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Summary
Model-Based Reinforcement Learning (MBRL) has shown promise in visual control tasks

due to its data efficiency. However, training MBRL agents to develop generalizable perception
remains challenging, especially amid visual distractions that introduce noise in representation
learning. We introduce Segmentation Dreamer (SD), a framework that facilitates representa-
tion learning in MBRL by incorporating a novel auxiliary task. Assuming that task-relevant
components in images can be easily identified with prior knowledge in a given task, SD uses
segmentation masks on image observations to reconstruct only task-relevant regions, reducing
representation complexity. SD can leverage either ground-truth masks available in simula-
tion or potentially imperfect segmentation foundation models. The latter is further improved
by selectively applying the image reconstruction loss to mitigate misleading learning signals
from mask prediction errors. In modified DeepMind Control suite and Meta-World tasks with
added visual distractions, SD achieves significantly better sample efficiency and greater final
performance than prior work and is especially effective in sparse reward tasks that had been un-
solvable by prior work. We also validate its effectiveness in a real-world robotic lane-following
task when training with intentional distractions to achieve zero-shot transfer.

Contribution(s)
1. This paper introduces a novel auxiliary task in model-based reinforcement learning (MBRL)

to enhance representation learning in visually distracting environments. Our approach re-
constructs control-relevant components while filtering out distractions, ensuring that latent
embeddings focus on essential features.
Context: While our method requires prior knowledge of task-relevant components, iden-
tifying these components is typically straightforward for practitioners in many robotics ap-
plications. Prior work using reconstruction-free auxiliary tasks relies on large amounts of
data to infer important features, making them less sample-efficient.

2. This paper integrates segmentation foundation models to guide feature learning in visual
control through task-relevant reconstruction targets, without incurring extra test-time over-
head and while improving robustness to segmentation errors. This demonstrates an effective
way to harness advances in computer vision for visual control tasks.
Context: Prior approaches typically use segmentation models for input preprocessing,
which adds deployment overhead and increases sensitivity to segmentation errors.

3. Our method learns effective visual control policies in environments with distractions,
demonstrating success in DMC, where locomotion control requires handling contact dy-
namics; Meta-World, which involves robotic manipulation, occlusions, and multi-object
interactions; and DuckieTown, where transferring lane-following behavior from simulation
to reality must account for diverse perturbations, including foreground distractions.
Context: Our method is sample-efficient, achieves higher final performance, and is the
only method capable of learning with sparse rewards in DMC.
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Abstract

Model-Based Reinforcement Learning (MBRL) has shown promise in visual control1
tasks due to its data efficiency. However, training MBRL agents to develop generaliz-2
able perception remains challenging, especially amid visual distractions that introduce3
noise in representation learning. We introduce Segmentation Dreamer (SD), a frame-4
work that facilitates representation learning in MBRL by incorporating a novel auxiliary5
task. Assuming that task-relevant components in images can be easily identified with6
prior knowledge in a given task, SD uses segmentation masks on image observations7
to reconstruct only task-relevant regions, reducing representation complexity. SD can8
leverage either ground-truth masks available in simulation or potentially imperfect seg-9
mentation foundation models. The latter is further improved by selectively applying the10
image reconstruction loss to mitigate misleading learning signals from mask prediction11
errors. In modified DeepMind Control suite and Meta-World tasks with added visual12
distractions, SD achieves significantly better sample efficiency and greater final perfor-13
mance than prior work and is especially effective in sparse reward tasks that had been14
unsolvable by prior work. We also validate its effectiveness in a real-world robotic lane-15
following task when training with intentional distractions to achieve zero-shot transfer.16

1 Introduction17

Recent advances in model-based reinforcement learning (MBRL) (Sutton, 1991; Ha & Schmid-18
huber, 2018; Hafner et al., 2019; 2020; Hansen et al., 2022; 2023) have made it a powerful tool19
for learning control policies, achieving high sample efficiency. Among these advancements, the20
DREAMER family (Hafner et al., 2020; 2021; 2023) stands out as seminal work, demonstrating21
strong performance across diverse visual control environments. This success is driven by a close22
cooperation between a world model and an actor–critic agent. The world model learns to emulate23
the environment’s forward dynamics and reward function in a latent state space, and the agent is24
trained by interacting with this world model in place of the original environment.25

Under this framework, accurate reward prediction is all we should sufficiently require for agent26
training. However, learning representations solely from reward signals is inherently challenging due27
to their limited expressiveness and high variance (Hafner et al., 2020; Jaderberg et al., 2017). To28
address this, DREAMER employs image reconstruction as an auxiliary task in world model training29
to facilitate representation learning. In environments with little distraction, image reconstruction30
proves effective by delivering rich feature-learning signals derived from pixels. However, in the31
presence of distractions, the image reconstruction task pushes the encoder to retain all image infor-32
mation, regardless of its task relevance. Including such information in the latent space complicates33
dynamics modeling and degrades sample efficiency by wasting model capacity and drowning the34
relevant signal in noise.35

Distractions are prevalent in real-world visual control tasks. A robot operating in a cluttered envi-36
ronment such as a warehouse may perceive much task-irrelevant information that it needs to ignore.37
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Figure 1: Left: Providing mask example(s) and fine-tuning a mask model, or instrumenting a simula-
tor, to obtain masks. Right: An input observation in a distracting Meta-World with three alternative
auxiliary task targets. Moving scenes in the background are considered distractions. (b) Observa-
tions including task-irrelevant information, disturbing world-model training. (c) and (d) Segmenta-
tion of task-relevant components using, respectively, a ground-truth mask and an approximate mask
generated by segmentation models.

When training with domain randomization for added policy robustness, task-irrelevant informa-38
tion is actively added and must be denoised. Prior approaches (Zhang et al., 2021; Nguyen et al.,39
2021; Deng et al., 2022; Fu et al., 2021; Bharadhwaj et al., 2022) address the noisy reconstruction40
problem by devising reconstruction-free auxiliary tasks, such as contrastive learning (Chen et al.,41
2020). However, they often suffer from sample inefficiency, requiring many trajectories to isolate42
the task-relevant information that needs to be encoded. This challenge is exacerbated in sparse-43
reward environments, where the signal for task relevance is very weak. Additionally, working with44
small objects, which is common in object manipulation tasks, poses difficulties for these methods45
because those objects contribute less to loss functions and are easily overlooked without special46
attention (Seo et al., 2022).47

Inspired by these problems, we address the following question in this paper: How can we help world48
models learn task-relevant representations more efficiently? Our proposed solution takes advantage49
of the observation that identifying task-relevant components within images is often straightforward50
with some domain knowledge. For instance, in a robotic manipulation task, the objects to manip-51
ulate and the robot arm are such task-relevant components, as shown in Fig. 1 (Left). Given this52
assumption, we introduce a simple yet effective alternative auxiliary task to reconstruct only the53
task-related components of image observations.54

We accomplish this by using segmentation masks of task-related objects which are easily accessible55
in simulations. Specifically, we replace Dreamer’s auxiliary task to reconstruct raw RGB image ob-56
servations (Fig. 1b) with an alternative task to reconstruct images with a task-relevant mask applied57
to them (Fig. 1c). By doing this, the world model can learn features from a rich pixel-reconstruction58
loss signal without being hindered by the noise of visual distractions. As long as task-relevance59
can feasibly be encoded in segmentation-mask format, which is common in many object-centric60
and robotics domains, our method can be used to improve the efficiency of world model training in61
distracting environments.62

Unlike previous work that incorporates segmentation masks as inputs in reinforcement learn-63
ing (RL) (James et al., 2019; So et al., 2022; Zhang et al., 2025), we use masks solely in an auxiliary64
task to improve representation learning. This approach offers two advantages. First, segmentation65
masks are only required during training. Our method still operates on the original (potentially dis-66
tracting) images, so masks are unnecessary at test time, improving computational efficiency during67
deployment. Second, the masks do not need to be perfect; as long as they guide feature learning to be68
informative for the downstream task, approximate masks can replace ground-truth masks, increasing69
practicality.70

