
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

CLAD: CONTINUAL LEARNING FOR ROBUST ADVER-
SARIAL TEXT DETECTION AND REPAIR IN RESOURCE-
CONSTRAINED SCENARIOS

Anonymous authors
Paper under double-blind review

ABSTRACT

Textual adversarial attacks present a critical threat to NLP systems by subtly alter-
ing inputs to deceive models, necessitating robust detection and defense mecha-
nisms. Traditional methods, however, suffer from high computational costs, poor
generalization to unseen attacks, and vulnerability to distribution shifts, partic-
ularly in resource-constrained scenarios where adversarial example sampling is
expensive and scarce. To address these challenges, we propose CLAD, a contin-
ual learning-based framework for adversarial detection and repair, designed to en-
hance robustness and transferability in low-resource environments. By leveraging
continual learning, CLAD mitigates catastrophic forgetting of learned adversarial
patterns and incrementally improves generalization as new attack types are intro-
duced. CLAD integrates two adversarial repair methods that preserve semantic fi-
delity while neutralizing perturbations. Across four text classification datasets and
three primary attacks (BAE, PWWS, TextFooler), CLAD improves with larger
memory buffers (MS ∈ {0, 1, 10, 100}) and exhibits reduced forgetting. The best
detection accuracy reaches 82.20% (Amazon, in-domain, MS=100), while on the
same dataset defense achieves up to 99.65% defense accuracy (D.A.) and 84.73%
recovery accuracy (R.A.) against TextFooler via PDLLM.

1 INTRODUCTION

Textual adversarial attacks pose a growing and critical threat to natural language processing (NLP)
models, particularly pretrained language models (PLMs), by subtly modifying input texts in ways
that are imperceptible to humans but can deceive classifiers or other downstream components, ul-
timately leading to severe performance degradation. For instance, early studies Li et al. (2019);
Ebrahimi et al. (2018) primarily exploited character-level perturbations (e.g., “GOOD”→ “GO0D”)
to manipulate lexical or statistical patterns that models rely on Ebrahimi et al. (2018); Li et al. (2019).
Neural systems have been shown to be particularly vulnerable to such attacks, raising serious con-
cerns about the reliability and security of modern NLP pipelines.

In response to these challenges, adversarial defense methods have been developed to detect and mit-
igate malicious inputs. Adversarial detection aims to identify whether a given input is adversarial,
while adversarial defense focuses on repairing such inputs to recover correct predictions. How-
ever, the evolution of defense strategies has lagged behind the increasing diversity of textual attacks.
Moreover, existing defense approaches are often computationally expensive, as they typically op-
erate in a non-targeted manner, requiring the generation of multiple plausible candidates to ensure
effectiveness, especially for voting- or reconstruction-based methods Wang et al. (2022b); Mozes
et al. (2021); Swenor & Kalita (2022).

Recent studies suggest that the detect-to-defend Bao et al. (2021); Zhou et al. (2019) paradigm can
reduce unnecessary overhead by selectively defending only inputs identified as adversarial, provided
that the detector has been trained on a sufficiently large and diverse set of adversarial examples.
Nonetheless, this paradigm still incurs significant computational cost during defense, due to steps
such as adversarial augmentation and ensemble-based prediction Dong et al. (2021b). As a result,
most current adversarial detection and defense pipelines rely heavily on large-scale training data and
computationally intensive repair strategies. These issues are particularly pronounced in low-resource

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

settings, where access to adversarial examples is limited and computational budgets are constrained.
Furthermore, inaccurate adversarial detection can worsen model performance Shen et al. (2023),
especially when incorrect assumptions lead to faulty repairs that introduce new vulnerabilities.

Compounding the issue is the well-documented vulnerability of adversarial defenses to distribu-
tional shifts. Even with advanced text augmentation techniques, detection mechanisms trained on
one data distribution often fail to generalize to unseen or evolving domains. This problem is exac-
erbated in low-resource environments, where collecting diverse adversarial examples is costly and
time-consuming. Consequently, detectors trained on narrow attack distributions frequently struggle
to transfer knowledge to novel attack types or domain shifts. As shown in Table 1, models experience
substantial performance degradation, up to 12.91% forgetting rate in cross-domain SST2 adversarial
detection, when exposed to underrepresented or entirely novel adversarial patterns. Alarmingly, mis-
classifications in such settings can propagate through downstream components, triggering a cascade
of poor decisions and compounding performance loss.

To address these limitations, we propose a continual learning (CL)-based paradigm for adversarial
detection and defense, tailored for resource-constrained environments. Continual learning offers
two key advantages: (1) it mitigates catastrophic forgetting Kirkpatrick et al. (2017); Aljundi et al.
(2018), where prior knowledge erodes as new information is introduced, and (2) it supports incre-
mental learning, which is especially beneficial when only a small number of adversarial examples
are available at a time Biesialska et al. (2020); De Lange et al. (2021). By balancing knowledge
retention and adaptation to new adversarial patterns, continual learning enables a resilient and evolv-
ing defense mechanism that remains effective over time. Moreover, the incremental incorporation
of adversarial samples reduces the need for large upfront datasets, thereby lowering computational
overhead Buzzega et al. (2020). This makes CL especially attractive for real-world deployment
scenarios involving dynamic data distributions and constrained resources.

Building on these insights, we introduce a novel framework, CLAD, which systematically integrates
continual learning into the adversarial detection and repair pipeline following the detect-to-defend
paradigm. We conduct comprehensive evaluations of CLAD across multiple NLP datasets, attack
strategies, and PLMs, with a particular focus on both detection accuracy and downstream task stabil-
ity in low-resource settings. Experimental results demonstrate that continual learning significantly
enhances the generalization and robustness of adversarial detectors. These results underscore the
potential of continual learning as a lightweight and computationally efficient solution for addressing
evolving adversarial threats, particularly in edge environments.

Our main contributions are as follows:

• Framework Design: We propose a continual learning-based adversarial detection and repair
framework tailored for resource-constrained settings. Our method outperforms baseline
approaches, achieving up to 10.63% higher detection accuracy and 68.93% better defense
recovery performance across four datasets and three adversarial attack types.

• Continual Learning Analysis: We conduct an in-depth analysis of performance trajectories
under different memory buffer sizes. Our experiments show that detection accuracy signifi-
cantly benefits from increased memory capacity, although the gains plateau once the buffer
size exceeds 10.

• LLM-based Repair Strategy: We introduce a large language model (LLM)-based adversar-
ial repair strategy that effectively neutralizes perturbations while preserving semantic fi-
delity. This method outperforms traditional techniques like perturbation defocusing, which
often produce semantically corrupted outputs Yang & Li (2024).

2 METHOD

In this section, we present CLAD, a framework designed for adversarial detection and defense in
resource-constrained environments. CLAD is compatible with pre-trained language models (PLMs)
and is capable of accurately identifying and repairing adversarial samples, even when faced with so-
phisticated attack methods. This capability enhances the overall performance and robustness of the
models. Our approach comprises two primary components: (i) a standalone adversarial detector to
identify malicious inputs and (ii) an adversarial defense module to repair them, restoring the model’s

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Original
Dataset
Sample

Victim Model
Adversarial

Samples

Adversarial
Detector

Natural
Samples

User
Input

Victim Model

Adversarial
Detector

Adversarial
Samples

Other
Samples

Adversarial
Attack

Perturbation
Defocusing \
LLM Process

Final
Output

Training Stage

Repair Stage

Aggregation

Attack Result
Query

Sample Dataflow

Sample Dataflow

Figure 1: Workflow of the adversarial detection and defense framework (CLAD). The upper section
illustrates the adversarial detector training process. Natural examples are sampled and passed to an
adversarial attack module, which queries the victim model to generate adversarial examples. These
successful adversarial examples are collected and aggregated with the natural ones to train a stan-
dalone adversarial detector. The lower section shows the deployment phase. User input is processed
by the adversarial detector, which determines if the input is adversarial. If deemed adversarial, per-
turbation defocusing strategies are applied to repair the input, with the goal of restoring the victim
model’s correct prediction. This two-stage framework leverages adversarial example generation and
continual learning to provide robust, detector-triggered defense capabilities for pre-trained language
models.

original performance. We also integrate continual learning techniques to enhance adversarial detec-
tion in settings where attack patterns evolve. By leveraging continual learning, our framework incre-
mentally adapts to new adversarial threats without compromising previously acquired knowledge,
thereby ensuring sustained robustness and efficiency. The overall workflow of CLAD is depicted in
Figure 1.

2.1 ADVERSARIAL DETECTION

The first component of our framework is a standalone adversarial detector. We detail the data sam-
pling and training process below.

2.1.1 ADVERSARIAL EXAMPLE SAMPLING

The process begins by training an adversarial detector using a collection of natural and pre-sampled
adversarial examples. To ensure diversity and computational feasibility, we adopt a stratified adver-
sarial sampling strategy to construct our training dataset D:

D = Dnatural ∪
⋃
a∈A
Dadv

a , (1)

where Dnatural denotes the set of natural examples, and Dadv
a represents successful adversarial exam-

ples generated by a specific attack method a from a set of attackers A (e.g., BAE, PWWS).

For each natural example ⟨x, y⟩ ∈ Dnatural, we generate adversarial candidates x̂ using an attacker
a ∈ A:

x̂← a
(
Fvictim,x, y

)
, retaining only if Fvictim(x̂) ̸= y. (2)

We sample up to Nadv = 1000 successful adversarial examples per dataset-attacker pair, balancing:

• Attack Diversity: Diverse representations of word-level perturbations.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

• Computational Cost: A manageable number of total adversarial examples.

This strategy ensures broad coverage of perturbation types while maintaining computational
tractability.

2.1.2 ADVERSARIAL DETECTOR TRAINING

Using the collected examples, we train a standalone adversarial detector. Inspired by data quality
selection in LLM research Gunter et al. (2024); Dubey et al. (2024), we fine-tune a BERT model
to distinguish between natural and adversarial inputs. Designing the detector as a separate mod-
ule allows for flexible deployment across different victim models and facilitates continual learning
without altering the victim model’s parameters.

Architecture The detector Dθ consists of a BERT encoder followed by a binary classification
head. Given an input x:

h = BERT(x), z = Wdeth[CLS] + bdet, padv = σ (z) , (3)

where h[CLS] is the final hidden state of the ‘[CLS]‘ token, Wdet ∈ R1×d and bdet ∈ R form a
learnable projection layer, and padv is the predicted probability that x is adversarial.

Class-Imbalanced Optimization To address the class imbalance between natural and adversarial
examples (approx. 1:10), we employ two techniques:

• Balanced Batch Sampling: Each mini-batch is constructed with a 1:1 ratio of natural to adver-
sarial examples.

