
000 CLAD: CONTINUAL LEARNING FOR ROBUST ADVER- 001 SICIAL TEXT DETECTION AND REPAIR IN RESOURCE- 002 CONSTRAINED SCENARIOS 003

004
005
006 **Anonymous authors**
007 Paper under double-blind review
008
009
010
011
012

ABSTRACT

013 Textual adversarial attacks present a critical threat to NLP systems by subtly alter-
014 ing inputs to deceive models, necessitating robust detection and defense mech-
015 anisms. Traditional methods, however, suffer from high computational costs, poor
016 generalization to unseen attacks, and vulnerability to distribution shifts, partic-
017 ularly in resource-constrained scenarios where adversarial example sampling is
018 expensive and scarce. To address these challenges, we propose CLAD, a contin-
019 ual learning-based framework for adversarial detection and repair, designed to en-
020 hance robustness and transferability in low-resource environments. By leveraging
021 continual learning, CLAD mitigates catastrophic forgetting of learned adversarial
022 patterns and incrementally improves generalization as new attack types are intro-
023 duced. CLAD integrates two adversarial repair methods that preserve semantic fi-
024 delity while neutralizing perturbations. Across four text classification datasets and
025 three primary attacks (BAE, PWWS, TextFooler), CLAD improves with larger
026 memory buffers ($MS \in \{0, 1, 10, 100\}$) and exhibits reduced forgetting. The best
027 *detection* accuracy reaches **82.20%** (Amazon, in-domain, $MS=100$), while on the
028 same dataset *defense* achieves up to **99.65%** defense accuracy (D.A.) and **84.73%**
029 recovery accuracy (R.A.) against TextFooler via PD_{LLM} .
030
031

1 INTRODUCTION

032 Textual adversarial attacks pose a growing and critical threat to natural language processing (NLP)
033 models, particularly pretrained language models (PLMs), by subtly modifying input texts in ways
034 that are imperceptible to humans but can deceive classifiers or other downstream components, ult-
035 imately leading to severe performance degradation. For instance, early studies Li et al. (2019);
036 Ebrahimi et al. (2018) primarily exploited character-level perturbations (e.g., “GOOD” → “GO0D”)
037 to manipulate lexical or statistical patterns that models rely on Ebrahimi et al. (2018); Li et al. (2019).
038 Neural systems have been shown to be particularly vulnerable to such attacks, raising serious con-
039 cerns about the reliability and security of modern NLP pipelines.
040

041 In response to these challenges, adversarial defense methods have been developed to detect and mit-
042 iate malicious inputs. Adversarial detection aims to identify whether a given input is adversarial,
043 while adversarial defense focuses on repairing such inputs to recover correct predictions. How-
044 ever, the evolution of defense strategies has lagged behind the increasing diversity of textual attacks.
045 Moreover, existing defense approaches are often computationally expensive, as they typically op-
046 erate in a non-targeted manner, requiring the generation of multiple plausible candidates to ensure
047 effectiveness, especially for voting- or reconstruction-based methods Wang et al. (2022b); Mozes
048 et al. (2021); Swenor & Kalita (2022).

049 Recent studies suggest that the detect-to-defend Bao et al. (2021); Zhou et al. (2019) paradigm can
050 reduce unnecessary overhead by selectively defending only inputs identified as adversarial, provided
051 that the detector has been trained on a sufficiently large and diverse set of adversarial examples.
052 Nonetheless, this paradigm still incurs significant computational cost during defense, due to steps
053 such as adversarial augmentation and ensemble-based prediction Dong et al. (2021b). As a result,
most current adversarial detection and defense pipelines rely heavily on large-scale training data and
computationally intensive repair strategies. These issues are particularly pronounced in low-resource

054 settings, where access to adversarial examples is limited and computational budgets are constrained.
055 Furthermore, inaccurate adversarial detection can worsen model performance Shen et al. (2023),
056 especially when incorrect assumptions lead to faulty repairs that introduce new vulnerabilities.
057

058 Compounding the issue is the well-documented vulnerability of adversarial defenses to distributional
059 shifts. Even with advanced text augmentation techniques, detection mechanisms trained on
060 one data distribution often fail to generalize to unseen or evolving domains. This problem is exac-
061 erbated in low-resource environments, where collecting diverse adversarial examples is costly and
062 time-consuming. Consequently, detectors trained on narrow attack distributions frequently struggle
063 to transfer knowledge to novel attack types or domain shifts. As shown in Table 1, models experience
064 substantial performance degradation, up to 12.91% forgetting rate in cross-domain SST2 adversarial
065 detection, when exposed to underrepresented or entirely novel adversarial patterns. Alarmingly, mis-
066 classifications in such settings can propagate through downstream components, triggering a cascade
067 of poor decisions and compounding performance loss.

068 To address these limitations, we propose a continual learning (CL)-based paradigm for adversarial
069 detection and defense, tailored for resource-constrained environments. Continual learning offers
070 two key advantages: (1) it mitigates catastrophic forgetting Kirkpatrick et al. (2017); Aljundi et al.
071 (2018), where prior knowledge erodes as new information is introduced, and (2) it supports incre-
072 mental learning, which is especially beneficial when only a small number of adversarial examples
073 are available at a time Biesialska et al. (2020); De Lange et al. (2021). By balancing knowledge
074 retention and adaptation to new adversarial patterns, continual learning enables a resilient and evolv-
075 ing defense mechanism that remains effective over time. Moreover, the incremental incorporation
076 of adversarial samples reduces the need for large upfront datasets, thereby lowering computational
077 overhead Buzzega et al. (2020). This makes CL especially attractive for real-world deployment
078 scenarios involving dynamic data distributions and constrained resources.

079 Building on these insights, we introduce a novel framework, CLAD, which systematically integrates
080 continual learning into the adversarial detection and repair pipeline following the detect-to-defend
081 paradigm. We conduct comprehensive evaluations of CLAD across multiple NLP datasets, attack
082 strategies, and PLMs, with a particular focus on both detection accuracy and downstream task stabil-
083 ity in low-resource settings. Experimental results demonstrate that continual learning significantly
084 enhances the generalization and robustness of adversarial detectors. These results underscore the
085 potential of continual learning as a lightweight and computationally efficient solution for addressing
086 evolving adversarial threats, particularly in edge environments.

087 Our main contributions are as follows:
088

- 089 • **Framework Design:** We propose a continual learning-based adversarial detection and repair
090 framework tailored for resource-constrained settings. Our method outperforms baseline
091 approaches, achieving up to **10.63%** higher detection accuracy and **68.93%** better defense
092 recovery performance across four datasets and three adversarial attack types.
- 093 • **Continual Learning Analysis:** We conduct an in-depth analysis of performance trajectories
094 under different memory buffer sizes. Our experiments show that detection accuracy signifi-
095 cantly benefits from increased memory capacity, although the gains plateau once the buffer
096 size exceeds 10.
- 097 • **LLM-based Repair Strategy:** We introduce a large language model (LLM)-based adversar-
098 ial repair strategy that effectively neutralizes perturbations while preserving semantic fi-
099 delity. This method outperforms traditional techniques like perturbation defocusing, which
100 often produce semantically corrupted outputs Yang & Li (2024).

101 2 METHOD

102 In this section, we present CLAD, a framework designed for adversarial *detection* and *defense* in
103 resource-constrained environments. CLAD is compatible with pre-trained language models (PLMs)
104 and is capable of accurately identifying and repairing adversarial samples, even when faced with so-
105 phisticated attack methods. This capability enhances the overall performance and robustness of the
106 models. Our approach comprises two primary components: (i) a standalone adversarial detector to
107 identify malicious inputs and (ii) an adversarial defense module to repair them, restoring the model’s

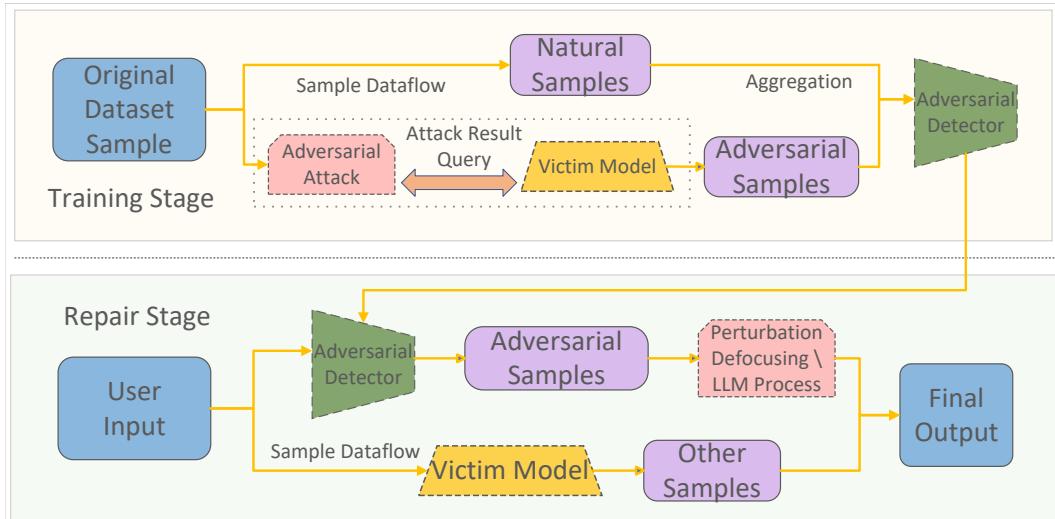


Figure 1: Workflow of the adversarial detection and defense framework (CLAD). The upper section illustrates the adversarial *detector* training process. Natural examples are sampled and passed to an adversarial attack module, which queries the victim model to generate adversarial examples. These successful adversarial examples are collected and aggregated with the natural ones to train a standalone adversarial detector. The lower section shows the deployment phase. User input is processed by the adversarial detector, which determines if the input is adversarial. If deemed adversarial, perturbation defocusing strategies are applied to repair the input, with the goal of restoring the victim model’s correct prediction. This two-stage framework leverages adversarial example generation and continual learning to provide robust, detector-triggered defense capabilities for pre-trained language models.

original performance. We also integrate continual learning techniques to enhance adversarial detection in settings where attack patterns evolve. By leveraging continual learning, our framework incrementally adapts to new adversarial threats without compromising previously acquired knowledge, thereby ensuring sustained robustness and efficiency. The overall workflow of CLAD is depicted in Figure 1.

2.1 ADVERSARIAL DETECTION

The first component of our framework is a standalone adversarial detector. We detail the data sampling and training process below.

2.1.1 ADVERSARIAL EXAMPLE SAMPLING

The process begins by training an adversarial detector using a collection of natural and pre-sampled adversarial examples. To ensure diversity and computational feasibility, we adopt a *stratified adversarial sampling* strategy to construct our training dataset $\bar{\mathcal{D}}$:

$$\bar{\mathcal{D}} = \mathcal{D}_{\text{natural}} \cup \bigcup_{a \in \mathcal{A}} \mathcal{D}_a^{\text{adv}}, \quad (1)$$

where $\mathcal{D}_{\text{natural}}$ denotes the set of natural examples, and $\mathcal{D}_a^{\text{adv}}$ represents *successful* adversarial examples generated by a specific attack method a from a set of attackers \mathcal{A} (e.g., BAE, PWWS).

For each natural example $\langle \mathbf{x}, y \rangle \in \mathcal{D}_{\text{natural}}$, we generate adversarial candidates $\hat{\mathbf{x}}$ using an attacker $a \in \mathcal{A}$:

$$\hat{\mathbf{x}} \leftarrow a(F_{\text{victim}}, \mathbf{x}, y), \quad \text{retaining only if } F_{\text{victim}}(\hat{\mathbf{x}}) \neq y. \quad (2)$$

We sample up to $N_{\text{adv}} = 1000$ successful adversarial examples per dataset-attacker pair, balancing:

- **Attack Diversity:** Diverse representations of word-level perturbations.