To this end, we propose training with our auxiliary task using segmentation estimates, enabling71
learning in scenarios where no ground-truth (GT) masks are available. Building on recent advances72
in segmentation foundation models (Kirillov et al., 2023; Zhang et al., 2023; Xie et al., 2021), we73
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fine-tune these models with a small amount of annotated training data to generate pseudo-labels for74
the auxiliary task (Fig. 1d). While the performance with segmentation estimates is strong without75
further modification, we find that the training can sometimes be destabilized due to incorrect learning76
signals from segmentation prediction errors. To enhance robustness, we identify pixels where the77
foundation model’s mask prediction disagrees with a second mask prediction given by our world78
model. We then exclude these pixels from the RGB reconstruction loss, preventing training on79
potentially incorrect targets (Section 4.3).80

We additionally demonstrate our method’s effectiveness in cases where ground-truth mask are avail-81
able but only during training, such as when training in simulation for zero-shot deployment on a82
real robot. In such cases, methods like domain randomization (Tobin et al., 2017) can be employed83
during training to introduce visual distractions and promote test-time generalization to unseen real84
environment appearances. Using ground-truth masks provided by the simulation, we show that de-85
coding only task-relevant information dramatically improves the world model’s training efficiency86
and generalization on a real-robot lane-following task.87

We evaluate our method on various robotics benchmarks, including DeepMind Control Suite (Tassa88
et al., 2018) and Meta-World (Yu et al., 2019), perturbing both with visual distractions. We show89
that our method for reconstructing masked RGB targets using the ground-truth masks in the presence90
of distractions can reach the same level of performance as training in original environment with91
no distractions added. Our method for training with approximate masks also shows impressive92
performance, often matching the performance of the ground-truth mask variant. In both benchmarks,93
our approximate-mask method achieves higher sample efficiency and superior test returns compared94
to previous approaches. Notably, this is accomplished with very few task-specific mask example95
data points (1, 5, or 10 used for fine-tuning), with much of its strength coming from the power of96
segmentation foundation models. Furthermore, our method proves particularly effective in sparse97
reward environments and those involving small objects, where prior approaches often struggle.98

Finally, in the robot lane-following task, we demonstrate our method’s effectiveness in simulation-99
to-real training by decoding only task-relevant components of image observations, promoting more100
efficient simulation training and better zero-shot generalization to the real world environment.101

2 Related Work102

Model-Based RL for Distracting Visual Environments. Recent advances in MBRL have en-103
abled efficient learning from image observations (Finn & Levine, 2017; Ha & Schmidhuber, 2018;104
Hafner et al., 2019; 2020; 2021; 2023; Schrittwieser et al., 2020; Hansen et al., 2022; 2023). How-105
ever, learning robust perceptual representations in the presence of distractions remains challeng-106
ing. Some approaches use non-reconstructive representation learning methods (Nguyen et al., 2021;107
Deng et al., 2022), such as contrastive (Chen et al., 2020) and prototypical learning (Caron et al.,108
2020). However, features learned with these methods do not necessarily involve task-related con-109
tent since they do not explicitly consider task-relevance in feature learning. Other works introduce110
auxiliary objectives to explicitly incorporate downstream task information, such as DBC (Zhang111
et al., 2021), which uses a bisimulation metric (Ferns et al., 2011), and TIA (Fu et al., 2021), which112
explicitly separates task-relevant and irrelevant branches to distinguish reward-correlated visual fea-113
tures from distractions. More recent methods exploit inductive biases like predictability (Zhu et al.,114
2023) and controllability (Wang et al., 2022; Bharadhwaj et al., 2022) but often require extensive115
sampling to infer task-relevant content. Notably, solving sparse reward environments with distrac-116
tions remains an open problem. In contrast, our work proposes to leverage domain knowledge via117
image masks to directly guide task-relevant representation learning and improve sample efficiency118
by reducing the complexity of learned representations. While model-free RL has explored robust119
representation learning (Laskin et al., 2020; Kostrikov et al., 2021; Yarats et al., 2021; Hansen et al.,120
2021; Hansen & Wang, 2021; Nair et al., 2022; Zhang et al., 2019), MBRL remains superior in121
sample efficiency and performance for visual control, making it our primary focus for comparison.122
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Segmentation for RL. Segmentation models (He et al., 2017; Redmon et al., 2016) have been123
widely used across many downstream tasks, including RL (Kirillov et al., 2023; Anantharaman124
et al., 2018; Yuan et al., 2018; James et al., 2019; So et al., 2022). Recent advances in segmen-125
tation foundation models (Zhang et al., 2023; Xie et al., 2021) enable streamlined and accelerated126
adaptation to new domains with one/few-shot learning. In RL, a common approach to leveraging127
segmentation models involves converting input RGB images into segmentation masks (James et al.,128
2019; So et al., 2022) or latent representations (Zhang et al., 2025), improving robustness to complex129
scenes and domain randomization. However, this increases computational overhead and the risk of130
failure if segmentation models malfunction. Our method instead leverages segmentation masks as131
an auxiliary task, removing the reliance on segmentation models at deployment while improving132
test-time performance. While FOCUS (Ferraro et al., 2023) also uses masked input as an auxiliary133
target, it focuses on learning disentangled representations rather than handling distractions. More-134
over, it provides only preliminary results with segmentation models without analyzing their impact135
on downstream RL tasks.136

3 Preliminaries137

We consider a partially observable Markov decision process (POMDP) formalized as a tuple138
(S,Ω,A, T ,O, p0,R, γ), consisting of states s ∈ S, observations o ∈ Ω, actions a ∈ A, state139
transition function T : S × A → ∆(S), observation function O : S → Ω, initial state distribution140
p0, reward function R : S × A → R, and discount factor γ. At time t, the agent does not have141
access to actual world state st, but to the observation ot = O(st), which in this paper we consider142
to be a high-dimensional image. Our objective is to learn a policy π(at|o≤t, a<t) that achieves high143
expected discounted cumulative rewards E[

∑
t γ

trt], with rt = R(st, at) and the expectation over144
the joint stochastic process induced by the environment and the policy.145

DREAMER (Hafner et al., 2020; 2021; 2023) is a broadly applicable MBRL method in which a world146
model learns to represent environment dynamics in a latent state space (h, z) ∈ H×Z , consisting of147
deterministic and stochastic components respectively, from which rewards, observations, and future148
latent states can be decoded. The components of the world model are:149

Sequence model: ht = fϕ(ht−1, zt−1, at−1)

Observation encoder: zt ∼ qϕ(zt|ht, ot)

Dynamics predictor: ẑt ∼ pϕ(ẑt|ht) (1)
Reward predictor: r̂t ∼ pϕ(r̂t|ht, zt)

Continuation predictor: ĉt ∼ pϕ(ĉt|ht, zt)

Observation decoder: ôt ∼ pϕ(ôt|ht, zt),

where the encoder maps observations ot into a latent representation, the dynamics model emulates150
the transition distribution in latent state space, the reward and continuation models respectively151
predict rewards and episode termination, and the observation decoder reconstructs the input. The152
concatenation of ht and zt, i.e. xt = [ht; zt], serves as the model state. Given a starting state, an153
actor–critic agent is trained inside the world model by rolling out latent-state trajectories. The world154
model itself is trained by optimizing a weighted combination of three losses:155

L(ϕ) =̇ Eqϕ

[
T∑

t=1

(βpredLpred(ϕ) + βdynLdyn(ϕ) + βrepLrep(ϕ))

]
(2)

Lpred(ϕ) =̇ − ln pϕ(ot|zt, ht)− ln pϕ(rt|zt, ht)− ln pϕ(ct|zt, ht) (3)
Ldyn(ϕ) =̇ max(1,KL[[[qϕ(zt|ht, ot)]]∥ pϕ(ẑt|ht))]) (4)
Lrep(ϕ) =̇ max(1,KL[qϕ(zt|ht, ot) ∥ [[pϕ(ẑt|ht)]]]), (5)

where [[·]] denotes where gradients are stopped from backpropagating to the expression in brackets.156
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Critically, the first component of Lpred for reconstructing observations from world model states is157
leveraged as a powerful heuristic to shape latent features. Under the assumption that observations158
primarily contain task-relevant information, this objective is likely to encourage the latent state to159
retain information critical for the RL agent. However, the opposite can also be true. If observations160
are dominated by task-irrelevant information, the latent dynamics may become more complex by161
incorporating features impertinent to decision-making. This can lead to wasted capacity in the latent162
state representation (Lambert et al., 2020), drown the supervision signal in noise, and reduce the163
sample efficiency.164

