LLMs for Bayesian Optimization in Scientific Domains: Are We There Yet?

Anonymous ACL submission

Abstract

Large language models (LLMs) have recently been proposed as general-purpose agents for experimental design, with claims that they can perform in-context experimental design. We evaluate this hypothesis using open-source instruction-tuned LLMs applied to genetic perturbation and molecular property discovery tasks. We find that LLM-based agents show no sensitivity to experimental feedback: replacing true outcomes with randomly permuted labels 012 has no impact on performance. Across benchmarks, classical methods such as linear bandits and Gaussian process optimization consistently outperform LLM agents. We further propose 016 a simple hybrid method, LLM-guided Nearest Neighbour (LLMNN) sampling, that combines LLM prior knowledge with nearest-neighbor sampling to guide the design of experiments. LLMNN achieves competitive or superior performance across domains without requiring significant in-context adaptation. These results suggest that current open-source LLMs do not 024 perform in-context experimental design in practice and highlight the need for hybrid frameworks that decouple prior-based reasoning from batch acquisition with updated posteriors.

1 Introduction

017

021

028

034

042

Experimental design enables data-efficient scientific discovery (Shields et al., 2021; Ueno et al., 2016; Lei et al., 2021; Huan et al., 2024; Jain et al., 2023). In domains such as biology and chemistry each experiment can be costly or time-consuming so we need methods that select the most informative candidates under a constrained budget. Classical approaches typically adopt a Bayesian framework (Lindley, 1956; Houlsby et al., 2011): they construct a surrogate model of the response function, update this model with new data, and select future experiments by optimizing an acquisition function such as expected improvement or information gain (Gal et al., 2017; Kirsch et al., 2019).

Recent work has proposed using LLMs to replace these components, offering a unified interface that can incorporate prior knowledge, reason over experimental history, and directly select candidates via prompting. Examples include BioDiscoveryAgent (BDA) (Roohani et al., 2024) for genetic perturbation design and LLAMBO (Liu et al., 2024) for hyperparameter optimization. These systems are built on proprietary LLMs (e.g., Claude 3.5 Sonnet (Anthropic, 2024) or OpenAI's GPT-3.5 (OpenAI, 2023) and o1 (OpenAI, 2024)) and design experiments by iteratively prompting the LLM with prior experimental outcomes, and rely on in-context learning to guide future experiment selection.

043

045

047

049

051

054

055

057

060

061

062

063

064

065

066

067

068

069

070

071

072

073

074

075

077

079

083

In domains that are well-studied, the priors from the LLMs offer clear benefits over the traditional methods for the first round of experimentation because the LLMs can leverage information from the pretraining corpus to select actions. However, it is less clear whether in-context learning alone (without finetuning) leads to good action selection. This paper investigates whether such LLM-based approaches, when implemented with open-source models and without external tool use, can perform effective experimental design. Specifically, we ask, do off-the-shelf, instruction-tuned LLMs exhibit strong in-context experiment design abilities when prompted with experimental history?

We address this question using the BioDiscoveryAgent pipeline implemented with two publicly available LLMs—LLaMA-3.1-8B-Instruct (Grattafiori et al., 2024) and Qwen-2-7B-Instruct (Yang et al., 2024)—applied to experimental design tasks in two domains: single-gene perturbation and molecular property prediction. To evaluate in-context learning behavior, we conduct ablation studies that compare the standard BioDiscoveryAgent to a variant receiving randomly permuted feedback (BDA-Rand), removing any correspondence between past actions and outcomes. Our experi-

- 084
- 087

- 094

- 101 102
- 103 104
- 105
- 106
- 107
- 108 109
- 110
- 111 112
- 113 114
- 115

117

- 120
- 118 119

121

122

123

127

- 1. LLMs are insensitive to feedback. Across
 - all datasets and models (including Claude Sonnet 3.5), BDA and BDA-Rand perform comparably. In some cases, the BDA-Rand even performs slightly better. This suggests that the tested LLMs' selection behavior is determined primarily by prior knowledge rather than adaptation to feedback.

mental analysis reveals the following findings:

- 2. LLMs underperform classical baselines. Linear UCB and Gaussian process-based Bayesian optimization methods, given access to the same candidate embeddings, consistently outperform BDA on both domains.
- 3. A simple heuristic performs better search. We introduce LLM-guided Nearest Neighbour (LLMNN), a method that prompts the LLM to propose seed candidates and then selects batches via nearest-neighbor expansion in embedding space. LLMNN also receives in-context feedback but outperforms BDA and matches or exceeds classical methods across benchmarks.

In summary, we make following contributions,

- We provide a diagnostic evaluation of in-context experimental design using randomized-feedback ablations.
- · We benchmark open-source LLMs against Bayesian optimization and bandit-based methods across five gene perturbation and three molecular property prediction datasets.
- We show that open-source and proprietary instruction-tuned LLMs do not leverage experimental feedback to perform in-context experimental design in practical experimental design tasks.
- We introduce a simple hybrid method, LLMNN, which leverages LLM prior knowledge for exploration and embedding-based nearest-neighbor sampling for exploitation.

These results indicate that LLMs, while encod-124 ing valuable domain priors, still need explicit mech-125 126 anisms that enable posterior updating and selection for efficient experimental design. Hybrid approaches that combine LLM priors with classical 128 exploration strategies offer a promising direction 129 for scalable, general-purpose experiment design. 130

2 **Problem Statement**

Consider the following real-world experimental settings across two domains:

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

Single Gene Perturbation. Let's say we have the ability to knock out a single gene at a time from the human cell to induce a certain desired phenotypic response. Correspondingly, for every knockout, we are able to measure the phenotypic response value of perturbing the gene. However, exhaustive trials with the whole set of protein-coding genes (> 19000) are infeasible due to both time and budget constraints. Thus, how do we design perturbation experiments to identify genes that produce the phenotype under tight budget constraints and a sequential experiment protocol?

Chemical Properties of Molecules. Similarly, say given a large library of molecules, we seek to identify the molecules that exhibit high values for a given property. For every molecule tried, we can obtain its property value. How do we effectively screen the library to identify top-performing molecules for the given property, under similar constraints as above?

More formally, both these settings are examples of closed-loop experiment design, which is our center of focus in this work. At any experimental round, the agent determines which candidates to investigate next, given the results from all the prior experiments. The process continues for Nnumber of rounds, depending on the experimental budget available, with the objective of detecting a maximum number of hit candidates.

Specifically, let C be the set of all the candidates and $f : \mathcal{C} \to \mathbb{R}$ be the function that maps each candidate to a real-valued measurement. The task is inherently sequential, spread over Nrounds, where each round i is defined as the trial of $\{c_1, c_2, \ldots, c_B\} \subseteq C$ candidates independently. The goal of the experiment is to identify the candidates with measurement value greater than some threshold τ , i.e., $f(c) > \tau$ for $c \in \mathcal{C}$. Such candidates are termed as hits for that measurement function.

Further, let C_i be the set of candidates selected by the agent at any round i and let Z_i be the set comprising of entire experiment history, i.e. $Z_i = \{(c, f(c)) \mid c \in \bigcup_{t=1}^{i-1} C_t\}$. Given Z_i , the agent is then expected to guide the formation of C_i . At the end of N rounds, let $C_a = \bigcup_{t=1}^N C_t^+$, where $C_t^+ = \{c \in C_t : f(c) > \tau\}$ represents the hits identified in round t. Thus, C_a represents the cumulative set of hits across all rounds up to t. Similarly, let C_{gt} be the set of all true hits for the measurement function f, $C_{qt} = \{c \in C : f(c) > \tau\}$.

We typically fix the N = 5 and B = 128 for all our experiments unless stated otherwise. Additionally, the τ for the molecular property task is set to be at the 90th percentile of the property value.

3 Related Work

180

181

185

186

187

188

191

192

193

194

195

196

197

198

199

201

204

210

211

212

213

214

215

216

217

218

219

221

228

BO for Scientific Applications: Bayesian Optimization in scientific domains has focused on a variety of applications like drug discovery (Griffiths and Hernández-Lobato, 2020; Korovina et al., 2020), biological experiment design (Roohani et al., 2024; Lyle et al., 2023; King et al., 2004), and chemical/molecular tasks (Kristiadi et al., 2024; Fromer et al., 2024; Ranković and Schwaller, 2023; Shields et al., 2021). Simultaneously, there have also been works that advance autonomous AI-driven closed-loop experiment design (M. Bran et al., 2024; Tom et al., 2024; Boiko et al., 2023). In this work, we study how LMs can be used to incorporate prior information into the search process in the context of two real-world domains: single gene perturbations and chemical property optimization. Both tasks are similar in terms of extensive candidate space and complex relationships between the candidate and its associated measurement. However, the genetic domain has a finite candidate space of genes in the human genome, whereas the space of all molecule is far larger (up to 10^{60} small molecules (Bohacek et al., 1996)) making it harder to have priors over any particular molecule.

LLMs for Bayesian Optimization: A series of recent works have explored the use of LLM embeddings in different ways, like for general-purpose regression (Nguyen et al., 2024), to improve surrogate modeling (Nguyen and Grover, 2024), and to augment the traditional methods like Gaussian Processes (Hartford et al., 2020; Ramos et al., 2023). We focus on using LLMs as the backend for an agent that interacts with the laboratory feedback and performs closed-loop experiment design.

The two closest related prior works to our study are BioDiscoveryAgent (Roohani et al., 2024) and LLAMBO (Liu et al., 2024). LLAMBO is based on 229 GPT-3.5 and primarily focuses on hyperparameter-230 tuning tasks, with LLM performing end-to-end 231 Bayesian Optimization via suitable prompting. In 232 a similar spirit, BioDiscoveryAgent proposes an 233 LLM agent based on Claude 3.5 Sonnet and aug-234 mented with external tools that performs closed-235 loop experiment design of genetic perturbations. 236 Both these approaches leverage proprietary LLMs 237 and heavily rely on in-context learning to design 238 experiments conditional on the experimental his-239 tory. BioDiscoveryAgent, in particular, prompts 240 the LLM to generate the entire batch of candidates 241 to try next. In this work, we take a critical view 242 of these methods, particularly BioDiscoveryAgent 243 (BDA), and resort to instruction-tuned open-source 244 models like Llama3.1-8B (Grattafiori et al., 2024) 245 and Qwen2-7B (Yang et al., 2024) to further ex-246 amine it. While there exists evidence that trans-247 formers have been shown to perform amortized 248 Bayesian inference (Müller et al., 2024) when ap-249 propriately trained, it is not obvious that the abil-250 ity arises from the next-token prediction and post-251 training objectives, and hence we specifically test 252 the open-source BDA for the ability to select ex-253 periments. Eventually, we take a departure from a 254 purely LLM-based approach and explore the syn-255 ergy between LLMs and classical methods in our 256 proposed hybrid approach, LLMNN, that achieves 257 significantly superior performance. 258

4 Tasks and Datasets

We perform experiments on two scientific domains in this work. In particular, we work with *single gene perturbations* and *chemical properties of molecules*. We simulate running experiments on a set of candidates by retrieving the corresponding measurement value from a tabular dataset. However, in real-world settings, the corresponding experiments would be conducted in a laboratory or an in-silico simulator. In the subsequent subsections, we describe the datasets used in the two domains. 259

260

261

262

263

264

265

267

268

270

4.1 Single Gene Perturbations

Section 2 explains the details of the task, such as the
goal with experiment design, candidate space, and
the associated measurements. In terms of datasets,
we use the IL2, IFNG, Carnevale, Sanchez,
and Sanchez Down datasets from Roohani et al.
(2024)'s BioDiscoveryAgent as each of them cov-
ers a distinct biological process. For example, IL2271

Method	IL2	IFNG	Carnevale	Sanchez	Sanchez Down				
Ground truth ($\mid C_{gt} \mid$)	654	920	943	924	924				
Llama-3.1-8B backbone									
BDA 39.4 44 32.4 23.2 43.6									
BDA-Rand	37	51	31.6	30.8	45				
Qwen-2-7B backbone									
BDA	33.2	26.2	27.2	26.4	26				
BDA-Rand	29 32.4 29 24.2		35.4						
Claude 3.5 Sonnet backbone									
BDA (Reported Numbers)	68.01	87.4	39.6	60.72	N/A				
BDA (Replicated)	59.4	78.8	43.8	31.6	51.8				
BDA-Rand	57.6	79.4	42	33.8	57.6				

Table 1: Cumulative number of hits secured by each method on the gene perturbation datasets. The values are averaged over 5 runs. Note that we experiment with the No-Tool version of BioDiscoveryAgent. BDA-Rand is the BioDiscoveryAgent baseline provided with random feedback after each round of experimentation. It can be concluded that LLMs trained on next token prediction and RLHF fail to perform in-context experimental design.