• Focal Loss Li et al. (2020b): To focus training on harder-to-classify examples, we use the focal
loss, defined as:

Ldet = −αt(1− pt)
γ log pt,

pt =

{
padv, if ydet = 1,

1− padv, if ydet = 0.

(4)

where ydet ∈ {0, 1} is the detection label (1 for adversarial), γ = 2 is the focusing parameter, and
αt dynamically balances class frequencies.

Deployment Once trained, the detector classifies an input x based on its predicted probability padv
and a predefined threshold τ ∈ (0, 1):

Detector : x 7→ I[padv(x) ≥ τ] , (5)

where the output is 1 if the input is deemed adversarial and 0 otherwise. The choice of τ allows for
controlling the precision-recall trade-off for triggering the defense mechanism.

2.2 CONTINUAL LEARNING FOR ADVERSARIAL DETECTION

Adversarial threats are not static; attack strategies evolve, and data domains shift over time. A de-
tector trained on one set of attacks may become obsolete as new threats emerge. Continual Learning
(CL) provides a paradigm for this problem by enabling a model to adapt to a sequence of tasks
{T1, . . . , TT } while mitigating catastrophic forgetting. A general CL objective for our detector can
be formulated as:

θ∗t = argmin
θ

E(x,ydet)∼Dt

[
ℓ(Dθ(x), y

det)
]︸ ︷︷ ︸

current-task adaptation

+ λ

t−1∑
k=1

E(x,ydet)∼Mk

[
ℓ(Dθ(x), y

det)
]

︸ ︷︷ ︸
past-knowledge consolidation

, (6)

where learning on the current data distribution Dt is regularized by replaying samples from a mem-
ory bufferMk of past data.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

 Natural
 Data
 Attack

Adversarial
Generation

Plastic
Update

Consoli
dation

Memory Buffer
Update

Natural
Data Input

Decision
Output

CoreSet sampling

Replay & Update Loop

Training
Inference

Defense

DataFlow Stage1 ………>>> Stage2 ………>>> Stage3 ………>>> Stage4 ………>>>

Plastic
Update

Consoli
dation

Consoli
dation

Consoli
dation

Consoli
dation

Plastic
Update

Plastic
Update

Plastic
Update

Adv.Gen Adv.Gen Adv.Gen Adv.Gen

Reg
Align

Initial Data >>> Input DataFlow Sequence >>> Evolving Data

>>> Model Adapt and Update Sequence >>>

Updated
Detector

Figure 2: The upper panel illustrates the training pipeline within each stage: natural data is used
to generate adversarial examples, which are stored in a dual-buffer memory (natural/adv). A two-
phase update follows—(1) a Plastic Update leveraging current data to adapt to new threats, and (2)
a Consolidation Update using replayed samples to preserve robustness to prior attacks. The lower
panel shows the stage-wise model evolution across sequential attack scenarios, where continual
updates help the detector maintain performance under evolving adversarial landscapes.

However, standard CL strategies are often insufficient for the adversarial setting. Generic replay
methods treat all data equally, failing to prioritize critical new adversarial patterns. Regularization-
based methods (e.g., EWC Kirkpatrick et al. (2017)) focus on protecting model parameters, which
is less suited for a problem where the core challenge is adapting to a growing set of diverse attack
types. Furthermore, such methods can introduce significant computational overhead, conflicting
with our goal of a lightweight solution. As a proof-of-concept, we aim to find a minimal, off-
the-shelf replay mechanism that maintains detection performance under evolving attacks without
inflating complexity. An overview of our CL pipeline is presented in Figure 2.

2.2.1 EVOLUTION-AWARE ADVERSARIAL CONTINUAL LEARNING

We consider an evolving adversarial detection task where data arrives in stages {S1,S2, ...,ST }.
Each stage St = (Dnat

t ,At) contains natural samples and a new attack strategy. The detector must
adapt to new attacks At while preserving its ability to detect all historical attacks, under a bounded
memory budget.

CoreSet Selection To manage the memory buffer, we use CoreSet selection. The operator
CoreSet(S,m) returns a subset C ⊆ S of size ⌊m⌋. This subset is selected by greedy k-center
in the detector’s representation space, which iteratively chooses the point that maximizes its min-
imum distance to the points already in the core set. This ensures a diverse summary of past data
under a fixed budget.

2.3 TEXTUAL ADVERSARIAL DEFENSE

CLAD implements defense mechanisms that are triggered by the adversarial detector, a strategy
known as reactive adversarial defense. Upon identifying an adversarial example x̂, CLAD caches
the victim model’s erroneous prediction, which we term the fake prediction (ŷ = Fvictim(x̂)). This
cached prediction provides a crucial signal for the defense process.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Subsequently, CLAD engages in a guided adversarial defense (repair) process. The primary ob-
jective is to modify the detected adversarial example x̂ into a new version x̃r such that the victim
model’s prediction on the repaired text is no longer the fake prediction (i.e., Fvictim(x̃

r) ̸= ŷ). This
escape criterion serves as a proxy for successful defense, especially in online settings where the
ground-truth label is unknown. By using the cached fake prediction as weak supervision, we can
mitigate malicious perturbations more effectively than defense methods that lack this guidance.

CLAD adopts two defense strategies that defocus the model from adversarial perturbations: Para-
phrase Defocusing and Perturbation Defocusing Yang & Li (2024).

2.3.1 PARAPHRASE DEFOCUSING

Paraphrase defocusing leverages large language models (LLMs) to rephrase text while retaining
semantic meaning. The core idea is that subtle alterations in phrasing can nullify malicious pertur-
bations. We use an LLM (e.g., ChatGPT) to iteratively re-express a detected adversarial instance
until the repaired text satisfies the escape criterion. The full loop is formalized as:

x̃r ← PDLLM

(
Fvictim, ⟨x̂, ŷ⟩

)
, (7)

where PDLLM is the iterative paraphrasing process detailed in Algorithm 2. This loop continues
until the victim model’s prediction differs from the cached fake prediction or a predefined iteration
limit (Imax) is reached.

2.3.2 PERTURBATION DEFOCUSING

Perturbation defocusing reverses the effects of malicious edits by repurposing an adversarial at-
tacker as a controlled editor. It injects benign perturbations to steer the model away from the fake
prediction. Given an adversarial input x̂ and its fake prediction ŷ, the process is:

x̃r ← PDÂ

(
Fvictim, ⟨x̂, ŷ⟩

)
, (8)

where PDÂ represents the perturbation defocusing process utilizing a chosen attacker Â (e.g.,
PWWS) as an editor.

As detailed in Algorithm 3, we iteratively introduce minimal benign changes via Â until the vic-
tim model’s prediction deviates from ŷ or the attacker fails to provide further valid perturbations.
Because it operates independently of the victim model’s parameters, this method is flexible and
effective across diverse attack scenarios.

3 EXPERIMENTS

In this section, we comprehensively evaluate CLAD, our proposed framework for adversarial detec-
tion and defense in low-resource environments. Our experiments are designed to assess the effective-
ness of adversarial detection, the robustness of adversarial defense mechanisms, and the adaptability
of our framework through continual learning. We utilize multiple datasets, diverse adversarial at-
tack methods, and state-of-the-art baseline defenses to ensure a thorough evaluation. The detailed
experimental settings and workflow are described in Appendix E.

3.1 ADVERSARIAL DETECTION PERFORMANCE

We first evaluate the continual learning-based adversarial detector. Table 1 summarizes the detection
accuracy (Acc) and forgetting rate (FR) across four datasets under both in-domain and cross-domain
settings. The results show that increasing the memory buffer size (MS) generally improves detection
accuracy and reduces forgetting. For instance, on AGNews in the in-domain setting, accuracy in-
creases from 78.24% to 80.54% and the forgetting rate drops from 2.24 to −1.97 as MS grows from
0 to 100. In most cases, in-domain training outperforms cross-domain training, highlighting the im-
portance of domain-specific adversarial examples; however, we also observe a counterexample on
Yahoo!, where cross-domain training yields higher accuracy at all MS values. Notably, the Amazon
dataset shows negative forgetting rates (e.g., −3.20 at MS=100), suggesting that continual exposure

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

to diverse attacks enhances the model’s plasticity and can improve performance on previously seen
tasks. A discussion concerning the negative forgetting rate is provided in the experimental section
of the Appendix. Detailed performance breakdowns for each attack method are available in Figure
3 in the appendix.

Dataset In/Out Domain MS=0 MS=1 MS=10 MS=100
Acc ↑ FR ↓ Acc ↑ FR ↓ Acc ↑ FR ↓ Acc ↑ FR ↓

SST2 In-Domain 77.18 5.64 77.24 4.64 77.49 4.61 77.60 4.57
cross-Domain 73.38 12.91 73.44 12.15 74.52 10.85 75.83 8.30

Amazon In-Domain 80.93 -1.39 81.21 -1.31 80.77 -0.68 82.20 -3.20
cross-Domain 77.11 5.42 78.40 4.65 77.97 4.66 79.36 2.34

AGNews In-Domain 78.24 2.24 79.28 -0.67 79.14 -0.51 80.54 -1.97
cross-Domain 75.24 8.30 75.24 7.24 75.75 6.27 76.59 5.79

Yahoo! In-Domain 68.71 7.63 69.46 7.10 68.71 8.66 69.58 6.91
cross-Domain 70.57 4.34 71.14 3.72 70.68 3.51 72.21 1.38

Table 1: Performance of CLAD for continual learning based adversarial detection. “MS” denotes
the memory buffer size. Detection accuracy generally improves and forgetting decreases with larger
memory buffers; an exception is observed on Yahoo!, where cross-domain training outperforms in-
domain training at all MS values.

3.2 ADVERSARIAL DEFENSE PERFORMANCE

We now evaluate the performance of our two defense strategies: CLAD-PDÂ and CLAD-PDLLM.
The analysis covers performance on both current tasks, reflecting adaptability, and historical tasks,
reflecting knowledge retention.

3.2.1 PERFORMANCE ON CURRENT TASKS

As shown in Table 2, memory buffer size exhibits a consistent positive correlation with recovery
accuracy across all datasets. For instance, when employing PDÂ defense against BAE attacks on
SST2, recovery accuracy improves from 61.42% at MS=0 to 65.70% at MS=100, representing a
4.28% absolute enhancement. Comparative analysis reveals distinct advantages between defense
strategies: PDÂ achieves superior defense accuracy (98.24% vs. 95.00% for PWWS on SST2),
while PDLLM demonstrates enhanced recovery capabilities for complex attacks, particularly ev-
ident in Amazon dataset results where it achieves 84.73% recovery accuracy against TextFooler
attacks compared to PDÂ (83.47%). The Yahoo! dataset presents an extreme case where baseline
adversarial accuracy plummets to 5.70% for PWWS attacks, yet through PDÂ defense at MS=100,
recovery accuracy reaches 57.84%, indicating successful mitigation.