162 • **Computational Cost:** A manageable number of total adversarial examples.
 163

164 This strategy ensures broad coverage of perturbation types while maintaining computational
 165 tractability.

166
 167 **2.1.2 ADVERSARIAL DETECTOR TRAINING**

168 Using the collected examples, we train a standalone adversarial detector. Inspired by data quality
 169 selection in LLM research Gunter et al. (2024); Dubey et al. (2024), we fine-tune a BERT model
 170 to distinguish between natural and adversarial inputs. Designing the detector as a separate mod-
 171 ule allows for flexible deployment across different victim models and facilitates continual learning
 172 without altering the victim model’s parameters.
 173

174 **Architecture** The detector D_θ consists of a BERT encoder followed by a binary classification
 175 head. Given an input \mathbf{x} :

176
$$h = \text{BERT}(\mathbf{x}), \quad z = W_{\text{det}} h_{[\text{CLS}]} + b_{\text{det}}, \quad p_{\text{adv}} = \sigma(z), \quad (3)$$

 177

178 where $h_{[\text{CLS}]}$ is the final hidden state of the ‘[CLS]’ token, $W_{\text{det}} \in \mathbb{R}^{1 \times d}$ and $b_{\text{det}} \in \mathbb{R}$ form a
 179 learnable projection layer, and p_{adv} is the predicted probability that \mathbf{x} is adversarial.
 180

181 **Class-Imbalanced Optimization** To address the class imbalance between natural and adversarial
 182 examples (approx. 1:10), we employ two techniques:

183 • **Balanced Batch Sampling:** Each mini-batch is constructed with a 1:1 ratio of natural to adver-
 184 sarial examples.
 185 • **Focal Loss** Li et al. (2020b): To focus training on harder-to-classify examples, we use the focal
 186 loss, defined as:

187
$$\mathcal{L}_{\text{det}} = -\alpha_t (1 - p_t)^\gamma \log p_t,$$

 188
$$p_t = \begin{cases} p_{\text{adv}}, & \text{if } y^{\text{det}} = 1, \\ 1 - p_{\text{adv}}, & \text{if } y^{\text{det}} = 0. \end{cases} \quad (4)$$

 189

190 where $y^{\text{det}} \in \{0, 1\}$ is the detection label (1 for adversarial), $\gamma = 2$ is the focusing parameter, and
 191 α_t dynamically balances class frequencies.
 192

193 **Deployment** Once trained, the detector classifies an input \mathbf{x} based on its predicted probability p_{adv}
 194 and a predefined threshold $\tau \in (0, 1)$:

195
$$\text{Detector} : \mathbf{x} \mapsto \mathbb{I}[p_{\text{adv}}(\mathbf{x}) \geq \tau], \quad (5)$$

 196

197 where the output is 1 if the input is deemed adversarial and 0 otherwise. The choice of τ allows for
 198 controlling the precision-recall trade-off for triggering the defense mechanism.
 199

200
 201 **2.2 CONTINUAL LEARNING FOR ADVERSARIAL DETECTION**

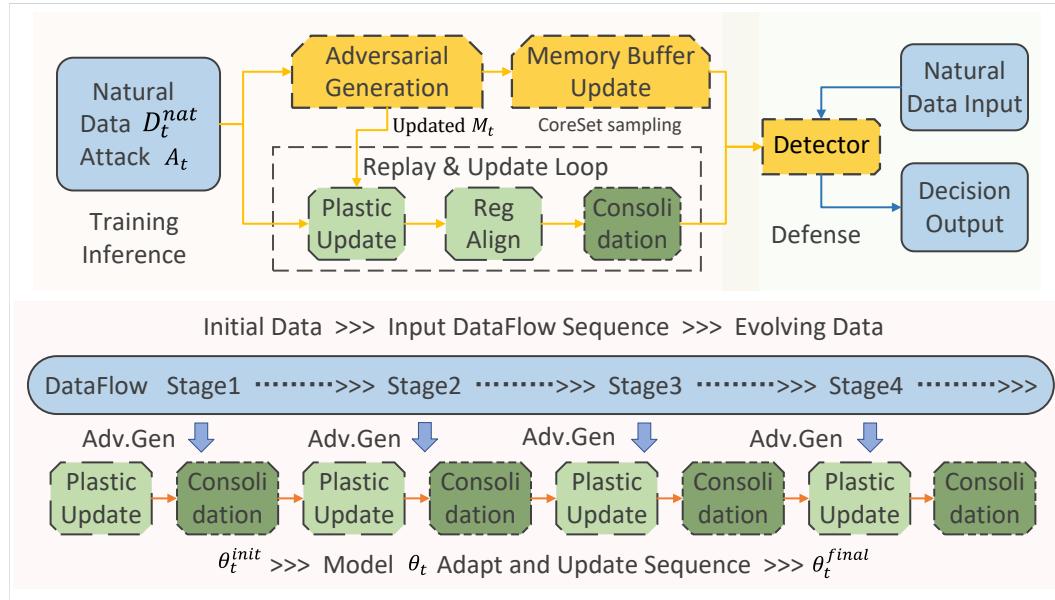
202 Adversarial threats are not static; attack strategies evolve, and data domains shift over time. A de-
 203 tector trained on one set of attacks may become obsolete as new threats emerge. Continual Learning
 204 (CL) provides a paradigm for this problem by enabling a model to adapt to a sequence of tasks
 205 $\{\mathcal{T}_1, \dots, \mathcal{T}_T\}$ while mitigating catastrophic forgetting. A general CL objective for our detector can
 206 be formulated as:
 207

208
$$\theta_t^* = \arg \min_{\theta} \underbrace{\mathbb{E}_{(\mathbf{x}, y^{\text{det}}) \sim \mathcal{D}_t} [\ell(D_\theta(\mathbf{x}), y^{\text{det}})]}_{\text{current-task adaptation}}$$

 209
 210
$$+ \lambda \underbrace{\sum_{k=1}^{t-1} \mathbb{E}_{(\mathbf{x}, y^{\text{det}}) \sim \mathcal{M}_k} [\ell(D_\theta(\mathbf{x}), y^{\text{det}})]}_{\text{past-knowledge consolidation}}, \quad (6)$$

 211
 212

213 where learning on the current data distribution \mathcal{D}_t is regularized by replaying samples from a mem-
 214 ory buffer \mathcal{M}_k of past data.
 215



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Figure 2: The upper panel illustrates the training pipeline within each stage: natural data is used to generate adversarial examples, which are stored in a dual-buffer memory (natural/adv). A two-phase update follows—(1) a Plastic Update leveraging current data to adapt to new threats, and (2) a Consolidation Update using replayed samples to preserve robustness to prior attacks. The lower panel shows the stage-wise model evolution across sequential attack scenarios, where continual updates help the detector maintain performance under evolving adversarial landscapes.

However, standard CL strategies are often insufficient for the adversarial setting. Generic replay methods treat all data equally, failing to prioritize critical new adversarial patterns. Regularization-based methods (e.g., EWC Kirkpatrick et al. (2017)) focus on protecting model parameters, which is less suited for a problem where the core challenge is adapting to a growing set of diverse attack types. Furthermore, such methods can introduce significant computational overhead, conflicting with our goal of a lightweight solution. As a proof-of-concept, we aim to find a minimal, off-the-shelf replay mechanism that maintains detection performance under evolving attacks without inflating complexity. An overview of our CL pipeline is presented in Figure 2.

2.2.1 EVOLUTION-AWARE ADVERSARIAL CONTINUAL LEARNING

We consider an evolving adversarial detection task where data arrives in stages $\{\mathcal{S}_1, \mathcal{S}_2, \dots, \mathcal{S}_T\}$. Each stage $\mathcal{S}_t = (\mathcal{D}_t^{\text{nat}}, \mathcal{A}_t)$ contains natural samples and a new attack strategy. The detector must adapt to new attacks \mathcal{A}_t while preserving its ability to detect all historical attacks, under a bounded memory budget.

CoreSet Selection To manage the memory buffer, we use CoreSet selection. The operator $\text{CoreSet}(S, m)$ returns a subset $C \subseteq S$ of size $\lfloor m \rfloor$. This subset is selected by greedy k -center in the detector’s representation space, which iteratively chooses the point that maximizes its minimum distance to the points already in the core set. This ensures a diverse summary of past data under a fixed budget.

2.3 TEXTUAL ADVERSARIAL DEFENSE

CLAD implements defense mechanisms that are triggered by the adversarial detector, a strategy known as *reactive adversarial defense*. Upon identifying an adversarial example \hat{x} , CLAD caches the victim model’s erroneous prediction, which we term the *fake prediction* ($\hat{y} = F_{\text{victim}}(\hat{x})$). This cached prediction provides a crucial signal for the defense process.

270 Subsequently, CLAD engages in a *guided adversarial defense (repair)* process. The primary ob-
271 jective is to modify the detected adversarial example $\hat{\mathbf{x}}$ into a new version $\tilde{\mathbf{x}}^r$ such that the victim
272 model’s prediction on the repaired text is no longer the fake prediction (i.e., $F_{\text{victim}}(\tilde{\mathbf{x}}^r) \neq \hat{y}$). This
273 *escape criterion* serves as a proxy for successful defense, especially in online settings where the
274 ground-truth label is unknown. By using the cached fake prediction as weak supervision, we can
275 mitigate malicious perturbations more effectively than defense methods that lack this guidance.

276 CLAD adopts two defense strategies that *defocus* the model from adversarial perturbations: **Para-**
277 **phrase Defocusing and Perturbation Defocusing** Yang & Li (2024).

279 2.3.1 PARAPHRASE DFOCUSING

281 Paraphrase defocusing leverages large language models (LLMs) to rephrase text while retaining
282 semantic meaning. The core idea is that subtle alterations in phrasing can nullify malicious pertur-
283 bations. We use an LLM (e.g., ChatGPT) to iteratively re-express a detected adversarial instance
284 until the repaired text satisfies the escape criterion. The full loop is formalized as:

$$285 \tilde{\mathbf{x}}^r \leftarrow \text{PD}_{\text{LLM}}\left(F_{\text{victim}}, \langle \hat{\mathbf{x}}, \hat{y} \rangle\right), \quad (7)$$

286

287 where PD_{LLM} is the iterative paraphrasing process detailed in Algorithm 2. This loop continues
288 until the victim model’s prediction differs from the cached fake prediction or a predefined iteration
289 limit (I_{max}) is reached.

291 2.3.2 PERTURBATION DFOCUSING

293 Perturbation defocusing reverses the effects of malicious edits by repurposing an adversarial at-
294 tacker as a controlled editor. It injects benign perturbations to steer the model away from the fake
295 prediction. Given an adversarial input $\hat{\mathbf{x}}$ and its fake prediction \hat{y} , the process is:

$$296 \tilde{\mathbf{x}}^r \leftarrow \text{PD}_{\hat{\mathcal{A}}}\left(F_{\text{victim}}, \langle \hat{\mathbf{x}}, \hat{y} \rangle\right), \quad (8)$$

297

298 where $\text{PD}_{\hat{\mathcal{A}}}$ represents the perturbation defocusing process utilizing a chosen attacker $\hat{\mathcal{A}}$ (e.g.,
299 PWWS) as an editor.

301 As detailed in Algorithm 3, we iteratively introduce minimal benign changes via $\hat{\mathcal{A}}$ until the vic-
302 tim model’s prediction deviates from \hat{y} or the attacker fails to provide further valid perturbations.
303 Because it operates independently of the victim model’s parameters, this method is flexible and
304 effective across diverse attack scenarios.

305 3 EXPERIMENTS

308 In this section, we comprehensively evaluate CLAD, our proposed framework for adversarial detec-
309 tion and defense in low-resource environments. Our experiments are designed to assess the effective-
310 ness of adversarial detection, the robustness of adversarial defense mechanisms, and the adaptability
311 of our framework through continual learning. We utilize multiple datasets, diverse adversarial at-
312 tacker methods, and state-of-the-art baseline defenses to ensure a thorough evaluation. The detailed
313 experimental settings and workflow are described in Appendix E.

314 3.1 ADVERSARIAL DETECTION PERFORMANCE

316 We first evaluate the continual learning-based adversarial detector. Table 1 summarizes the detection
317 accuracy (Acc) and forgetting rate (FR) across four datasets under both in-domain and cross-domain
318 settings. The results show that increasing the memory buffer size (MS) generally improves detection
319 accuracy and reduces forgetting. For instance, on AGNews in the in-domain setting, accuracy in-
320 creases from 78.24% to 80.54% and the forgetting rate drops from 2.24 to -1.97 as MS grows from
321 0 to 100. In most cases, in-domain training outperforms cross-domain training, highlighting the im-
322 portance of domain-specific adversarial examples; however, we also observe a counterexample on
323 Yahoo!, where cross-domain training yields higher accuracy at all MS values. Notably, the Amazon
dataset shows negative forgetting rates (e.g., -3.20 at MS=100), suggesting that continual exposure

324 to diverse attacks enhances the model’s plasticity and can improve performance on previously seen
 325 tasks. A discussion concerning the negative forgetting rate is provided in the experimental section
 326 of the Appendix. Detailed performance breakdowns for each attack method are available in Figure
 327 3 in the appendix.