Problem Setup. We consider environments where the latter case is true and observations contain165
a large number of spurious variations (Zhu et al., 2023). Concretely, we consider some features166
of states st ∈ S to be irrelevant for the control task. We assume that states st can be decom-167
posed into task-relevant components s+t ∈ S+ and task-irrelevant components s−t ∈ S− such that168
st = (s+t , s

−
t ) ∈ S = S+ × S−. We follow prior work (Zhu et al., 2023; Fu et al., 2021; Bharad-169

hwaj et al., 2022) in visual control under distraction and assume that (1) the reward is a function170
only of the task-relevant component, i.e. R : S+ × A → R; and (2) the forward dynamics of the171
task-relevant part only depends on itself, s+t+1 ∼ T (s+t+1|s

+
t , at). Note that observations ot are a172

function of both s+t and s−t , thus we have O : S+ × S− → Ω.173

Our goal is to learn effective latent representations [ht; zt] for task control. Ideally, this would mean174
that the world model will only encode and simulate task-relevant state components s+t in its latent175
space without modeling unnecessary information in s−t . To learn features pertaining to s+t , image176
reconstruction can provide a rich and direct learning signal, but only when observation information177
about s+t is not drowned out by other information from s−t . To overcome this pitfall, we propose178
to apply a heuristic filter to reconstruction targets ot with the criteria that it minimizes irrelevant179
information pertaining to s−t while keeping task-relevant information about s+t .180

4 Method181

We build on DREAMER-V3 (Hafner et al., 2023) to explicitly model s+t while attempting to avoid182
encoding information about s−t . In Section 4.1, we describe how we accomplish this by using do-183
main knowledge to apply a task-relevance mask to observation reconstruction targets. In Section 4.2184
we describe how we leverage segmentation mask foundation models to provide approximate masks185
over task-relevant observation components. Finally, in Section 4.3, we propose a modified decoder186
architecture and objective to mitigate noisy learning signals from incorrect mask predictions.187

4.1 Using Segmentation Masks to Filter Image Targets188

We first introduce our main assumption, that the task-relevant components of image observations are189
easily identifiable with domain knowledge. In many real scenarios, it is often straightforward for a190
practitioner to know what the task-related parts of an image are, e.g. objects necessary for achieving191
a goal in object manipulation tasks. With this assumption, we propose a new reconstruction-based192
auxiliary task that leverages domain knowledge of task-relevant regions. Instead of reconstruct-193
ing the raw image observations (Fig. 1b) which may contain task-irrelevant distractions, we apply194
a heuristic task-relevance segmentation mask over the image observation (Fig. 1c) to exclusively195
reconstruct components of the image that are pertinent to control.196

Since our new masked reconstruction target should contain only image regions relevant for achieving197
the downstream task, our world model learns latent representations where a larger portion of the198
features are useful to the RL agent. By explicitly excluding task-irrelevant observation components,199
the latent dynamics also becomes simpler and more sample-efficient to learn than the original (more200
complex, higher variance) dynamics on unfiltered observations. In simulations, ground-truth masks201
of relevant observation components are often easily accessible, e.g., in MuJoCo (Todorov et al.,202
2012) through added calls to the simulator API. We term the method trained with our proposed203
replacement auxiliary task as Segmentation Dreamer (SD) and call the version trained with ground-204
truth masks SDGT.205
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Figure 2: Filtering L2 loss to avoid training on false negatives in RGB labels. Left: Estimated
pixel locations (f) where the RGB target (c) is likely incorrectly masked out by the segmentation
model (e). Right: A world model equipped with two decoders, one for reconstructing task-relevant
masked RGB images and the other for binary masks, the targets for which are generated by a seg-
mentation model. RGB L2 loss is selectively masked by the set difference between (d) and (e).
Latent representations (xt) in the world model are subjected to the training signal only from the
RGB branch. The binary branch is only utilized for selective L2 loss.

4.2 Leveraging Approximate Masks206

A simulator with ground-truth masks for task-relevant regions is not always available. For such cases207
where only RGB images are available from the environment, we propose to fine-tune a segmentation208
mask foundation model to our domain and integrate its predictions into the SD training pipeline. Be-209
low, we describe our method for training with approximate task-relevance masks, termed SDapprox..210

As an offline process before training the world model, we fine-tune a segmentation model with a211
small number of example RGB images and their mask annotations that indicate task-relevant image212
regions. Recent advances in segmentation foundation models allow us to adapt a domain-specific213
mask model with very few examples. For our experiments, we use the Personalized SAM (Per-214
SAM) (Zhang et al., 2023) using one-shot adaptation and SegFormer (Xie et al., 2021) fine-tuned215
with 5 and 10 examples. For the sake of controlled and reproducible evaluation, we extract these216
RGB and mask training pairs from simulators, however, the sample size is small enough for expert217
annotation. Also, although we use these specific foundation models, our method should also be218
compatible with any semantic masking method. Additional details on fine-tuning these models are219
provided in Appendix K. Once fine-tuning is complete, we incorporate the segmentation model into220
the SD pipeline to create pseudo-labels for our proposed auxiliary task.221

4.3 Learning in the Presence of Mask Errors222

Although foundation segmentation models generalize well to new scenarios (e.g., different poses,223
occlusions), prediction errors are inevitable (Fig. 1d). Since each frame is processed independently,224
segmentation predictions may flicker across trajectories. False negatives in task relevance are par-225
ticularly detrimental when using naive L2 loss for image reconstruction, as missing relevant scene226
elements in reconstruction targets can lead the encoder to learn incomplete representation, discarding227
essential task-related information. This variability disrupts the learning of accurate representations228
and dynamics in the world model.229

Despite noisy targets, neural networks can self-correct if most labels are accurate (Han et al., 2018).230
Additionally, DREAMER’s use of GRUs (Cho et al., 2014) provides temporal consistency even with231
flickering targets. However, as shown in Fig. 2 (b)&(c), it’s undesirable to propagate gradients232
from regions where the observation has been incorrectly masked out. Allowing gradients from these233
regions provides misleading signals and reinforces errors rather than correcting them.. If we could234
identify the incorrect regions in the reconstruction target, we could nullify the decoder’s L2 loss235
there—a technique we call selective L2 loss.236
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Since we cannot directly identify regions where the RGB target is incorrectly masked due to false237
negatives, we estimate them. Preliminary experiments show that a binary mask decoder from world238
model states (as an added auxiliary task) can be less prone to transient false negatives, unlike RGB239
prediction, which tends to memorize noisy labels. Therefore, we propose training a world model240
with two reconstruction tasks (Fig. 2, right): one decoding masked RGB images and the other241
predicting task-relevance binary masks. Both use the foundation model’s binary mask, maskFM, to242
construct targets. The RGB branch decodes masked RGB images, while the binary branch predicts243
maskFM. We denote the binary masks produced by the world model as maskSD, where pixels labeled244
true (or white) indicate task relevance.245

To avoid training on incorrectly masked-out regions, we estimate where maskFM may be falsely246
negative by finding disagreements with maskSD. Specifically, we selectively nullify RGB decoder247
L2 loss for regions marked false in maskFM but predicted true in maskSD. This prevents training on248
potentially falsely masked-out pixels still considered task-relevant by a second predictor. Formally,249
the mask for selective L2 loss is the set difference between true pixel locations in maskSD and250
maskFM:251

pixelMaskOut = pixelSD \ pixelFM (6)

where pixelMaskOut indicates pixels to nullify loss at, and pixelSD and pixelFM are pixels marked252
true in maskSD and maskFM, respectively.253

Fig. 2 (d–f) shows examples of maskSD, maskFM, and pixelMaskOut. See Appendix L for details254
on obtaining maskSD. Our experiments indicate that selective L2 loss effectively overcomes noisy255
segmentation labels and improves downstream agent performance.256

Lastly, we observe better performance by blocking gradients from the binary mask decoding objec-257
tive from propagating into the world model, so we apply a stop gradient to the mask decoder head258
inputs (see Appendix F for ablations).259