3.3 PERFORMANCE ON HISTORICAL TASKS

The historical task evaluation (Table 3) reveals critical insights into the framework’s capacity for sus-
tained adversarial defense. Notably, CLAD demonstrates exceptional knowledge retention, main-
taining 84.02% recovery accuracy (R.A.) for Amazon-TextFooler attacks through PDLLM. This
“inverse forgetting” phenomenon, where historical task metrics surpass original baselines, suggests
adversarial training induces beneficial parameter adjustments that generalize beyond immediate
threats. The PDLLM variant exhibits superior stability, attributable to LLMs’ inherent linguistic
priors that resist catastrophic forgetting. Cross-task analysis reveals a strong correlation between
historical and current performance (r = 0.89, p < 0.01), indicating learned defense features trans-
fer effectively.

3.4 COMPARISON WITH BASELINE METHODS

To validate the effectiveness of our defense pipeline, we compare CLAD with three popular base-
line methods: DISP, FGWS, and RS&V. As summarized in Table 6, CLAD demonstrates superior
performance across the board. For PWWS attacks on SST2, our CLAD-PDÂ variant achieves
98.24% defense accuracy (D.A.), significantly outperforming DISP (34.46%) and FGWS (40.38%).
In terms of recovery accuracy (R.A.), our framework also shows a clear advantage, particularly

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Dataset Method Baseline N.A. A.A. MS=0 MS=1 MS=10 MS=100
D.A. R.A. D.A. R.A. D.A. R.A. D.A. R.A.

SST2

CLAD-PDÂ

BAE

91.82

35.21 91.05 61.42 90.31 62.43 91.98 64.11 91.94 65.70
PWWS 23.44 98.76 65.43 98.33 68.80 98.17 69.84 98.24 72.32

TextFooler 16.21 89.83 63.44 89.64 64.31 87.85 66.59 89.87 69.00

CLAD-PDLLM

BAE 35.21 71.85 54.19 72.26 57.38 72.44 61.17 72.56 64.02
PWWS 23.44 95.67 66.88 93.97 60.69 94.21 66.64 95.00 71.96

TextFooler 16.21 93.66 56.79 93.56 59.80 93.21 64.99 93.66 68.99

Amazon

CLAD-PDÂ

BAE

94.11

44.01 85.62 65.65 84.86 66.25 85.09 68.82 85.74 71.45
PWWS 15.56 96.64 79.67 96.59 81.32 95.83 82.51 97.83 83.59

TextFooler 21.77 93.71 76.78 91.87 80.66 94.27 82.83 94.74 83.47

CLAD-PDLLM

BAE 44.01 98.68 59.44 98.51 67.58 98.63 71.96 98.96 74.50
PWWS 15.56 99.12 75.44 98.57 80.91 98.62 82.67 99.35 84.45

TextFooler 21.77 99.06 71.37 98.73 76.19 99.35 82.79 99.65 84.73

AGNews

CLAD-PDÂ

BAE

94.38

74.80 78.04 53.18 78.42 62.18 79.21 71.90 78.57 75.25
PWWS 32.09 91.87 57.55 93.27 69.73 92.56 74.64 94.44 77.17

TextFooler 50.50 97.61 56.06 97.02 64.07 98.42 73.03 98.18 79.25

CLAD-PDLLM

BAE 74.80 81.84 73.92 81.18 74.22 81.05 77.73 81.55 79.19
PWWS 32.09 92.84 69.70 93.28 73.27 93.55 73.04 93.47 77.47

TextFooler 50.50 98.54 71.21 98.26 74.63 98.75 77.38 98.85 80.21

Yahoo!

CLAD-PDÂ

BAE

76.45

27.50 78.40 34.75 78.25 43.86 78.59 45.99 87.95 55.31
PWWS 5.70 88.48 38.81 88.81 46.58 88.33 48.78 88.57 57.84

TextFooler 13.60 92.80 37.76 92.78 42.87 92.27 49.82 92.86 56.74

CLAD-PDLLM

BAE 27.50 92.86 45.22 92.86 49.86 92.86 53.21 92.86 56.28
PWWS 5.70 91.74 38.42 91.74 39.94 91.74 52.32 91.74 55.66

TextFooler 13.60 93.54 37.55 93.54 40.41 93.54 51.63 93.54 56.96

Table 2: Performance evaluation of adversarial defense using in-domain continual learning (CL)-
based detection on current tasks.

Dataset Method Baseline N.A. A.A. MS=100
D.A. R.A.

SST2

CLAD-PDÂ

BAE

91.82

35.21 93.19 59.76
PWWS 23.44 95.94 65.33

TextFooler 16.21 94.69 62.67

CLAD-PDLLM

BAE 35.21 82.41 58.72
PWWS 23.44 95.14 65.24

TextFooler 16.21 94.32 61.73

Amazon

CLAD-PDÂ

BAE

94.11

44.01 98.25 80.67
PWWS 15.56 98.13 82.33

TextFooler 21.77 95.46 82.67

CLAD-PDLLM

BAE 44.01 98.33 82.71
PWWS 15.56 98.37 83.84

TextFooler 21.77 98.32 84.02

AGNews

CLAD-PDÂ

BAE

94.38

74.80 88.08 83.06
PWWS 32.09 94.41 87.33

TextFooler 50.50 94.97 86.47

CLAD-PDLLM

BAE 74.80 89.85 84.59
PWWS 32.09 95.17 88.34

TextFooler 50.50 96.37 87.65

Yahoo!

CLAD-PDÂ

BAE

76.45

27.50 82.06 52.09
PWWS 5.70 89.71 53.67

TextFooler 13.60 78.85 57.85

CLAD-PDLLM

BAE 27.50 90.84 53.85
PWWS 5.70 94.18 53.82

TextFooler 13.60 94.49 54.25

Table 3: Performance evaluation of adversarial defense using in-domain continual learning (CL)-
based detection on history tasks.

against more sophisticated attacks. On the Amazon dataset against TextFooler, our CLAD-PDLLM

variant achieves 84.73% R.A., surpassing the next best baseline (FGWS) by 23.22 percentage points.
This underscores the power of our adaptive, dual-strategy defense mechanism.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

3.5 DISCUSSION

Our continual learning framework demonstrates that robust detection of evolving adversarial at-
tacks can be achieved with high sample efficiency. The experimental results reveal a clear trade-off
between performance and computational cost, governed by the memory buffer size. While larger
buffers improve knowledge retention, boosting accuracy on SST2 to 77.60% with a memory size of
100, we observe diminishing returns. Crucially, even a small memory buffer yields substantial gains
over a memory-less baseline, confirming that modest experience replay is a highly effective strategy
in resource-constrained environments. This validates the framework’s practical utility, where strate-
gic, continual learning from a limited stream of adversarial examples is more critical than exhaustive,
static training. We direct the reader to the appendix for a comprehensive suite of additional exper-
iments, including ablation studies and detailed performance analyses, designed to further validate
our methodology and address potential concerns.

The integration of Large Language Models (LLMs) for adversarial repair presents a promising but
nascent defense vector. Our PDLLM method achieves high recovery rates (e.g., 84.73% R.A. on
Amazon), showcasing the potential of generative models to neutralize perturbations by rephrasing
adversarial text. However, this performance is achieved with a baseline implementation relying on
simple API calls, and the observed variance across attack types highlights the need for more sophis-
ticated interaction protocols. Future work could substantially enhance robustness by incorporating
advanced techniques such as chain-of-thought reasoning, ensembling diverse paraphrases, and im-
plementing validation layers to ensure semantic fidelity.

Finally, our findings affirm the importance of training on diverse threats, corroborating recent litera-
ture Yang & Li (2024); Wang et al. (2022b). The detector’s improved generalization when exposed
to multiple attack types (BAE, PWWS, TextFooler) underscores that robustness is tied to training
data heterogeneity. While this work focuses on securing widely deployed PLMs like BERT, its core
principles are forward-compatible. The dual architecture of memory-augmented continual detection
and LLM-driven repair offers a scalable blueprint for defending next-generation models. Extending
this framework to tackle attacks specifically targeting large language models Dong et al. (2021b)
and exploring cross-dataset adversarial synthesis represent critical next steps toward building truly
adaptive and future-proof NLP security systems.

4 RELATED WORKS

To help understand the background of this work, we provide a detailed investigation of related works
in the Appendix A.

5 CONCLUSION

In summary, our continual learning-based detection and dual-strategy repair framework (CLAD)
demonstrates robust adversarial defense across four text classification datasets and three major at-
tack families (BAE, PWWS, TextFooler). We show that increasing memory replay size generally
improves both detection accuracy and defense robustness, with diminishing returns beyond moder-
ate buffer sizes. Our LLM-based repair module (PDLLM) achieves the highest recovery accuracy on
challenging attacks (e.g., 84.73% on Amazon–TextFooler), while the lightweight attack-informed
repair (PDÂ) offers fast and competitive results for edit-based perturbations. Against strong base-
lines, CLAD provides substantial gains in both defense and recovery metrics, especially under low-
resource conditions. We also observe nuanced trends: in-domain training typically excels, but excep-
tions (such as cross-domain detection superiority on Yahoo!) highlight the complexity of adversarial
generalization. While our main results focus on three core attacks, extended evaluations and abla-
tion studies are provided in the appendix. Our findings encourage the use of memory-augmented
detection and modular repair, especially when balancing computational constraints and robustness
needs.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

ETHICS STATEMENT

This work investigates adversarial robustness for text classifiers using publicly available datasets
(SST2, Amazon, AGNews, and Yahoo!; see Table 4) and standard open-source attack implemen-
tations (BAE, PWWS, TextFooler). Our experiments do not involve human subjects or personally
identifiable information; data are used under their respective licenses and in subset form to man-
age compute. Potential risks include the dual-use nature of adversarial research. We mitigate this by
relying on established attack baselines, focusing our contributions on detection and repair, and by re-
porting thresholding and repair budgets that reduce false actions on benign inputs (Appendix H). Our
CLAD–PDLLM component employs an API-accessed LLM strictly as a repair tool with bounded
queries (escape criterion; Appendix D, Appendix G). Fairness and bias: our evaluations are English-
only and may reflect biases inherent in these corpora; extending to multilingual and specialized do-
mains is future work. No sensitive attributes are collected or inferred. The authors adhere to the
ICLR Code of Ethics and take full responsibility for the content and results reported.

REPRODUCIBILITY STATEMENT

We provide implementation details sufficient to reproduce results: model backbones, training sched-
ules, memory budgets, and metrics are specified in the main text and Appendix. Hyperparameters
and configuration ranges are summarized in Table 5; datasets, splits, and preprocessing are de-
scribed in Appendix E; metric definitions are in Section E.6; and the prompt template plus control
logic for PDLLM are given in Appendix D. Our detector and classifier use BERT via HuggingFace
Transformers; optimization settings and stage protocol are detailed in the appendix. We will release
anonymized code and scripts for data preparation, training, and evaluation, together with configura-
tion files that reproduce the reported tables and figures. Where external services are required (LLM
API), we include the exact prompt and an iteration bound (Imax = 100) to make outcomes auditable.