(Schmidt et al., 2022) is concerned with the phenotype of change in the production of Interleukin-2 (IL2), a cytokine involved in immune signaling. More details about each of the datasets are included in the appendix B.1.1. Each dataset contains measurements for over 18000 genes, i.e., $|\mathcal{C}| > 18000$, each knocked down in a distinct cell.

4.2 **Chemical Properties of Molecules**

278

281

284

287

289

290

291

294

296

297

305

306

For the chemical properties task, we focus on the following three molecular datasets: ESOL (water solubility), **FreeSolv** (hydration free energy in water), and Ion. E. (ionization energy of the molecules). Note that $|\mathcal{C}| = 1128,642$ and 11565 respectively for each of the aforementioned datasets. For more details, see appendix B.1.2

5 Is Naively Prompting LLM Enough for **Experiment Design?**

Experimental design is inherently a sequential 295 process where at each round, one should select experiments on the basis of both prior information and the outcomes of previous experiments. 298 Through the pretraining objective, LLMs have extensive prior information which enables strong performance in experimental design settings with relatively few rounds of experiments (i.e. where the guidance of the prior matters most). For example, LLAMBO (Liu et al., 2024) focuses on tasks related to hyperparameter-tuning, and BioDiscoveryAgent (Roohani et al., 2024) demonstrates

strong performance on genetic perturbation experiment design. Despite minor differences, there are major similarities between these approaches. Both works pass on the experiment history and corresponding observations by simply appending them within the prompt itself with the hope that the LLM can leverage its in-context abilities to incorporate this feedback and adapt its subsequent predictions. We test the extent to which BioDiscoveryAgent is actually using this information by breaking the relationship between candidates, c_i , and their associated outcomes, $f(c_i)$. In particular, we randomly pair each c_i with some other outcome, $f(c_i)$, which breaks their joint dependency, while keeping their respective marginal distributions fixed.

Figure 1: Illustration of the 2 levels of random permutation in the experimental feedback to the LLM on the genetic domain. Level 1 modifies the measurement value, whereas level 2 modifies whether a candidate is a hit or not. Note that it is possible that a particular gene has both level 1 and 2 modifications.

Method. For our investigation, we work with the BioDiscoveryAgent (BDA) pipeline on a small open-source LLM backbone without any external

324

307

308

309

310

311

312

313

314

315

316

317

318

319

$\begin{array}{c} \textbf{Method} \\ \textbf{Ground truth} (\mid \mathcal{C}_{gt} \mid) \end{array}$	IL2 654	IFNG 920	e curne are suit		Sanchez Down 924			
Llama-3.1-8B backbone								
Linear UCB	35	72	38	39	42			
GP	147.8	23	22.2	27.6	30			
BDA	39.4	44	32.4	23.2	43.6			
Qwen-2-7B backbone								
Linear UCB	93	74	31	31	41			
GP	147.8	23	22.2	27.6	30			
BDA	33.2	26.2	27.2	26.4	26			

Table 2: Cumulative number of hits secured by each method on the gene perturbation datasets. The values are averaged over 5 runs. The max values in each column for each LLM backbone have been bolded. Note that we experiment with the No-Tool version of BioDiscoveryAgent. Further, all the statistical methods use the embeddings corresponding to the LLM in the backbone of BDA to ensure the same amount of knowledge. It can be observed clearly that principled statistical approaches outperform the BioDiscoveryAgent baseline on most datasets and across both families of open-source LLMs.

tools. In the first set of experiments, we evaluate the 325 ability of the LLMs to leverage experimental feed-326 back. We compare BDA with BDA-Rand, which 327 is the same as BDA but receives randomized feedback instead of true feedback. We perform 2 levels of randomization, level 1 being random measure-330 ment values and level 2 being randomness in hit vs not-hit feedback. Figure 1 contains an illustration of the randomization procedure. Both methods 333 are evaluated against the ground truth hits for each dataset. As a second step, we compare BDA with classical models like Linear UCB and Gaussian Process (GP) to evaluate whether the LLM has 337 sufficient information to make strong selections. Both Linear UCB and the GP only condition on 339 the residual stream embeddings of the LLM so can only outperform the LLM insofar as they can better 341 use the experimental feedback. 342

Results. We investigated the in-context experi-343 mental design abilities of the LLMs, and Table 1 shows the results for the same. The numbers in the 345 table correspond to the cumulative number of hits obtained after 5 rounds of experiments with 128 perturbations in every round and are averaged over 348 5 runs. Across both LLMs and all 5 datasets, it is evident that passing random feedback does not hurt the performance of the framework at all. In 352 fact, the performance remains nearly the same or improves slightly. To further substantiate our hypothesis, we also perform a similar experiment on Claude 3.5 Sonnet, a proprietary large-scale LLM, and observe that even Claude maintains nearly the 356

same performance despite random feedback ¹. The strong initially performance of the LLMs is therefore likely the result of theirs priors on ordering of genes and is not affected by the feedback of past experiments appended in its prompt.

357

358

359

360

361

362

363

365

366

367

369

370

371

373

374

375

376

378

379

381

384

The above flaw in the LLM's capabilities motivated us to compare BDA with classical approaches. Table 2 shows the cumulative number of hits obtained for BDA and classical baselines as described above. It can be seen clearly that across the 5 datasets, either LinearUCB or GP outperforms the BDA framework by a significant margin on both choices of LLM models. In contrast to the trend of Claude-based BDA, these results further highlight the lack of robustness of the framework's performance with respect to the base LLM.

6 LLMNN: A Hybrid Experiment Design Method

In light of the above observations, we propose **LLM** guided Nearest Neighbour (LLMNN) framework, a simple greedy approach that prompts an LLM to guide the location of cluster centers and leverages nearest neighbour sampling to form the batch B_i at any round *i*. The LLMNN framework is designed to leverage: 1.) Generalist LLMs' intrinsic domain knowledge to guide the search in the vast candidate space, and 2) the inductive bias that similar genes/molecules have similar functionalities/properties. The schematic workflow

¹We generate the numbers for BDA using the publicly available code as we could not replicate their original numbers, possibly due to LLM updates.

Figure 2: Schematic Workflow of the LLM-guided Nearest Neighbour (LLMNN) method. The red rounded boxes are the inputs and outputs of the Language Model. For ease, only cluster centers have been shown in the output. Please refer to Section 6 for detailed output specification and information about the components of the method. Refer to Appendix A for the detailed prompt template and to Appendix C for a full trace of the method.

of the proposed LLMNN framework is illustrated in Figure 2. Below, we discuss the important components of the LLMNN framework, followed by a detailed workflow of the method.

386

391

397

400

401

402

403

404

405

406

407

419

420

Candidate Memory. stores the pool of candidates, each represented in the following format: { "name": <candidate name>, "score": <measurement value>, "explored": <bool>}. For molecules, the candidate name is the SMILES string and measurement is the property value, whereas for genes, the candidate name is the gene name in the HGNC nomenclature and measurement is the phenotypic response value. Each candidate is also associated with an embedding. The explored key tracks whether a candidate has already been selected, preventing repetition in the optimization process. The memory interacts with the LLMNN framework by receiving a query candidate name and returning the nearest unexplored neighbors based on distance in the embedding space.

Candidate Embeddings. 408 Each candidate in the memory has an associated embedding. We 409 experiment both with LLM embeddings for the 410 candidates and also domain-specific embeddings 411 like Achilles embeddings for genes (Tsherniak 412 et al., 2017) and Molformer (Ross et al., 2022) 413 embeddings for the SMILES strings. The distance 414 metric for Achilles embeddings is the cosine 415 distance, whereas for all other embeddings, the 416 L2-squared distance is used. More details about 417 the embeddings are included in Appendix B.3 418

Agent Response Format: We borrow the

agent response format from BioDiscoveryAgent (Roohani et al., 2024), and direct the LLM to structure its responses into several parts: Reflection, Research Plan, Solution, similar to Huang et al. (2023). Through the Reflection and Research Plan entries, the model is able to articulate its reasoning behind a particular prediction. Solution contains a list of n_c cluster centers to sample around next. For our experiments, we fix $n_c = 5$ unless stated otherwise. 421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

Workflow. The exact flow of the LLMNN framework is defined as follows:

- 1. LLMNN framework takes experiment protocol, task, and candidate space details as the context in its prompt to generate the first set of cluster centers it seeks to explore.
- 2. The output cluster centers are then used to retrieve candidates from the candidate memory.
- 3. The selected candidates for the round are then sent to the human or a lab oracle to obtain their value of the measurement function *f* and to determine if they were a hit.
- 4. This hit vs not hit qualitative feedback, along with the measurement value, is appended to the prompt from Step 1 and passed to the LLM to generate the next set of cluster centers.
- 5. Steps 2-4 are repeated for *N*-1 rounds. The total hits identified successfully at the end indicate the method's performance. 449

Method	IL2	IFNG	Carnevale	Sanchez	Sanchez Down			
Ground truth ($ C_{qt} $)	654	920	943	924	924			
Random	23.8	26	35	32.2	34.6			
Coreset	9.2	31.4	29.4	33.8	30.2			
Linear UCB	110	98	51	75	87			
GP	139	24	20.4	24.6	33			
BDA-GS (Claude 3.5 Sonnet)	65.4	88.32	40.55	57.28	N/A			
Llama-3.1-8B backbone								
BDA	39.4	44	32.4	23.2	43.6			
BDA-GS	63.4	57.4	42.59	22.2	39.6			
LLMNN NoExp	137.8	86.3	58.9	42.5	42.3			
LLMNN	163.3	107.9	65.6	54.2	45.5			
Qwen-2-7B backbone								
BDA	33.2	26.2	27.2	26.4	26			
BDA-GS	38.6	35.2	32.8	28.6	38			
LLMNN NoExp	146.4	59.1	44.5	62.8	46.4			
LLMNN	160.7	78	60.9	53.5	45.1			

Table 3: Cumulative hits over 5 rounds of experiments with 128 candidates in each experiment. The values in the table are averaged over 5 runs. The max values in each column have been bolded. Note that we use Achilles embeddings of genes for the gene search tool in the case of LLMNN and BDA-GS on Llama and Qwen backbones. The results indicate the strong performance of LLMNN, even surpassing the BDA based on Claude 3.5 Sonnet, which has access to a sophisticated gene search tool. Since the numbers for this BDA variant have been taken from Table 3 of the original paper, we do not have a score for Sanchez Down as it isn't included in the original text.

7 Does LLMNN do Any Better on Our Experiment Design Domains?

We observed BioDiscoveryAgent struggled to outperform the traditional baselines (when provided with the same priors via access to embeddings) on the genetic perturbation datasets, and that the performance was largely the result of having better priors. Given this, one would expect better performance from LLM-based approaches in settings with well-studied candidate spaces—e.g. genes in the human genome—compare with much larger spaces—e.g. all of chemical space.

LLMNN addresses the poor response to experimental feedback by taking advantage of the fact that LLMs encode candidates into a common embedding space. This allows us to greedily construct experimental batches by performing nearest neighbor sampling in the neighborhood of previously observed hits. LLMNN requires minimal assumptions of LLM generating valid gene names as per HGNC nomenclature and valid SMILES strings, which is reasonable for modern-day LLMs that have been pretrained on an internet-scale of knowledge. Further, LLMNN is an attempt at exploiting the known inductive biases of the domain to achieve higher performance.