5 Experiments260

We evaluate our method on visual robotic control tasks from the DeepMind Control Suite261
(DMC) (Tassa et al., 2018) and Meta-World (Yu et al., 2019). Since these benchmarks feature262
simple backgrounds with minimal distractions, we introduce visual distractions by replacing the263
backgrounds with random videos from the ‘driving car’ class in the Kinetics 400 dataset (Kay et al.,264
2017), following prior work (Zhang et al., 2021; Nguyen et al., 2021; Deng et al., 2022). Details265
on the environment setup and task visualizations are provided in Appendices G and A. In evalua-266
tion, we roll out policies over 10 episodes and compute the average episode return. Unless otherwise267
specified, we report the mean and standard error of the mean (SEM) over four independent runs with268
different random seeds. All experiments use the default DREAMER-V3 hyperparameters. We also269
evaluate our method in a real-world lane-following task, demonstrating that SD can learn a policy270
that generalizes to unseen appearances at deployment.271

5.1 DMC Experiments272

We evaluate SD on six DMC tasks with varying contact dynamics, degrees of freedom, and reward273
sparsity. For each task, models are trained for 1M environment steps generated by 500K policy274
decision steps with an action repeat of 2.275

5.1.1 Comparison with DREAMER276

We compare our methods, SDGT and SDapprox., to the base DREAMER (Hafner et al., 2023) method.277
Here, SDapprox. is denoted as SDFM

N , specifying the segmentation model used (FM) and the number278
of fine-tuning examples (N ). All methods are trained in distracting environments, except for the279
DREAMER* baseline, which is trained in the original environment without visual distractions. In280
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(a) Environment Steps vs. Expected Test Return (b) IoU during Training vs. Expected Test Return

Figure 3: (a) Learning curves on six visual control tasks from DMC. Every method but
DREAMER* is trained on distracting environments. All curves show the mean over 4 seeds with
the standard error of the mean (SEM) shaded. (b) Segmentation quality during training vs. down-
stream task performance. Best viewed in color.

most cases, we consider DREAMER* as an upper bound for methods trained with distractions. Sim-281
ilarly, SDGT serves as an upper bound for SDapprox., with the performance gap expected to decrease282
in the future as segmentation quality improves.283

As shown in Fig. 3a, DREAMER fails across all tasks due to task-irrelevant information in RGB284
reconstruction targets, which wastes latent capacity and complicates dynamics learning. In contrast,285
SDGT achieves test returns comparable to DREAMER* by focusing on reconstructing essential fea-286
tures and ignoring irrelevant components. Interestingly, SDGT outperforms DREAMER* in Cartpole287
Swingup, possibly because the original environment still contains small distractions (e.g., moving288
dots) that DREAMER* has to model.289

A limitation of SD is its reliance on acccurate and correct prior knowledge to select task-relevant290
components. In Cheetah Run, SDGT underperforms compared to DREAMER*, likely because we291
only include the cheetah’s body in the mask, excluding the ground plate, which may be important292
for contact dynamics. Visual examples and further experiments are in Appendices A and B.293

For SDapprox., we test with two foundation models: PerSAM adapted with one RGB example and294
its GT mask, and SegFormer adapted with five such examples. Despite slower convergence due to295
noisier targets, both SDPerSAM

1 and SDSegFormer
5 achieve similar final performance to SDGT in most296

tasks. A failure case for SDPerSAM
1 is Reacher Easy, where a single data point is insufficient to obtain297

a quality segmentation for the small task-relevant objects.298

5.1.2 Comparison with Baselines299

We compare SDapprox. with state-of-the-art methods, including DreamerPro (Deng et al., 2022),300
RePo (Zhu et al., 2023), TIA (Fu et al., 2021), and TD-MPC2 (Hansen et al., 2023). Dreamer-301
Pro incorporates prototypical representation learning in the DREAMER framework; RePo minimizes302
mutual information between observations and latent states while maximizing it between states and303
future rewards; TIA learns separate task-relevant and task-irrelevant representations that are com-304
bined to decode observations; and TD-MPC2 decodes a terminal value function. Only TIA relies on305
observation reconstruction. Further details are in Appendix M.306

Our results in Fig. 3a show that our method consistently outperforms the baselines in performance307
and sample efficiency. TIA underperforms in many tasks, requiring many samples to infer task-308
relevant observations from rewards and needing exhaustive hyperparameter tuning. Even with opti-309
mal settings, it may lead to degenerate solutions where a single branch captures all information. In310
contrast, our method focuses on task-relevant parts without additional tuning by effectively inject-311
ing prior knowledge. RePo performs comparably to ours in Cartpole Swingup but underperforms in312
other tasks and converges more slowly.313
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TD-MPC2 struggles significantly in distracting environments. We speculate that spurious correla-314
tions from distractions introduce noise to value-function credit assignment that hinders represen-315
tation learning. Our method mitigates this by directly supervising task-relevant features, yielding316
more consistent and lower-variance targets.317

DreamerPro is the most competitive, demonstrating the effectiveness of prototypical representation318
learning for control. However, it often requires more environment interactions and converges to319
lower performance.320

Notably, no prior work successfully solved Cartpole Swingup with sparse rewards, underscoring the321
challenge of inferring task relevance from weak signals. Our method achieves near-oracle perfor-322
mance and is the only one to train an agent with sparse rewards amidst distractions. This suggests323
the potential to train agents in real-world, distraction-rich environments without extensive reward324
engineering.325

5.1.3 Ablation Study326

We investigate the effects of the components in SDapprox. by addressing: (1) the benefits of using327
segmentation models for targets vs. input preprocessing; (2) the effectiveness of the selective L2 loss328
compared to the naive L2 loss; and (3) the impact of the segmentation quality on RL performance. In329
these experiments, we fine-tune PerSAM with a single data point for segmentation mask prediction.330

Table 1: Final performance of SD variants. Mean
over 4 runs with the standard error of the mean is
reported. The highest means are highlighted.

Task SDPerSAM
1 As Input Naive L2

Cartpole Swingup 730 ± 75 565 ± 108 719 ± 62
Cartpole Swingup Sparse 521 ± 92 457 ± 151 408 ± 114
Cheetah Run 619 ± 35 524 ± 37 486 ± 58
Hopper Stand 846 ± 27 689 ± 39 790 ± 51
Reacher Easy 597 ± 97 642 ± 116 415 ± 50
Walker Run 730 ± 13 589 ± 28 557 ± 51

Using segmentation masks for an auxiliary331
task vs. input preprocessing. We create a332
variant of SDPerSAM

1 that uses masked obser-333
vations for both inputs and targets, denoted in334
Tab. 1 by As Input. This variant is analogous335
to prior methods (James et al., 2019; So et al.,336
2022) that use segmentation models for input337
preprocessing in control tasks. The result in338
Tab. 1 suggests that SDPerSAM

1 , in addition to339
not requiring mask prediction at test-time, also340
achieves better test performance and lower vari-341
ance. Using predicted masks as input is more prone to segmentation errors, restricting the agent’s342
perception when masks are incorrect and making training more challenging. In contrast, SDapprox.343
receives intact observations, with task-relevant filtering at the encoder level, leading to better state344
abstraction. Further analysis on test-time segmentation quality’s impact is in Appendix C.345

Selective L2 loss vs. naive L2 loss. As shown in Tab. 1, SDPerSAM
1 consistently outperforms the346

Naive L2 variant, especially in complex tasks like Cheetah Run and Walker Run. Segmentation347
models often miss embodiment components (Fig. 4, third row). With the naive L2 loss, the model348
replicates these errors, leading to incomplete latent representations and harming dynamics learn-349
ing (Fig. 4a, fourth row). In contrast, SDapprox. self-corrects by skipping the L2 computation where350
PerSAM targets are likely wrong (Fig. 4b, fourth row). Fig. 4(c)&(d) show that the naive L2 loss351
follows PerSAM’s trends, while the selective L2 loss recovers from poor recall with only a moderate352
precision decrease.353

Impact of segmentation quality on RL performance. Fig. 3b plots the training-time segmenta-354
tion quality against the RL agent’s test-time performance. Comparing three SD variants with differ-355
ent mask qualities (two estimated, one ground truth), we observe that better segmentation tends to356
lead to higher RL performance, as accurate targets better highlight task-relevant components. This357
suggests that improved segmentation models can enhance agent performance without ground-truth358
masks. In Cartpole Swingup, one of two exceptions, the IoU difference between SDPerSAM

1 and359
SDSegFormer

5 is small, and the test returns may fall within the margin of error. In Walker Run, the360
other exception, all variants show high segmentation quality and reach near-optimal performance.361
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Figure 4: (a)+(b) Qualitative comparison of SD trained with naive and selective L2 loss. Trajec-
tories are taken from each method’s train-time replay buffer, selected to have the same background.
Frames with PerSAM error are highlighted. The model trained with the selective L2 loss overcomes
errors in the target, whereas the one trained with the naive L2 loss memorizes target errors. (c)+(d)
shows the precision and recall of PerSAM and the SD RGB decoder prediction. SD RGB predic-
tions are binarized using a threshold to compute recall and precision w.r.t. the ground-truth mask.
The data points used for plotting are from the same Cheetah Run training experiment as in (a)+(b).
The selective L2 loss significantly improves the recall with only a moderate impact on precision.

