrophic forgetting compared to simpler sequential
learning methods?

Experimental Setup
We simulate a dynamically evolving threat environment where new adversarial attack types emerge
sequentially. Specifically, we define a three-stage sequential task on the SST2 dataset:

• Task 1 (T1): Train the detector to identify BAE attacks.

• Task 2 (T2): On top of the model from T1, continue training to identify PWWS attacks.

• Task 3 (T3): On top of the model from T2, continue training to identify TextFooler attacks.

We compare three distinct training strategies:
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• Joint Training (Upper Bound): This strategy mixes adversarial samples from all three
tasks (BAE, PWWS, and TextFooler) to train a single detector in one go. While not a true
continual learning scenario, it serves as a valuable performance benchmark.

• Sequential Fine-Tuning (Forgetting Baseline): This strategy strictly mimics a sequential
learning process without any CL mechanisms. The model is first trained on Task T1 data.
Then, the resulting model is directly fine-tuned on Task T2 data, and subsequently on Task
T3 data. During this process, the model has no access to data from past tasks when learning
a new one.

• CLAD: This strategy employs our complete continual learning framework. The model
learns sequentially from T1→ T2→ T3.

Evaluation Metrics
After all models complete their training on Task T3, we evaluate their detection accuracy on the
independent test sets for each task (T1, T2, and T3). We focus on two core metrics:

• Task-Specific Accuracy: The performance on each individual past task, which directly
reflects knowledge retention.

• Average Accuracy: The mean performance across all three tasks, which measures overall
adaptability and robustness.

We hypothesize that the Sequential Fine-Tuning strategy will perform well on the final task
(TextFooler) but will suffer from severe catastrophic forgetting, leading to a drastic performance
drop on BAE and PWWS. Conversely, we expect our CLAD framework to effectively retain perfor-
mance on historical tasks, achieving an average accuracy that significantly surpasses the fine-tuning
baseline and approaches the joint training upper bound.

Table 7: Ablation study of different learning strategies on the sequential adversarial attack detection
task (SST2 Dataset).

Training Strategy Acc. (T1: BAE) Acc. (T2: PWWS) Acc. (T3: TextFooler) Average Acc.
Joint Training
(Upper Bound) 82.5% 84.1% 83.3% 83.3%
Sequential Fine-Tuning
(Forgetting Baseline) 24.7% 31.5% 82.9% 46.4%
CLAD (MS=100)
(Our Method) 81.9% 83.5% 83.1% 82.8%

F.5 ABLATION STUDY FOR PARAPHRASE DEFOCUSING

To validate the design choices of our Paraphrase Defocusing (PDLLM) mechanism, we conduct an
ablation study to analyze the contributions of its key components. The primary goal of PDLLM is to
repair an adversarial example x̂ by iteratively rephrasing it until the victim model Fvictim no longer
produces the cached fake prediction ŷ. We compare our full implementation against several ablated
variants.

F.5.1 EXPERIMENTAL SETUP

We evaluate the defense performance on adversarial examples generated by PWWS and BAE for
the SST2 dataset. The victim model is a fine-tuned BERT model. For each variant, we measure
the Defense Success Rate (DSR), defined as the percentage of adversarial examples successfully
repaired (i.e., Fvictim(x̃

r) ̸= ŷ), and the Average Number of Queries (#Q) required to achieve a
successful defense.

The variants are as follows:

• Full PDLLM: Our complete proposed method as described in Algorithm 2, which uses an iterative,
guided paraphrasing process.
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• w/o Guidance: The LLM is prompted to paraphrase the input text without the guidance to avoid
the fake prediction ŷ. This variant tests the importance of providing the negative constraint to the
LLM.

• Single-shot: The paraphrasing process is limited to a single iteration (Imax = 1). This variant
assesses the necessity of the iterative refinement loop.

• Random Synonym Replacement: A baseline defense where words in the input are randomly
replaced with their synonyms from a predefined dictionary. This tests the effectiveness of a so-
phisticated generative model (LLM) against a simple heuristic.

F.5.2 PDLLM ABLATION EXPERIMENTS

Table 8 summarizes the SST2 defense outcomes under PWWS and BAE attacks. Three consistent
trends emerge that align with our design: (i) adding the guided constraint (avoid cached fake label
ŷ) and (ii) allowing an iterative loop both increase Defense Success Rate (DSR) with only a modest
LLM query budget; (iii) simple non-LLM synonym edits rarely undo adversarial cues. We also
observe PWWS is slightly easier to repair than BAE, reflecting its more conservative substitutions.
The average queries per successful repair Q stay small (≪ Imax=100), consistent with the escape
criterion in Algorithm 2.

Table 8: Ablation study of the Paraphrase Defocusing (PDLLM) defense on the SST2 dataset. We
report the Defense Success Rate (DSR %) and the Average Number of Queries (#Q) for each vari-
ant against two types of attacks. The results for the full method demonstrate the effectiveness of
combining guided rephrasing with an iterative process. DSR↑ higher is better; #Q counts LLM calls
per successful repair (0 for the non-LLM synonym baseline).