Method. We experiment with two variants of LLMNN, one original with the Research Plan and Reflection outputs, and the other that contains purely the Solution, without any explanations. Both LLMNN variants have access to the gene similarity tool based on the Achilles (Tsherniak et al., 2017) embeddings. Against LLMNN, we include traditional baselines like Random, Coreset (pure diversity-based approach), LinearUCB, and Gaussian Process (GP). Apart from these methods, we also include three variants of BioDiscoveryAgent: 1) BDA, i.e., without any tools, 2) BDA-GS with access to the same gene similarity tool that LLMNN has access to, and 3) BDA-GS (Claude 3.5 Sonnet), which is the originally proposed approach in Roohani et al. (2024) that uses Claude 3.5 Sonnet LLM in the backbone and has access to more sophisticated gene similarity search tools like enrichment analysis on Reactome database (Gillespie et al., 2022). We do not include BDA in the molecules domain because BDA is not constrained to predict molecules that exist in the library and hence one needs a large number of retries to construct a batch. The tool for molecular similarity

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

472

473

474

475

451

452

453

Method	Ion. E.	ESOL	FreeSolv				
G. truth ($ C_{gt} $)	1156	112	64				
Random	77.8	29	14.4				
Coreset	151.6	57.6	20.4				
Linear UCB	283	76	39				
GP	151.39	35	16.8				
Llama-3.1-8B backbone							
LLMNN NoExp	152.8	23.4	12.2				
LLMNN	103.2	22.2	10.2				
Qwen-2-7B backbone							
LLMNN NoExp	147.2	24	25.8				
LLMNN	131	29	7				

Table 4: Cumulative hits over 5 rounds of experiments with B = 128, 64, and 32 candidates in each experiment and $n_c = 5, 4$ and 4, respectively, for Ion. E., ESOL and FreeSolv datasets. The values in the table are averaged over 5 runs. Note that we use molecule embeddings from MolFormer XL-10pct for the similarity search tool. The results indicate that the NoExp variants of LLMNN perform competitively compared to classical baselines on 2/3 datasets.

available to LLMNN is based on Molformer (Ross et al., 2022) embeddings of SMILES strings.

Results. Table 3 displays the performance comparison between different methods on the single gene perturbation domain. Note that the same experimental budget has been provided to all the methods, and the numbers are averaged over 5 runs. The table illustrates that the LLMNN method based on the Llama-3.1 backbone outperforms BDA based on both Llama and Claude backends on 5/5 and 3/4 datasets, respectively, by significant margins. It is worth noting that Llama-3.1 is just an 8 billion parameter model as compared to Claude 3.5, which has been trained on larger data with significantly more parameters. Further, LLMNN only had access to a basic gene similarity tool as compared to Claude BDA, which had more sophisticated gene search tools. Similarly, Qwen-based LLMNN outperforms the corresponding BDA on 5/5 datasets. Another interesting observation is that the traditional baselines still perform really well, surpassing Claude BDA on 4/4 datasets and LLMNN as well on 2/5 datasets. One of the contributing factors to the performance of LLMNN is maintaining a memory that keeps track of which genes have already been explored. This ensures that similarity queries return unexplored neighbours at every query, in contrast to the BioDiscoveryAgent, which doesn't maintain this state and hence, would inevitably return the same set of genes always for the same query, irrespective of the experiment history.

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

On the molecular domain, Table 4 contains the numbers for cumulative hits for all methods averaged over 5 runs, given the same experimental budget. The numbers highlight that while Qwen2-based LLMNN without explanations performs closely to the traditional baselines on 2/3 datasets, the latter still wins over the LLMNN approach across all the datasets, especially with the ESOL dataset. This underscores that LLMs with simple inductive biases are still not enough alone to serve as experiment designers across different scientific domains, but need tight coupling with the more principled statistical methods that trade off exploration and exploitation like linear UCB and GPs to achieve higher performance.

8 Conclusion

In this work, we set out to critically examine this hypothesis using instruction-tuned open-source LLMs. We particularly focused on BioDiscoveryAgent and experimented on two domains: single gene perturbations (5 datasets) and molecular property optimization (3 datasets). When compared to classical methods like Linear UCB and Gaussian Process that used the embedding from the same LLM as BDA, the open-source BDA performed significantly worse. Furthermore, on deeper experiments with random feedback to the LLM's context, the open-source BDA still retained a similar average performance, showcasing that the LLMs trained on next token prediction and RLHF do not leverage experimental feedback in the design of their experiments. Finally, we proposed an LLMguided Nearest Neighbour framework (LLMNN), a simple combination of LLM and a classic nearest neighbour method. LLMNN outperforms BDA significantly on gene datasets and is applicable to molecular domains, and performs at par with the classical baselines, except on some molecular datasets. Overall, this work suggests that more work is needed to effectively incorporate experiment feedback into LLM-based experimental design pipelines. It introduces a plausible avenue for future research marked by the synergy of LLMs, classical methods, and domain-specific inductive biases.

528

501

Limitations and Future Works

578

581

582

583

584

588

589

593

594

595

597

603

607

610

612

613

614

615

While we demonstrate superior performance with LLMNN on both gene perturbation and molecular domains, this study has several limitations. Firstly, LLMNN augments the LLM with a very simplistic nearest neighbour sampling that allocates an equal budget to each cluster to generate better predictions. However, more complex schemes can be explored to adaptively allocate more budget to centers that have a higher probability of detecting hits. For example, a probabilistic model like GP could be used to determine the hit likelihood of the predicted centers that can, in turn, be used to define budget allocation between the centers.

Due to the policy of sampling around centers, the method is largely exploitative and hence sensitive to the choice of embeddings and hits identified in earlier rounds. More tightly-coupled integration of LLMs and classic exploration methods could be investigated to improve the robustness of the experiment design agent. Further, the inductive bias that *similar* candidates have *similar* properties is clearly not the best bias on molecular domains, as the classic exploration approaches maintain a strong performance as compared to LLMNN, suggesting the need to identify and encode more domain-specific and task-specific biases.

Lastly, we primarily focused on small opensource LLMs like Llama-3.1-8B Instruct and Qwen2-7B-Instruct for our experiments with no external tool use. It shall be interesting to conduct similar studies with both larger (like 70B) and smaller models. Another promising direction is to explore how external tools like literature search, enrichment analysis tools for genes, etc. be effectively augmented to the agent for better performance, as also highlighted by Roohani et al. (2024).

Ethical Considerations

This work deals with building hybrid AI agents that 617 are powered by LLMs and classical exploration settings for guiding the design of scientific exper-619 iments. Since it involves the use of LLM, it is vulnerable to adversarial attacks where the agent might suggest experiments that lead to catastrophic 623 outcomes in a real laboratory. Therefore, it is im-624 perative for the users to have human scientists in the loop to screen out such experiment configurations. Not just post-hoc, the safety could be ensured at the start by suitable constraints on the candidate 627

space.

One of the domains in this work is single gene perturbations, where the effect of knocking down a gene is measured in human cells. While these agents will help increase the robustness of the target discovery phase of the drug discovery pipeline, it should be taken into account that human cells often exhibit genetic variation from one population to another, thus limiting the transferability of the downstream insights to new groups. Thus, caution needs to be exercised in utilizing the insights drawn by this agent in the actual drug discovery pipeline. 628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

References

- Parishad BehnamGhader, Vaibhav Adlakha, Marius Mosbach, Dzmitry Bahdanau, Nicolas Chapados, and Siva Reddy. 2024. Llm2vec: Large language models are secretly powerful text encoders. *arXiv preprint arXiv:2404.05961*.
- Regine S Bohacek, Colin McMartin, and Wayne C Guida. 1996. The art and practice of structurebased drug design: a molecular modeling perspective. *Medicinal research reviews*, 16(1):3–50.
- Daniil A Boiko, Robert MacKnight, Ben Kline, and Gabe Gomes. 2023. Autonomous chemical research with large language models. *Nature*, 624(7992):570–578.
- Julia Carnevale, Eric Shifrut, Nupura Kale, William A Nyberg, Franziska Blaeschke, Yan Yi Chen, Zhongmei Li, Sagar P Bapat, Morgan E Diolaiti, Patrick O'Leary, and 1 others. 2022. Rasa2 ablation in t cells boosts antigen sensitivity and long-term function. *Nature*, 609(7925):174–182.
- John S Delaney. 2004. Esol: estimating aqueous solubility directly from molecular structure. *Journal of chemical information and computer sciences*, 44(3):1000–1005.
- Jenna Fromer, Runzhong Wang, Mrunali Manjrekar, Austin Tripp, José Miguel Hernández-Lobato, and Connor W. Coley. 2024. Batched bayesian optimization with correlated candidate uncertainties. *Preprint*, arXiv:2410.06333.
- Yarin Gal, Riashat Islam, and Zoubin Ghahramani. 2017. Deep bayesian active learning with image data. In *International conference on machine learning*, pages 1183–1192. PMLR.
- Marc Gillespie, Bijay Jassal, Ralf Stephan, Marija Milacic, Karen Rothfels, Andrea Senff-Ribeiro, Johannes Griss, Cristoffer Sevilla, Lisa Matthews, Chuqiao Gong, and 1 others. 2022. The reactome pathway knowledgebase 2022. *Nucleic acids research*, 50(D1):D687–D692.

- 693 701 704 706 710 712 715 716 717 719 721 722 723 724 725 726 727 728 729 730

- 731
- 732 733
- 734
- 735

- Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, Amy Yang, Angela Fan, Anirudh Goyal, Anthony Hartshorn, Aobo Yang, Archi Mitra, Archie Sravankumar, Artem Korenev, Arthur Hinsvark, and 542 others. 2024. The llama 3 herd of models. Preprint, arXiv:2407.21783.
- Ryan-Rhys Griffiths and José Miguel Hernández-Lobato. 2020. Constrained bayesian optimization for automatic chemical design using variational autoencoders. Chemical science, 11(2):577-586.
- Jason S Hartford, Kevin Levton-Brown, Hadas Raviv, Dan Padnos, Shahar Lev, and Barak Lenz. 2020. Exemplar guided active learning. In Advances in Neural Information Processing Systems, volume 33, pages 13163–13173. Curran Associates, Inc.
- Neil Houlsby, Ferenc Huszar, Zoubin Ghahramani, and Máté Lengyel. 2011. Bayesian active learning for classification and preference learning. CoRR, abs/1112.5745.
- Xun Huan, Jayanth Jagalur, and Youssef Marzouk. 2024. Optimal experimental design: Formulations and computations. Acta Numerica, 33:715-840.
- Qian Huang, Jian Vora, Percy Liang, and Jure Leskovec. 2023. Mlagentbench: Evaluating language agents on machine learning experimentation. arXiv preprint arXiv:2310.03302.
- Anubhav Jain, Shyue Ping Ong, Geoffroy Hautier, Wei Chen, William Davidson Richards, Stephen Dacek, Shreyas Cholia, Dan Gunter, David Skinner, Gerbrand Ceder, and Kristin A. Persson. 2013. Commentary: The materials project: A materials genome approach to accelerating materials innovation. APL *Materials*, 1(1):011002.
- Moksh Jain, Tristan Deleu, Jason Hartford, Cheng-Hao Liu, Alex Hernandez-Garcia, and Yoshua Bengio. 2023. Gflownets for ai-driven scientific discovery. *Digital Discovery*, 2(3):557–577.
- Ross D King, Kenneth E Whelan, Ffion M Jones, Philip GK Reiser, Christopher H Bryant, Stephen H Muggleton, Douglas B Kell, and Stephen G Oliver. 2004. Functional genomic hypothesis generation and experimentation by a robot scientist. Nature, 427(6971):247-252.
- Andreas Kirsch, Joost Van Amersfoort, and Yarin Gal. 2019. Batchbald: Efficient and diverse batch acquisition for deep bayesian active learning. Advances in neural information processing systems, 32.
- Ksenia Korovina, Sailun Xu, Kirthevasan Kandasamy, Willie Neiswanger, Barnabas Poczos, Jeff Schneider, and Eric Xing. 2020. Chembo: Bayesian optimization of small organic molecules with synthesizable recommendations. In International Conference on Artificial Intelligence and Statistics, pages 3393-3403. PMLR.

Agustinus Kristiadi, Felix Strieth-Kalthoff, Marta Skreta, Pascal Poupart, Alán Aspuru-Guzik, and Geoff Pleiss. 2024. A sober look at LLMs for material discovery: Are they actually good for Bayesian optimization over molecules? In ICML.