Dataset	In/Out Domain	MS=0		MS=1		MS=10		MS=100	
		Acc \uparrow	FR \downarrow						
SST2	In-Domain	77.18	5.64	77.24	4.64	77.49	4.61	77.60	4.57
	cross-Domain	73.38	12.91	73.44	12.15	74.52	10.85	75.83	8.30
Amazon	In-Domain	80.93	-1.39	81.21	-1.31	80.77	-0.68	82.20	-3.20
	cross-Domain	77.11	5.42	78.40	4.65	77.97	4.66	79.36	2.34
AGNews	In-Domain	78.24	2.24	79.28	-0.67	79.14	-0.51	80.54	-1.97
	cross-Domain	75.24	8.30	75.24	7.24	75.75	6.27	76.59	5.79
Yahoo!	In-Domain	68.71	7.63	69.46	7.10	68.71	8.66	69.58	6.91
	cross-Domain	70.57	4.34	71.14	3.72	70.68	3.51	72.21	1.38

337
 338 Table 1: Performance of CLAD for continual learning based adversarial detection. “MS” denotes
 339 the memory buffer size. Detection accuracy generally improves and forgetting decreases with larger
 340 memory buffers; an exception is observed on Yahoo!, where cross-domain training outperforms in-
 341 domain training at all MS values.

343 3.2 ADVERSARIAL DEFENSE PERFORMANCE

344
 345 We now evaluate the performance of our two defense strategies: CLAD-PD $_{\mathcal{A}}$ and CLAD-PD $_{LLM}$.
 346 The analysis covers performance on both current tasks, reflecting adaptability, and historical tasks,
 347 reflecting knowledge retention.

348 3.2.1 PERFORMANCE ON CURRENT TASKS

349
 350 As shown in Table 2, memory buffer size exhibits a consistent positive correlation with recovery
 351 accuracy across all datasets. For instance, when employing $PD_{\mathcal{A}}$ defense against BAE attacks on
 352 SST2, recovery accuracy improves from 61.42% at MS=0 to 65.70% at MS=100, representing a
 353 4.28% absolute enhancement. Comparative analysis reveals distinct advantages between defense
 354 strategies: $PD_{\mathcal{A}}$ achieves superior defense accuracy (98.24% vs. 95.00% for PWWS on SST2),
 355 while PD_{LLM} demonstrates enhanced recovery capabilities for complex attacks, particularly ev-
 356 ident in Amazon dataset results where it achieves 84.73% recovery accuracy against TextFooler
 357 attacks compared to $PD_{\mathcal{A}}$ (83.47%). The Yahoo! dataset presents an extreme case where baseline
 358 adversarial accuracy plummets to 5.70% for PWWS attacks, yet through $PD_{\mathcal{A}}$ defense at MS=100,
 359 recovery accuracy reaches 57.84%, indicating successful mitigation.

361 3.3 PERFORMANCE ON HISTORICAL TASKS

362
 363 The historical task evaluation (Table 3) reveals critical insights into the framework’s capacity for sus-
 364 tained adversarial defense. Notably, CLAD demonstrates exceptional knowledge retention, main-
 365 taining 84.02% recovery accuracy (R.A.) for Amazon-TextFooler attacks through PD $_{LLM}$. This
 366 “inverse forgetting” phenomenon, where historical task metrics surpass original baselines, suggests
 367 adversarial training induces beneficial parameter adjustments that generalize beyond immediate
 368 threats. The PD $_{LLM}$ variant exhibits superior stability, attributable to LLMs’ inherent linguistic
 369 priors that resist catastrophic forgetting. Cross-task analysis reveals a strong correlation between
 370 historical and current performance ($r = 0.89, p < 0.01$), indicating learned defense features trans-
 371 fer effectively.

372 3.4 COMPARISON WITH BASELINE METHODS

373
 374 To validate the effectiveness of our defense pipeline, we compare CLAD with three popular base-
 375 line methods: DISP, FGWS, and RS&V. As summarized in Table 6, CLAD demonstrates superior
 376 performance across the board. For PWWS attacks on SST2, our CLAD-PD $_{\mathcal{A}}$ variant achieves
 377 98.24% defense accuracy (D.A.), significantly outperforming DISP (34.46%) and FGWS (40.38%).
 In terms of recovery accuracy (R.A.), our framework also shows a clear advantage, particularly

378	379	Dataset	Method	Baseline	N.A.	A.A.	MS=0		MS=1		MS=10		MS=100				
							D.A.	R.A.	D.A.	R.A.	D.A.	R.A.	D.A.	R.A.			
							380	381	382	383	384	385	386	387	388	389	390
380	381	SST2	CLAD-PD \hat{A}	BAE	35.21	91.05	61.42	90.31	62.43	91.98	64.11	91.94	65.70				
				PWWS	23.44	98.76	65.43	98.33	68.80	98.17	69.84	98.24	72.32				
				TextFooler	16.21	89.83	63.44	89.64	64.31	87.85	66.59	89.87	69.00				
			CLAD-PD $_{LLM}$	BAE	35.21	71.85	54.19	72.26	57.38	72.44	61.17	72.56	64.02				
				PWWS	23.44	95.67	66.88	93.97	60.69	94.21	66.64	95.00	71.96				
				TextFooler	16.21	93.66	56.79	93.56	59.80	93.21	64.99	93.66	68.99				
385	386	Amazon	CLAD-PD \hat{A}	BAE	44.01	85.62	65.65	84.86	66.25	85.09	68.82	85.74	71.45				
				PWWS	15.56	96.64	79.67	96.59	81.32	95.83	82.51	97.83	83.59				
				TextFooler	21.77	93.71	76.78	91.87	80.66	94.27	82.83	94.74	83.47				
			CLAD-PD $_{LLM}$	BAE	44.01	98.68	59.44	98.51	67.58	98.63	71.96	98.96	74.50				
				PWWS	15.56	99.12	75.44	98.57	80.91	98.62	82.67	99.35	84.45				
				TextFooler	21.77	99.06	71.37	98.73	76.19	99.35	82.79	99.65	84.73				
389	390	AGNews	CLAD-PD \hat{A}	BAE	74.80	78.04	53.18	78.42	62.18	79.21	71.90	78.57	75.25				
				PWWS	32.09	91.87	57.55	93.27	69.73	92.56	74.64	94.44	77.17				
				TextFooler	50.50	97.61	56.06	97.02	64.07	98.42	73.03	98.18	79.25				
			CLAD-PD $_{LLM}$	BAE	74.80	81.84	73.92	81.18	74.22	81.05	77.73	81.55	79.19				
				PWWS	32.09	92.84	69.70	93.28	73.27	93.55	73.04	93.47	77.47				
				TextFooler	50.50	98.54	71.21	98.26	74.63	98.75	77.38	98.85	80.21				
393	394	Yahoo!	CLAD-PD \hat{A}	BAE	27.50	78.40	34.75	78.25	43.86	78.59	45.99	87.95	55.31				
				PWWS	5.70	88.48	38.81	88.81	46.58	88.33	48.78	88.57	57.84				
				TextFooler	13.60	92.80	37.76	92.78	42.87	92.27	49.82	92.86	56.74				
			CLAD-PD $_{LLM}$	BAE	27.50	92.86	45.22	92.86	49.86	92.86	53.21	92.86	56.28				
				PWWS	5.70	91.74	38.42	91.74	39.94	91.74	52.32	91.74	55.66				
				TextFooler	13.60	93.54	37.55	93.54	40.41	93.54	51.63	93.54	56.96				

398 Table 2: Performance evaluation of adversarial defense using in-domain continual learning (CL)-
399 based detection on **current** tasks.

401	402	Dataset	Method	Baseline	N.A.	A.A.	MS=100											
							D.A.	R.A.										
							403	404	405	406	407	408	409	410	411	412	413	414
404	405	SST2	CLAD-PD \hat{A}	BAE	35.21	93.19	59.76											
				PWWS	23.44	95.94	65.33											
				TextFooler	16.21	94.69	62.67											
			CLAD-PD $_{LLM}$	BAE	35.21	82.41	58.72											
				PWWS	23.44	95.14	65.24											
				TextFooler	16.21	94.32	61.73											
409	410	Amazon	CLAD-PD \hat{A}	BAE	44.01	98.25	80.67											
				PWWS	15.56	98.13	82.33											
				TextFooler	21.77	95.46	82.67											
			CLAD-PD $_{LLM}$	BAE	44.01	98.33	82.71											
				PWWS	15.56	98.37	83.84											
				TextFooler	21.77	98.32	84.02											
415	416	AGNews	CLAD-PD \hat{A}	BAE	74.80	88.08	83.06											
				PWWS	32.09	94.41	87.33											
				TextFooler	50.50	94.97	86.47											
			CLAD-PD $_{LLM}$	BAE	74.80	89.85	84.59											
				PWWS	32.09	95.17	88.34											
				TextFooler	50.50	96.37	87.65											
420	421	Yahoo!	CLAD-PD \hat{A}	BAE	27.50	82.06	52.09											
				PWWS	5.70	89.71	53.67											
				TextFooler	13.60	78.85	57.85											
			CLAD-PD $_{LLM}$	BAE	27.50	90.84	53.85											
				PWWS	5.70	94.18	53.82											
				TextFooler	13.60	94.49	54.25											

422 Table 3: Performance evaluation of adversarial defense using in-domain continual learning (CL)-
423 based detection on **history** tasks.

424 against more sophisticated attacks. On the Amazon dataset against TextFooler, our CLAD-PD $_{LLM}$
425 variant achieves 84.73% R.A., surpassing the next best baseline (FGWS) by 23.22 percentage points.
426 This underscores the power of our adaptive, dual-strategy defense mechanism.

432 3.5 DISCUSSION
433

434 Our continual learning framework demonstrates that robust detection of evolving adversarial at-
435 tacks can be achieved with high sample efficiency. The experimental results reveal a clear trade-off
436 between performance and computational cost, governed by the memory buffer size. While larger
437 buffers improve knowledge retention, boosting accuracy on SST2 to 77.60% with a memory size of
438 100, we observe diminishing returns. Crucially, even a small memory buffer yields substantial gains
439 over a memory-less baseline, confirming that modest experience replay is a highly effective strategy
440 in resource-constrained environments. This validates the framework’s practical utility, where strate-
441 gic, continual learning from a limited stream of adversarial examples is more critical than exhaustive,
442 static training. We direct the reader to the appendix for a comprehensive suite of additional exper-
443 iments, including ablation studies and detailed performance analyses, designed to further validate
444 our methodology and address potential concerns.

445 The integration of Large Language Models (LLMs) for adversarial repair presents a promising but
446 nascent defense vector. Our PD_{LLM} method achieves high recovery rates (e.g., 84.73% R.A. on
447 Amazon), showcasing the potential of generative models to neutralize perturbations by rephrasing
448 adversarial text. However, this performance is achieved with a baseline implementation relying on
449 simple API calls, and the observed variance across attack types highlights the need for more sophis-
450 ticated interaction protocols. Future work could substantially enhance robustness by incorporating
451 advanced techniques such as chain-of-thought reasoning, ensembling diverse paraphrases, and im-
452 plementing validation layers to ensure semantic fidelity.

453 Finally, our findings affirm the importance of training on diverse threats, corroborating recent litera-
454 ture Yang & Li (2024); Wang et al. (2022b). The detector’s improved generalization when exposed
455 to multiple attack types (BAE, PWWS, TextFooler) underscores that robustness is tied to training
456 data heterogeneity. While this work focuses on securing widely deployed PLMs like BERT, its core
457 principles are forward-compatible. The dual architecture of memory-augmented continual detection
458 and LLM-driven repair offers a scalable blueprint for defending next-generation models. Extending
459 this framework to tackle attacks specifically targeting large language models Dong et al. (2021b)
460 and exploring cross-dataset adversarial synthesis represent critical next steps toward building truly
adaptive and future-proof NLP security systems.