Method PWWS Attack BAE Attack
DSR (%) ↑ #Q ↓ DSR (%) ↑ #Q ↓

Full PDLLM 86.2 2.3 78.5 2.7
w/o Guidance 71.9 2.9 64.8 3.2
Single-shot 59.7 1.0 51.6 1.0
Random Synonym Replacement 24.8 0.0 18.3 0.0

G COMPUTATIONAL COST ANALYSIS

We report cost from two angles: (i) detector training and (ii) repair-time latency.

Detector training cost. Let Tstage(M) denote the wall-clock time to complete one training stage
under memory budget M ∈ {0, 1, 10, 100}. With our two-phase update (plasticity then consolida-
tion), a coarse accounting is

Tstage(M) ≈ Tfwd/bwd
(
|Dnat

t |+ |Dadv
t |

)
+ Tfwd/bwd

(
|Mnat

t |+ |Madv
t |

)
,

where |Mnat
t | = rnM and |Madv

t | = raM . Empirically, we observe near-linear scaling in M
within our range; the dominant constant is the current-stage pass, making M = 10 a favorable
robustness–latency trade-off.

Repair-time latency. For PDÂ (editor-based), latency is primarily attacker proposal time with no
external calls. For PDLLM, we bound the number of paraphrasing iterations by Imax and report the
average queries per successful repair Q. Operationally, the expected time per repaired sample is

E[trepair] ≈ QtLLM + tvictim · (Q+ 1),

with tLLM the average LLM response latency and tvictim the victim model inference time. In our runs,
Q ≪ Imax due to the escape criterion, keeping end-to-end latency practical for online use. Table
references in the main text report Q where applicable.
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False repair budget. Given a detector operating point (TPR,FPR) at threshold τ and an adver-
sarial prior π = Pr[adv], the per-input expected repair invocations are TPRπ + FPR (1− π). We
therefore calibrate τ to respect a target budget B by choosing the largest τ such that this expectation
≤ B.

H DETECTOR THRESHOLD SENSITIVITY (τ )

We analyze the effect of the detector threshold τ on precision/recall and the downstream defense
workload. Sweeping τ ∈ [0, 1] yields an ROC/PR trade-off; for detect-to-defend, the operative
metric is the false repair rate (FRR):

FRR(τ) = Pr[repair | natural] = FPR(τ).

Higher τ reduces FRR at the expense of recall (missed attacks). We set τ on a validation split
to maximize Fβ for a task-dependent β (e.g., β > 1 emphasises recall when missing an attack is
costlier than a false repair) under a hard budget on FRR (see budget B above). We found the main
conclusions (e.g., monotonic gains with memory size and the superiority of PDLLM in R.A.) stable
across reasonable τ ranges.

I LIMITATIONS

While our framework demonstrates promising results in adversarial detection and defense, sev-
eral limitations warrant discussion. First, the LLM-based repair mechanism (CLAD-PDLLM) em-
ploys simplistic API interactions without systematic prompt optimization or output validation. As
shown in Table 2 in the main text, while PDLLM achieves competitive recovery accuracy (84.73%
on Amazon), its performance variability across attack types (∆R.A. = 27.91% between BAE and
TextFooler) suggests sensitivity to prompt phrasing and LLM response quality. This contrasts with
the more stable PDÂ approach (∆R.A. = 16.25%), highlighting the need for advanced LLM steer-
ing techniques. Second, our evaluation focuses on conventional pretrained models (e.g., BERT),
excluding larger language models (LLMs) like GPT-4 or Llama. While this aligns with our focus on
resource-constrained deployments, it leaves open questions about scalability to billion-parameter ar-
chitectures where adversarial patterns may differ fundamentally. Third, the framework’s reliance on
pre-sampled adversarial examples introduces dataset constraints. Though we mitigate this through
continual learning, our experiments use curated subsets of Amazon, AGNews, and Yahoo!, poten-
tially limiting exposure to real-world adversarial diversity. The negative forgetting rates observed
in Table 1 of the main text (-3.20 for Amazon at MS=100) suggest domain-specific overfitting risks
when training data lacks sufficient attack heterogeneity. Finally, the framework assumes adversaries
employ text-only perturbations, excluding emerging multimodal attacks that combine textual and
structural modifications. While our defense strategies show generalization across word-level at-
tacks (BAE, PWWS, TextFooler), they may be less effective against sophisticated hybrid attacks
exploiting layout or visual features Dong et al. (2021a). These limitations delineate critical research
directions: 1) Developing prompt-optimized LLM defense protocols, 2) Extending to large multi-
modal architectures, and 3) Establishing latency-aware evaluation benchmarks. Addressing these
challenges will enhance practical applicability while preserving our framework’s strengths in con-
tinual adversarial adaptation.

USE OF AI-ASSISTED LANGUAGE EDITING

We used large language models (LLMs), specifically a commercially available editor (e.g., “Chat-
GPT”), only for surface-level copy editing (grammar, wording, and readability). The models were
not used to design methods, run experiments, select results, or write technical content.
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