736

738

739

740

741

742

743

744

745

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

773

774

776

777

778

779

780

781

782

783

784

786

787

789

790

- Bowen Lei, Tanner Quinn Kirk, Anirban Bhattacharya, Debdeep Pati, Xiaoning Qian, Raymundo Arroyave, and Bani K Mallick. 2021. Bayesian optimization with adaptive surrogate models for automated experimental design. Npj Computational Materials, 7(1):194.
- Zehan Li, Xin Zhang, Yanzhao Zhang, Dingkun Long, Pengjun Xie, and Meishan Zhang. 2023. Towards general text embeddings with multi-stage contrastive learning. arXiv preprint arXiv:2308.03281.
- D. V. Lindley. 1956. On a measure of the information provided by an experiment. The Annals of Mathematical Statistics, 27(4):986–1005.
- Tennison Liu, Nicolás Astorga, Nabeel Seedat, and Mihaela van der Schaar. 2024. Large language models to enhance bayesian optimization. *Preprint*, arXiv:2402.03921.
- Clare Lyle, Arash Mehrjou, Pascal Notin, Andrew Jesson, Stefan Bauer, Yarin Gal, and Patrick Schwab. 2023. Discobax: Discovery of optimal intervention sets in genomic experiment design. In International Conference on Machine Learning, pages 23170-23189. PMLR.
- Andres M. Bran, Sam Cox, Oliver Schilter, Carlo Baldassari, Andrew D White, and Philippe Schwaller. 2024. Augmenting large language models with chemistry tools. Nature Machine Intelligence, 6(5):525-535.
- David L Mobley and J Peter Guthrie. 2014. Freesolv: a database of experimental and calculated hydration free energies, with input files. Journal of computeraided molecular design, 28:711–720.
- Samuel Müller, Noah Hollmann, Sebastian Pineda Arango, Josif Grabocka, and Frank Hutter. 2024. Transformers can do bayesian inference. Preprint, arXiv:2112.10510.
- Tung Nguyen and Aditya Grover. 2024. Lico: Large language models for in-context molecular optimization. arXiv preprint arXiv:2406.18851.
- Tung Nguyen, Qiuyi Zhang, Bangding Yang, Chansoo Lee, Jorg Bornschein, Yingjie Miao, Sagi Perel, Yutian Chen, and Xingyou Song. 2024. Predicting from strings: Language model embeddings for bayesian optimization. Preprint, arXiv:2410.10190.

OpenAI. 2023. Gpt-3.5-turbo.

- OpenAI. 2024. Openai o1 system card.
- Mayk Caldas Ramos, Shane S Michtavy, Marc D Porosoff, and Andrew D White. 2023. Bayesian optimization of catalysts with in-context learning. arXiv preprint arXiv:2304.05341.

Bojana Ranković and Philippe Schwaller. 2023. Bochemian: Large language model embeddings for bayesian optimization of chemical reactions. In *NeurIPS 2023 Workshop on Adaptive Experimental Design and Active Learning in the Real World*.

791

792

795

796 797

806

807

811

813

814

815

817

819

821

824

837

841

842

- Yusuf Roohani, Andrew Lee, Qian Huang, Jian Vora, Zachary Steinhart, Kexin Huang, Alexander Marson, Percy Liang, and Jure Leskovec. 2024. Biodiscoveryagent: An ai agent for designing genetic perturbation experiments. *Preprint*, arXiv:2405.17631.
- Jerret Ross, Brian Belgodere, Vijil Chenthamarakshan, Inkit Padhi, Youssef Mroueh, and Payel Das. 2022. Large-scale chemical language representations capture molecular structure and properties. *Nature Machine Intelligence*, 4(12):1256–1264.
- Carlos G Sanchez, Christopher M Acker, Audrey Gray, Malini Varadarajan, Cheng Song, Nadire R Cochran, Steven Paula, Alicia Lindeman, Shaojian An, Gregory McAllister, and 1 others. 2021. Genome-wide crispr screen identifies protein pathways modulating tau protein levels in neurons. *Communications biology*, 4(1):736.
- Ralf Schmidt, Zachary Steinhart, Madeline Layeghi, Jacob W Freimer, Raymund Bueno, Vinh Q Nguyen, Franziska Blaeschke, Chun Jimmie Ye, and Alexander Marson. 2022. Crispr activation and interference screens decode stimulation responses in primary human t cells. *Science*, 375(6580):eabj4008.
 - Benjamin J Shields, Jason Stevens, Jun Li, Marvin Parasram, Farhan Damani, Jesus I Martinez Alvarado, Jacob M Janey, Ryan P Adams, and Abigail G Doyle. 2021. Bayesian reaction optimization as a tool for chemical synthesis. *Nature*, 590(7844):89–96.
 - Gary Tom, Stefan P Schmid, Sterling G Baird, Yang Cao, Kourosh Darvish, Han Hao, Stanley Lo, Sergio Pablo-García, Ella M Rajaonson, Marta Skreta, and 1 others. 2024. Self-driving laboratories for chemistry and materials science. *Chemical Reviews*, 124(16):9633–9732.
 - Aviad Tsherniak, Francisca Vazquez, Phil G Montgomery, Barbara A Weir, Gregory Kryukov, Glenn S Cowley, Stanley Gill, William F Harrington, Sasha Pantel, John M Krill-Burger, and 1 others. 2017. Defining a cancer dependency map. *Cell*, 170(3):564–576.
 - Tsuyoshi Ueno, Trevor David Rhone, Zhufeng Hou, Teruyasu Mizoguchi, and Koji Tsuda. 2016. Combo: An efficient bayesian optimization library for materials science. *Materials discovery*, 4:18–21.
- An Yang, Baosong Yang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang Zhou, Chengpeng Li, Chengyuan Li, Dayiheng Liu, Fei Huang, Guanting Dong, Haoran Wei, Huan Lin, Jialong Tang, Jialin Wang, Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin Ma, and 43 others. 2024. Qwen2 technical report. *Preprint*, arXiv:2407.10671.

A Prompt Templates

In the following subsections, we provide the detailed prompt template used for both the genetic perturbation and molecular property domains.

A.1 Single Gene Perturbation

SYSTEM PROMPT:

You are a biomedicine expert who will assist me on problems in drug discovery. I am planning to run a CRISPR screen to identify genes that {func desc}. Ι can only perturb exactly {batch len} genes at a time. For each predicted perturbation, I am able to measure out the {meas desc} which will be referred to as the score. I can only do 5 rounds of experimentation. After every round of experiment, I will provide you with feedback on your predictions, including the correctly identified genes called hits and the corresponding score. The predictions which are not hits will be included in other results.

USER PROMPT:

This is round {round num}.

Here is the feedback on all your predictions till now:

{feedback}

Here is a strategy to follow: Update your priors appropriately and choose genes that gave you hits. Also, be sure to explore by including some genes that could give hits.

Please propose {num cluster centers} different yet valid gene names as per the HGNC nomenclature you want to explore next. Note that I will choose unexplored genes closest to your predicted genes to form the predictions. Your response should exactly follow the format:

**Reflection: Thoughts on previous
results and next steps.

**Research Plan: The full high-level research plan, with current status and reasoning behind each proposed approach. It should be at most 5 sentences.

**Solution:
<Gene 1>

<Gene 1>

....

<Gene {num cluster centers}>

Each gene in the solution should only be the gene name in the HGNC nomenclature. DO NOT ADD ANY COMMENTS IN THE SOLUTION OR AFTER THE SOLUTION.

This is the prompt template at any round *i*. If

i = 1, the segment about feedback in the user prompt won't be there. The different fields in bold represent the following: 858

- round num: This is the round number for which experiments are being selected. 860
- **batch len**: This corresponds to *B* i.e. the experimental budget in each round. 862
- num cluster centers: This reflects the number 863 of cluster centers that LLMNN generates to 864 sample around. 865
- feedback: This is a string divided into two parts: hits and non-hits. Both parts contain the respective candidate names and their corresponding measurement values.
- func desc: This is the description of the task for which we need to perform experiment design. In the context of genes, this means the description of the phenotype we desire to achieve.
 874
- score desc: This elaborates on the measurement values we have for the candidates. 876

877

878

879

Please refer to table 5 for detailed func desc and score desc for each dataset.

A.2 Chemical Property Optimization

This prompt is used at any round i for the molecular 880 datasets. Note that for i = 1, the feedback segment 881 won't be included in the prompt. Most fields 882 described in this prompt are similar to the genetic 883 perturbation, with the exception of candidate 884 space info that contains a high-level description 885 of the candidate space to provide more context to 886 the LLM. Table 6 contains the details of func desc 887 and candidate space info for each of the 3 datasets. 888

855

852

SYSTEM PROMPT:

You are a chemistry expert who will assist me with problems in molecular property optimization. Given a library of molecules, I am planning to conduct wet-lab experiments to identify molecules that have high {func desc}. {candidate space info} I can only experiment with exactly {batch len} molecules at а For each predicted molecule, time. Т am able to measure out the property value. which will be referred to as the score. I can only do 5 rounds After every round of experimentation. of experiment, I will provide you with feedback on your predictions, including the correctly identified molecules called hits and the corresponding score. The predictions which are not hits will be included in other results.

USER PROMPT:

This is round {round num}.

feedback on Here is the all your predictions till now: {feedback str} Here is a strategy to follow: Update your priors appropriately and choose SMILES that gave you hits. Also, be sure to explore by including some SMILES strings that could give hits.

Please propose {num cluster centers} different yet valid SMILES strings of molecules you want to explore next. Note that I will choose unexplored molecules closest to your predicted SMILES strings to form the predictions. Your response should exactly follow the format:

**Reflection: Thoughts on previous results and next steps.

**Research Plan: The full high level research plan, with current status and reasoning behind each proposed approach. It should be at most 5 sentences.

**Solution: ## <SMILES 1>

<SMILES 2>

. . . ## <SMILES {num cluster centers}> Each SMILES string in the solution should be a SMILES string representation of a valid molecule. DO NOT ADD ANY COMMENTS IN THE SOLUTION

OR AFTER THE SOLUTION.

B **Experiment Setup Details**

The following subsections describe the additional experiment details for better understanding: 893

891

892

894

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

929

930

931

932

933

934

935

936

937

B.1 Datasets

B.1.1 Single Gene Perturbation

The 5 datasets used in this domain are borrowed from BioDiscoveryAgent (Roohani et al., 2024) and are as follows: 1) **IL2** (Schmidt et al., 2022) is a dataset that measures the changes in the production of Interleukin-2 (IL2) cytokine involved in immune signaling; 2) IFNG (Schmidt et al., 2022) is another similar dataset that measures changes in production of Interferon- γ cytokine; 3) Carnevale (Carnevale et al., 2022) aims to identify genes that render T cells resistant to inhibitory signals encountered in the tumor microenvironment; 4) Sanchez (Sanchez et al., 2021) dataset studies the change in expression of endogenous tau protein levels in neurons and 5) Sanchez Down (Sanchez et al., 2021) is exactly same as Sanchez dataset but focuses purely on decreasing the expression unlike the Sanchez which includes both increasing and decreasing expression.

B.1.2 Chemical Property Optimization

We describe the molecular property datasets in greater detail below:

- ESOL: Part of the MoleculeNet benchmark. ESOL (Delaney, 2004) is a small dataset comprising the water solubility data for $|\mathcal{C}| = 1128$ compounds in log moles per litre. Each compound is represented as a SMILES string.
- FreeSolv: Free Solvation (FreeSolv) Database (Mobley and Guthrie, 2014) is another small dataset that provides experimental and calculated hydration free energies of $|\mathcal{C}| = 642$ small molecules in water.
- Ion. E.: This dataset is a subset of molecular data from the JCESR molecules that are a part of the Materials Project Database (Jain et al., 2013). The original set contains approximately 25,000 molecules with annotations of many attributes and properties. Our experiments focus on one property: the Ionization Energy. We apply two levels of filters on the whole set of 25,000 molecules: first, we restrict to only those molecules whose ionization energy lies between -10 and 10 units (to avoid noisy outliers), and

out of all these filtered molecules, we choose the molecules composed solely of 'C', 'H', 'N' or 'O' atoms, leaving us with |C| = 11,565 candidates. These filters avoid the dominating effects due to particular elements, leaving primary dependence on the molecular structure and functional groups captured in the SMILES strings.

B.2 Compute

All the experiments in this study have been conducted on a single Nvidia A100 GPU with 40 GB of memory. Since our proposed method, LLMNN, involves inference through the LLMs and repeated retrieval from the candidate memory, on average, a single run takes between 5-10 minutes to run.

B.3 Embeddings

Achilles Embeddings. We use the publicly available Achilles embeddings (Tsherniak et al., 2017) for the gene similarity tool. These embeddings are 808 dimensional in size.

Molformer Embeddings. We use the publicly available Molformer-XL model to embed the SMILES strings². This model has been trained on a collection of SMILES strings from the ZINC and PubChem datasets to learn molecular representations. These embeddings are 768-dimensional in size.

Llama 3.1 Embeddings. We use the LLM2Vec (BehnamGhader et al., 2024) approach to obtain the Llama 3.1 embeddings. Specifically, we use the publicly released checkpoints by the authors on Huggingface ³. These embeddings are 4096-dimensional in nature.