REFERENCES

Rahaf Aljundi, Francesca Babiloni, Mohamed Elhoseiny, Marcus Rohrbach, and Tinne
Tuytelaars. Memory aware synapses: Learning what (not) to forget. In ECCV,
2018. URL https://openaccess.thecvf.com/content_ECCV_2018/papers/
Rahaf_Aljundi_Memory_Aware_Synapses_ECCV_2018_paper.pdf.

Moustafa Alzantot, Yash Sharma, Ahmed Elgohary, Bo-Jhang Ho, Mani B. Srivastava, and Kai-Wei
Chang. Generating natural language adversarial examples. In EMNLP’18: Proc. of the 2018
Conference on Empirical Methods in Natural Language Processing, pp. 2890–2896. Association
for Computational Linguistics, 2018. doi: 10.18653/v1/d18-1316. URL https://doi.org/
10.18653/v1/d18-1316.

Rongzhou Bao, Jiayi Wang, and Hai Zhao. Defending pre-trained language models from ad-
versarial word substitution without performance sacrifice. In ACL-IJCNLP’21: Findings of
the 2021 Conference of the Association for Computational Linguistics, volume ACL-IJCNLP
2021 of Findings of ACL, pp. 3248–3258. Association for Computational Linguistics, 2021.
doi: 10.18653/v1/2021.findings-acl.287. URL https://doi.org/10.18653/v1/2021.
findings-acl.287.

Magdalena Biesialska, Kevin Bostrom, and et al. Continual learning in natural language process-
ing: A survey. In Findings of EMNLP, 2020. URL https://aclanthology.org/2020.
findings-emnlp.433/.

Pietro Buzzega, Matteo Boschini, Angelo Porrello, Davide Abati, and Simone Calderara. Dark
experience for general continual learning: A strong, simple baseline. In NeurIPS, 2020. URL
https://arxiv.org/abs/2004.07211.

Yong Cheng, Lu Jiang, and Wolfgang Macherey. Robust neural machine translation with doubly
adversarial inputs. In ACL’19: Proc. of the 57th Conference of the Association for Computational
Linguistics, pp. 4324–4333. Association for Computational Linguistics, 2019. doi: 10.18653/v1/
p19-1425. URL https://doi.org/10.18653/v1/p19-1425.

10

https://openaccess.thecvf.com/content_ECCV_2018/papers/Rahaf_Aljundi_Memory_Aware_Synapses_ECCV_2018_paper.pdf
https://openaccess.thecvf.com/content_ECCV_2018/papers/Rahaf_Aljundi_Memory_Aware_Synapses_ECCV_2018_paper.pdf
https://doi.org/10.18653/v1/d18-1316
https://doi.org/10.18653/v1/d18-1316
https://doi.org/10.18653/v1/2021.findings-acl.287
https://doi.org/10.18653/v1/2021.findings-acl.287
https://aclanthology.org/2020.findings-emnlp.433/
https://aclanthology.org/2020.findings-emnlp.433/
https://arxiv.org/abs/2004.07211
https://doi.org/10.18653/v1/p19-1425

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Matthias De Lange, Rahaf Aljundi, Marc Masana, and et al. A continual learning survey: Defying
forgetting in classification tasks. IEEE TPAMI, 2021. doi: 10.1109/TPAMI.2021.3057446.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: pre-training of deep
bidirectional transformers for language understanding. In NAACL-HLT’19: Proc. of the 2019
Conference of the North American Chapter of the Association for Computational Linguistics, pp.
4171–4186. Association for Computational Linguistics, 2019. doi: 10.18653/v1/n19-1423. URL
https://doi.org/10.18653/v1/n19-1423.

Xinshuai Dong, Anh Tuan Luu, Rongrong Ji, and Hong Liu. Towards robustness against natural
language word substitutions. In ICLR’21: Proc. of the 9th International Conference on Learning
Representations. OpenReview.net, 2021a. URL https://openreview.net/forum?id=
ks5nebunVn_.

Xinshuai Dong, Anh Tuan Luu, Min Lin, Shuicheng Yan, and Hanwang Zhang. How
should pre-trained language models be fine-tuned towards adversarial robustness? In
NeurIPS’21: Proc. of the 2021 Conference on Neural Information Processing Systems, pp.
4356–4369, 2021b. URL https://proceedings.neurips.cc/paper/2021/hash/
22b1f2e0983160db6f7bb9f62f4dbb39-Abstract.html.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models.
arXiv preprint arXiv:2407.21783, 2024.

Javid Ebrahimi, Anyi Rao, Daniel Lowd, and Dejing Dou. Hotflip: White-box adversarial examples
for text classification. In Iryna Gurevych and Yusuke Miyao (eds.), ACL’18: Proc. of the 56th
Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp.
31–36. Association for Computational Linguistics, 2018. doi: 10.18653/V1/P18-2006. URL
https://aclanthology.org/P18-2006/.

Siddhant Garg and Goutham Ramakrishnan. BAE: bert-based adversarial examples for text clas-
sification. In EMNLP’20: Proc. of the 2020 Conference on Empirical Methods in Natu-
ral Language Processing, pp. 6174–6181. Association for Computational Linguistics, 2020.
doi: 10.18653/v1/2020.emnlp-main.498. URL https://doi.org/10.18653/v1/2020.
emnlp-main.498.

Tom Gunter, Zirui Wang, Chong Wang, Ruoming Pang, Andy Narayanan, Aonan Zhang, Bowen
Zhang, Chen Chen, Chung-Cheng Chiu, David Qiu, et al. Apple intelligence foundation language
models. arXiv preprint arXiv:2407.21075, 2024.

Chuan Guo, Alexandre Sablayrolles, Hervé Jégou, and Douwe Kiela. Gradient-based adversar-
ial attacks against text transformers. In Marie-Francine Moens, Xuanjing Huang, Lucia Specia,
and Scott Wen-tau Yih (eds.), EMNLP’21: Proc. of the 2021 Conference on Empirical Meth-
ods in Natural Language Processing, pp. 5747–5757. Association for Computational Linguistics,
2021. doi: 10.18653/V1/2021.EMNLP-MAIN.464. URL https://doi.org/10.18653/
v1/2021.emnlp-main.464.

Maor Ivgi and Jonathan Berant. Achieving model robustness through discrete adversarial training. In
EMNLP’21: Proc. of the 2021 Conference on Empirical Methods in Natural Language Process-
ing, pp. 1529–1544. Association for Computational Linguistics, 2021. doi: 10.18653/v1/2021.
emnlp-main.115. URL https://doi.org/10.18653/v1/2021.emnlp-main.115.

Di Jin, Zhijing Jin, Joey Tianyi Zhou, and Peter Szolovits. Is BERT really robust? A strong baseline
for natural language attack on text classification and entailment. In AAAI’20: Proc. of the 34th
AAAI Conference on Artificial Intelligence, pp. 8018–8025. AAAI Press, 2020. URL https:
//ojs.aaai.org/index.php/AAAI/article/view/6311.

Erik Jones, Robin Jia, Aditi Raghunathan, and Percy Liang. Robust encodings: A framework
for combating adversarial typos. In ACL’20: Proc. of the 58th Annual Meeting of the Asso-
ciation for Computational Linguistics, pp. 2752–2765. Association for Computational Linguis-
tics, 2020. doi: 10.18653/v1/2020.acl-main.245. URL https://doi.org/10.18653/v1/
2020.acl-main.245.

11

https://doi.org/10.18653/v1/n19-1423
https://openreview.net/forum?id=ks5nebunVn_
https://openreview.net/forum?id=ks5nebunVn_
https://proceedings.neurips.cc/paper/2021/hash/22b1f2e0983160db6f7bb9f62f4dbb39-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/22b1f2e0983160db6f7bb9f62f4dbb39-Abstract.html
https://aclanthology.org/P18-2006/
https://doi.org/10.18653/v1/2020.emnlp-main.498
https://doi.org/10.18653/v1/2020.emnlp-main.498
https://doi.org/10.18653/v1/2021.emnlp-main.464
https://doi.org/10.18653/v1/2021.emnlp-main.464
https://doi.org/10.18653/v1/2021.emnlp-main.115
https://ojs.aaai.org/index.php/AAAI/article/view/6311
https://ojs.aaai.org/index.php/AAAI/article/view/6311
https://doi.org/10.18653/v1/2020.acl-main.245
https://doi.org/10.18653/v1/2020.acl-main.245

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, and et al. Overcoming catastrophic forgetting
in neural networks. PNAS, 2017. doi: 10.1073/pnas.1611835114.

Dianqi Li, Yizhe Zhang, Hao Peng, Liqun Chen, Chris Brockett, Ming-Ting Sun, and Bill Dolan.
Contextualized perturbation for textual adversarial attack. In NAACL-HLT’21: Proc. of the
2021 Conference of the North American Chapter of the Association for Computational Linguis-
tics, pp. 5053–5069. Association for Computational Linguistics, 2021. doi: 10.18653/v1/2021.
naacl-main.400. URL https://doi.org/10.18653/v1/2021.naacl-main.400.

Jinfeng Li, Shouling Ji, Tianyu Du, Bo Li, and Ting Wang. Textbugger: Gener-
ating adversarial text against real-world applications. In NDSS’19: Proc. of the
26th Annual Network and Distributed System Security Symposium. The Internet So-
ciety, 2019. URL https://www.ndss-symposium.org/ndss-paper/
textbugger-generating-adversarial-text-against-real-world-applications/.

Linyang Li, Ruotian Ma, Qipeng Guo, Xiangyang Xue, and Xipeng Qiu. BERT-ATTACK: ad-
versarial attack against BERT using BERT. In EMNLP’20: Proc. of the 2020 Conference on
Empirical Methods in Natural Language Processing, pp. 6193–6202. Association for Computa-
tional Linguistics, 2020a. doi: 10.18653/v1/2020.emnlp-main.500. URL https://doi.org/
10.18653/v1/2020.emnlp-main.500.

Xiang Li, Wenhai Wang, Lijun Wu, Shuo Chen, Xiaolin Hu, Jun Li, Jinhui Tang, and Jian Yang.
Generalized focal loss: Learning qualified and distributed bounding boxes for dense object detec-
tion. Advances in Neural Information Processing Systems, 33:21002–21012, 2020b.

Takeru Miyato, Andrew M. Dai, and Ian J. Goodfellow. Adversarial training methods for semi-
supervised text classification. In ICLR’17: Proc. of the 5th International Conference on Learning
Representations. OpenReview.net, 2017. URL https://openreview.net/forum?id=
r1X3g2_xl.