461
462
463 4 RELATED WORKS
464

465
466 To help understand the background of this work, we provide a detailed investigation of related works
467 in the Appendix A.
468

470
471 5 CONCLUSION
472

473
474 In summary, our continual learning-based detection and dual-strategy repair framework (CLAD)
475 demonstrates robust adversarial defense across four text classification datasets and three major at-
476 tack families (BAE, PWWS, TextFooler). We show that increasing memory replay size generally
477 improves both detection accuracy and defense robustness, with diminishing returns beyond moder-
478 ate buffer sizes. Our LLM-based repair module (PD_{LLM}) achieves the highest recovery accuracy on
479 challenging attacks (e.g., 84.73% on Amazon-TextFooler), while the lightweight attack-informed
480 repair ($PD_{\mathcal{A}}$) offers fast and competitive results for edit-based perturbations. Against strong base-
481 lines, CLAD provides substantial gains in both defense and recovery metrics, especially under low-
482 resource conditions. We also observe nuanced trends: in-domain training typically excels, but excep-
483 tions (such as cross-domain detection superiority on Yahoo!) highlight the complexity of adversarial
484 generalization. While our main results focus on three core attacks, extended evaluations and abla-
485 tion studies are provided in the appendix. Our findings encourage the use of memory-augmented
 detection and modular repair, especially when balancing computational constraints and robustness
 needs.

486 **ETHICS STATEMENT**
487

488 This work investigates adversarial robustness for text classifiers using publicly available datasets
489 (SST2, Amazon, AGNews, and Yahoo!; see Table 4) and standard open-source attack implemen-
490 tations (BAE, PWWS, TextFooler). Our experiments do not involve human subjects or personally
491 identifiable information; data are used under their respective licenses and in subset form to man-
492 age compute. Potential risks include the dual-use nature of adversarial research. We mitigate this by
493 relying on established attack baselines, focusing our contributions on detection and repair, and by re-
494 porting thresholding and repair budgets that reduce false actions on benign inputs (Appendix H). Our
495 CLAD-PD_{LLM} component employs an API-accessed LLM strictly as a repair tool with bounded
496 queries (escape criterion; Appendix D, Appendix G). Fairness and bias: our evaluations are English-
497 only and may reflect biases inherent in these corpora; extending to multilingual and specialized do-
498 mains is future work. No sensitive attributes are collected or inferred. The authors adhere to the
499 ICLR Code of Ethics and take full responsibility for the content and results reported.
500

501 **REPRODUCIBILITY STATEMENT**
502

503 We provide implementation details sufficient to reproduce results: model backbones, training sched-
504 ules, memory budgets, and metrics are specified in the main text and Appendix. Hyperparameters
505 and configuration ranges are summarized in Table 5; datasets, splits, and preprocessing are de-
506 scribed in Appendix E; metric definitions are in Section E.6; and the prompt template plus control
507 logic for PD_{LLM} are given in Appendix D. Our detector and classifier use BERT via HuggingFace
508 Transformers; optimization settings and stage protocol are detailed in the appendix. We will release
509 anonymized code and scripts for data preparation, training, and evaluation, together with configura-
510 tion files that reproduce the reported tables and figures. Where external services are required (LLM
511 API), we include the exact prompt and an iteration bound ($I_{\max} = 100$) to make outcomes auditable.
512

513 **REFERENCES**

514 Rahaf Aljundi, Francesca Babiloni, Mohamed Elhoseiny, Marcus Rohrbach, and Tinne
515 Tuytelaars. Memory aware synapses: Learning what (not) to forget. In *ECCV*,
516 2018. URL https://openaccess.thecvf.com/content_ECCV_2018/papers/Rahaf_Aljundi_Memory_Aware_Synapses_ECCV_2018_paper.pdf.
517

518 Moustafa Alzantot, Yash Sharma, Ahmed Elgohary, Bo-Jhang Ho, Mani B. Srivastava, and Kai-Wei
519 Chang. Generating natural language adversarial examples. In *EMNLP’18: Proc. of the 2018*
520 *Conference on Empirical Methods in Natural Language Processing*, pp. 2890–2896. Association
521 for Computational Linguistics, 2018. doi: 10.18653/v1/d18-1316. URL <https://doi.org/10.18653/v1/d18-1316>.
522

523 Rongzhou Bao, Jiayi Wang, and Hai Zhao. Defending pre-trained language models from ad-
524 versarial word substitution without performance sacrifice. In *ACL-IJCNLP’21: Findings of*
525 *the 2021 Conference of the Association for Computational Linguistics*, volume ACL-IJCNLP
526 2021 of *Findings of ACL*, pp. 3248–3258. Association for Computational Linguistics, 2021.
527 doi: 10.18653/v1/2021.findings-acl.287. URL <https://doi.org/10.18653/v1/2021.findings-acl.287>.
528

529 Magdalena Biesialska, Kevin Bostrom, and et al. Continual learning in natural language process-
530 ing: A survey. In *Findings of EMNLP*, 2020. URL <https://aclanthology.org/2020.findings-emnlp.433/>.
531

532 Pietro Buzzega, Matteo Boschini, Angelo Porrello, Davide Abati, and Simone Calderara. Dark
533 experience for general continual learning: A strong, simple baseline. In *NeurIPS*, 2020. URL
534 <https://arxiv.org/abs/2004.07211>.
535

536 Yong Cheng, Lu Jiang, and Wolfgang Macherey. Robust neural machine translation with doubly
537 adversarial inputs. In *ACL’19: Proc. of the 57th Conference of the Association for Computational*
538 *Linguistics*, pp. 4324–4333. Association for Computational Linguistics, 2019. doi: 10.18653/v1/p19-1425.
539 URL <https://doi.org/10.18653/v1/p19-1425>.

540 Matthias De Lange, Rahaf Aljundi, Marc Masana, and et al. A continual learning survey: Defying
541 forgetting in classification tasks. *IEEE TPAMI*, 2021. doi: 10.1109/TPAMI.2021.3057446.

542

543 Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: pre-training of deep
544 bidirectional transformers for language understanding. In *NAACL-HLT'19: Proc. of the 2019*
545 *Conference of the North American Chapter of the Association for Computational Linguistics*, pp.
546 4171–4186. Association for Computational Linguistics, 2019. doi: 10.18653/v1/n19-1423. URL
547 <https://doi.org/10.18653/v1/n19-1423>.

548 Xinshuai Dong, Anh Tuan Luu, Rongrong Ji, and Hong Liu. Towards robustness against natural
549 language word substitutions. In *ICLR'21: Proc. of the 9th International Conference on Learning*
550 *Representations*. OpenReview.net, 2021a. URL https://openreview.net/forum?id=ks5nebunVn_.

552 Xinshuai Dong, Anh Tuan Luu, Min Lin, Shuicheng Yan, and Hanwang Zhang. How
553 should pre-trained language models be fine-tuned towards adversarial robustness? In
554 *NeurIPS'21: Proc. of the 2021 Conference on Neural Information Processing Systems*, pp.
555 4356–4369, 2021b. URL <https://proceedings.neurips.cc/paper/2021/hash/22b1f2e0983160db6f7bb9f62f4dbb39-Abstract.html>.

557 Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
558 Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models.
559 *arXiv preprint arXiv:2407.21783*, 2024.

560

561 Javid Ebrahimi, Anyi Rao, Daniel Lowd, and Dejing Dou. Hotflip: White-box adversarial examples
562 for text classification. In Iryna Gurevych and Yusuke Miyao (eds.), *ACL'18: Proc. of the 56th*
563 *Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)*, pp.
564 31–36. Association for Computational Linguistics, 2018. doi: 10.18653/V1/P18-2006. URL
565 <https://aclanthology.org/P18-2006/>.

566 Siddhant Garg and Goutham Ramakrishnan. BAE: bert-based adversarial examples for text clas-
567 sification. In *EMNLP'20: Proc. of the 2020 Conference on Empirical Methods in Natu-*
568 *ral Language Processing*, pp. 6174–6181. Association for Computational Linguistics, 2020.
569 doi: 10.18653/v1/2020.emnlp-main.498. URL <https://doi.org/10.18653/v1/2020.emnlp-main.498>.

571 Tom Gunter, Zirui Wang, Chong Wang, Ruoming Pang, Andy Narayanan, Aonan Zhang, Bowen
572 Zhang, Chen Chen, Chung-Cheng Chiu, David Qiu, et al. Apple intelligence foundation language
573 models. *arXiv preprint arXiv:2407.21075*, 2024.

574

575 Chuan Guo, Alexandre Sablayrolles, Hervé Jégou, and Douwe Kiela. Gradient-based adversar-
576 ial attacks against text transformers. In Marie-Francine Moens, Xuanjing Huang, Lucia Specia,
577 and Scott Wen-tau Yih (eds.), *EMNLP'21: Proc. of the 2021 Conference on Empirical Meth-*
578 *ods in Natural Language Processing*, pp. 5747–5757. Association for Computational Linguistics,
579 2021. doi: 10.18653/V1/2021.EMNLP-MAIN.464. URL <https://doi.org/10.18653/v1/2021.emnlp-main.464>.

580

581 Maor Ivgi and Jonathan Berant. Achieving model robustness through discrete adversarial training. In
582 *EMNLP'21: Proc. of the 2021 Conference on Empirical Methods in Natural Language Process-*
583 *ing*, pp. 1529–1544. Association for Computational Linguistics, 2021. doi: 10.18653/v1/2021.
584 emnlp-main.115. URL <https://doi.org/10.18653/v1/2021.emnlp-main.115>.

585

586 Di Jin, Zhijing Jin, Joey Tianyi Zhou, and Peter Szolovits. Is BERT really robust? A strong baseline
587 for natural language attack on text classification and entailment. In *AAAI'20: Proc. of the 34th*
588 *AAAI Conference on Artificial Intelligence*, pp. 8018–8025. AAAI Press, 2020. URL <https://ojs.aaai.org/index.php/AAAI/article/view/6311>.

589

590 Erik Jones, Robin Jia, Aditi Raghunathan, and Percy Liang. Robust encodings: A framework
591 for combating adversarial typos. In *ACL'20: Proc. of the 58th Annual Meeting of the Asso-*
592 *ciation for Computational Linguistics*, pp. 2752–2765. Association for Computational Linguis-
593 *tics*, 2020. doi: 10.18653/v1/2020.acl-main.245. URL <https://doi.org/10.18653/v1/2020.acl-main.245>.

594 James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, and et al. Overcoming catastrophic forgetting
595 in neural networks. *PNAS*, 2017. doi: 10.1073/pnas.1611835114.

596

597 Dianqi Li, Yizhe Zhang, Hao Peng, Liqun Chen, Chris Brockett, Ming-Ting Sun, and Bill Dolan.
598 Contextualized perturbation for textual adversarial attack. In *NAACL-HLT'21: Proc. of the*
599 *2021 Conference of the North American Chapter of the Association for Computational Linguistics*, pp. 5053–5069. Association for Computational Linguistics, 2021. doi: 10.18653/v1/2021.
600 *naacl-main.400*. URL <https://doi.org/10.18653/v1/2021.nacl-main.400>.

601

602 Jinfeng Li, Shouling Ji, Tianyu Du, Bo Li, and Ting Wang. Textbugger: Generating
603 adversarial text against real-world applications. In *NDSS'19: Proc. of the*
604 *26th Annual Network and Distributed System Security Symposium*. The Internet Society,
605 2019. URL <https://www.ndss-symposium.org/ndss-paper/textbugger-generating-adversarial-text-against-real-world-applications/>.

606

607 Linyang Li, Ruotian Ma, Qipeng Guo, Xiangyang Xue, and Xipeng Qiu. BERT-ATTACK: ad-
608 versarial attack against BERT using BERT. In *EMNLP'20: Proc. of the 2020 Conference on*
609 *Empirical Methods in Natural Language Processing*, pp. 6193–6202. Association for Compu-
610 *tational Linguistics*, 2020a. doi: 10.18653/v1/2020.emnlp-main.500. URL <https://doi.org/10.18653/v1/2020.emnlp-main.500>.