Qwen2 Embeddings. We use the publicly available Qwen2-based general text embedding model released by Alibaba-NLP (Li et al., 2023), as they claim to be on top of the MTEB leaderboard⁴. These embeddings are 3584 dimensional in nature.

C Full trace of LLMNN

Below we present a full trace of the LLMNN method, including both the prompts and the LLM outputs, on the IL2 dataset in the single gene per-turbation domain.

³Model checkpoint taken from https://huggingface.co/McGill-NLP/LLM2Vec-Meta-Llama-31-8B-Instruct-mntp-supervised Listing 1: Full trace of LLMNN method with explanations on IL2 dataset

ons on 1L2 dataset
ROUND 1: BEGIN PROMPT SystemMessage(You are a biomedicine
expert who will assist me on problems in drug discovery. I am planning to
run a CRISPR screen to identify genes that regulate the production of
Interleukin-2 (IL-2). I can only perturb exactly 128 genes at a time.
For each predicted perturbation, I am able to measure out the log fold
change in Interleukin-2 (IL-2) normalized read counts which will be
referred to as the score. I can only do 5 rounds of experimentation. After
every round of experiment, I will provide you with feedback on your
predictions, including the correctly identified genes called hits and the
corresponding score. The predictions
which are not hits will be included in other results.)
HumanMessage(This is round 1. We are beginning
with our experiments. Here is a strategy to follow: Choose
genes that are very different in their biological pathways to
discover what pathways give you hits
Please propose 5 different yet valid gene names as per the HGNC
nomenclature you want to explore next. Note that I will choose
unexplored genes closest to your predicted genes to form the
predictions. Your response should exactly follow the format:
**Reflection: Thoughts on previous results and next steps.
**Research Plan: The full high level research plan, with current status
and reasoning behind each proposed approach. It should be at most 5
sentences. **Solution:
<gene 1=""> ## <gene 2=""></gene></gene>
 ## <gene 5=""></gene>
Each gene in the solution should only be the gene name in the HGNC
nomenclature. DO NOT ADD ANY COMMENTS IN THE
SOLUTION OR AFTER THE SOLUTION.
END PROMPT
BEGIN OUTPUT **Reflection: Thoughts on previous
results and next steps.** Since we are starting from scratch,
there is no previous data to reflect on. However, we will follow the
strategy of choosing genes that are very different in their biological
pathways to increase the chances of
discovering novel regulators of IL-2

²Model checkpoint taken from https://huggingface.co/ibmresearch/MoLFormer-XL-both-10pct

⁴Model checkpoint taken from https://huggingface.co/Alibaba-NLP/gte-Qwen2-7B-instruct