John X. Morris, Eli Lifland, Jin Yong Yoo, Jake Grigsby, Di Jin, and Yanjun Qi. Textattack:
A framework for adversarial attacks, data augmentation, and adversarial training in NLP. In
Qun Liu and David Schlangen (eds.), EMNLP’20: Proc. of the 2020 Conference on Empiri-
cal Methods in Natural Language Processing: System Demonstrations, pp. 119–126. Associa-
tion for Computational Linguistics, 2020. doi: 10.18653/V1/2020.EMNLP-DEMOS.16. URL
https://doi.org/10.18653/v1/2020.emnlp-demos.16.

Maximilian Mozes, Pontus Stenetorp, Bennett Kleinberg, and Lewis D. Griffin. Frequency-guided
word substitutions for detecting textual adversarial examples. In Paola Merlo, Jörg Tiedemann,
and Reut Tsarfaty (eds.), EACL’21: Proc. of the 16th Conference of the European Chapter of the
Association for Computational Linguistics, pp. 171–186. Association for Computational Linguis-
tics, 2021. doi: 10.18653/v1/2021.eacl-main.13. URL https://doi.org/10.18653/v1/
2021.eacl-main.13.

Lingfeng Shen, Ze Zhang, Haiyun Jiang, and Ying Chen. Textshield: Beyond successfully detecting
adversarial sentences in text classification. In ICLR’23: Proc. of the 11th International Con-
ference on Learning Representations. OpenReview.net, 2023. URL https://openreview.
net/pdf?id=xIWfWvKM7aQ.

Richard Socher, Alex Perelygin, Jean Wu, Jason Chuang, Christopher D. Manning, Andrew Y.
Ng, and Christopher Potts. Recursive deep models for semantic compositionality over a senti-
ment treebank. In EMNLP’13: Proc. of the 2013 Conference on Empirical Methods in Natural
Language Processing, pp. 1631–1642. ACL, 2013. URL https://aclanthology.org/
D13-1170/.

Abigail Swenor and Jugal Kalita. Using random perturbations to mitigate adversarial attacks on
sentiment analysis models. CoRR, abs/2202.05758, 2022. URL https://arxiv.org/abs/
2202.05758.

Boxin Wang, Hengzhi Pei, Boyuan Pan, Qian Chen, Shuohang Wang, and Bo Li. T3: tree-
autoencoder constrained adversarial text generation for targeted attack. In Bonnie Webber, Trevor
Cohn, Yulan He, and Yang Liu (eds.), EMNLP’20: Proc. of the 2020 Conference on Empirical

12

https://doi.org/10.18653/v1/2021.naacl-main.400
https://www.ndss-symposium.org/ndss-paper/textbugger-generating-adversarial-text-against-real-world-applications/
https://www.ndss-symposium.org/ndss-paper/textbugger-generating-adversarial-text-against-real-world-applications/
https://doi.org/10.18653/v1/2020.emnlp-main.500
https://doi.org/10.18653/v1/2020.emnlp-main.500
https://openreview.net/forum?id=r1X3g2_xl
https://openreview.net/forum?id=r1X3g2_xl
https://doi.org/10.18653/v1/2020.emnlp-demos.16
https://doi.org/10.18653/v1/2021.eacl-main.13
https://doi.org/10.18653/v1/2021.eacl-main.13
https://openreview.net/pdf?id=xIWfWvKM7aQ
https://openreview.net/pdf?id=xIWfWvKM7aQ
https://aclanthology.org/D13-1170/
https://aclanthology.org/D13-1170/
https://arxiv.org/abs/2202.05758
https://arxiv.org/abs/2202.05758

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Methods in Natural Language Processing, pp. 6134–6150. Association for Computational Lin-
guistics, 2020. doi: 10.18653/V1/2020.EMNLP-MAIN.495. URL https://doi.org/10.
18653/v1/2020.emnlp-main.495.

Boxin Wang, Chejian Xu, Xiangyu Liu, Yu Cheng, and Bo Li. Semattack: Natural tex-
tual attacks via different semantic spaces. In Marine Carpuat, Marie-Catherine de Marneffe,
and Iván Vladimir Meza Ruı́z (eds.), NAACL’22: Findings of the Association for Computa-
tional Linguistics, pp. 176–205. Association for Computational Linguistics, 2022a. doi: 10.
18653/V1/2022.FINDINGS-NAACL.14. URL https://doi.org/10.18653/v1/2022.
findings-naacl.14.

Xiaosen Wang, Jin Hao, Yichen Yang, and Kun He. Natural language adversarial defense through
synonym encoding. In UAI’21: Proc. of the 37th Conference on Uncertainty in Artificial Intel-
ligence, volume 161 of Proceedings of Machine Learning Research, pp. 823–833. AUAI Press,
2021a. URL https://proceedings.mlr.press/v161/wang21a.html.

Xiaosen Wang, Yichen Yang, Yihe Deng, and Kun He. Adversarial training with fast gradient
projection method against synonym substitution based text attacks. In AAAI’21: Proc. of the
35th AAAI Conference on Artificial Intelligence, pp. 13997–14005. AAAI Press, 2021b. URL
https://ojs.aaai.org/index.php/AAAI/article/view/17648.

Xiaosen Wang, Yifeng Xiong, and Kun He. Detecting textual adversarial examples through ran-
domized substitution and vote. In James Cussens and Kun Zhang (eds.), UAI’22: Proc. of the
38th Conference on Uncertainty in Artificial Intelligence, volume 180 of Proceedings of Machine
Learning Research, pp. 2056–2065. PMLR, 2022b. URL https://proceedings.mlr.
press/v180/wang22b.html.

Heng Yang and Ke Li. The best defense is attack: Repairing semantics in textual adversarial exam-
ples. In Yaser Al-Onaizan, Mohit Bansal, and Yun-Nung Chen (eds.), EMNLP’24: Proc. of the
2024 Conference on Empirical Methods in Natural Language Processing, pp. 8439–8457. Asso-
ciation for Computational Linguistics, 2024. URL https://aclanthology.org/2024.
emnlp-main.481.

Puyudi Yang, Jianbo Chen, Cho-Jui Hsieh, Jane-Ling Wang, and Michael I. Jordan. Greedy attack
and gumbel attack: Generating adversarial examples for discrete data. J. Mach. Learn. Res., 21:
43:1–43:36, 2020. URL http://jmlr.org/papers/v21/19-569.html.

Yuan Zang, Fanchao Qi, Chenghao Yang, Zhiyuan Liu, Meng Zhang, Qun Liu, and Maosong
Sun. Word-level textual adversarial attacking as combinatorial optimization. In ACL’20: Proc.
of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 6066–6080.
Association for Computational Linguistics, 2020. doi: 10.18653/v1/2020.acl-main.540. URL
https://doi.org/10.18653/v1/2020.acl-main.540.

Guoyang Zeng, Fanchao Qi, Qianrui Zhou, Tingji Zhang, Zixian Ma, Bairu Hou, Yuan Zang,
Zhiyuan Liu, and Maosong Sun. Openattack: An open-source textual adversarial attack toolkit.
In Heng Ji, Jong C. Park, and Rui Xia (eds.), ACL-IJCNLP’21: Proc. of the Joint Conference of
the 59th Annual Meeting of the Association for Computational Linguistics and the 11th Interna-
tional Joint Conference on Natural Language Processing - System Demonstrations, pp. 363–371.
Association for Computational Linguistics, 2021. doi: 10.18653/V1/2021.ACL-DEMO.43. URL
https://doi.org/10.18653/v1/2021.acl-demo.43.

Xiang Zhang, Junbo Jake Zhao, and Yann LeCun. Character-level convolutional networks for
text classification. In NeurIPS’15: Proc. of the 28th Annual Conference on Neural Informa-
tion Processing Systems, pp. 649–657, 2015. URL https://proceedings.neurips.cc/
paper/2015/hash/250cf8b51c773f3f8dc8b4be867a9a02-Abstract.html.

Zhengli Zhao, Dheeru Dua, and Sameer Singh. Generating natural adversarial examples. In
ICLR’18: Proc. of the 6th International Conference on Learning Representations. OpenRe-
view.net, 2018. URL https://openreview.net/forum?id=H1BLjgZCb.

Yichao Zhou, Jyun-Yu Jiang, Kai-Wei Chang, and Wei Wang. Learning to discriminate perturbations
for blocking adversarial attacks in text classification. In Kentaro Inui, Jing Jiang, Vincent Ng,

13

https://doi.org/10.18653/v1/2020.emnlp-main.495
https://doi.org/10.18653/v1/2020.emnlp-main.495
https://doi.org/10.18653/v1/2022.findings-naacl.14
https://doi.org/10.18653/v1/2022.findings-naacl.14
https://proceedings.mlr.press/v161/wang21a.html
https://ojs.aaai.org/index.php/AAAI/article/view/17648
https://proceedings.mlr.press/v180/wang22b.html
https://proceedings.mlr.press/v180/wang22b.html
https://aclanthology.org/2024.emnlp-main.481
https://aclanthology.org/2024.emnlp-main.481
http://jmlr.org/papers/v21/19-569.html
https://doi.org/10.18653/v1/2020.acl-main.540
https://doi.org/10.18653/v1/2021.acl-demo.43
https://proceedings.neurips.cc/paper/2015/hash/250cf8b51c773f3f8dc8b4be867a9a02-Abstract.html
https://proceedings.neurips.cc/paper/2015/hash/250cf8b51c773f3f8dc8b4be867a9a02-Abstract.html
https://openreview.net/forum?id=H1BLjgZCb

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

and Xiaojun Wan (eds.), EMNLP-IJCNLP’19: Proc. of the Conference on Empirical Methods in
Natural Language Processing and the 9th International Joint Conference on Natural Language
Processing, pp. 4903–4912. Association for Computational Linguistics, 2019. doi: 10.18653/v1/
D19-1496. URL https://doi.org/10.18653/v1/D19-1496.

Chen Zhu, Yu Cheng, Zhe Gan, Siqi Sun, Tom Goldstein, and Jingjing Liu. Freelb: Enhanced
adversarial training for natural language understanding. In ICLR’20: Proc. of the 8th In-
ternational Conference on Learning Representations. OpenReview.net, 2020. URL https:
//openreview.net/forum?id=BygzbyHFvB.

A RELATED WORKS

This section provides an overview of key research directions relevant to our work, including adver-
sarial attacks, adversarial detection, adversarial defense, and continual learning.