Here, we hypothesis that a small amount of noise in the target may act as a regularizer, contributing362
to marginally better downstream performance.363

5.2 Meta-World Experiments364

Object manipulation is a natural application for our method where prior knowledge can be applied365
straightforwardly by identifying and masking task-relevant objects and robot embodiments. We366
evaluate SD on six tasks from Meta-World (Yu et al., 2019), a popular benchmark for robotic ma-367
nipulation. Depending on the difficulty of each task, we conduct experiments for 30K, 100K, and368
1M environment steps, with an action repeat of 2 (details in Appendix H). Preliminary tests showed369
that SegFormer performs well with few-shot learning on small objects. We fine-tune SegFormer370
with 10 data points to estimate masks in these experiments.371

Figure 5: Learning curves on six visual robotic
manipulation tasks from Meta-World. All
curves show the mean over 4 seeds with the stan-
dard error of the mean shaded.

Fig. 5 suggests that our approach outperforms372
the baselines overall, with a more pronounced373
advantage in tasks involving small objects like374
Coffee-Button. Our method excels because it375
focuses on small, task-relevant objects, avoid-376
ing the reconstruction of unnecessary regions377
that occupy much of the input. In contrast,378
the baselines struggle as they often underesti-379
mate the significance of these small yet highly380
task-relevant objects. Among the baselines,381
RePo (Zhu et al., 2023) is the most competitive.382
However, RePo performs poorly in a sparse re-383
ward setup (see Appendix J).384

5.3 Duckiebot Lane Following385
Experiments386

Domain randomization enables training generalizable agents by exposing them to diverse scenarios,387
allowing zero-shot transfer to unseen environments within the randomized range (Tobin et al., 2017;388
Tang et al., 2024). For that purpose, randomization intentionally introduces noise, which can make389
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(a) Training-Time Observations

(b) Test-Time Observations (Simulation)

(c) Test-Time Observations (Real-world)

(d) Simulation Test-Time Performance

Table 2: Real-world Evaluation
Method Real-world Return
DREAMER* -172.2 ± 14.4
DREAMER -119.7 ± 10.7
DREAMER (large) 3.9 ± 23.1
SDRGB 106.2 ± 4.4
SDSeg 116.2 ± 5.1

Figure 6: (a) Domain-randomized simulation observations with variations in background, fore-
ground color, texture, and layout. (b) Digital-twin observations generated using Gaussian splatting.
(c) Real-world environment observations. (d) Test-time performance in the simulated environment.
Table 2: Performance deploying each method in the real-world environment after 200k steps. We
present mean and SEM values over 4 seeds.

training harder, require more data, and sometimes fail with limited-capacity models (Fu et al., 2021).390
On the other hand, too narrow a randomization range can limit generalization abilities and cause391
failures when agents are deployed outside that range. Ideally, an agent should be trained on a broad392
range of perturbations without unnecessarily increasing model complexity or training difficulty.393

Introducing domain randomization allows us, as designers, to control what constitutes a distraction,394
and this design philosophy can also serve as prior knowledge for SD. We evaluate our method on a395
robotic lane-following task in the Duckietown platform (Paull et al., 2017), where the objective is to396
follow a marked lane on a looping track with a wheeled robot while minimizing deviations. We con-397
duct training for this task in an Unreal Engine (Epic Games, 2024) simulation that employs domain398
randomization across multiple factors, including background and foreground colors and textures,399
lighting conditions, physics, and more (Fig. 6a). The training simulation offers segmentation map400
rendering, enabling us to use ground-truth masks for training SD. Thus, in this section, SD refers401
to SDGT. Additional training details, such as the reward function and randomization axes, can be402
found in Appendix I.403

We evaluate models in two test environments. The first test environment is an instance of the sim-404
ulation designed to be a digital-twin of the real-world environment, constructed using Gaussian405
splatting (Kerbl et al., 2023), featuring a variation of colors, lighting, textures, layouts, and back-406
grounds that is unseen in training (Fig. 6b). It enables reproducible and repeatable experiments407
before real-world deployment. The second environment is the real-world track that the digital-twin408
approximates, where we assess how well the trained model zero-shot transfers to real-world robot409
conditions (Fig. 6c).410

Fig. 6d shows that SDRGB, which decodes task-relevant RGB pixels (i.e., pixels belonging to the411
lane), learns a generalizable agent that trains effectively under rigorous domain randomization. Its412
performance approaches that of DREAMER*, which is trained directly in the simulation test envi-413
ronment. The reconstruction targets, which remove control-irrelevant pixels, effectively guide the414
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model to learn features that are invariant to background distractions. This result also suggests that415
SD can, to some extent, tolerate foreground perturbations (e.g., lane colors, camera view) that are416
not filtered out by the target images. A further exploration of SD under perturbations to task-relevant417
objects in DMC can be found in Appendix D.418

Another variant of our method, SDSeg, decodes segmentation maps as an auxiliary task target. Since419
the decoder target contains fewer distractions, this variant converges faster, as the model is explic-420
itly guided to ignore irrelevant foreground noise. Both variants of SD generalize well, with SDRGB421
retaining visual details in foreground that can be beneficial for downstream tasks, while SDSeg en-422
forces a more abstract representation for faster convergence; SDRGB is preferable when appearance423
cues aid decision-making, whereas SDSeg suits scenarios where structural consistency matters more.424
Appendix I presents sample decoding targets for each model.425

On the other hand, DREAMER fails to train a drivable agent after 200K steps, likely because it al-426
locates capacity to modeling task-irrelevant background information introduced by randomization.427
While increasing model capacity allows DREAMER to learn a better policy (dashed curve), it re-428
quires significantly more samples to achieve agent that successfully drives. The performance gap429
between SDRGB and DREAMER suggests that background distractions pose a particular challenge430
during training, as they often occupy large portions of the pixel space and are dynamic. Encoding431
background information in the latent space introduces task-irrelevant dynamics, increasing learning432
complexity and leading to inefficient use of model capacity.433

We deploy these models for 5 episodes each in the real-world environment after 200k steps of train-434
ing and show average episode returns in Tab. 2. Although DREAMER* performs well in the simula-435
tion test environment, its real-world deployment suffers due to visual disparity between the training436
and testing environment. While the Gaussian splat simulation closely resembles the real world,437
photometric properties such as brightness and hue are not perfectly aligned, preventing effective438
zero-shot transfer. Similar to its performance in simulation, DREAMER fails to drive in the real439
world and shows slight improvement with a larger model capacity. In contrast, both variants of SD440
successfully achieve zero-shot transfer to the real-world, despite encountering unseen appearances441
and a small dynamics distribution shift during deployment. SD enables generalizable perception442
and zero-shot transfer without introducing additional overhead at test time, making it particularly443
practical for real-world applications.444

6 Conclusion445

We propose SD, a simple yet effective method for learning task-relevant features in MBRL frame-446
works by using segmentation masks informed by domain knowledge. Using ground-truth masks,447
SDGT achieves performance comparable to undistracted DREAMER with high sample efficiency in448
distracting environments given accurate prior knowledge. Our main method, SDapprox., uses esti-449
mated masks from off-the-shelf one-shot or few-shot segmentation models and employs a selective450
L2 loss. Experimental results across diverse domains, including a sim-to-real lane-following task,451
suggest that our method is a practical and powerful tool for training generalizable, deployable agents452
in dynamic environments, with no additional overhead at test time.453