Research Plan: The full high level research plan, with current status and reasoning behind each proposed approach.[OTHER RESULTS] name score ABL1 0.09and reasoning behind each proposed approach.**QRFP 0.00 COA3 -0.05We will choose genes involved in different biological processes such as cell signaling, transcription regulation, and metabolic pathways to identify potential regulators of in the regulation of cell growth, will use the HGNC database to identify genes with diverse functions. Our goal is to identify at least one hit in this round. We will use the provided feedback to refine our strategy for the next round.ROSE -0.08 RPL11 0.05 NCBP2 0.00**Solution:** ## ABL1 ## PAK4 ## SMA02 ROUND 2: BEGIN PROMPT SystemMessage(You are a biomedicine expert who will assist me on problems in drug discovery. I am planning to run a CRISPR screen to identify genes tind rugulate the production of[OTHER RESULTS] name score QRFP 0.00 BNIP3L -0.17**Research Plan: The regulate the production of that regulate the production of[OTHER RESULTS] ABL1 0.05**Research Plan: The regulate the production of that regulate the production of[OTHER RESULTS] COPS6 -0.11 COPS6 -0.08 REP11 0.03**Research Plan: The regulate the production of that regulate the production of[OTHER RESULTS] COPS6 -0.01 REP2 0.00**Research Plan: The regulate the production of that regulate the production of[OTHER RESULTS] RESULTS2**Research Plan: The regulate the production of[OTHER RESULTS] RESULTS2**Research Plan: The regulate the production of[OTHER RESULTS2**Research Plan: The regulate the prod	1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134
research plan, with current status and reasoning behind each proposed approach.**ABL10.09approach.**QRFP0.00We will choose genes involved in different biological processes such as cell signaling, transcription regulation, and metabolic pathways to identify potential regulators of will select genes that are involved in the regulation of cell growth, differentiation, and metabolism. We will use the HGNC database to identify genes with diverse functions. Our goal is to identify at least one hit in this round. We will use the provided feedback to refine our strategy for the next round.MSF -0.05 SUJT 0.13**Solution:** ## ABL1 ## MAPK14 ## PAK4 ## MAPK14 ## Sulution:** COUTPUT SystemMessage(You are a biomedicine expert who will assist me on problems in drug discovery. I am planning to run a CRISPR screen to identify genesABL10.09 QCSILI PO.14 SUT 0.03 RAN 0.12run a CRISPR screen to identify genes 	1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134
and reasoning behind each proposed approach.**QRFP0.00We will choose genes involved in different biological processes such as cell signaling, transcription regulation, and metabolic pathways to identify potential regulators of IL-2 production. For round 1, we will selct genes that are involved in the regulation of cell growth, differentiation, and metabolism. We will use the HGKC database to identify genes with diverse functions. Our goal is to identify at least one hit in this round. We will use the provided feedback to refine our strategy for the next round.RNGTT0.03**Solution:** ## ABL1 ## MAPK14 ## PAK4 ## SMAD2 ROUND 2: BEGIN PROMPT SystemMessage(You are a biomedicine expert who will assist me on problems in drug discovery. I am planning to run a CRISPR screen to identify genesQRFP0.00 0.01and reasoning behind each proposed approximationQRFP0.00 0.010.01marked trace # round.COSB0.010.03marked trace ## SMAD2 ROUND 2: BEGIN PROMPTCMR0.02SystemMessage(You are a biomedicine expert who will assist me on problems in drug discovery. I am planning to run a CRISPR screen to identify genesCARPE0.01True ACRISPR screen to identify genes that regulate the production ofCARPE0.120.12Could approximation ofCOSB0.010.010.02Could approximation restrict approximationCARPE0.020.12Could approximation restrict approximationCARPE0.020.12Could approximation restrict approximationCARPE <td< td=""><td>1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134</br></br></br></br></br></br></br></br></br></br></br></td></td<>	1122 1123
approach.**COA3 -0.05We will choose genes involved in different biological processes such as cell signaling, transcription regulation, and metabolic pathways to identify potential regulators of IL-2 production. For round 1, we will select genes that are involved in the regulation of cell growth, differentiation, and metabolism. We will use the HGNC database to identify genes with diverse functions. Our goal is to identify at least one hit in this round. We will use the provided feedback to refine our strategy for the next round.RNGTT COPS6 COX5B COY56 COX5B 0.07**Solution:** ## ABL1 ## PAK4 ## HNF4A ## PAK4 ## PAK4 ## PAK4 ## PAK4 ## SAD2 ROUND 2: BEGIN PROMPT SystemMessage(You are a biomedicine expert who will assist me on problems in drug discovery. I am planning to run a CRISPR screen to identify genes tind regulate the production ofCOA3 -0.05 E266 -0.11 NANOG -0.05 	1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134
We will choose genes involved in different biological processes such as cell signaling, transcription regulation, and metabolic pathways to identify potential regulators of IL-2 production. For round 1, we will select genes that are involved in the regulation of cell growth, differentiation, and metabolism. We will use the HGNC database to identify genes with diverse functions. Our goal is to identify at least one hit in this round. We will use the provided feedback to refine our strategy for the next round.E2F6 -0.11 NUDFA4 0.04**Solution:** # MAPK14 ## PAK4 ## SMAD2 END OUTPUTRCP28 -0.01 RCP2 0.00**Solution:** ## SMAD2 END OUTPUTCOX58 0.07 COX58 0.07 	1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134
different biological processes such as cell signaling, transcription regulation, and metabolic pathways to identify potential regulators of IL-2 production. For round 1, we will selet genes that are involved in the regulation of cell growth, differentiation, and metabolism. We will use the HGNC database to identify genes with diverse functions. Our goal is to identify at least one hit in this round. We will use the provided feedback to refine our strategy for the next round.NANOG -0.05 NDUFA4 0.04 RRAT 0.12**Solution:** # MAPK14 ## PAK4 ## SMAD2 RDU OUTPUTRGFD3 -0.24 TRAPC3L 0.10 FAM107B 0.05 FAM107B 0.05**coluto 2: BEGIN PROMPT SystemMessage(You are a biomedicine expert who will assist me on problems in drug discovery. I am planning to run a CRISPR screen to identify genes that regulate the production ofNANOG -0.05 NANOG -0.05 MCPC 0.12differentiation, and metabolism. We 	1125 1126 1127 1128 1129 1130 1131 1132 1133 1134
as cell signaling, transcription regulation, and metabolic pathways to identify potential regulators of IL-2 production. For round 1, we will select genes that are involved in the regulation of cell growth, differentiation, and metabolism. We will use the HGNC database to identify genes with diverse functions. Our goal is to identify at least one hit in this round. We will use the provided feedback to refine our strategy for the next round.MDUFA40.04 RAN**Solution:** # ABL1 ## ABL1 ## MAPK14 ## SMAD2 END OUTPUTMDUFA40.04 RAN**Solution:** ## SMAD2 END OUTPUTCOSS0.01 MCBP2**Solution:** ## SystemMessage(You are a biomedicine expert who will assist me on problems in drug discovery. I am planning to run a CRISPR screen to identify genes 	1126 1127 1128 1129 1130 1131 1132 1133 1134
regulation, and metabolic pathways to identify potential regulators of IL-2 production. For round 1, we will select genes that are involved in the regulation of cell growth, differentiation, and metabolism. We will use the HGNC database to identify genes with diverse functions. Our goal is to identify at least one hit in this round. We will use the provided feedback to refine our strategy for the next round.RAN0.12**Solution:** # ABL1 ## ABL1 ## MAPK14 ## PAK4 ## SMAD2 ROUND 2: BEGIN PROMPT SystemMessage(You are a biomedicine expert who will assist me on problems in drug discovery. I am planning to run a CRISPR screen to identify genesRAN0.12RAN0.12MRPL19-0.14MRPL19 SLU7-0.13MRD1 Math regulate the production ofCOBB-0.01MRD1 	1127 1128 1129 1130 1131 1132 1133 1134
to identify potential regulators of IL-2 production. For round 1, we will select genes that are involved in the regulation of cell growth, differentiation, and metabolism. We will use the HGNC database to identify genes with diverse functions. Our goal is to identify at least one hit in this round. We will use the provided feedback to refine our strategy for the next round. **Solution:** # ABL1 ## MAPK14 ## PAK4 ##	1128 1129 1130 1131 1132 1133 1134
IL-2 production. For round 1, we will select genes that are involved in the regulation of cell growth, differentiation, and metabolism. We will use the HGNC database to identify genes with diverse functions. Our goal is to identify at least one hit in this round. We will use the provided feedback to refine our strategy for the next round.SLU70.13**Solution:*CD8B-0.01**Solution:** # ABL1 ## ABL1 ## ABL1COY56-0.08**Solution:** ## ABL1 ## ABL1 ## ABL1 ## ABL1 ## SMAD2 END OUTPUTNCAPG0.17**Solution:** ## SMAD2 END OUTPUTOR51L1-0.17**SystemMessage(You are a biomedicine expert who will assist me on problems in drug discovery. I am planning to run a CRISPR screen to identify genes that regulate the production ofSLU70.13**Colument of **Colument of0.13CD850.01**Colument of **Colument of0.130.12**Colument of **Colument of0.10TAM184B**Colument of **Colument of0.170.18**Colument of **Colument of0.170.17**Colument of **Colument of0.110.11**Colument of **Colument of0.100.11**Colument of **Colument of0.100.11**Colument of **Colument of0.100.12**Colument of **Colument of0.120.10**Colument of **Colument of0.120.10**Colument of **Colument of0.120.10	1129 1130 1131 1132 1133 1134
will select genes that are involved in the regulation of cell growth, differentiation, and metabolism. We will use the HGNC database to identify genes with diverse functions. Our goal is to identify at least one hit in this round. We will use the provided feedback to refine our strategy for the next round.AP2S10.03**Solution:** # ABL1 ## MAPK14 ## PAK4CD8B-0.01HMGB1-0.12**Solution:** ## MAPK14 ## PAK4COX5B0.07**Torund.We RNGTT0.03**Solution:** ## ABL1 ## PAK4CD8D0.07**Solution:** ## ABL2 END OUTPUTNCAPG0.17**SystemMessage(You are a biomedicine expert who will assist me on problems in drug discovery. I am planning to run a CRISPR screen to identify genes that regulate the production ofCD8B-0.01***I at regulate the production ofCD850.070.010***********************************	1130 1131 1132 1133 1134
<pre>in the regulation of cell growth, differentiation, and metabolism. We will use the HGNC database to identify genes with diverse functions. Our goal is to identify at least one hit in this round. We will use the provided feedback to refine our strategy for the next round. **Solution:** # ABL1 ## HNF4A ## MAPK14 ## PAK4 furktion: *# SMAD2 ROUND 2: BEGIN PROMPT SystemMessage(You are a biomedicine expert who will assist me on problems in drug discovery. I am planning to run a CRISPR screen to identify genes that regulate the production of</pre>	1131 1132 1133 1134
differentiation, and metabolism. We will use the HGNC database to identify genes with diverse functions. Our goal is to identify at least one hit in this round. We will use the provided feedback to refine our strategy for the next round.RNGTT 0.03 RNCBT 0.04 RNCT 0.05 RCBP2 0.00 OR51L1 -0.17 GHR 0.02 TSHZ2 -0.01 ## MAPK14 ## PAK4 ## SMAD2 END OUTPUT SystemMessage(You are a biomedicine expert who will assist me on problems in drug discovery. I am planning to run a CRISPR screen to identify genes that regulate the production ofAP2S1 0.03 RPS28 -0.16 RPS28 -0.16 RPS28 -0.07 RNCB2 0.07 RCPD3 0.17 TAMPC3L 0.10 FAM184B -0.10	1132 1133 1134
<pre>will use the HGNC database to identify genes with diverse functions. Our goal is to identify at least one hit in this round. We will use the provided feedback to refine our strategy for the next round. **Solution:** ## ABL1 ## HNF4A ## MAPK14 ## PAK4 ## PAK4 ## SMAD2 ROUND 2: BEGIN PROMPT SystemMessage(You are a biomedicine expert who will assist me on problems in drug discovery. I am planning to run a CRISPR screen to identify genes that regulate the production of</pre>	1133 1134
identify genes with diverse functions. Our goal is to identify at least one hit in this round. We will use the provided feedback to refine our strategy for the next round.COX5B 0.07 COPS6 -0.08 RNGTT 0.03 RNGTT 0.03 RNGTT 0.05 RCBP2 0.00**Solution:**RNGT 0.03 RNL1 0.05 NCBP2 0.00**Solution:**NCBP2 0.00 OR51L1 -0.17 GHR 0.02 TSHZ2 -0.01 GPX3 0.11 TOX2 0.10## ABL1 ## PAK4 ## SMAD2 END OUTPUTGHR 0.02 TSHZ2 -0.01 GPX3 0.11 TOX2 0.10 FAM107B 0.05 FAM107B 0.05 FAM107B 0.05 SystemMessage(You are a biomedicine expert who will assist me on problems in drug discovery. I am planning to run a CRISPR screen to identify genes that regulate the production ofCOX5B 0.07 COPS6 -0.08 RNGT 0.03 NCBP2 0.03 NCBP2 0.00 NCBP2 0.00 NCBP2 0.00 NCBP2 0.00 NCBP2 0.00 NCBP2 0.00 NCBP2 0.00 NCBP2 0.00 NCBP2 0.00	1134
functions. Our goal is to identify at least one hit in this round. We will use the provided feedback to refine our strategy for the next round.COPS6 -0.08 RNGTT 0.03 RPL11 0.05 NCBP2 0.00**Solution:** ## ABL1 ## ABL1 ## MAPK14 ## SMAD2 END OUTPUTNSF -0.05 NCBP2 0.00 OR51L1 -0.17 GHR 0.02 TSHZ2 -0.01 GHR 0.02 TSHZ2 -0.01 SUC24A3 0.10 TSHZ2 -0.01 SUC24A3 0.10 TSHZ2 -0.01 SUC24A3 0.10 TSHZ2 -0.01 SUC24A3 0.10 TSHZ2 -0.01 SUC24A3 0.10 TSHZ2 -0.01 SUC24A3 0.12 TSHZ2 -0.01 SUC24A3 0.12 TSHZ2 -0.17 TSHZ2 -0.10	
at least one hit in this round. We will use the provided feedback to refine our strategy for the next round.RNGTT 0.03 RPL11 0.05 RPL11 0.05**Solution:** ## ABL1 ## ABL1 ## MAPK14 ## PAK4 ## SMAD2 END OUTPUTNCAPG 0.17 NCBP2 0.00 OR51L1 -0.17 GHR 0.02**Solution:** ## ABL1 ## MAPK14 ## SMAD2 END OUTPUTOR51L1 -0.17 GHR 0.02ROUND 2: BEGIN PROMPT SystemMessage(You are a biomedicine expert who will assist me on problems in drug discovery. I am planning to run a CRISPR screen to identify genes that regulate the production ofRNGTT 0.03 RPL11 0.05 RCAPG 0.17 NCBP2 0.00 OR51L1 -0.17 GHR 0.02	
<pre>will use the provided feedback to refine our strategy for the next round. **Solution:** # ABL1 ## HNF4A ## HNF4A ## PAK4 ## PAK4 ROUND 2: BEGIN PROMPT SystemMessage(You are a biomedicine expert who will assist me on problems in drug discovery. I am planning to run a CRISPR screen to identify genes that regulate the production of</pre>	1135
refine our strategy for the next round.NCAPG0.17numberNCBP20.00**Solution:**OR51L1-0.17## ABL1 ## ABL1 ## MAPK14GHR0.02## MAPK14 ## SMAD2 ROUND 2: BEGIN PROMPTGPX30.11ROUND 2: BEGIN PROMPT SystemMessage(You are a biomedicine expert who will assist me on problems in drug discovery. I am planning to run a CRISPR screen to identify genes that regulate the production ofNCAPG0.17NCBP20.00OR51L1-0.17BNIP3L-0.17FAM184B-0.10	1136
round.NSF-0.05**Solution:**0R51L1-0.17## ABL1GHR0.02## HNF4ATSHZ2-0.01## MAPK14GPX30.11## PAK4TOX20.10## SMAD2FAM107B0.05END OUTPUTRGPD3-0.24TRAPPC3L0.1010ROUND 2: BEGIN PROMPTWFDC6-0.00SystemMessage(You are a biomedicine expert who will assist me on problems in drug discovery. I am planning to run a CRISPR screen to identify genes that regulate the production ofSIC24A30.10NSF-0.17FAM184B-0.10-0.17	1137
Solution:NCBP2 0.00**Solution:**OR51L1 -0.17## ABL1GHR 0.02## HNF4ATSHZ2 -0.01## MAPK14GPX3 0.11## PAK4TOX2 0.10## SMAD2FAM107B 0.05END OUTPUTRGPD3 -0.24TRAPPC3L 0.10TRAPPC3L 0.10ROUND 2: BEGIN PROMPTWFDC6 -0.00SystemMessage(You are a biomedicineSLC24A3 0.10expert who will assist me on problemsIFNE -0.04in drug discovery. I am planning toZFAND2A 0.12run a CRISPR screen to identify genesBNIP3L -0.17that regulate the production ofFAM184B -0.10	1138
Solution:OR51L1 -0.17## ABL1GHR 0.02## HNF4ATSHZ2 -0.01## MAPK14GPX3 0.11## PAK4TOX2 0.10## SMAD2FAM107B 0.05END OUTPUTRGPD3 -0.24TRAPPC3L 0.10TRAPPC3L 0.10ROUND 2: BEGIN PROMPTWFDC6 -0.00SystemMessage(You are a biomedicineSLC24A3 0.10expert who will assist me on problemsIFNE -0.04in drug discovery. I am planning toZFAND2A 0.12run a CRISPR screen to identify genesBNIP3L -0.17that regulate the production ofFAM184B -0.10	1139
## ABL1GHR 0.02## HNF4ATSHZ2 -0.01## MAPK14GPX3 0.11## PAK4TOX2 0.10## SMAD2FAM107B 0.05END OUTPUTRGPD3 -0.24ROUND 2: BEGIN PROMPTWFDC6 -0.00SystemMessage(You are a biomedicineSLC24A3 0.10expert who will assist me on problemsIFNE -0.04in drug discovery. I am planning toZFAND2A 0.12run a CRISPR screen to identify genesBNIP3L -0.17that regulate the production ofFAM184B -0.10	1140
## HNF4ATSHZ2 -0.01## MAPK14GPX3 0.11## PAK4TOX2 0.10## SMAD2FAM107B 0.05END OUTPUTRGPD3 -0.24ROUND 2: BEGIN PROMPTWFDC6 -0.00SystemMessage(You are a biomedicineSLC24A3 0.10expert who will assist me on problemsIFNE -0.04in drug discovery. I am planning toZFAND2A 0.12run a CRISPR screen to identify genesBNIP3L -0.17that regulate the production ofFAM184B -0.10	1141
## MAPK14GPX3 0.11## PAK4TOX2 0.10## SMAD2FAM107B 0.05END OUTPUTRGPD3 -0.24ROUND 2: BEGIN PROMPTWFDC6 -0.00SystemMessage(You are a biomedicineSLC24A3 0.10expert who will assist me on problemsIFNE -0.04in drug discovery. I am planning toZFAND2A 0.12run a CRISPR screen to identify genesBNIP3L -0.17that regulate the production ofFAM184B -0.10	1142
## PAK4TOX2 0.10## SMAD2FAM107B 0.05END OUTPUTRGPD3 -0.24ROUND 2: BEGIN PROMPTWFDC6 -0.00SystemMessage(You are a biomedicine expert who will assist me on problems in drug discovery. I am planning to run a CRISPR screen to identify genes that regulate the production ofStore 0.10## SMAD2 FAM107B 0.05-0.24TRAPPC3L 0.100.10## SMAD2 FAM184B -0.10-0.10	1143
## SMAD2 END OUTPUTFAM107B 0.05 RGPD3 -0.24 TRAPPC3L 0.10ROUND 2: BEGIN PROMPT SystemMessage(You are a biomedicine expert who will assist me on problems in drug discovery. I am planning to run a CRISPR screen to identify genes that regulate the production ofFAM107B 0.05 RGPD3 -0.24 TRAPPC3L 0.10ROUND 2: BEGIN PROMPT WFDC6 -0.00WFDC6 -0.00 SLC24A3 0.10 IFNE -0.04SystemMessage(You are a biomedicine expert who will assist me on problems in drug discovery. I am planning to run a CRISPR screen to identify genes that regulate the production ofSLC24A3 0.10 IFNE -0.04	1144
## SMAD2 END OUTPUTFAM107B0.05 RGPD3END OUTPUTRGPD3-0.24 TRAPPC3LROUND 2: BEGIN PROMPTWFDC6-0.00SystemMessage(You are a biomedicine expert who will assist me on problems in drug discovery. I am planning to run a CRISPR screen to identify genes that regulate the production ofSLC24A30.10## SMAD2 RGPD3-0.04-0.17FAM107B0.050.05RGPD3-0.10	1145
ROUND 2: BEGIN PROMPTTRAPPC3L 0.10SystemMessage(You are a biomedicine expert who will assist me on problems in drug discovery. I am planning to run a CRISPR screen to identify genes that regulate the production ofSLC24A3 0.10TRAPPC3L 0.10 WFDC6 -0.00SLC24A3 0.10SLC24A3 0.10 UFNE -0.04SLC24A3 0.10SLC24A3 0.10 SLC24A3 0.10JENE -0.04SLC24A3 0.10 SLC24A3 0.10SLC24A3 0.10SLC24A3 0.10 SLC24A3 0.10JENE -0.04SLC24A3 0.10 SLC24A3 0.10JENE -0.04SLC24A3 0.10 SLC24A3JENE -0.17SLC24A3 0.10SLC24A3 0.10SLC24A3 0.10JENE -0.10	1146
ROUND 2: BEGIN PROMPTWFDC6 -0.00SystemMessage(You are a biomedicine expert who will assist me on problems in drug discovery. I am planning to run a CRISPR screen to identify genes that regulate the production ofSLC24A3 0.10SUDDAL0.12SUDDAL0.12SUDDAL0.17SUDDAL0.10	1147
SystemMessage(You are a biomedicine expert who will assist me on problems in drug discovery. I am planning to run a CRISPR screen to identify genes that regulate the production ofSLC24A3 IFNE SLC24A3 SLC24A3 FNE TFNE SLC24A3 	1148
expert who will assist me on problemsIFNE -0.04in drug discovery. I am planning toZFAND2A 0.12run a CRISPR screen to identify genesBNIP3L -0.17that regulate the production ofFAM184B -0.10	1149
in drug discovery. I am planning to run a CRISPR screen to identify genes that regulate the production of ZFAND2A 0.12 BNIP3L -0.17 FAM184B -0.10	1150
in drug discovery. I am planning to run a CRISPR screen to identify genes that regulate the production of ZFAND2A 0.12 BNIP3L -0.17 FAM184B -0.10	1151
run a CRISPR screen to identify genes BNIP3L -0.17 that regulate the production of FAM184B -0.10	1152
	1153
	1154
Interleukin-2 (IL-2). I can only RGMB 0.02	1155
perturb exactly 128 genes at a time. ZNF853 -0.09	1156
For each predicted perturbation, I am NPAS2 0.26	1157
able to measure out the log fold ATAD1 -0.05	1158
change in Interleukin-2 (IL-2) SMCP -0.08	1159
normalized read counts which will be RAB27B 0.14	1160
referred to as the score. I can only BIN3 -0.10	1161
do 5 rounds of experimentation. After NPY2R 0.02	1162
every round of experiment, I will EQTN 0.16	1163
provide you with feedback on your AKR1B1 -0.21	1164
predictions, including the correctly MAPK14 -0.02	1165
identified genes called hits and the MLST8 -0.15	1166
corresponding score. The predictions PPP2R3C -0.19	1167
which are not hits will be included in MNAT1 0.07	1168
other results.) NOL10 0.05	1169
HumanMessage(EMC7 0.08	1170
This is round 2. EMC3 -0.05	1171
Here is the feedback on all your GUK1 0.19	1172
predictions till now: MED6 -0.16	1173
[HITS] CIAO1 0.10	1174
name score SNAPC5 0.01	1175
MYBL2 0.51 ZCRB1 -0.03	1176
GBF1 0.43 TRMT112 0.07	1177
DDX41 0.47 RPS29 0.23	1178
ZMAT2 0.45 PDCD2 0.10	1179
RPL4 0.35 RPP21 -0.16	1180
HNF4A -0.34 RPL5 0.10	1181
CDC16 0.48 EIF6 0.19	1182
WDR5 0.82 SNW1 0.28	1183
MYC 0.41 HEATR1 0.06	
ZNF536 -0.38 RPL28 0.34	1184
TLN1 -0.49 WDR18 0.07	1184 1185
LIN37 -0.39 PAK4 0.07	