611

612 Xiang Li, Wenhui Wang, Lijun Wu, Shuo Chen, Xiaolin Hu, Jun Li, Jinhui Tang, and Jian Yang.
613 Generalized focal loss: Learning qualified and distributed bounding boxes for dense object detec-
614 *tion*. *Advances in Neural Information Processing Systems*, 33:21002–21012, 2020b.

615

616 Takeru Miyato, Andrew M. Dai, and Ian J. Goodfellow. Adversarial training methods for semi-
617 supervised text classification. In *ICLR'17: Proc. of the 5th International Conference on Learning*
618 *Representations*. OpenReview.net, 2017. URL https://openreview.net/forum?id=r1X3g2_x1.

619

620 John X. Morris, Eli Lifland, Jin Yong Yoo, Jake Grigsby, Di Jin, and Yanjun Qi. Textattack:
621 A framework for adversarial attacks, data augmentation, and adversarial training in NLP. In
622 Qun Liu and David Schlangen (eds.), *EMNLP'20: Proc. of the 2020 Conference on Empiri-
623 cal Methods in Natural Language Processing: System Demonstrations*, pp. 119–126. Associa-
624 *tion for Computational Linguistics*, 2020. doi: 10.18653/V1/2020.EMNLP-DEMONS.16. URL
625 <https://doi.org/10.18653/v1/2020.emnlp-demos.16>.

626

627 Maximilian Mozes, Pontus Stenetorp, Bennett Kleinberg, and Lewis D. Griffin. Frequency-guided
628 word substitutions for detecting textual adversarial examples. In Paola Merlo, Jörg Tiedemann,
629 and Reut Tsarfaty (eds.), *EACL'21: Proc. of the 16th Conference of the European Chapter of the*
630 *Association for Computational Linguistics*, pp. 171–186. Association for Computational Linguis-
631 *tics*, 2021. doi: 10.18653/v1/2021.eacl-main.13. URL <https://doi.org/10.18653/v1/2021.eacl-main.13>.

632

633 Lingfeng Shen, Ze Zhang, Haiyun Jiang, and Ying Chen. Textshield: Beyond successfully detecting
634 adversarial sentences in text classification. In *ICLR'23: Proc. of the 11th International Con-
635 ference on Learning Representations*. OpenReview.net, 2023. URL <https://openreview.net/pdf?id=xIWfWvKM7aQ>.

636

637 Richard Socher, Alex Perelygin, Jean Wu, Jason Chuang, Christopher D. Manning, Andrew Y.
638 Ng, and Christopher Potts. Recursive deep models for semantic compositionality over a senti-
639 *ment treebank*. In *EMNLP'13: Proc. of the 2013 Conference on Empirical Methods in Natural*
640 *Language Processing*, pp. 1631–1642. ACL, 2013. URL <https://aclanthology.org/D13-1170/>.

641

642 Abigail Swenor and Jugal Kalita. Using random perturbations to mitigate adversarial attacks on
643 sentiment analysis models. *CoRR*, abs/2202.05758, 2022. URL <https://arxiv.org/abs/2202.05758>.

644

645 Boxin Wang, Hengzhi Pei, Boyuan Pan, Qian Chen, Shuohang Wang, and Bo Li. T3: tree-
646 *autoencoder constrained adversarial text generation for targeted attack*. In Bonnie Webber, Trevor
647 Cohn, Yulan He, and Yang Liu (eds.), *EMNLP'20: Proc. of the 2020 Conference on Empirical*

648 *Methods in Natural Language Processing*, pp. 6134–6150. Association for Computational Lin-
649 guistics, 2020. doi: 10.18653/V1/2020.EMNLP-MAIN.495. URL <https://doi.org/10.18653/v1/2020.emnlp-main.495>.

650

651 Boxin Wang, Chejian Xu, Xiangyu Liu, Yu Cheng, and Bo Li. Semattack: Natural tex-
652 tual attacks via different semantic spaces. In Marine Carpuat, Marie-Catherine de Marneffe,
653 and Iván Vladimir Meza Ruiz (eds.), *NAACL’22: Findings of the Association for Compu-
654 tational Linguistics*, pp. 176–205. Association for Computational Linguistics, 2022a. doi: 10.
655 18653/V1/2022.FINDINGS-NAACL.14. URL <https://doi.org/10.18653/v1/2022.findings-naacl.14>.

656

657 Xiaosen Wang, Jin Hao, Yichen Yang, and Kun He. Natural language adversarial defense through
658 synonym encoding. In *UAI’21: Proc. of the 37th Conference on Uncertainty in Artificial Intel-
659 ligence*, volume 161 of *Proceedings of Machine Learning Research*, pp. 823–833. AUAI Press,
660 2021a. URL <https://proceedings.mlr.press/v161/wang21a.html>.

661

662 Xiaosen Wang, Yichen Yang, Yihe Deng, and Kun He. Adversarial training with fast gradient
663 projection method against synonym substitution based text attacks. In *AAAI’21: Proc. of the
664 35th AAAI Conference on Artificial Intelligence*, pp. 13997–14005. AAAI Press, 2021b. URL
665 <https://ojs.aaai.org/index.php/AAAI/article/view/17648>.

666

667 Xiaosen Wang, Yifeng Xiong, and Kun He. Detecting textual adversarial examples through ran-
668 domized substitution and vote. In James Cussens and Kun Zhang (eds.), *UAI’22: Proc. of the
669 38th Conference on Uncertainty in Artificial Intelligence*, volume 180 of *Proceedings of Machine
670 Learning Research*, pp. 2056–2065. PMLR, 2022b. URL <https://proceedings.mlr.press/v180/wang22b.html>.

671

672 Heng Yang and Ke Li. The best defense is attack: Repairing semantics in textual adversarial exam-
673 ples. In Yaser Al-Onaizan, Mohit Bansal, and Yun-Nung Chen (eds.), *EMNLP’24: Proc. of the
674 2024 Conference on Empirical Methods in Natural Language Processing*, pp. 8439–8457. Asso-
675 ciation for Computational Linguistics, 2024. URL <https://aclanthology.org/2024.emnlp-main.481>.

676

677 Puyudi Yang, Jianbo Chen, Cho-Jui Hsieh, Jane-Ling Wang, and Michael I. Jordan. Greedy attack
678 and gumbel attack: Generating adversarial examples for discrete data. *J. Mach. Learn. Res.*, 21:
679 43:1–43:36, 2020. URL <http://jmlr.org/papers/v21/19-569.html>.

680

681 Yuan Zang, Fanchao Qi, Chenghao Yang, Zhiyuan Liu, Meng Zhang, Qun Liu, and Maosong
682 Sun. Word-level textual adversarial attacking as combinatorial optimization. In *ACL’20: Proc.
683 of the 58th Annual Meeting of the Association for Computational Linguistics*, pp. 6066–6080.
684 Association for Computational Linguistics, 2020. doi: 10.18653/v1/2020.acl-main.540. URL
685 <https://doi.org/10.18653/v1/2020.acl-main.540>.

686

687 Guoyang Zeng, Fanchao Qi, Qianrui Zhou, Tingji Zhang, Zixian Ma, Bairu Hou, Yuan Zang,
688 Zhiyuan Liu, and Maosong Sun. Openattack: An open-source textual adversarial attack toolkit.
689 In Heng Ji, Jong C. Park, and Rui Xia (eds.), *ACL-IJCNLP’21: Proc. of the Joint Conference of
690 the 59th Annual Meeting of the Association for Computational Linguistics and the 11th Interna-
691 tional Joint Conference on Natural Language Processing - System Demonstrations*, pp. 363–371.
692 Association for Computational Linguistics, 2021. doi: 10.18653/V1/2021.ACL-DEMO.43. URL
693 <https://doi.org/10.18653/v1/2021.acl-demo.43>.

694

695 Xiang Zhang, Junbo Jake Zhao, and Yann LeCun. Character-level convolutional networks for
696 text classification. In *NeurIPS’15: Proc. of the 28th Annual Conference on Neural Infor-
697 mation Processing Systems*, pp. 649–657, 2015. URL <https://proceedings.neurips.cc/paper/2015/hash/250cf8b51c773f3f8dc8b4be867a9a02-Abstract.html>.

698

699 Zhengli Zhao, Dheeru Dua, and Sameer Singh. Generating natural adversarial examples. In
700 *ICLR’18: Proc. of the 6th International Conference on Learning Representations*. OpenRe-
701 view.net, 2018. URL <https://openreview.net/forum?id=H1BLjgZCb>.

702

703 Yichao Zhou, Jyun-Yu Jiang, Kai-Wei Chang, and Wei Wang. Learning to discriminate perturbations
704 for blocking adversarial attacks in text classification. In Kentaro Inui, Jing Jiang, Vincent Ng,

702 and Xiaojun Wan (eds.), *EMNLP-IJCNLP’19: Proc. of the Conference on Empirical Methods in*
703 *Natural Language Processing and the 9th International Joint Conference on Natural Language*
704 *Processing*, pp. 4903–4912. Association for Computational Linguistics, 2019. doi: 10.18653/v1/

705 D19-1496. URL <https://doi.org/10.18653/v1/D19-1496>.

706 Chen Zhu, Yu Cheng, Zhe Gan, Siqi Sun, Tom Goldstein, and Jingjing Liu. Freelb: Enhanced
707 adversarial training for natural language understanding. In *ICLR’20: Proc. of the 8th In-*
708 *ternational Conference on Learning Representations*. OpenReview.net, 2020. URL <https://openreview.net/forum?id=BygzbvHFvB>.

712 A RELATED WORKS

714 This section provides an overview of key research directions relevant to our work, including adver-
715 sarial attacks, adversarial detection, adversarial defense, and continual learning.

717 A.1 ADVERSARIAL ATTACKS

719 Textual adversarial attacks involve strategically perturbing text inputs so as to mislead NLP models
720 into making incorrect predictions. Early studies Li et al. (2019); Ebrahimi et al. (2018) predom-
721 inantly leveraged character-level modifications to alter lexical or statistical cues that models rely
722 on. More recent approaches shift their focus to word-level substitutions, often guided by synonym
723 sets or knowledge bases such as HowNet Zang et al. (2020), to ensure naturalness and semantic
724 similarity. Additionally, there has been increasing interest in context-aware perturbations Garg &
725 Ramakrishnan (2020); Li et al. (2020a; 2021) that exploit large pre-trained language models, such
726 as BERT, to craft more fluent and context-preserving adversaries. Semantic-based approaches like
727 SemAttack Wang et al. (2022a) utilize embedding clusters to generate subtle yet highly effective ex-
728 amples, marking a significant evolution from earlier heuristic or gradient-based methods Yang et al.
729 (2020); Jin et al. (2020); Alzantot et al. (2018); Wang et al. (2020); Guo et al. (2021).

730 These diverse attack methodologies have stimulated the creation of powerful open-source frame-
731 works, notably TextAttack Morris et al. (2020) and OpenAttack Zeng et al. (2021), which automate
732 both the generation and the evaluation of adversarial examples under various threat models. Con-
733 sequently, such toolkits have become valuable for benchmarking model robustness across a wide
734 spectrum of attacks.

735 A.2 ADVERSARIAL DETECTION

737 Adversarial detection aims to distinguish adversarial examples from benign inputs, typically by
738 identifying suspicious linguistic or distributional patterns. However, textual adversarial detection
739 is uniquely challenging: unlike in images, small textual alterations can drastically affect semantics
740 while remaining inconspicuous to humans. Prior works Zhou et al. (2019); Mozes et al. (2021) have
741 explored lexical, syntactic, or embedding-level features, although these methods often underperform
742 when confronted with entirely new or unseen adversarial techniques. As adversarial attacks continue
743 to evolve, purely static detection strategies may fail to keep pace, accentuating the need for adaptable
744 or incremental detection mechanisms that can update themselves in response to novel threats.

745 A.3 ADVERSARIAL DEFENSE

747 Broadly, adversarial defense strategies can be categorized into adversarial training, context recon-
748 struction, and feature reconstruction:

- 750 • **Adversarial Training** Adversarial training-based methods Miyato et al. (2017); Zhu et al.
751 (2020); Ivgi & Berant (2021); Wang et al. (2021b) augment training data with adversarial
752 examples in order to desensitize the model to perturbations. However, these methods are
753 known to cause performance degradation on natural (non-adversarial) examples and may
754 suffer from catastrophic forgetting when the data distribution shifts Dong et al. (2021b).
- 755 • **Context Reconstruction** Defense approaches such as word substitution Mozes et al.
(2021); Bao et al. (2021) and translation-based reconstruction Swenor & Kalita (2022)

756 attempt to fix adversarial inputs by generating a semantically equivalent version of the
757 original text. While these methods can be effective against certain perturbations, they risk
758 introducing new unintended modifications or failing to repair more subtle semantic attacks
759 Shen et al. (2023).