The proposed method achieves strong performance across diverse tasks with distractions and effec-454
tively incorporates human input to indicate task relevance. This enables practitioners to readily train455
an agent for their own purposes without extensive reward engineering. This work also advances456
the integration of computer vision and RL by demonstrating how recent segmentation advances457
can help address challenges in visual control tasks. We discuss limitations and future directions in458
Appendix O.459
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Supplementary Materials620

The following content was not necessarily subject to peer review.621
622

A Visualization of Tasks623

A.1 DeepMind Control suite (DMC)624

Fig. 7 visualizes the six tasks in DMC (Tassa et al., 2018) used in our experiments. Each row625
presents the observation from the standard environment, the corresponding observation with added626
distractions, the ground-truth segmentation mask, and the RGB target with the ground-truth mask627
applied. Cartpole Swingup Sparse and Cartpole Swingup share the same embodiment and dynam-628
ics. Cartpole Swingup Sparse only provides a reward when the pole is upright, whereas Cartpole629
Swingup continuously provides dense rewards weighted by the proximity of the pole to the upright630
position. Reacher Easy entails two objects marked with different colors in the segmentation mask,631
as shown in Fig. 7e 3rd column. Before passing the mask to SD, the mask is converted to a binary632
format where both objects are marked as true as task-relevant.

( a)  Car t pol e Swi ngup

( b)  Car t pol e Swi ngup Spar se

( c)  Cheet ah Run

( d)  Hopper  St and

( e)  Reacher  Easy

( f )  Wal ker  Run

Figure 7: DMC tasks. Left to right: (1) standard environment observations, (2) distracting environ-
ment observations, (3) ground-truth segmentation masks, and (4) RGB observations with ground-
truth masks applied. We use (4) as auxiliary reconstruction targets in SDGT.

633
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A.2 Meta-World634

Fig. 8 shows the six tasks from Meta-World-V2 used in our experiments. Meta-World is a realistic635
robotic manipulation benchmark with challenges such as multi-object interactions, small objects,636
and occlusions.

( a)  Cof f ee- But t on- V2

( b)  Dr awer - Cl ose- V2

( c)  Handl e- Pr ess- V2

( d)  But t on- Pr ess- Topdown- V2

( e)  Door - Open- V2

( f )  Dr awer - Open- V2

Figure 8: Meta-World tasks. Left to right: (1) standard environment observations, (2) distracting
environment observations, (3) ground-truth segmentation masks, and (4) RGB observations with
ground-truth masks applied. We use (4) as auxiliary reconstruction targets in SDGT. Masks with
multiple classes for different objects are converted to binary masks (all non-background regions are
true and task-relevant) before use with SD.

637
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B The Impact of Prior Knowledge638

We investigate the impact of accurate prior knowledge of task-relevant objects. Specifically, we639
conduct additional experiments on Cheetah Run—the task showing the largest disparity between640
DREAMER* and SDGT in Fig. 3a. In our primary experiment, we designated only the cheetah’s641
body as the task-relevant object. However, since the cheetah’s dynamics are influenced by ground642
contact, the ground plate should have also been considered task-relevant.643

Fig. 9 (a–c) illustrates the observation with distractions, the auxiliary target without the ground plate,644
and with the ground plate included, respectively. Fig. 9d compares SDGT trained with different645
selections of task-relevant objects included in the masked RGB reconstruction targets. We show646
that including the ground plate leads to faster learning and performance closer to that of the oracle.647
This highlights the significant influence of prior knowledge on downstream tasks, suggesting that648
comprehensively including task-relevant objects yields greater benefits.649

( b)  Tar get  w/  
Gr ound- Tr ut h w/ o 

Gr ound Pl at e Appl i ed

( a)  Obser vat i on 
I nput

( c)  Tar get  w/  
Gr ound- Tr ut h w/

 Gr ound Pl at e Appl i ed

( d)  Eval uat i on Ret ur n of  SDGT wi t h 
Di f f er ent  Pr i or  Knowl edge 

Figure 9: The impact of prior knowledge on Cheetah Run. (d) The mean over 4 seeds with the
standard error of the mean (SEM) is shaded.
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C The Impact of Test-Time Segmentation Quality on Performance650

We investigate how test-time segmentation quality affects SDapprox. as well as the As Input variation651
that applies mask predictions to RGB inputs in addition to reconstruction targets. For this analysis,652
we use PerSAM fine-tuned with a single data point for segmentation prediction. To measure seg-653
mentation quality, we compute episodic segmentation quality by averaging over frame-level IoU.654
In Fig. 10 we plot episode segmentation quality versus test-time reward on the evaluation episodes655
during the last 10% of training time.656

Fig. 10 illustrates that SDapprox. exhibits greater robustness to test-time segmentation quality com-657
pared to the As Input variation, with the discrepancy increasing as the IoU decreases. This dispar-658
ity primarily arises because As Input relies on observations restricted by segmentation predictions,659
and thus its performance deteriorates quickly as the segmentation quality decreases. In contrast,660
SDapprox. takes the original observation as input and all feature extraction is handled by the obser-661
vation encoder, informed by our masked RGB reconstruction objective. Consequently, SDapprox.662
maintains resilience to test-time segmentation quality.663

An intriguing observation is that a poorly trained agent can lead to poor test-time segmentation664
quality. For instance, Cartpole Swingup (Sparse) exhibits different segmentation quality distribu-665
tions between SDapprox. and As Input. This discrepancy occurs because the sub-optimal agent often666
positions the pole at the cart track edge, causing occlusion and hindering accurate segmentation667
prediction by PerSAM.668

Figure 10: Test-time episodic reward vs PerSAM episodic IoU for SDPerSAM
1 and As Input (SDPerSAM

1

with masked RGB observations as input). SDPerSAM
1 is more robust to test-time segmentation pre-

diction errors.
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D Robustness to Foreground Distractions669

SD is primarily designed to improve world model learning by omitting task-irrelevant background670
features from its latent state. In this section, we additionally investigate SD’s robustness to dis-671
tractions that affect the task-relevant foreground. Specifically, on DMC Walker Run and Cartpole672
Swingup, we test SD’s performance when training and testing under three types of visual pertur-673
bations: (1) foreground occlusions, (2) color shifts, and (3) camera angle shifts. We find that the674
performance of both SD and the segmentation models used to train SD is not significantly dimin-675
ished by the inclusion of small foreground distractions. We first outline each of the distraction types676
we experiment with and then discuss experimental results:677

D.1 Foreground Distraction Details678

Foreground Occlusion To simulate occlusions of task-relevant features, we introduce a moving679
foreground distractor—a blue rectangle (Fig. 11 ) rendered near the center of the scene for 4 to 6680
consecutive frames, appearing after every 18 to 22 frames. These intervals are uniformly sampled681
each time the distractor appears, so approximately 25% of the image frames in an episode contain682
the distractor. Its movement follows pixel-space trajectories defined by randomized ∆x and ∆y683
values drawn from the interval (–3, 3), with new values sampled each time the distractor is rendered.684
Although we only test with a blue rectangle, given the capabilities of visual foundation models685
(VFMs), we expect our method to generalize well to a variety of foreground occluders with different686
properties.687

Figure 11: Examples of frames with foreground occlusion in the environment and corresponding
predictions from the segmentation model that remain robust to occlusions in the test set.

Color Shifts To simulate variations in the agent’s appearance or task-relevant objects, we apply688
color perturbations following Stone et al. (2021), setting their proposed environment color shift hy-689
perparameters to have a max delta of 0.1 and a step standard deviation of 0.0, resulting in a randomly690
sampled, temporally-constant color shift throughout each episode (Fig. 12). These perturbations691
mimic real-world factors like lighting variations during deployment and test the model’s ability to692
generalize to such mismatches at deployment time.693

Camera Angle Shifts To introduce variations in camera perspective, we similarly follow Stone694
et al. (2021), applying a scaling factor of 0.1 which defines a viewing range of the camera, shifting695
the camera view by a random amount in each episode (Fig. 13). These perturbations simulate real-696
world scenarios where the agent’s viewpoint changes due to physical discrepancies and test the697
model’s robustness to altered perspectives.698
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Figure 12: Examples of color perturbations applied to the agent and corresponding predictions from
the segmentation model that remain robust to color changes in the test set.