1188	AFDN -0.06	## <gene 1=""></gene>	1258
1189	VCL -0.02	## <gene 2=""></gene>	1259
1190	CATSPERG -0.09		1260
1191	PTK2 -0.10	## <gene 5=""></gene>	1261
1192	BCAR1 -0.08	Each gene in the solution should	1262
1193	ACTR3 -0.06	only be the gene name in the HGNC	1263
1194 1195	RAPGEF1 0.19 WWTR1 -0.10	nomenclature. DO NOT ADD ANY COMMENTS IN THE	1264 1265
1195	WWTR1 -0.10 VWA8 0.26	SOLUTION OR AFTER THE SOLUTION.	1265
1197	FERMT2 -0.12)	1267
1198	RSU1 0.12	END PROMPT	1268
1199	MST01 0.02	BEGIN OUTPUT	1269
1200	NLRP2B -0.09	**Reflection: Thoughts on previous	1270
1201	ARPC4 0.05	results and next steps.**	1271
1202	ARPC2 -0.12		1272
1203	KIF2C -0.13	The previous round of CRISPR screen	1273
1204	SRF 0.01	identified 11 hits that regulate the	1274
1205	RNASE1 0.16	production of Interleukin-2 (IL-2),	1275
1206	NCKAP1 -0.14	including MYBL2, GBF1, DDX41, ZMAT2	1276
1207 1208	ZFAND5 -0.01 SMAD2 0.15	, RPL4, HNF4A, CDC16, WDR5, MYC, ZNF536, and TLN1. The scores of	1277
1208	MAGED2 -0.03	these hits ranged from 0.35 to 0.82,	1278 1279
1210	POTEE -0.09	indicating varying degrees of	1280
1211	IFNA10 -0.18	regulation. The other results	1281
1212	AKAIN1 -0.18	included 64 genes that did not show	1282
1213	ZNF614 0.08	significant regulation of IL-2	1283
1214	ZNF157 -0.11	production. To refine our	1284
1215	MAPK8 0.09	understanding of the IL-2 regulatory	1285
1216	POLI -0.21	network, we will focus on the hits	1286
1217	ATXN3L -0.11	and their neighbors. We will update	1287
1218	FOXD4L4 -0.09	our priors to reflect the observed	1288
1219	CDR1 -0.12	hits and select new genes that are	1289
1220 1221	NELL1 0.03 AP1S2 0.06	closely related to the identified hits.	1290 1291
1222	IFNB1 -0.13	11115.	1291
1223	ARMCX4 -0.14	**Research Plan: The full high-level	1293
1224	ZNF729 -0.10	research plan, with current status	1294
1225	NKX3-2 -0.13	and reasoning behind each proposed	1295
1226	LUZP4 -0.17	approach.**	1296
1227	STX17 0.07		1297
1228	SPINK2 0.29	We will update our prior	1298
1229	MEIG1 0.07	probabilities based on the hits	1299
1230	DAB2IP -0.22	identified in the previous round and	1300
1231	ZNF611 0.03	select new genes that are closely	1301
1232 1233	VGLL1 -0.05 0R52E6 0.06	related to the hits. We will choose genes that are in the same	1302 1303
1234	GUCY2F 0.03	biological pathways, have similar	1303
1235	OR10Z1 0.07	functional annotations, or have	1305
1236	Here is a strategy to follow: Update	known interactions with the hits. We	1306
1237	your priors appropriately and	will then select the top-scoring	1307
1238	choose genes that gave you hits.	genes from these candidates to form	1308
1239	Also, be sure to explore by	our next set of predictions. Our	1309
1240	including some genes that could give	goal is to refine our understanding	1310
1241	hits.	of the IL-2 regulatory network and	1311
1242	Please propose 5 different yet valid	identify new genes that play a role	1312
1243	gene names as per the HGNC	in its regulation. We will repeat	1313
1244 1245	nomenclature you want to explore next. Note that I will choose	this process for a total of 5 rounds	1314 1315
1245	unexplored genes closest to your	, refining our predictions and updating our priors after each round	1315
1240	predicted genes to form the		1317
1248	predictions. Your response should		1318
1249	exactly follow the format:	**Solution:**	1319
1250	**Reflection: Thoughts on previous	## MYBL2	1320
1251	results and next steps.	## GBF1	1321
1252	**Research Plan: The full high level	## DDX41	1322
1253	research plan, with current status	## ZMAT2	1323
1254	and reasoning behind each proposed	## RPL4	1324
1255	approach. It should be at most 5	END OUTPUT	1325
1256	sentences.	ROUND 3: BEGIN PROMPT	1326
1257	**Solution:	SystemMessage(You are a biomedicine	1327

1328	expert who will assist me on problems
1329	in drug discovery. I am planning to
1330	run a CRISPR screen to identify genes
1331	that regulate the production of
1332	Interleukin-2 (IL-2). I can only
1333	perturb exactly 128 genes at a time.
1334	For each predicted perturbation, I am
1335	able to measure out the log fold
1336	change in Interleukin-2 (IL-2)
1337	normalized read counts which will be
1338	referred to as the score. I can only
1339	do 5 rounds of experimentation. After
1340	every round of experiment, I will
1341	provide you with feedback on your
1342	predictions, including the correctly
1343	identified genes called hits and the
1344	corresponding score. The predictions
1345	which are not hits will be included in
1346	other results.)
	· · · · · · · · · · · · · · · · · · ·
1347	HumanMessage(
1348	This is round 3.
1349	Here is the feedback on all your
1350	predictions till now:
1351	[HITS]
1352	name score
1353	MYBL2 0.51
	GBF1 0.43
1354	
1355	DDX41 0.47
1356	ZMAT2 0.45
	RPL4 0.35
1357	
1358	HNF4A -0.34
1359	CDC16 0.48
1360	WDR5 0.82
1361	MYC 0.41
1362	ZNF536 -0.38
1363	TLN1 -0.49
1364	LIN37 -0.39
1365	SULT2B1 -0.44
1366	SPC24 0.58
1367	SNRPD2 0.39
1368	POLR1A 0.47
1369	SF3A2 0.65
1370	SNRNP200 0.78
1371	CDK1 0.43
1372	DUT 0.44
1373	PRC1 0.38
1374	DONSON 0.65
1375	EEF2 0.43
1376	PSMA6 0.34
1377	XAB2 0.41
1378	VCP 0.66
1379	PSMA1 0.39
1380	PSMD7 0.57
1381	SMU1 0.45
1382	POLE 0.57
1383	SF3B3 0.36
1384	KIF11 0.36
1385	ETF1 -0.45
1386	CDC23 0.75
1387	GINS2 0.38
1388	RPS11 0.64
1389	RPS20 0.43
1390	RBM22 0.61
1391	FAU 0.49
1392	RPL17 0.49
1393	PRPF19 0.38
1394	RPL9 0.44
1395	UTP15 0.59
1396	RPS3A 0.39
1397	RPL 37 0.68
1001	NILJ/ 0.00

1	200
	398
1	399
1	400
1	401
	402
1	403
1	404
1	405
1	406
1	407
	408
1	409
1	410
1	411
1	412
1	413
1	414
÷	415
1	
1	416
4	
	417
1	418
1	419
1	420
1	421
1	422
1	423
4	424
1	424
1	425
1	426
1	427
1	428
1	429
1	430
4	431
1	432
4	400
1	
1	434
1	435
1	436
1	437
1	438
1	439
	705
1	
	440
1	440 441
1	440 441 442
1	440 441
1 1 1	440 441 442 443
1 1 1	440 441 442 443 444
1 1 1	440 441 442 443
1 1 1 1	440 441 442 443 444 445
11111	440 441 442 443 444 445 446
11111	440 441 442 443 444 445
111111	440 441 442 443 444 445 446 447
1111111	440 441 442 443 444 445 446 447 448
1111111	440 441 442 443 444 445 446 447
11111111	440 441 442 443 444 445 446 446 447 448 449
1111111111	440 441 442 443 444 445 445 446 447 448 449 450
1111111111	440 441 442 443 444 445 446 446 447 448 449
11111111111	440 441 442 443 444 445 446 447 448 449 450 451
111111111111	440 441 442 443 444 445 446 447 448 449 450 451 452
111111111111	440 441 442 443 444 445 446 447 448 449 450 451
11111111111111	440 441 442 443 444 445 446 447 448 449 450 451 452 453
111111111111111	440 441 442 443 444 445 446 447 448 449 450 451 452 453 454
111111111111111	440 441 442 443 444 445 446 447 448 449 450 451 452 453
1111111111111111	440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455
11111111111111111	440 441 442 443 444 445 446 447 448 449 450 451 452 453 455 455
11111111111111111	440 441 442 443 444 445 446 447 448 449 450 451 452 453 455 455
$1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\$	440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457
$1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\$	440 441 442 443 444 445 446 447 448 449 450 451 452 453 455 455
111111111111111111111111111111111111111	440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457
$1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\$	440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459
$1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\$	440 441 442 443 444 445 446 447 448 447 450 451 452 453 454 455 456 457 458
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460
111111111111111111111111111111111111111	440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461
111111111111111111111111111111111111111	440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460
$1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\$	440 441 442 443 444 445 446 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462
111111111111111111111111111111111111111	440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463
111111111111111111111111111111111111111	440 441 442 443 444 445 446 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	440 4441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464
$1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\$	440 4441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465
$1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\$	440 4441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464
111111111111111111111111111111111111111	440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 455 455 455 455 457 458 459 460 461 462 463 464 465 466
111111111111111111111111111111111111111	440 4441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465