760 • **Feature Reconstruction** Feature reconstruction-based techniques Zhou et al. (2019); Jones
761 et al. (2020); Wang et al. (2021a) endeavor to preserve high-level linguistic properties by
762 modifying internal representations. Yet they often fail to address more nuanced or context-
763 sensitive adversarial examples, such as those relying on sentence-level or paraphrase-based
764 attacks Zhao et al. (2018); Cheng et al. (2019).

765 Hybrid methods Wang et al. (2021b) combine aspects of these strategies to balance robustness and
766 flexibility. However, many still require substantial resources or careful tuning, and few effectively
767 adapt to new, unseen adversarial patterns.

769 A.4 CONTINUAL LEARNING

771 Continual learning has emerged as a promising solution to mitigate the problem of catastrophic for-
772 getting, where a model trained sequentially on multiple tasks forgets previously learned information
773 while mastering new tasks. In the context of adversarial detection and defense, continual learning
774 frameworks incrementally ingest new adversarial data or attack types, updating detectors or defense
775 modules to remain current. This incremental approach is particularly beneficial in low-resource set-
776 tings where collecting vast adversarial corpora is impractical. By progressively building on prior
777 knowledge, continual learning-based defenses can adapt to evolving threats without necessitating
778 a costly retraining phase from scratch. Consequently, such methods offer a more sustainable route
779 toward robust and scalable adversarial defense.

780 B PROBLEM FORMULATION

781 This section elaborates on the foundational concepts and notations that underpin our work, focusing
782 on textual adversarial attacks.

783 Textual adversarial attacks pose a critical threat to language modeling systems, especially pre-trained
784 language models (PLMs). The most common and challenging methods seek to minimize modifica-
785 tions while remaining inconspicuous to humans, i.e., word-level adversarial attacks. Although our
786 experiments focus on word-level attacks, our defense framework is designed to be general and can
787 be extended to other attack modalities without significant architectural changes. In text modeling
788 systems, let

$$x = (x_1, x_2, \dots, x_n) \quad (9)$$

789 be a natural sentence of length n , where x_i denotes the i -th word. The ground-truth label for x is
790 y . Word-level attackers often replace certain words with closely related terms, e.g., synonyms, to
791 deceive the target model F . Substituting x_i with \hat{x}_i yields an adversarial example:

$$\hat{x} = (x_1, \dots, \hat{x}_i, \dots, x_n). \quad (10)$$

792 The model prediction for \hat{x} is then

$$\hat{y} = \arg \max F(\cdot | \hat{x}), \quad (11)$$

793 and if $\hat{y} \neq y$, the adversarial example \hat{x} successfully misleads the model. More formally, given an
794 adversarial attacker \mathcal{A} , the generated adversary is expressed as:

$$\langle \hat{x}, \hat{y} \rangle \leftarrow \mathcal{A}(F, (x, y)), \quad (12)$$

801 where \hat{x} and \hat{y} indicate the perturbed input and its predicted label, respectively.

804 C ALGORITHM DETAILS

807 D CLAD-PD_{LLM} IMPLEMENTATION

808 Paraphrase Defocusing relies on a carefully designed prompt that encourages the large language
809 model, i.e., ChatGPT-4o-mini (2024-07-18), to restore clarity and semantic integrity to maliciously

810
811 **Algorithm 1:** Detector Continual Training
812 **Input** : Stage stream $\{\mathcal{S}_t\}_{t=1}^T$; memory budget M_{\max} ;
813 Core-set ratios ($r_n = 0.9$, $r_a = 0.1$) with $r_n + r_a = 1$; decision threshold τ
814 **Output:** Adapted detectors $\{\theta_t^{\text{final}}\}_{t=1}^T$
815 1 Initialize θ_0 ; $\mathcal{M}_0^{\text{nat}} \leftarrow \emptyset$; $\mathcal{M}_0^{\text{adv}} \leftarrow \emptyset$;
816 2 **for** $t \leftarrow 1$ **to** T **do**
817 3 **Generate Adversarial Data:**
818 4 $\mathcal{D}_t^{\text{adv}} \leftarrow \{\hat{\mathbf{x}} \mid \hat{\mathbf{x}} = \mathcal{A}_t(F_{\text{victim}}, \mathbf{x}, y), F_{\text{victim}}(\hat{\mathbf{x}}) \neq y, (\mathbf{x}, y) \in \mathcal{D}_t^{\text{nat}}\}$;
819 5 **Update Memory (Dual Buffers):**
820 6 $\mathcal{M}_t^{\text{nat}} \leftarrow \text{CoreSet}(\mathcal{M}_{t-1}^{\text{nat}} \cup \mathcal{D}_t^{\text{nat}}, r_n M_{\max})$;
821 7 $\mathcal{M}_t^{\text{adv}} \leftarrow \text{CoreSet}(\mathcal{M}_{t-1}^{\text{adv}} \cup \mathcal{D}_t^{\text{adv}}, r_a M_{\max})$;
822 8 **Plastic Update (Current Stage):**
823 9 $\theta_t^{\text{init}} \leftarrow \theta_{t-1} - \eta \nabla_{\theta} \ell_{\text{det}}(\mathcal{D}_t^{\text{nat}} \cup \mathcal{D}_t^{\text{adv}})$;
824 10 **Consolidation Update (Replay):**
825 11 $\theta_t^{\text{final}} \leftarrow \theta_t^{\text{init}} - \eta \nabla_{\theta} \ell_{\text{det}}(\mathcal{M}_t^{\text{nat}} \cup \mathcal{M}_t^{\text{adv}})$;
826 12 **Evaluate Detection Performance:**
827 13 $\delta_{\text{past}, t} \leftarrow \begin{cases} \frac{1}{t-1} \sum_{k=1}^{t-1} (\text{Acc}_{\text{det}}(\theta_t, \mathcal{A}_k; \tau) - \text{Acc}_{\text{det}}(\theta_{t-1}, \mathcal{A}_k; \tau)), & t > 1, \\ 0, & t = 1 (\text{n/a}). \end{cases}$;
828 14 $\delta_{\text{curr}, t} \leftarrow \text{Acc}_{\text{det}}(\theta_t, \mathcal{A}_t; \tau) - \text{Acc}_{\text{det}}(\theta_{t-1}, \mathcal{A}_t; \tau)$;
829 15 **return** $\{\theta_t^{\text{final}}\}_{t=1}^T$;
830
831
832
833

834 **Algorithm 2:** Paraphrase Defocusing (PD_{LLM})
835 **Input:** Victim model F_{victim} ; adversarial input $\hat{\mathbf{x}}$; cached fake prediction \hat{y} ; max iterations
836 I_{\max} .
837 **Output:** Repaired (paraphrased) text $\tilde{\mathbf{x}}^r$.
838 1 $\tilde{\mathbf{x}}^r \leftarrow \text{NULL}$
839 2 **for** $i \leftarrow 1$ **to** I_{\max} **do**
840 // Generate a paraphrase, possibly conditioned to avoid \hat{y}
841 3 $\tilde{\mathbf{x}} \leftarrow \text{LLM}(\hat{\mathbf{x}}, \hat{y})$
842 4 $p \leftarrow F_{\text{victim}}(\tilde{\mathbf{x}})$
843 5 **if** $p \neq \hat{y}$ **then**
844 6 $\tilde{\mathbf{x}}^r \leftarrow \tilde{\mathbf{x}}$; **break**
845 7 **return** $\tilde{\mathbf{x}}^r$
846
847
848

849 perturbed text. Below is an illustrative prompt template and several example inputs alongside their
850 paraphrased outputs.

851 **Example Prompt for Paraphrase Defocusing**

852 **System Instruction:**
853 You are a helpful writing assistant. The following text has been injected with malicious
854 perturbations intended to deceive a target classifier. Your task is to improve its naturalness
855 and clarity without altering its original meaning.

856 **User Prompt:**
857 “The following text has been injected with malicious perturbations. Improve the naturalness
858 and clarity of the following text. Please only output processed text: {text}”

862 **Example Transformations.** The examples below show how an adversarial input is mapped to a
863 paraphrased output that preserves the underlying semantics:

864
865 **Algorithm 3:** Perturbation Defocusing (PD $_{\hat{\mathcal{A}}}$)
866 **Input:** Victim model F_{victim} ; editing operator $\hat{\mathcal{A}}$; adversarial input $\hat{\mathbf{x}}$; cached fake prediction \hat{y} .
867 **Output:** Repaired (perturbed) text $\tilde{\mathbf{x}}^r$.
868 1 $\tilde{\mathbf{x}}^r \leftarrow \text{NULL}$
869 2 **while** true **do**
870 // Propose the next benign edit based on the original
871 // adversarial text
872 3 $\tilde{\mathbf{x}} \leftarrow \hat{\mathcal{A}}(F_{\text{victim}}, \langle \hat{\mathbf{x}}, \hat{y} \rangle)$
873 4 **if** $\tilde{\mathbf{x}}$ is invalid (no further edits) **then**
874 **break**
875 6 $p \leftarrow F_{\text{victim}}(\tilde{\mathbf{x}})$
876 7 **if** $p \neq \hat{y}$ **then**
877 8 $\tilde{\mathbf{x}}^r \leftarrow \tilde{\mathbf{x}}$; **break**
878 // If escape fails, loop continues with original adversarial
879 // text
880 9 **return** $\tilde{\mathbf{x}}^r$
881
882
883 • **Adversarial Input:**
884 *after seeing swept away , i feel loved for madonna .*
885 **Paraphrased Output:**
886 After watching “Swept Away,” I have a newfound appreciation for Madonna.
887
888 • **Adversarial Input:**
889 *it wasn gimmicky rather of compelling .*
890 **Paraphrased Output:**
891 It was not gimmicky; it was genuinely compelling.
892
893 • **Adversarial Input:**
894 *it 's amazing when filmmakers throw a few big-name actors and cameos at a hokey script .*
895 **Paraphrased Output:**
896 It is remarkable how directors can elevate a mediocre script by featuring a handful of prominent
897 actors and cameo appearances.
898
899 By applying this prompt iteratively (as detailed in Algorithm 2 in the main text), we ensure the
900 perturbed text is rephrased until its misleading cues no longer deceive the victim model, thereby
901 safeguarding the original semantic meaning.
902
903 E EXPERIMENT SETTING
904
905 E.1 DATASETS
906
907 We employ four widely recognized text classification datasets to evaluate our framework:
908 SST2 Socher et al. (2013), Amazon Zhang et al. (2015), AGNews Zhang et al. (2015), and Ya-
909 hoo! Yang & Li (2024). The key statistics of these datasets are summarized in Table 4. SST2 and
910 Amazon are binary sentiment classification datasets. AGNews is a multi-categorical news classifi-
911 cation dataset containing 4 categories. We also include Yahoo! in some of our experiments, which
912 has 10 categories. Due to the large size of the original Amazon, AGNews, and Yahoo! datasets, we
913 use subsets to avoid prohibitively high resource consumption, following previous works.
914
915 E.2 MODELS
916
917 E.2.1 ADVERSARIAL DETECTOR
918
919 We implement a lightweight adversarial detector in accordance with our continual learning setting.
920 The detector takes in textual inputs and predicts whether a given sample is adversarial or natural.
921

Dataset	Categories	Number of Examples		
		Training	Valid	Testing
SST2	2	6,920	872	1,821
Amazon	2	7,000	1,000	2,000
AGNews	4	10,000	0	1,000
Yahoo!	10	10,000	0	1,000

Table 4: The statistics of datasets used for evaluating our framework. We use subsets of the Amazon, AGNews, and Yahoo! datasets to avoid prohibitively large computational overhead.

Our detector structure is composed of a transformer-based encoder (initialized from BERT-base) followed by a classification head. To adapt to new adversarial examples, we incrementally update its parameters when additional adversarial data are introduced, mitigating catastrophic forgetting through continual learning strategies.