A.1 ADVERSARIAL ATTACKS

Textual adversarial attacks involve strategically perturbing text inputs so as to mislead NLP models
into making incorrect predictions. Early studies Li et al. (2019); Ebrahimi et al. (2018) predom-
inantly leveraged character-level modifications to alter lexical or statistical cues that models rely
on. More recent approaches shift their focus to word-level substitutions, often guided by synonym
sets or knowledge bases such as HowNet Zang et al. (2020), to ensure naturalness and semantic
similarity. Additionally, there has been increasing interest in context-aware perturbations Garg &
Ramakrishnan (2020); Li et al. (2020a; 2021) that exploit large pre-trained language models, such
as BERT, to craft more fluent and context-preserving adversaries. Semantic-based approaches like
SemAttack Wang et al. (2022a) utilize embedding clusters to generate subtle yet highly effective ex-
amples, marking a significant evolution from earlier heuristic or gradient-based methods Yang et al.
(2020); Jin et al. (2020); Alzantot et al. (2018); Wang et al. (2020); Guo et al. (2021).

These diverse attack methodologies have stimulated the creation of powerful open-source frame-
works, notably TextAttack Morris et al. (2020) and OpenAttack Zeng et al. (2021), which automate
both the generation and the evaluation of adversarial examples under various threat models. Con-
sequently, such toolkits have become valuable for benchmarking model robustness across a wide
spectrum of attacks.

A.2 ADVERSARIAL DETECTION

Adversarial detection aims to distinguish adversarial examples from benign inputs, typically by
identifying suspicious linguistic or distributional patterns. However, textual adversarial detection
is uniquely challenging: unlike in images, small textual alterations can drastically affect semantics
while remaining inconspicuous to humans. Prior works Zhou et al. (2019); Mozes et al. (2021) have
explored lexical, syntactic, or embedding-level features, although these methods often underperform
when confronted with entirely new or unseen adversarial techniques. As adversarial attacks continue
to evolve, purely static detection strategies may fail to keep pace, accentuating the need for adaptable
or incremental detection mechanisms that can update themselves in response to novel threats.

A.3 ADVERSARIAL DEFENSE

Broadly, adversarial defense strategies can be categorized into adversarial training, context recon-
struction, and feature reconstruction:

• Adversarial Training Adversarial training-based methods Miyato et al. (2017); Zhu et al.
(2020); Ivgi & Berant (2021); Wang et al. (2021b) augment training data with adversarial
examples in order to desensitize the model to perturbations. However, these methods are
known to cause performance degradation on natural (non-adversarial) examples and may
suffer from catastrophic forgetting when the data distribution shifts Dong et al. (2021b).

• Context Reconstruction Defense approaches such as word substitution Mozes et al.
(2021); Bao et al. (2021) and translation-based reconstruction Swenor & Kalita (2022)

14

https://doi.org/10.18653/v1/D19-1496
https://openreview.net/forum?id=BygzbyHFvB
https://openreview.net/forum?id=BygzbyHFvB

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

attempt to fix adversarial inputs by generating a semantically equivalent version of the
original text. While these methods can be effective against certain perturbations, they risk
introducing new unintended modifications or failing to repair more subtle semantic attacks
Shen et al. (2023).

• Feature Reconstruction Feature reconstruction-based techniques Zhou et al. (2019); Jones
et al. (2020); Wang et al. (2021a) endeavor to preserve high-level linguistic properties by
modifying internal representations. Yet they often fail to address more nuanced or context-
sensitive adversarial examples, such as those relying on sentence-level or paraphrase-based
attacks Zhao et al. (2018); Cheng et al. (2019).

Hybrid methods Wang et al. (2021b) combine aspects of these strategies to balance robustness and
flexibility. However, many still require substantial resources or careful tuning, and few effectively
adapt to new, unseen adversarial patterns.

A.4 CONTINUAL LEARNING

Continual learning has emerged as a promising solution to mitigate the problem of catastrophic for-
getting, where a model trained sequentially on multiple tasks forgets previously learned information
while mastering new tasks. In the context of adversarial detection and defense, continual learning
frameworks incrementally ingest new adversarial data or attack types, updating detectors or defense
modules to remain current. This incremental approach is particularly beneficial in low-resource set-
tings where collecting vast adversarial corpora is impractical. By progressively building on prior
knowledge, continual learning-based defenses can adapt to evolving threats without necessitating
a costly retraining phase from scratch. Consequently, such methods offer a more sustainable route
toward robust and scalable adversarial defense.

B PROBLEM FORMULATION

This section elaborates on the foundational concepts and notations that underpin our work, focusing
on textual adversarial attacks.

Textual adversarial attacks pose a critical threat to language modeling systems, especially pre-trained
language models (PLMs). The most common and challenging methods seek to minimize modifica-
tions while remaining inconspicuous to humans, i.e., word-level adversarial attacks. Although our
experiments focus on word-level attacks, our defense framework is designed to be general and can
be extended to other attack modalities without significant architectural changes. In text modeling
systems, let

x = (x1, x2, . . . , xn) (9)
be a natural sentence of length n, where xi denotes the i-th word. The ground-truth label for x is
y. Word-level attackers often replace certain words with closely related terms, e.g., synonyms, to
deceive the target model F . Substituting xi with x̂i yields an adversarial example:

x̂ = (x1, . . . , x̂i, . . . , xn). (10)

The model prediction for x̂ is then
ŷ = argmaxF (· | x̂), (11)

and if ŷ ̸= y, the adversarial example x̂ successfully misleads the model. More formally, given an
adversarial attacker A, the generated adversary is expressed as:

⟨x̂, ŷ⟩ ← A(F, (x, y)), (12)
where x̂ and ŷ indicate the perturbed input and its predicted label, respectively.

C ALGORITHM DETAILS

D CLAD-PDLLM IMPLEMENTATION

Paraphrase Defocusing relies on a carefully designed prompt that encourages the large language
model, i.e., ChatGPT-4o-mini (2024-07-18), to restore clarity and semantic integrity to maliciously

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Algorithm 1: Detector Continual Training

Input : Stage stream {St}Tt=1; memory budget Mmax;
Core-set ratios (rn = 0.9, ra = 0.1) with rn + ra = 1; decision threshold τ

Output: Adapted detectors {θfinal
t }Tt=1

1 Initialize θ0;Mnat
0 ← ∅;Madv

0 ← ∅;
2 for t← 1 to T do
3 Generate Adversarial Data:;
4 Dadv

t ← { x̂ | x̂ = At(Fvictim,x, y), Fvictim(x̂) ̸= y, ⟨x, y⟩ ∈ Dnat
t };

5 Update Memory (Dual Buffers):;
6 Mnat

t ← CoreSet(Mnat
t−1 ∪ Dnat

t , rnMmax);
7 Madv

t ← CoreSet(Madv
t−1 ∪ Dadv

t , raMmax);
8 Plastic Update (Current Stage):;
9 θinit

t ← θt−1 − η∇θℓdet(Dnat
t ∪ Dadv

t);
10 Consolidation Update (Replay):;
11 θfinal

t ← θinit
t − η∇θℓdet(Mnat

t ∪Madv
t);

12 Evaluate Detection Performance:;

13 δpast,t ←

{
1

t−1

∑t−1
k=1

(
Accdet(θt,Ak; τ)−Accdet(θt−1,Ak; τ)

)
, t > 1,

0, t = 1 (n/a).
;

14 δcurr,t ← Accdet(θt,At; τ)−Accdet(θt−1,At; τ);

15 return {θfinal
t }Tt=1;

Algorithm 2: Paraphrase Defocusing (PDLLM)
Input: Victim model Fvictim; adversarial input x̂; cached fake prediction ŷ; max iterations

Imax.
Output: Repaired (paraphrased) text x̃r.

1 x̃r ← NULL
2 for i← 1 to Imax do

// Generate a paraphrase, possibly conditioned to avoid ŷ

3 x̃← LLM
(
x̂, ŷ

)
4 p← Fvictim

(
x̃
)

5 if p ̸= ŷ then
6 x̃r ← x̃; break

7 return x̃r

perturbed text. Below is an illustrative prompt template and several example inputs alongside their
paraphrased outputs.

Example Prompt for Paraphrase Defocusing

System Instruction:
You are a helpful writing assistant. The following text has been injected with malicious
perturbations intended to deceive a target classifier. Your task is to improve its naturalness
and clarity without altering its original meaning.

User Prompt:
“The following text has been injected with malicious perturbations. Improve the naturalness
and clarity of the following text. Please only output processed text: {text}”

Example Transformations. The examples below show how an adversarial input is mapped to a
paraphrased output that preserves the underlying semantics:

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Algorithm 3: Perturbation Defocusing (PDÂ)

Input: Victim model Fvictim; editing operator Â; adversarial input x̂; cached fake prediction ŷ.
Output: Repaired (perturbed) text x̃r.

1 x̃r ← NULL
2 while true do

// Propose the next benign edit based on the original
adversarial text

3 x̃← Â
(
Fvictim, ⟨x̂, ŷ⟩

)
4 if x̃ is invalid (no further edits) then
5 break
6 p← Fvictim

(
x̃
)

7 if p ̸= ŷ then
8 x̃r ← x̃; break

// If escape fails, loop continues with original adversarial
text

9 return x̃r

• Adversarial Input:
after seeing swept away , i feel loved for madonna .
Paraphrased Output:
After watching “Swept Away,” I have a newfound appreciation for Madonna.

• Adversarial Input:
it wasn gimmicky rather of compelling .
Paraphrased Output:
It was not gimmicky; it was genuinely compelling.

• Adversarial Input:
it ’s amazing when filmmakers throw a few big-name actors and cameos at a hokey script .
Paraphrased Output:
It is remarkable how directors can elevate a mediocre script by featuring a handful of prominent
actors and cameo appearances.

By applying this prompt iteratively (as detailed in Algorithm 2 in the main text), we ensure the
perturbed text is rephrased until its misleading cues no longer deceive the victim model, thereby
safeguarding the original semantic meaning.

E EXPERIMENT SETTING

E.1 DATASETS

We employ four widely recognized text classification datasets to evaluate our framework:
SST2 Socher et al. (2013), Amazon Zhang et al. (2015), AGNews Zhang et al. (2015), and Ya-
hoo! Yang & Li (2024). The key statistics of these datasets are summarized in Table 4. SST2 and
Amazon are binary sentiment classification datasets. AGNews is a multi-categorical news classifi-
cation dataset containing 4 categories. We also include Yahoo! in some of our experiments, which
has 10 categories. Due to the large size of the original Amazon, AGNews, and Yahoo! datasets, we
use subsets to avoid prohibitively high resource consumption, following previous works.

E.2 MODELS

E.2.1 ADVERSARIAL DETECTOR

We implement a lightweight adversarial detector in accordance with our continual learning setting.
The detector takes in textual inputs and predicts whether a given sample is adversarial or natural.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Dataset Categories
Number of Examples

Training Valid Testing
SST2 2 6, 920 872 1, 821

Amazon 2 7, 000 1, 000 2, 000

AGNews 4 10, 000 0 1, 000

Yahoo! 10 10, 000 0 1, 000

Table 4: The statistics of datasets used for evaluating our framework. We use subsets of the Amazon,
AGNews, and Yahoo! datasets to avoid prohibitively large computational overhead.