Figure 13: Examples of camera angle perturbations and corresponding predictions from the seg-
mentation model that remain robust to camera view variations in the test set.

D.2 Results with Foreground Distractions699

For each perturbation type, we train and test both the segmentation model and SD with domain700
randomization over the distraction method’s parameters. We use the SegFormer foundation model701
finetuned on 100 pairs of domain-randomized images in these experiments. We evaluate SD on the702
same parameter distributions as used in training time.703

Segmentation Model Robustness to Foreground Distractions Figures 11–13 show that the Seg-704
Former model still effectively isolates task-revelant objects of interest despite challenges presented705
by foreground occlusions, color shifts, and camera view changes. These findings align with our pri-706
mary experiments on background distractions, further reinforcing that segmentation models provide707
a robust strategy for guiding representation learning in RL under many types of domain randomiza-708
tion.709

SD Robustness to Foreground Distractions Unlike background distractions, foreground pertur-710
bations cannot be fully filtered out and remain in the SD decoding target. While this might raise711
concerns about wasted capacity by encoding spurious information, our results (Table 3) demonstrate712
that SD still learns effective agent behavior with these perturbations applied. Notably, in envi-713
ronments with color or camera view changes, our method, by focusing on agent-centric features,714
outperforms Dreamer* trained in the unmodified environment.715
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Standard
Environment
(Dreamer*)

Foreground
Occlusions

(SD)

Foreground
Occlusions

(SD Naive L2 Loss)

Color
Shifts
(SD)

Camera Angle
Shifts
(SD)

Walker Run 752 ± 9 740 ± 4 688 ± 37 761 ± 3 752 ± 10
Cartpole Swingup 818 ± 52 860 ± 2 852 ± 7 870 ± 4 863 ± 4

Table 3: Test returns comparing Dreamer* in the base environment with SD in modified environ-
ments where foreground distractions are applied. Despite additional variation added to task-relevant
features, SD’s performance is not significantly diminished compared to Dreamer’s performance in
the original environment. With color and camera angle shifts applied to SD only, SD still outper-
forms Dreamer*.

Additionally, the selective L2 loss proves highly effective in handling occlusions, enabling the re-716
covery of occluded foreground agent features. We compare our default SD method against a version717
with Naive L2 loss and see a large drop in test-time return when performing this ablation. This718
highlights the versatility of selective L2 loss across different scenarios. While SD was originally719
designed to mitigate distractions outside task-relevant objects, these results demonstrate its robust-720
ness across a broader range of real-world perturbations.721

E Segmentation Quality in Meta-World722

Figure 14: Examples of background perturbations and corresponding predictions from the segmen-
tation model on Drawer-Open-V2 in the test set.
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Figure 15: Examples of background perturbations and corresponding predictions from the segmen-
tation model on Coffee-Button-V2 in the test set.

Figure 16: Examples of background perturbations and corresponding predictions from the segmen-
tation model on Button-Press-Topdown-V2 in the test set.
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F Ablation without Stop Gradient723

Should the SDapprox. world model be shielded from gradients of the binary mask decoder head?724

To estimate potential regions on RGB targets where task-relevant regions are incorrectly masked725
out, we train a binary mask prediction head on the world model to help detect false negatives in726
masks provided by the foundation model. We see better performance when gradients from this bi-727
nary mask decoder objective are not propagated to the rest of the world model. Thus, the default728
SDapprox. architecture is trained with the gradients of the binary mask branch stopped at its [ht; zt]729
inputs, and the latent representations in the world model are trained only by the task-relevant RGB730
branch in addition to the standard DREAMER reward/continue prediction and KL-divergence be-731
tween the dynamics prior and observation encoder posterior. Tab. 4 shows that the performance732
drops significantly when training without stopping these gradients.733

We also examine masks predicted by the binary mask decoder head in Fig. 17. Predictions are734
coarser grained than their RGB counterparts, lacking details important for predicting intricate735
forward dynamics. Overall, reconstructing RGB observations with task-relevance masks applied736
demonstrates itself as a superior inductive bias to learn useful features for downstream tasks com-737
pared to binary masks or raw unfiltered RGB observations.

Table 4: Final performance of SD and SD without stop gradient.

Task SDPerSAM
1 No SG

Cartpole Swingup 730 ± 75 439 ± 81
Cartpole Swingup Sparse 521 ± 92 112 ± 40
Cheetah Run 619 ± 35 376 ± 50
Hopper Stand 846 ± 27 587 ± 127
Reacher Easy 597 ± 97 273 ± 74
Walker Run 730 ± 13 407 ± 62

( a)  Car t pol e Swi ngup ( b)  Car t pol e Swi ngup Spar se

( c)  Cheet ah Run ( d)  Hopper  St and

( e)  Reacher  Easy ( f )  Wal ker  Run

Figure 17: From the top row to the bottom row: (1) ground-truth segmentation masks, (2) SDapprox.

binary mask predictions, and (3) SDapprox. RGB predictions.

738
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G Distracting DMC Setup739

We follow the DBC (Zhang et al., 2021) implementation to replace the background with color740
videos. The ground plate is also presented in the distracting environment. We used hold-out videos741
as background for testing. We sampled 100 videos for training from the Kinetics 400 training set of742
the ’driving car’ class, and test-time videos were sampled from the validation set of the same class.743

H Distracting Meta-World Setup744

We test on six tasks from Meta-World-V2. For all tasks, we use the corner3 camera viewpoint.745
The maximum episode length for Meta-World tasks is 500 environment steps, with the action re-746
peat of 2 (making 250 policy decision steps). We classify these tasks into easy, medium, and747
difficult categories based on the training curve of DREAMER* (DREAMER trained in the stan-748
dard environments). Coffee Button, Drawer Close, and Handle Press are classified as easy, and we749
train baselines on these for 30K environment steps. Button Press Topdown (medium) is trained for750
100K steps, and Door Open and Drawer Open (difficult) are trained for 1M environment steps.751

I Duckiebot Setup752

Environment Configuration In the Duckiebot Lane-Following domain, the agent is tasked with753
driving quickly along the right lane of a looping track while staying close to the lane center. For754
observations, we provide the current camera view as a size 64× 64 RGB image. The action space is755
a 2D continuous vector in [−1, 1]2 representing target forward and yaw velocities. The agent starts756
each episode in simulation at a random position on the right lane.757

In simulation, the agent is rewarded in every step with a value in [0, 1] proportional to its velocity758
along the center of right lane on the track. In each step that the agent deviates more than 5cm from759
the center of the lane, it instead receives a penalty of -1. To encourage smooth driving, the agent is760
additionally penalized each step proportional to the magnitude of its rotational yaw velocity when761
moving forward. If the agent drives off the track, the episode terminates, and the agent receives a762
penalty of -100. Except upon driving out-of-bounds, the episode horizon is 200.763

We evaluate rewards in the real environment by tracking the robot’s state with an HTC Vive motion764
tracker. We then replay the agent’s states and actions in the Gaussian splat digital-twin simulation765
of matching size and proportion to calculate equivalent simulation rewards. In real evaluation, we766
use an episode horizon of 300. We start all real evaluation episodes from the same position on the767
track.768

Domain Randomization We apply domain randomization across four categories to promote ro-769
bustness and generalization from simulation to the real robot:770

• Background: Videos from the Kinetics 400 dataset (Kay et al., 2017) ‘Driving Car’ class are771
played in the background to simulate task-irrelevant dynamics.772

• Foreground appearance perturbations: We perturb the appearance of foreground objects, such as773
lane color, lighting, and texture, to ensure the model can handle variations in visual appearance.774

• Foreground geometry perturbations: We introduce variations in layout (i.e. line marker position-775
ing) and camera view (e.g., tilting, varying field-of-view). This helps the agent generalize to776
different scene layouts and camera configurations.777

• Physics perturbations: We randomize physics parameters to facilitate zero-shot transfer from sim-778
ulation to the real world. This is done by adding noise to actions and camera positions at each779
step.780