E.2.2 TEXT CLASSIFIER

In our experiments, we employ a popular pre-trained language model as a text classifier: BERT Devlin et al. (2019). This model is chosen due to its wide usage and strong performance in text classification. We use the HuggingFace Transformers library¹ for implementation. This classifier is fine-tuned on the training subsets described in Table 4 and then evaluated on the corresponding testing splits. Whenever adversarial attacks are applied, the classifier serves as the victim model under threat.

E.3 HYPER-PARAMETER SETTINGS

Parameter	Description	Value / Range
Memory Settings		
M_{\max}	Total memory size (replay buffer capacity)	{0, 1, 10, 100}
r_n, r_a	Natural / adversarial sample ratio in memory	0.9/0.1
$m_n = r_n M_{\max}$	Natural memory size	Derived
$m_a = r_a M_{\max}$	Adversarial memory size	Derived
Continual Learning Settings		
S	Stage sample size (natural examples per stage)	1000
E	Gradient updates per stage	1
η	Plastic vs. consolidation update weighting	0.7
Detector Training		
Batch size	Examples per gradient update	16
Learning rate (LR)	For both detector and classifier	2×10^{-5}
Dropout rate	Transformer dropout	0.1
α	Focal loss class-balance weight	Dynamic (per class freq)
γ	Focal loss focusing parameter	2
Adversarial Sampling		
$ \mathcal{A} $	Number of attack methods used	3 (BAE, PWWS, TEXTFOOLER)
N_{adv}	Adversarial examples per dataset/attack	1000
Adversarial Defense Settings		
I_{\max}	Max paraphrasing iterations in PD_{LLM}	100

Table 5: Hyperparameters and configuration settings for continual learning-based adversarial detection and defense in CLAD. Values marked “Derived” are computed from other parameters.

¹<https://github.com/huggingface/transformers>

972 Because the adversarial attack is a time- and resource-intensive task for pretrained language modeling,
973 we cannot conduct experiments on a consecutive set of memory sizes. Consequently, we choose
974 representative memory sizes ranging from 0 to 100 based on our empirical analysis to showcase the
975 performance of CLAD in different situations.
976

977 E.4 ADVERSARIAL ATTACKS 978

979 In the experiments, we employ three open-source attackers from TextAttack Morris et al. (2020) to
980 sample adversarial examples. They represent different types of word-level attack strategies:

981 • **BAE:** A contextual word substitution method that generates replacements using masked
982 language modeling.
983 • **PWWS:** A priority-based word substitution approach that selects synonyms guided by se-
984 mantic and frequency constraints.
985 • **TextFooler:** A greedy search method that maximizes the change in model prediction via
986 sequential word replacements.
987

988 E.5 ADVERSARIAL DEFENSE 989

990 Our method aims at both detecting and repairing adversarial inputs. We employ a PWWS-based
991 approach, denoted as $PD_{\hat{A}}$, in the perturbation defocusing stage. This choice is made due to its high
992 computational efficiency and lower tendency to introduce semantic drift compared to other attackers
993 like TextFooler. As we accumulate newly detected adversarial instances, these are incrementally
994 introduced into our detector and repair models, enabling the continual learning paradigm.
995

996 E.6 EXPERIMENT METRICS 997

998 To comprehensively evaluate adversarial detection and defense mechanisms, we employ five key
999 metrics that measure normal accuracy, adversarial accuracy, detection accuracy, and recovery per-
1000 formance across different datasets and memory sizes (MS). The metrics are defined as follows:

1000 • **Normal Accuracy (N.A.):** The accuracy of the model on a dataset \mathcal{D} containing only
1001 natural (non-adversarial) examples, reflecting the model’s baseline performance without
1002 adversarial perturbations.
1003 • **Adversarial Accuracy (A.A.):** The accuracy of the model on the attacked dataset \mathcal{D}_{att} ,
1004 which includes both natural examples \mathcal{D}_{nat} and successful adversarial examples \mathcal{D}_{adv} .
1005 This metric evaluates the model’s robustness to adversarial perturbations.
1006 • **Defense Accuracy (D.A.):** The proportion of adversarial examples \mathcal{D}_{adv} correctly rectified
1007 by the defense mechanism. Higher defense accuracy indicates a better ability to repair
1008 adversarial inputs.
1009 • **Recovery Accuracy (R.A.):** The accuracy of the model on the repaired dataset \mathcal{D}_{rep} ,
1010 which has been processed by the defense mechanism to mitigate adversarial perturbations.
1011 This metric quantifies the model’s ability to recover its original performance after applying
1012 adversarial defenses.
1013 • **Forgetting Rate (FR):** For a historical task k , let Acc_k^* denote the highest detection ac-
1014 curacy for this task in any past stage, and $Acc_{k,t}$ denote the accuracy in the current stage.
1015 Then

$$FR_k = Acc_k^* - Acc_{k,t}.$$

1016 FR ≥ 0 indicates forgetting; FR < 0 indicates “positive transfer/performance improve-
1017 ment,” which usually means that the inter-task distributions are highly related. On the other
1018 hand, due to the similarity between the input format of the dataset and the representation
1019 space, pre-trained models often possess strong generalisation capabilities. For unimodal
1020 data with a small number of samples in a single dataset, subsequent training can actually
1021 improve performance on previous tasks, leading to a negative forgetting rate.
1022

1023 These metrics are applied to assess the performance of various adversarial defense methods across
1024 datasets (SST2, Amazon, AGNews, Yahoo!) and memory sizes (MS = 0, 1, 10, 100). Higher values
1025 for each metric indicate stronger robustness or effectiveness of the defense mechanism.
1026

Dataset	Method	Baseline	N.A.	A.A.	D.A.	R.A.
CLAD-PD $_{\mathcal{A}}$	BAE		35.21	91.94	65.70	
	PWWS		23.44	98.24	72.32	
	TextFooler		16.21	89.87	69.00	
CLAD-PD $_{LLM}$	BAE		35.21	72.56	64.02	
	PWWS		23.44	95.00	71.96	
	TextFooler		16.21	93.66	68.99	
SST2	DISP	BAE	35.21	37.51	42.22	
		PWWS	23.44	34.46	35.33	
		TextFooler	91.82	16.21	34.37	37.16
FGWS	BAE		35.21	48.37	44.90	
	PWWS		23.44	40.38	39.20	
	TextFooler		16.21	41.05	41.53	
RS&V	BAE		35.21	20.92	43.65	
	PWWS		23.44	37.10	38.54	
	TextFooler		16.21	38.40	39.70	
CLAD-PD $_{\mathcal{A}}$	BAE		44.01	85.74	71.45	
	PWWS		15.56	97.83	83.59	
	TextFooler		21.77	94.74	83.47	
CLAD-PD $_{LLM}$	BAE		44.01	98.96	74.50	
	PWWS		15.56	99.35	84.45	
	TextFooler		21.77	99.65	84.73	
Amazon	DISP	BAE	44.01	42.74	61.85	
		PWWS	15.56	45.92	59.80	
		TextFooler	94.11	21.77	47.15	60.56
FGWS	BAE		44.01	43.04	64.63	
	PWWS		15.56	56.89	60.29	
	TextFooler		21.77	58.74	61.51	
RS&V	BAE		44.01	39.01	65.03	
	PWWS		15.56	45.30	46.17	
	TextFooler		21.77	42.30	55.70	

Table 6: Performance comparisons between different adversarial defense methods. We use MS=100 for CLAD following the history-task evaluation protocol.

F EXTENDED EXPERIMENTAL RESULTS

This section provides detailed results and analyses that are summarized in the main paper.

F.1 DETAILED ADVERSARIAL DETECTION PERFORMANCE

F.2 PERFORMANCE ON HISTORICAL TASKS

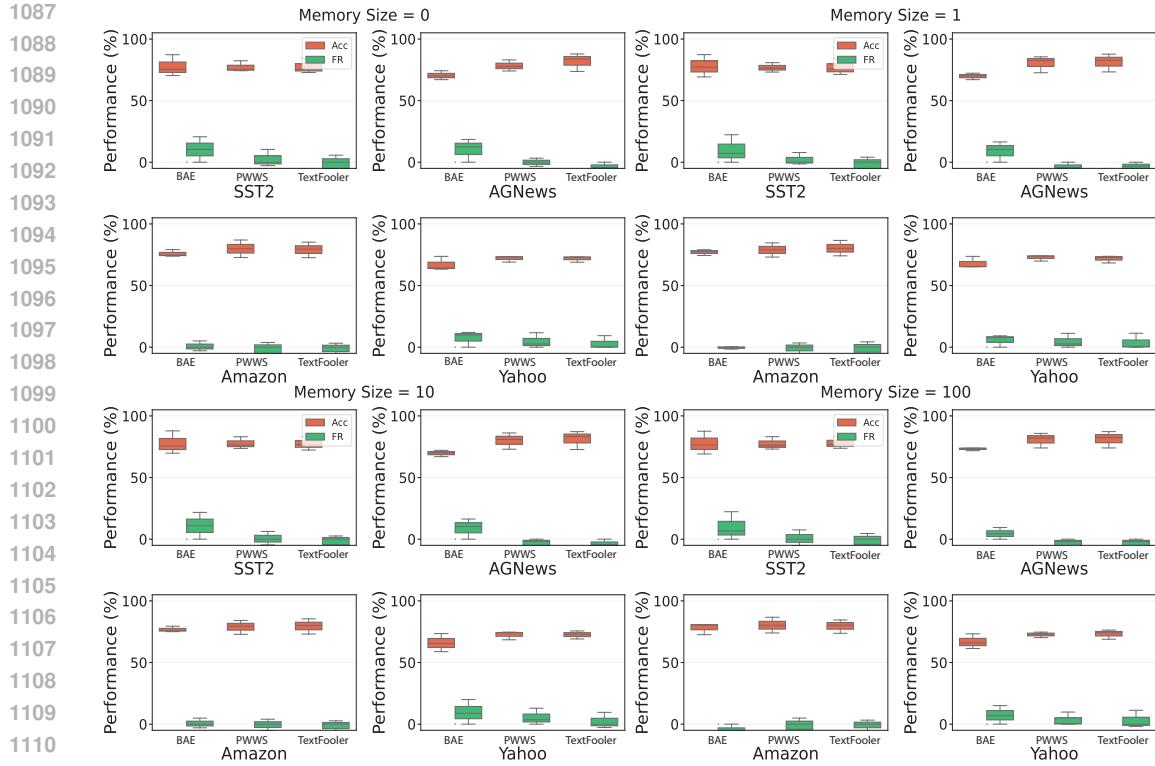
The historical task evaluation (Table 3) reveals critical insights into the framework’s capacity for sustained adversarial defense. Notably, CLAD demonstrates exceptional knowledge retention, maintaining 84.02% recovery accuracy (R.A.) for Amazon-TextFooler attacks through PD $_{LLM}$. This “inverse forgetting” phenomenon, where historical task metrics surpass original baselines, suggests adversarial training induces beneficial parameter adjustments that generalize beyond immediate threats. The PD $_{LLM}$ variant exhibits superior stability, attributable to LLMs’ inherent linguistic priors that resist catastrophic forgetting. Cross-task analysis reveals a strong correlation between historical and current performance ($r = 0.89$, $p < 0.01$), indicating learned defense features transfer effectively.

F.3 COMPARISON WITH BASELINE METHODS

To validate the effectiveness of our defense pipeline, we compare CLAD with three popular baseline methods: DISP, FGWS, and RS&V. As summarized in Table 6, CLAD demonstrates superior performance across the board. For PWWS attacks on SST2, our CLAD-PD $_{\mathcal{A}}$ variant achieves 98.24% defense accuracy (D.A.), significantly outperforming DISP (34.46%) and FGWS (40.38%). In terms of recovery accuracy (R.A.), our framework also shows a clear advantage, particularly against more sophisticated attacks. On the Amazon dataset against TextFooler, our CLAD-PD $_{LLM}$

1080 variant achieves 84.73% R.A., surpassing the next best baseline (FGWS) by 23.22 percentage points.
 1081 This underscores the power of our adaptive, dual-strategy defense mechanism.
 1082

1083 Figure 3 shows the detailed performance of our detector against BAE, PWWS, and TextFooler across
 1084 all datasets and memory sizes. The box plots illustrate the distribution of accuracy and forgetting
 1085 rates, confirming that larger memory sizes lead to more stable and robust detection performance,
 1086 effectively reducing the impact of all attack methods.