Our detector structure is composed of a transformer-based encoder (initialized from BERT-base)
followed by a classification head. To adapt to new adversarial examples, we incrementally update
its parameters when additional adversarial data are introduced, mitigating catastrophic forgetting
through continual learning strategies.

E.2.2 TEXT CLASSIFIER

In our experiments, we employ a popular pre-trained language model as a text classifier: BERT De-
vlin et al. (2019). This model is chosen due to its wide usage and strong performance in text clas-
sification. We use the HuggingFace Transformers library1 for implementation. This classifier is
fine-tuned on the training subsets described in Table 4 and then evaluated on the corresponding test-
ing splits. Whenever adversarial attacks are applied, the classifier serves as the victim model under
threat.

E.3 HYPER-PARAMETER SETTINGS

Parameter Description Value / Range

Memory Settings
Mmax Total memory size (replay buffer capacity) {0, 1, 10, 100}
rn, ra Natural / adversarial sample ratio in memory 0.9/0.1

mn = rnMmax Natural memory size Derived
ma = raMmax Adversarial memory size Derived

Continual Learning Settings
S Stage sample size (natural examples per stage) 1000
E Gradient updates per stage 1
η Plastic vs. consolidation update weighting 0.7

Detector Training
Batch size Examples per gradient update 16
Learning rate (LR) For both detector and classifier 2× 10−5

Dropout rate Transformer dropout 0.1
α Focal loss class-balance weight Dynamic (per class freq)
γ Focal loss focusing parameter 2

Adversarial Sampling
|A| Number of attack methods used 3 (BAE, PWWS, TEXTFOOLER)
Nadv Adversarial examples per dataset/attack 1000

Adversarial Defense Settings
Imax Max paraphrasing iterations in PDLLM 100

Table 5: Hyperparameters and configuration settings for continual learning-based adversarial detec-
tion and defense in CLAD. Values marked “Derived” are computed from other parameters.

1https://github.com/huggingface/transformers

18

https://github.com/huggingface/transformers

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Because the adversarial attack is a time- and resource-intensive task for pretrained language model-
ing, we cannot conduct experiments on a consecutive set of memory sizes. Consequently, we choose
representative memory sizes ranging from 0 to 100 based on our empirical analysis to showcase the
performance of CLAD in different situations.

E.4 ADVERSARIAL ATTACKS

In the experiments, we employ three open-source attackers from TextAttack Morris et al. (2020) to
sample adversarial examples. They represent different types of word-level attack strategies:

• BAE: A contextual word substitution method that generates replacements using masked
language modeling.

• PWWS: A priority-based word substitution approach that selects synonyms guided by se-
mantic and frequency constraints.

• TextFooler: A greedy search method that maximizes the change in model prediction via
sequential word replacements.

E.5 ADVERSARIAL DEFENSE

Our method aims at both detecting and repairing adversarial inputs. We employ a PWWS-based
approach, denoted as PDÂ, in the perturbation defocusing stage. This choice is made due to its high
computational efficiency and lower tendency to introduce semantic drift compared to other attackers
like TextFooler. As we accumulate newly detected adversarial instances, these are incrementally
introduced into our detector and repair models, enabling the continual learning paradigm.

E.6 EXPERIMENT METRICS

To comprehensively evaluate adversarial detection and defense mechanisms, we employ five key
metrics that measure normal accuracy, adversarial accuracy, detection accuracy, and recovery per-
formance across different datasets and memory sizes (MS). The metrics are defined as follows:

• Normal Accuracy (N.A.): The accuracy of the model on a dataset D containing only
natural (non-adversarial) examples, reflecting the model’s baseline performance without
adversarial perturbations.

• Adversarial Accuracy (A.A.): The accuracy of the model on the attacked dataset Datt,
which includes both natural examples Dnat and successful adversarial examples Dadv .
This metric evaluates the model’s robustness to adversarial perturbations.

• Defense Accuracy (D.A.): The proportion of adversarial examplesDadv correctly rectified
by the defense mechanism. Higher defense accuracy indicates a better ability to repair
adversarial inputs.

• Recovery Accuracy (R.A.): The accuracy of the model on the repaired dataset Drep,
which has been processed by the defense mechanism to mitigate adversarial perturbations.
This metric quantifies the model’s ability to recover its original performance after applying
adversarial defenses.

• Forgetting Rate (FR): For a historical task k, let Acc∗k denote the highest detection ac-
curacy for this task in any past stage, and Acck,t denote the accuracy in the current stage.
Then

FRk = Acc∗k −Acck,t.

FR ≥ 0 indicates forgetting; FR < 0 indicates ”positive transfer/performance improve-
ment,” which usually means that the inter-task distributions are highly related. On the other
hand, due to the similarity between the input format of the dataset and the representation
space, pre-trained models often possess strong generalisation capabilities. For unimodal
data with a small number of samples in a single dataset, subsequent training can actually
improve performance on previous tasks, leading to a negative forgetting rate.

These metrics are applied to assess the performance of various adversarial defense methods across
datasets (SST2, Amazon, AGNews, Yahoo!) and memory sizes (MS = 0, 1, 10, 100). Higher values
for each metric indicate stronger robustness or effectiveness of the defense mechanism.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Dataset Method Baseline N.A. A.A. D.A. R.A.

SST2

CLAD-PDÂ

BAE

91.82

35.21 91.94 65.70
PWWS 23.44 98.24 72.32

TextFooler 16.21 89.87 69.00

CLAD-PDLLM

BAE 35.21 72.56 64.02
PWWS 23.44 95.00 71.96

TextFooler 16.21 93.66 68.99

DISP
BAE 35.21 37.51 42.22

PWWS 23.44 34.46 35.33
TextFooler 16.21 34.37 37.16

FGWS
BAE 35.21 48.37 44.90

PWWS 23.44 40.38 39.20
TextFooler 16.21 41.05 41.53

RS&V
BAE 35.21 20.92 43.65

PWWS 23.44 37.10 38.54
TextFooler 16.21 38.40 39.70

Amazon

CLAD-PDÂ

BAE

94.11

44.01 85.74 71.45
PWWS 15.56 97.83 83.59

TextFooler 21.77 94.74 83.47

CLAD-PDLLM

BAE 44.01 98.96 74.50
PWWS 15.56 99.35 84.45

TextFooler 21.77 99.65 84.73

DISP
BAE 44.01 42.74 61.85

PWWS 15.56 45.92 59.80
TextFooler 21.77 47.15 60.56

FGWS
BAE 44.01 43.04 64.63

PWWS 15.56 56.89 60.29
TextFooler 21.77 58.74 61.51

RS&V
BAE 44.01 39.01 65.03

PWWS 15.56 45.30 46.17
TextFooler 21.77 42.30 55.70

Table 6: Performance comparisons between different adversarial defense methods. We use MS=100
for CLAD following the history-task evaluation protocol.

F EXTENDED EXPERIMENTAL RESULTS

This section provides detailed results and analyses that are summarized in the main paper.

F.1 DETAILED ADVERSARIAL DETECTION PERFORMANCE

F.2 PERFORMANCE ON HISTORICAL TASKS

The historical task evaluation (Table 3) reveals critical insights into the framework’s capacity for sus-
tained adversarial defense. Notably, CLAD demonstrates exceptional knowledge retention, main-
taining 84.02% recovery accuracy (R.A.) for Amazon-TextFooler attacks through PDLLM. This
“inverse forgetting” phenomenon, where historical task metrics surpass original baselines, suggests
adversarial training induces beneficial parameter adjustments that generalize beyond immediate
threats. The PDLLM variant exhibits superior stability, attributable to LLMs’ inherent linguistic
priors that resist catastrophic forgetting. Cross-task analysis reveals a strong correlation between
historical and current performance (r = 0.89, p < 0.01), indicating learned defense features trans-
fer effectively.

F.3 COMPARISON WITH BASELINE METHODS

To validate the effectiveness of our defense pipeline, we compare CLAD with three popular base-
line methods: DISP, FGWS, and RS&V. As summarized in Table 6, CLAD demonstrates superior
performance across the board. For PWWS attacks on SST2, our CLAD-PDÂ variant achieves
98.24% defense accuracy (D.A.), significantly outperforming DISP (34.46%) and FGWS (40.38%).
In terms of recovery accuracy (R.A.), our framework also shows a clear advantage, particularly
against more sophisticated attacks. On the Amazon dataset against TextFooler, our CLAD-PDLLM

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

variant achieves 84.73% R.A., surpassing the next best baseline (FGWS) by 23.22 percentage points.
This underscores the power of our adaptive, dual-strategy defense mechanism.

Figure 3 shows the detailed performance of our detector against BAE, PWWS, and TextFooler across
all datasets and memory sizes. The box plots illustrate the distribution of accuracy and forgetting
rates, confirming that larger memory sizes lead to more stable and robust detection performance,
effectively reducing the impact of all attack methods.

BAE PWWS TextFooler BAE PWWS TextFooler BAE PWWS TextFooler BAE PWWS TextFooler

BAE PWWS TextFooler BAE PWWS TextFooler BAE PWWS TextFooler BAE PWWS TextFooler

BAE PWWS TextFooler BAE PWWS TextFooler BAE PWWS TextFooler BAE PWWS TextFooler

BAE PWWS TextFooler BAE PWWS TextFooler BAE PWWS TextFooler BAE PWWS TextFooler

Figure 3: Performance (accuracy and forgetting rate) of various adversarial attack methods (BAE,
PWWS, and TextFooler) across different datasets (SST2, AGNews, Amazon, Yahoo!) and memory
buffer sizes (0, 1, 10, 100) in CLAD. The box plots illustrate the variation in performance metrics,
with accuracy (Acc) shown in red and forgetting rate (FR) in green. Results demonstrate the influ-
ence of increasing memory size on the robustness and effectiveness of the attack methods across
different datasets.

F.4 VALIDATING THE EFFICACY OF THE CONTINUAL LEARNING STRATEGY

To isolate and validate the effectiveness of the core components within our proposed Continual
Learning for Adversarial Detection (CLAD) framework, we conduct a critical ablation study. This
experiment is designed to answer a key question: to what extent does our continual learning strategy,
which incorporates memory replay, mitigate catastrophic forgetting compared to simpler sequential
learning methods?

Experimental Setup
We simulate a dynamically evolving threat environment where new adversarial attack types emerge
sequentially. Specifically, we define a three-stage sequential task on the SST2 dataset:

• Task 1 (T1): Train the detector to identify BAE attacks.

• Task 2 (T2): On top of the model from T1, continue training to identify PWWS attacks.

• Task 3 (T3): On top of the model from T2, continue training to identify TextFooler attacks.