Auxiliary Task Target Visualization Fig. 18 visualizes sample auxiliary target images for781
DREAMER (b), SDGT

RGB (c), and SDGT
Seg (d). Moving from (b) to (d), the target images become pro-782
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(a) Input
Observations

(b) DREAMER

Target Images
(c) SDGT

RGB

Target Images
(d) SDGT

Seg

Target Images

Figure 18: Input observations and corresponding sample decoding target images for each model.

gressively less detailed while retaining task-relevant information, guiding the model to only learn783
state features necessary for optimal control. For instance, (c) filters out background information,784
while (d) introduces additional abstraction by hiding pixel values and retaining only layout infor-785
mation. This promotes learning invariant features by ignoring task-irrelevant noise and guiding the786
encoder to be robust to variations in foreground appearance. It is important to note that not all787
types of perturbations can be hidden. For instance, all models must handle foreground geometry and788
physics perturbations that are not filtered by the target images. Our experiments indicate that these789
types of perturbations are relatively easier for the world models to learn and generalize from.790

Training Details We train all models for 200K environment steps with an action repeat of 1. We791
use the same hyperparameters as DREAMER-V3, except for a reduced model size. Specifically, we792
set RSSM.deter= 32, units= 32, and cnn_depth= 8 for all models, except for DREAMER793
(large), which uses RSSM.deter= 64, units= 64, and cnn_depth= 16.794

All models except DREAMER* are trained in a domain-randomized simulation environment.795
DREAMER* is trained in a Gaussian splat simulation environment. Both simulation environments796
include the same physics and camera shake perturbations.797

Policies are evaluated in two settings: (1) Gaussian splat simulation without physics perturbations,798
and (2) the real-world environment with physics partially mismatched to simulation.799

J Results on Meta-World with Sparse Rewards800

We also evaluate on sparse reward variations of the distracting Meta-World environments where801
a reward of 1 is only provided on timesteps when a success signal is given by the environment802
(e.g. objects are at their goal configuration). Rewards are 0 in all other timesteps. The maximum803
attainable episode reward is 250.804

The sparse reward setting is more challenging because the less informative reward signal makes805
credit assignment more difficult for the RL agent. Fig. 19 shows that our method consistently806
achieves higher sample efficiency and better performance, showing promise for training agents807
robust to visual distractions without extensive reward engineering. In Meta-World experiments,808
TIA (Fu et al., 2021) is not included as it requires exhaustive hyperparameter tuning for new do-809
mains and is the lowest-performing method in DMC in general.810
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Figure 19: Learning curves on six visual robotic manipulation tasks from Meta-World with sparse
rewards.

K Fine-tuning PerSAM and SegFormer811

In this section, we describe how we fine-tune segmentation models and collect RGB and segmenta-812
tion mask examples to adapt them.813

PerSAM. Personalized SAM (PerSAM) (Zhang et al., 2023) is a segmentation model designed814
for personalized object segmentation building upon the Segment Anything Model (SAM) (Kirillov815
et al., 2023). This model is particularly a good fit for our SD use case since it can obtain a person-816
alized segmentation model without additional training by one-shot adapting to a single in-domain817
image. In our experiments, we use the model with ViT-T as a backbone.818

SegFormer. We use 5 or 10 pairs of examples to fine-tune SegFormer (Xie et al., 2021) MiT-b0.819

To collect a one-shot in-domain RGB image and mask example for DMC and MetaWorld experi-820
ments, we sample a state from the initial distribution p0 and render the RGB observation. In the821
few-shot scenario, we deploy a random agent in each environment to collect more diverse observa-822
tions from reachable states.823

To generate the associated masks for these states, we make additional queries to the simulation824
rendering API. We represent the pixel values for background and irrelevant objects as false and825
task-relevant objects as true. In multi-object cases, we may perform a separate adaptation operation826
for each task-relevant object, resulting in more than 2 mask classes. In such cases, before integrating827
masks with SDapprox., we will combine the union of the mask classes for all pertinent objects as a828
single true task-relevant class, creating a binary segmentation mask compatible with our method.829

In cases where example masks cannot be programmatically extracted, because such a small number830
of examples are required (1-10), it should also be very feasible for a human to use software to831
manually annotate the needed mask examples from collected RGB images.832

L Details on Selective L2 Loss833

The binary mask prediction branch in SDapprox. is equipped with the sigmoid layer at its output. In834
order to obtain binary maskSD, we binarize the SD binary mask prediction with a threshold of 0.9.835
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M Details on Baselines836

It is known that RePo (Zhu et al., 2023) outperforms many earlier works (Fu et al., 2021; Hansen837
et al., 2022; Zhang et al., 2021; Wang et al., 2022; Gelada et al., 2019) and that DreamerPro (Deng838
et al., 2022) surpasses TPC (Nguyen et al., 2021). However, theses two groups of works have been839
using slightly different environment setups and have not been compared with each other despite840
addressing the same high-level problem on the same DMC environments. In our experiments, we841
evaluate the representatives in each cluster on a common ground (See Appendix G) and compare842
them with our method.843

In our experiments, we use hyperparameters used in the original papers for all the baselines, ex-844
cept RePo (Zhu et al., 2023) in Meta-World. RePo does not have experiments on Meta-World in845
which case we use hyperparameters used for Maniskill2 (Gu et al., 2023) which is another robot846
manipulation benchmark.847

N Extended Related work848

There are several model-based RL approaches which also explore the introduction of new auxiliary849
tasks. Dynalang (Lin et al., 2024) integrates language modeling as a self-supervised learning objec-850
tive in world-model training. It shows impressive performance on benchmarks where the dynamics851
can be effectively described in natural language. However, it is not trivial to apply this method in852
low-level control scenarios such as locomotion control in DMC. Informed Dreamer (Lambrechts853
et al., 2024) introduces an information decoder which uses priviledged simulator information to de-854
code a sufficient statistic for optimal control. This shares the idea of using additional information855
available at training time with our method SDGT. Although it can be effective on training in simu-856
lation where well-shaped proprioceptive states exist, Informed Dreamer cannot be applied to cases857
where such information is hard to obtain. In goal-conditioned RL, GAP (Nair et al., 2020) proposes858
to decode the difference between the future state and goal state to help learn goal-relevant features859
in the latent state space.860

O Limitations861

Segmentation Dreamer achieves strong performance across diverse tasks in the presence of distrac-862
tions and provides a human interface to indicate task relevance. This capability enables practitioners863
to readily train an agent for their specific purposes without suffering from poor learning performance864
due to visual distractions. However, there are several limitations to consider.865

First, since SDapprox. harnesses a segmentation model, it can become confused when a scene contains866
distractor objects that resemble task-relevant objects. This challenge can be mitigated by combining867
our method with approaches such as InfoPower (Bharadhwaj et al., 2022), which learns control-868
lable representations through empowerment (Mohamed & Jimenez Rezende, 2015). This integra-869
tion would help distinguish controllable task-relevant objects from those with similar appearances870
but move without agent interaction.871

Second, although we provide a preliminary exploration in Appendix D, our method does not ex-872
plicitly address randomization in the visual appearance of task-relevant objects, such as variations873
in brightness, illumination, or color. Two observations of the same internal state but with differ-874
ently colored task-relevant objects may be guided toward different latent representations because875
our task-relevant "pixel-value" reconstruction loss forces them to be differentiated. Ideally, these876
observations should map to the same state abstraction since they exhibit similar behaviors in terms877
of the downstream task. Given that training with pixel-value perturbations on task-relevant objects is878
easier compared to dealing with dominating background distractors (Stone et al., 2021), our method879
is expected to manage such perturbations effectively without modifications. However, augmenting880
our approach with additional auxiliary tasks based on behavior similarity (Zhang et al., 2021) would881
further enhance representation learning and directly address this issue.882
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Finally, our approximation model faces scalability challenges when task-relevant objects constitute883
an open set. For instance, in autonomous driving scenarios, obstacles are task-relevant but cannot884
be explicitly specified. While our method serves as an effective solution when task-relevant objects885
are easily identifiable, complementary approaches should be considered when this assumption does886
not hold true.887

P Code Release888

We plan to make the code for Segmentation Dreamer (SD) publicly available upon acceptance.889
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