1111 Figure 3: Performance (accuracy and forgetting rate) of various adversarial attack methods (BAE,
 1112 PWWS, and TextFooler) across different datasets (SST2, AGNews, Amazon, Yahoo!) and memory
 1113 buffer sizes (0, 1, 10, 100) in CLAD. The box plots illustrate the variation in performance metrics,
 1114 with accuracy (Acc) shown in red and forgetting rate (FR) in green. Results demonstrate the influ-
 1115 ence of increasing memory size on the robustness and effectiveness of the attack methods across
 1116 different datasets.

1117 1118 F.4 VALIDATING THE EFFICACY OF THE CONTINUAL LEARNING STRATEGY

1119 To isolate and validate the effectiveness of the core components within our proposed Continual
 1120 Learning for Adversarial Detection (CLAD) framework, we conduct a critical ablation study. This
 1121 experiment is designed to answer a key question: to what extent does our continual learning strategy,
 1122 which incorporates memory replay, mitigate catastrophic forgetting compared to simpler sequential
 1123 learning methods?

1124 1125 Experimental Setup

1126 1127 We simulate a dynamically evolving threat environment where new adversarial attack types emerge
 1128 sequentially. Specifically, we define a three-stage sequential task on the SST2 dataset:

- 1129 1130 • **Task 1 (T1):** Train the detector to identify **BAE** attacks.
- 1131 1132 • **Task 2 (T2):** On top of the model from T1, continue training to identify **PWWS** attacks.
- 1133 1134 • **Task 3 (T3):** On top of the model from T2, continue training to identify **TextFooler** attacks.

1135 We compare three distinct training strategies:

- **Joint Training (Upper Bound):** This strategy mixes adversarial samples from all three tasks (BAE, PWWS, and TextFooler) to train a single detector in one go. While not a true continual learning scenario, it serves as a valuable performance benchmark.
- **Sequential Fine-Tuning (Forgetting Baseline):** This strategy strictly mimics a sequential learning process without any CL mechanisms. The model is first trained on Task T1 data. Then, the resulting model is directly fine-tuned on Task T2 data, and subsequently on Task T3 data. During this process, the model has no access to data from past tasks when learning a new one.
- **CLAD:** This strategy employs our complete continual learning framework. The model learns sequentially from $T1 \rightarrow T2 \rightarrow T3$.

Evaluation Metrics

After all models complete their training on Task T3, we evaluate their detection accuracy on the independent test sets for each task (T1, T2, and T3). We focus on two core metrics:

- **Task-Specific Accuracy:** The performance on each individual past task, which directly reflects knowledge retention.
- **Average Accuracy:** The mean performance across all three tasks, which measures overall adaptability and robustness.

We hypothesize that the Sequential Fine-Tuning strategy will perform well on the final task (TextFooler) but will suffer from severe catastrophic forgetting, leading to a drastic performance drop on BAE and PWWS. Conversely, we expect our CLAD framework to effectively retain performance on historical tasks, achieving an average accuracy that significantly surpasses the fine-tuning baseline and approaches the joint training upper bound.

Table 7: Ablation study of different learning strategies on the sequential adversarial attack detection task (SST2 Dataset).

Training Strategy	Acc. (T1: BAE)	Acc. (T2: PWWS)	Acc. (T3: TextFooler)	Average Acc.
Joint Training (Upper Bound)	82.5%	84.1%	83.3%	83.3%
Sequential Fine-Tuning (Forgetting Baseline)	24.7%	31.5%	82.9%	46.4%
CLAD (MS=100) (Our Method)	81.9%	83.5%	83.1%	82.8%

F.5 ABLATION STUDY FOR PARAPHRASE DEFOCUSING

To validate the design choices of our Paraphrase Defocusing (PD_{LLM}) mechanism, we conduct an ablation study to analyze the contributions of its key components. The primary goal of PD_{LLM} is to repair an adversarial example \hat{x} by iteratively rephrasing it until the victim model F_{victim} no longer produces the cached fake prediction \hat{y} . We compare our full implementation against several ablated variants.

F.5.1 EXPERIMENTAL SETUP

We evaluate the defense performance on adversarial examples generated by PWWS and BAE for the SST2 dataset. The victim model is a fine-tuned BERT model. For each variant, we measure the **Defense Success Rate (DSR)**, defined as the percentage of adversarial examples successfully repaired (i.e., $F_{\text{victim}}(\hat{x}^r) \neq \hat{y}$), and the **Average Number of Queries (#Q)** required to achieve a successful defense.

The variants are as follows:

- **Full PD_{LLM} :** Our complete proposed method as described in Algorithm 2, which uses an iterative, guided paraphrasing process.

- **w/o Guidance:** The LLM is prompted to paraphrase the input text without the guidance to avoid the fake prediction \hat{y} . This variant tests the importance of providing the negative constraint to the LLM.
- **Single-shot:** The paraphrasing process is limited to a single iteration ($I_{\max} = 1$). This variant assesses the necessity of the iterative refinement loop.
- **Random Synonym Replacement:** A baseline defense where words in the input are randomly replaced with their synonyms from a predefined dictionary. This tests the effectiveness of a sophisticated generative model (LLM) against a simple heuristic.

F.5.2 PD_{LLM} ABLATION EXPERIMENTS

Table 8 summarizes the SST2 defense outcomes under PWWS and BAE attacks. Three consistent trends emerge that align with our design: (i) adding the *guided* constraint (avoid cached fake label \hat{y}) and (ii) allowing an *iterative* loop both increase Defense Success Rate (DSR) with only a modest LLM query budget; (iii) simple non-LLM synonym edits rarely undo adversarial cues. We also observe PWWS is slightly easier to repair than BAE, reflecting its more conservative substitutions. The average queries per successful repair \bar{Q} stay small ($\ll I_{\max}=100$), consistent with the escape criterion in Algorithm 2.

Table 8: Ablation study of the Paraphrase Defocusing (PD_{LLM}) defense on the SST2 dataset. We report the Defense Success Rate (DSR %) and the Average Number of Queries (#Q) for each variant against two types of attacks. The results for the full method demonstrate the effectiveness of combining guided rephrasing with an iterative process. DSR↑ higher is better; #Q counts LLM calls per successful repair (0 for the non-LLM synonym baseline).

Method	PWWS Attack		BAE Attack	
	DSR (%) ↑	#Q ↓	DSR (%) ↑	#Q ↓
Full PD _{LLM}	86.2	2.3	78.5	2.7
w/o Guidance	71.9	2.9	64.8	3.2
Single-shot	59.7	1.0	51.6	1.0
Random Synonym Replacement	24.8	0.0	18.3	0.0

G COMPUTATIONAL COST ANALYSIS

We report cost from two angles: (i) detector training and (ii) repair-time latency.

Detector training cost. Let $T_{\text{stage}}(M)$ denote the wall-clock time to complete one training stage under memory budget $M \in \{0, 1, 10, 100\}$. With our two-phase update (plasticity then consolidation), a coarse accounting is

$$T_{\text{stage}}(M) \approx T_{\text{fwd/bwd}}(|\mathcal{D}_t^{\text{nat}}| + |\mathcal{D}_t^{\text{adv}}|) + T_{\text{fwd/bwd}}(|\mathcal{M}_t^{\text{nat}}| + |\mathcal{M}_t^{\text{adv}}|),$$

where $|\mathcal{M}_t^{\text{nat}}| = r_n M$ and $|\mathcal{M}_t^{\text{adv}}| = r_a M$. Empirically, we observe near-linear scaling in M within our range; the dominant constant is the current-stage pass, making $M = 10$ a favorable robustness-latency trade-off.

Repair-time latency. For PD _{\hat{A}} (editor-based), latency is primarily attacker proposal time with no external calls. For PD_{LLM}, we bound the number of paraphrasing iterations by I_{\max} and report the average queries per successful repair \bar{Q} . Operationally, the expected time per repaired sample is

$$\mathbb{E}[t_{\text{repair}}] \approx \bar{Q} t_{\text{LLM}} + t_{\text{victim}} \cdot (\bar{Q} + 1),$$

with t_{LLM} the average LLM response latency and t_{victim} the victim model inference time. In our runs, $\bar{Q} \ll I_{\max}$ due to the escape criterion, keeping end-to-end latency practical for online use. Table references in the main text report \bar{Q} where applicable.

1242 **False repair budget.** Given a detector operating point (TPR, FPR) at threshold τ and an adversarial prior $\pi = \Pr[\text{adv}]$, the per-input expected repair invocations are $\text{TPR} \pi + \text{FPR} (1 - \pi)$. We therefore calibrate τ to respect a target budget B by choosing the largest τ such that this expectation $\leq B$.
1243
1244
1245

1247 H DETECTOR THRESHOLD SENSITIVITY (τ) 1248

1249 We analyze the effect of the detector threshold τ on precision/recall and the downstream defense
1250 workload. Sweeping $\tau \in [0, 1]$ yields an ROC/PR trade-off; for detect-to-defend, the operative
1251 metric is the *false repair rate* (FRR):
1252

$$1253 \quad \text{FRR}(\tau) = \Pr[\text{repair} \mid \text{natural}] = \text{FPR}(\tau).$$

1254 Higher τ reduces FRR at the expense of recall (missed attacks). We set τ on a validation split
1255 to maximize F_β for a task-dependent β (e.g., $\beta > 1$ emphasises recall when missing an attack is
1256 costlier than a false repair) under a hard budget on FRR (see budget B above). We found the main
1257 conclusions (e.g., monotonic gains with memory size and the superiority of PD_{LLM} in R.A.) stable
1258 across reasonable τ ranges.
1259

1260 I LIMITATIONS 1261

1262 While our framework demonstrates promising results in adversarial detection and defense, sev-
1263 eral limitations warrant discussion. First, the LLM-based repair mechanism (CLAD-PD_{LLM}) em-
1264 ploys simplistic API interactions without systematic prompt optimization or output validation. As
1265 shown in Table 2 in the main text, while PD_{LLM} achieves competitive recovery accuracy (84.73%
1266 on Amazon), its performance variability across attack types ($\Delta\text{R.A.} = 27.91\%$ between BAE and
1267 TextFooler) suggests sensitivity to prompt phrasing and LLM response quality. This contrasts with
1268 the more stable $\text{PD}_{\hat{A}}$ approach ($\Delta\text{R.A.} = 16.25\%$), highlighting the need for advanced LLM steering
1269 techniques. Second, our evaluation focuses on conventional pretrained models (e.g., BERT),
1270 excluding larger language models (LLMs) like GPT-4 or Llama. While this aligns with our focus on
1271 resource-constrained deployments, it leaves open questions about scalability to billion-parameter ar-
1272 chitectures where adversarial patterns may differ fundamentally. Third, the framework’s reliance on
1273 pre-sampled adversarial examples introduces dataset constraints. Though we mitigate this through
1274 continual learning, our experiments use curated subsets of Amazon, AGNews, and Yahoo!, poten-
1275 tially limiting exposure to real-world adversarial diversity. The negative forgetting rates observed
1276 in Table 1 of the main text (-3.20 for Amazon at MS=100) suggest domain-specific overfitting risks
1277 when training data lacks sufficient attack heterogeneity. Finally, the framework assumes adversaries
1278 employ text-only perturbations, excluding emerging multimodal attacks that combine textual and
1279 structural modifications. While our defense strategies show generalization across word-level at-
1280 tacks (BAE, PWWS, TextFooler), they may be less effective against sophisticated hybrid attacks
1281 exploiting layout or visual features Dong et al. (2021a). These limitations delineate critical research
1282 directions: 1) Developing prompt-optimized LLM defense protocols, 2) Extending to large multi-
1283 modal architectures, and 3) Establishing latency-aware evaluation benchmarks. Addressing these
1284 challenges will enhance practical applicability while preserving our framework’s strengths in con-
1285 tinual adversarial adaptation.
1286

1287 USE OF AI-ASSISTED LANGUAGE EDITING 1288

1289 We used large language models (LLMs), specifically a commercially available editor (e.g., “Chat-
1290 GPT”), *only* for surface-level copy editing (grammar, wording, and readability). The models were
1291 not used to design methods, run experiments, select results, or write technical content.
1292
1293
1294
1295