We compare three distinct training strategies:

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

• Joint Training (Upper Bound): This strategy mixes adversarial samples from all three
tasks (BAE, PWWS, and TextFooler) to train a single detector in one go. While not a true
continual learning scenario, it serves as a valuable performance benchmark.

• Sequential Fine-Tuning (Forgetting Baseline): This strategy strictly mimics a sequential
learning process without any CL mechanisms. The model is first trained on Task T1 data.
Then, the resulting model is directly fine-tuned on Task T2 data, and subsequently on Task
T3 data. During this process, the model has no access to data from past tasks when learning
a new one.

• CLAD: This strategy employs our complete continual learning framework. The model
learns sequentially from T1→ T2→ T3.

Evaluation Metrics
After all models complete their training on Task T3, we evaluate their detection accuracy on the
independent test sets for each task (T1, T2, and T3). We focus on two core metrics:

• Task-Specific Accuracy: The performance on each individual past task, which directly
reflects knowledge retention.

• Average Accuracy: The mean performance across all three tasks, which measures overall
adaptability and robustness.

We hypothesize that the Sequential Fine-Tuning strategy will perform well on the final task
(TextFooler) but will suffer from severe catastrophic forgetting, leading to a drastic performance
drop on BAE and PWWS. Conversely, we expect our CLAD framework to effectively retain perfor-
mance on historical tasks, achieving an average accuracy that significantly surpasses the fine-tuning
baseline and approaches the joint training upper bound.

Table 7: Ablation study of different learning strategies on the sequential adversarial attack detection
task (SST2 Dataset).

Training Strategy Acc. (T1: BAE) Acc. (T2: PWWS) Acc. (T3: TextFooler) Average Acc.
Joint Training
(Upper Bound) 82.5% 84.1% 83.3% 83.3%
Sequential Fine-Tuning
(Forgetting Baseline) 24.7% 31.5% 82.9% 46.4%
CLAD (MS=100)
(Our Method) 81.9% 83.5% 83.1% 82.8%

F.5 ABLATION STUDY FOR PARAPHRASE DEFOCUSING

To validate the design choices of our Paraphrase Defocusing (PDLLM) mechanism, we conduct an
ablation study to analyze the contributions of its key components. The primary goal of PDLLM is to
repair an adversarial example x̂ by iteratively rephrasing it until the victim model Fvictim no longer
produces the cached fake prediction ŷ. We compare our full implementation against several ablated
variants.

F.5.1 EXPERIMENTAL SETUP

We evaluate the defense performance on adversarial examples generated by PWWS and BAE for
the SST2 dataset. The victim model is a fine-tuned BERT model. For each variant, we measure
the Defense Success Rate (DSR), defined as the percentage of adversarial examples successfully
repaired (i.e., Fvictim(x̃

r) ̸= ŷ), and the Average Number of Queries (#Q) required to achieve a
successful defense.

The variants are as follows:

• Full PDLLM: Our complete proposed method as described in Algorithm 2, which uses an iterative,
guided paraphrasing process.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

• w/o Guidance: The LLM is prompted to paraphrase the input text without the guidance to avoid
the fake prediction ŷ. This variant tests the importance of providing the negative constraint to the
LLM.

• Single-shot: The paraphrasing process is limited to a single iteration (Imax = 1). This variant
assesses the necessity of the iterative refinement loop.

• Random Synonym Replacement: A baseline defense where words in the input are randomly
replaced with their synonyms from a predefined dictionary. This tests the effectiveness of a so-
phisticated generative model (LLM) against a simple heuristic.

F.5.2 PDLLM ABLATION EXPERIMENTS

Table 8 summarizes the SST2 defense outcomes under PWWS and BAE attacks. Three consistent
trends emerge that align with our design: (i) adding the guided constraint (avoid cached fake label
ŷ) and (ii) allowing an iterative loop both increase Defense Success Rate (DSR) with only a modest
LLM query budget; (iii) simple non-LLM synonym edits rarely undo adversarial cues. We also
observe PWWS is slightly easier to repair than BAE, reflecting its more conservative substitutions.
The average queries per successful repair Q stay small (≪ Imax=100), consistent with the escape
criterion in Algorithm 2.

Table 8: Ablation study of the Paraphrase Defocusing (PDLLM) defense on the SST2 dataset. We
report the Defense Success Rate (DSR %) and the Average Number of Queries (#Q) for each vari-
ant against two types of attacks. The results for the full method demonstrate the effectiveness of
combining guided rephrasing with an iterative process. DSR↑ higher is better; #Q counts LLM calls
per successful repair (0 for the non-LLM synonym baseline).

Method PWWS Attack BAE Attack
DSR (%) ↑ #Q ↓ DSR (%) ↑ #Q ↓

Full PDLLM 86.2 2.3 78.5 2.7
w/o Guidance 71.9 2.9 64.8 3.2
Single-shot 59.7 1.0 51.6 1.0
Random Synonym Replacement 24.8 0.0 18.3 0.0

G COMPUTATIONAL COST ANALYSIS

We report cost from two angles: (i) detector training and (ii) repair-time latency.

Detector training cost. Let Tstage(M) denote the wall-clock time to complete one training stage
under memory budget M ∈ {0, 1, 10, 100}. With our two-phase update (plasticity then consolida-
tion), a coarse accounting is

Tstage(M) ≈ Tfwd/bwd
(
|Dnat

t |+ |Dadv
t |

)
+ Tfwd/bwd

(
|Mnat

t |+ |Madv
t |

)
,

where |Mnat
t | = rnM and |Madv

t | = raM . Empirically, we observe near-linear scaling in M
within our range; the dominant constant is the current-stage pass, making M = 10 a favorable
robustness–latency trade-off.

Repair-time latency. For PDÂ (editor-based), latency is primarily attacker proposal time with no
external calls. For PDLLM, we bound the number of paraphrasing iterations by Imax and report the
average queries per successful repair Q. Operationally, the expected time per repaired sample is

E[trepair] ≈ QtLLM + tvictim · (Q+ 1),

with tLLM the average LLM response latency and tvictim the victim model inference time. In our runs,
Q ≪ Imax due to the escape criterion, keeping end-to-end latency practical for online use. Table
references in the main text report Q where applicable.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

False repair budget. Given a detector operating point (TPR,FPR) at threshold τ and an adver-
sarial prior π = Pr[adv], the per-input expected repair invocations are TPRπ + FPR (1− π). We
therefore calibrate τ to respect a target budget B by choosing the largest τ such that this expectation
≤ B.

H DETECTOR THRESHOLD SENSITIVITY (τ)

We analyze the effect of the detector threshold τ on precision/recall and the downstream defense
workload. Sweeping τ ∈ [0, 1] yields an ROC/PR trade-off; for detect-to-defend, the operative
metric is the false repair rate (FRR):

FRR(τ) = Pr[repair | natural] = FPR(τ).

Higher τ reduces FRR at the expense of recall (missed attacks). We set τ on a validation split
to maximize Fβ for a task-dependent β (e.g., β > 1 emphasises recall when missing an attack is
costlier than a false repair) under a hard budget on FRR (see budget B above). We found the main
conclusions (e.g., monotonic gains with memory size and the superiority of PDLLM in R.A.) stable
across reasonable τ ranges.

I LIMITATIONS

While our framework demonstrates promising results in adversarial detection and defense, sev-
eral limitations warrant discussion. First, the LLM-based repair mechanism (CLAD-PDLLM) em-
ploys simplistic API interactions without systematic prompt optimization or output validation. As
shown in Table 2 in the main text, while PDLLM achieves competitive recovery accuracy (84.73%
on Amazon), its performance variability across attack types (∆R.A. = 27.91% between BAE and
TextFooler) suggests sensitivity to prompt phrasing and LLM response quality. This contrasts with
the more stable PDÂ approach (∆R.A. = 16.25%), highlighting the need for advanced LLM steer-
ing techniques. Second, our evaluation focuses on conventional pretrained models (e.g., BERT),
excluding larger language models (LLMs) like GPT-4 or Llama. While this aligns with our focus on
resource-constrained deployments, it leaves open questions about scalability to billion-parameter ar-
chitectures where adversarial patterns may differ fundamentally. Third, the framework’s reliance on
pre-sampled adversarial examples introduces dataset constraints. Though we mitigate this through
continual learning, our experiments use curated subsets of Amazon, AGNews, and Yahoo!, poten-
tially limiting exposure to real-world adversarial diversity. The negative forgetting rates observed
in Table 1 of the main text (-3.20 for Amazon at MS=100) suggest domain-specific overfitting risks
when training data lacks sufficient attack heterogeneity. Finally, the framework assumes adversaries
employ text-only perturbations, excluding emerging multimodal attacks that combine textual and
structural modifications. While our defense strategies show generalization across word-level at-
tacks (BAE, PWWS, TextFooler), they may be less effective against sophisticated hybrid attacks
exploiting layout or visual features Dong et al. (2021a). These limitations delineate critical research
directions: 1) Developing prompt-optimized LLM defense protocols, 2) Extending to large multi-
modal architectures, and 3) Establishing latency-aware evaluation benchmarks. Addressing these
challenges will enhance practical applicability while preserving our framework’s strengths in con-
tinual adversarial adaptation.

USE OF AI-ASSISTED LANGUAGE EDITING

We used large language models (LLMs), specifically a commercially available editor (e.g., “Chat-
GPT”), only for surface-level copy editing (grammar, wording, and readability). The models were
not used to design methods, run experiments, select results, or write technical content.

24

	Introduction
	Method
	Adversarial Detection
	Adversarial Example Sampling
	Adversarial Detector Training

	Continual Learning for Adversarial Detection
	Evolution-Aware Adversarial Continual Learning

	Textual Adversarial Defense
	Paraphrase Defocusing
	Perturbation Defocusing

	Experiments
	Adversarial Detection Performance
	Adversarial Defense Performance
	Performance on Current Tasks

	Performance on Historical Tasks
	Comparison with Baseline Methods
	Discussion

	Related Works
	Conclusion
	Related Works
	Adversarial Attacks
	Adversarial Detection
	Adversarial Defense
	Continual Learning

	Problem Formulation
	Algorithm Details
	CLAD-PDLLM Implementation
	Experiment Setting
	Datasets
	Models
	Adversarial Detector
	Text Classifier

	Hyper-parameter Settings
	Adversarial Attacks
	Adversarial Defense
	Experiment Metrics

	Extended Experimental Results
	Detailed Adversarial Detection Performance
	Performance on Historical Tasks
	Comparison with Baseline Methods
	Validating the Efficacy of the Continual Learning Strategy
	Ablation Study for Paraphrase Defocusing
	Experimental Setup
	PDLLM Ablation Experiments

	Computational Cost Analysis
	Detector Threshold Sensitivity (tau)
	Limitations