1468	AKR1B1	-0.21	GUCY2F	F	0.03		1538
1469	MAPK14	-0.02	OR10Z1		0.07		1539
1470	MLST8	-0.15	CLTC	С	0.26		1540
1471	PPP2R3C	-0.19	THOC7	7	0.17		1541
1472	MNAT1	0.07	ANKLE2		0.20		1542
1473	NOL10	0.05	SF3A1	1	0.17		1543
1474	EMC7	0.08	SAP 30 BF	Р	0.26		1544
1475	EMC3	-0.05	ZMAT5		0.19		1545
1476	GUK1	0.19	LSM2		-0.18		1546
1477	MED6	-0.16	CDC45	5	0.08		1547
1478	CIA01	0.10	TANGO6	6	0.10		1548
1479	SNAPC5	0.01	NUP85		-0.11		1549
1480	ZCRB1	-0.03	TBC1D3E	В	0.13		1550
1481	TRMT112	0.07	SEC13	3	0.19		1551
1482	RPS29	0.23	NEDD1	1	0.32		1552
1483	PDCD2	0.10	RFC2		0.30		1553
1484	RPP21	-0.16	SDE2	2	0.31		1554
1485	RPL5	0.10	ССТЗ	3	0.23		1555
1486	EIF6	0.19	P SMB3		-0.01		1556
1487	SNW1	0.28	KPNB1		0.14		1557
1488	HEATR1	0.06	ANAPC11	1	-0.07		1558
1489	RPL28	0.34	HSPAS	9	-0.03		1559
1490	WDR18	0.07	SMG1		0.15		1560
1491	PAK4	0.07	SBN01		-0.03		1561
1492	AFDN	-0.06	PSMB4	4	0.14		1562
1493	VCL	-0.02	COPB1		0.14		1563
1494	CATSPERG	-0.09	PSMA3		0.05		1564
1495	PTK2	-0.10	COPB2	2	0.24		1565
1496	BCAR1	-0.08	PSMA5	5	0.34		1566
1497	ACTR3	-0.06	P SMA2		0.29		1567
1498	RAPGEF1	0.19	CDK11A		-0.06		1568
1499	WWTR1	-0.10	PRELID1	1	0.22		1569
1500	VWA8	0.26	FARSE	В	0.13		1570
1501		-0.12			0.11		1571
	FERMT2		RSL24D1				
1502	RSU1	0.12	RPL12	2	0.34		1572
1503	MST01	0.02	DHX37	7	0.29		1573
1504	NLRP2B	-0.09	BUD31		0.08		1574
1505	ARPC4	0.05	CDC123		-0.03		1575
1506	ARPC2	-0.12	TXNL4A	A	-0.25		1576
1507	KIF2C	-0.13	INTS11	1	0.26		1577
1508	SRF	0.01	DBR1		0.14		1578
1509	RNASE1	0.16	HSPE1		-0.03		1579
1510	NCKAP1	-0.14	NPIPB6	6	-0.15		1580
1511	ZFAND5	-0.01	PAFAH1B1	1	-0.26		1581
1512	SMAD2	0.15	NFS1		0.15		1582
1513	MAGED2	-0.03	DDX56		0.21		1583
1514	POTEE	-0.09	CDC27	7	0.17		1584
1515	IFNA10	-0.18	DDX49	9	0.22		1585
1516	AKAIN1	-0.18	SF3B4		0.18		1586
1517	ZNF 6 1 4	0.08	RPL23		0.09		1587
1518	ZNF157	-0.11	WEE1	1	-0.18		1588
1519	MAPK8	0.09	NIP7		0.22		1589
1520	POLI	-0.21	SF3B5		0.22		1590
1521	ATXN3L	-0.11	CDC20		0.29		1591
1522	FOXD4L4	-0.09	RPSS	9	0.12		1592
1523	CDR1	-0.12	LRR1		-0.03		1593
1524	NELL1	0.03	GEMINS		0.00		1594
1525	AP1S2	0.06	SNRPA1		0.06		1595
1526	IFNB1	-0.13	RPLP0	0	0.26		1596
1527	ARMCX4	-0.14	EIF2S1		0.02		1597
1528	ZNF729	-0.10	DNAJC17		0.04		1598
1529	NKX3-2	-0.13	XRCC6	6	-0.22		1599
1530	LUZP4	-0.17	DUX4		-0.01		1600
1531	STX17	0.07	RPS19		0.23		1601
1532	SPINK2	0.29	WDR43		0.24		1602
1533	MEIG1	0.07	RRM1	1	0.32		1603
1534	DAB2IP	-0.22	ATP6V0C		0.06		1604
1535	ZNF611		RPS2		0.33		1605
		0.03					
1536	VGLL1	-0.05	PUF60		-0.07		1606
1537	0R52E6	0.06	SEC61A1	1	-0.17		1607
			1 1			I	

TSR1 0.23 WDR74 0.33 RPL7 0.31 Here is a strategy to follow: Update your priors appropriately and choose genes that gave you hits. Also, be sure to explore by including some genes that could give hits. Please propose 5 different yet valid gene names as per the HGNC nomenclature you want to explore next. Note that I will choose unexplored genes closest to your predicted genes to form the predictions. Your response should exactly follow the format: **Reflection: Thoughts on previous results and next steps. **Research Plan: The full high level research plan, with current status and reasoning behind each proposed approach. It should be at most 5 sentences. **Solution: ## <Gene 1> ## <Gene 2> ## <Gene 5> Each gene in the solution should only be the gene name in the HGNC nomenclature. DO NOT ADD ANY COMMENTS IN THE SOLUTION OR AFTER THE SOLUTION.) ----END PROMPT--------BEGIN OUTPUT----**Reflection: Thoughts on previous results and next steps.** Based on the previous round of experimentation, we have identified several genes that are associated with the regulation of Interleukin-2 (IL-2) production. The hits from this round include genes involved in various cellular processes such as RNA processing, translation, and cell cycle regulation. We can update our priors to reflect the importance of these genes in IL-2 regulation. To further explore the regulatory network, we will choose genes that are functionally related to the hits from the previous round. **Research Plan: The full high-level research plan, with current status and reasoning behind each proposed approach.** We will select genes that are functionally related to the hits from the previous round, focusing on RNA processing, translation, and cell cycle regulation. We will choose unexplored genes closest to the hits to form the predictions. This approach will allow us to further refine our understanding of the IL-2 regulatory network. We will use the updated priors to inform

1608

1609

1610

1611

1612

1613

1614

1615

1616

1617

1618

1619

1620

1621

1622

1623

1624

1625

1626

1627

1628

1629

1630

1633

1634

1635

1637

1638

1639

1640

1641

1642

1643

1644

1646

1647

1648

1649

1650

1651

1652

1654

1655

1657

1658

1659 1660

1661

1662

1663

1664

1666

1668

1669

1670

1671

1672

1673

1674

1675

1677

our selection of genes. Our goal is 1678 to identify additional genes that 1679 regulate IL-2 production. 1680 1681 1682 **Solution:** ## RPS27 1683 ## SE3B1 1684 ## DDX3X ## RPS15 1686 ## NOLC1 1687 ----END OUTPUT----1688 ----ROUND 4: BEGIN PROMPT----1689 SystemMessage(You are a biomedicine 1690 1691 expert who will assist me on problems in drug discovery. I am planning to 1692 run a CRISPR screen to identify genes 1693 that regulate the production of Interleukin-2 (IL-2). I can only 1695 perturb exactly 128 genes at a time. 1696 For each predicted perturbation, I am 1697 able to measure out the log fold 1698 change in Interleukin-2 (IL-2) 1699 normalized read counts which will be 1700 referred to as the score. I can only 1701 do 5 rounds of experimentation. After 1702 every round of experiment, I will 1703 1704 provide you with feedback on your predictions, including the correctly 1705 identified genes called hits and the 1706 corresponding score. The predictions 1707 which are not hits will be included in 1708 other results.) 1709 HumanMessage(1710 This is round 4. 1711 Here is the feedback on all your 1712 predictions till now: 1713 [HITS] 1714 1715 name score MYBI 2 0.51 1716 GBF1 0.43 1717 DDX41 0.47 1718 ZMAT2 0.45 1719 RPL4 0.35 1720 HNF4A -0.34 1721 CDC16 0.48 1722 WDR5 0.82 1723 MYC 1724 0.41 1725 ZNF536 -0.38-0.49 TLN1 1726 LIN37 -0.39 1727 SULT2B1 -0 44 1728 SPC24 0.58 1729 SNRPD2 0.39 1730 POLR1A 0.47 1731 SF3A2 1732 0.65 SNRNP200 0.78 1733 CDK1 0.43 1734 DUT 0.44 1735 PRC1 0.38 1736 DONSON 0.65 EEF2 0.43 1738 PSMA6 0.34 1739 XAB2 0.41 1740 VCP 0.66 1741 PSMA1 1742 0.39 PSMD7 0.57 1743 SMU1 0.45 1744 POLE 0.57 1745 SF3B3 0.36 1746 KIF11 0.36 1747

1748	ETF1	-0.45	BOP1 0.51	1818
1749	CDC23	0.75	NOP2 0.55	1819
1750	GINS2	0.38	RRN3 0.35	1820
1751	RPS11	0.64	TUBGCP2 0.59	1821
1752	RPS20	0.43	RPS3 0.54	1822
1753	RBM22	0.61	[OTHER RESULTS]	1823
1754	FAU	0.49	name score	1824
1755	RPL17	0.49	ABL1 0.09	1825
1756	PRPF19	0.38	QRFP 0.00	1826
1757	RPL9	0.44	COA3 -0.05	1827
1758	UTP15	0.59	E2F6 -0.11	1828
1759	RPS3A	0.39	NANOG -0.05	1829
1760	RPL37	0.68	NDUFA4 0.04	1830
1761	RPS27A	0.48	RAN 0.12	1831
1762	RPL27	0.87	MRPL19 -0.14	1832
1763	PRPF8	0.45	SLU7 0.13	1833
1764	CCT4	0.35	CD8B -0.01	1834
1765	RPS16	0.38	HMGB1 -0.12	1835
1766	RPL7A	0.61	AP2S1 0.03	1836
1767	CDC7	0.62	RPS28 -0.16	1837
1768	RPS6	0.47	COX5B 0.07	1838
1769	RPL23A	0.79	COPS6 -0.08	1839
1770	RPS13	0.92	RNGTT 0.03	1840
1771	RPL32	0.68	RPL11 0.05	1841
	-			
1772	RPL18	0.77	NCAPG 0.17	1842
1773	RPLP2	0.52	NSF -0.05	1843
1774	RPS8	0.69	NCBP2 0.00	1844
1775	RPL10A	0.86	OR51L1 -0.17	1845
1776	RPL8	0.81	GHR 0.02	1846
1777	MAK16	1.15	TSHZ2 -0.01	1847
1778	RPS17	0.82	GPX3 0.11	1848
1779	RPL19	1.21	TOX2 0.10	1849
1780	RPL3	0.42	FAM107B 0.05	1850
1781	RPL15	0.92	RGPD3 -0.24	1851
1782	CPSF4	1.13	TRAPPC3L 0.10	1852
1783	XP01	0.35	WFDC6 -0.00	1853
1784	RRM2	0.50	SLC24A3 0.10	1854
1785	RPL14	0.61	IFNE -0.04	1855
1786	INTS3	0.53	ZFAND2A 0.12	1856
1787	RFC3	0.50	BNIP3L -0.17	1857
1788	RBM25	0.47	FAM184B -0.10	1858
1789	FCF1	0.40	RGMB 0.02	1859
1790	POLR1B	0.36	ZNF853 -0.09	1860
1791	POLD3	0.52	NPAS2 0.26	1861
1792	CHMP6	0.85	ATAD1 -0.05	1862
	PSMC5		SMCP -0.08	1863
1793		0.34		
1794	RPL31	0.40	RAB27B 0.14	1864
1795	ERH	0.45	BIN3 -0.10	1865
1796	RPS4X	0.70	NPY2R 0.02	1866
1797	CHERP	0.49	EQTN 0.16	1867
1798	DKC1	0.40	AKR1B1 -0.21	1868
1799	CNOT 3	0.44	MAPK14 -0.02	1869
1800	SNRPC	1.25	MLST8 -0.15	1870
1801	MTBP	0.57	PPP2R3C -0.19	1871
1802	SYMPK	0.68	MNAT1 0.07	1872
1803	CDC6	0.47	NOL10 0.05	1873
1804	PPAN	0.89	EMC7 0.08	1874
1805	SPOUT1	0.38	EMC3 -0.05	1875
1806	EIF3I	0.45	GUK1 0.19	1876
1807	RPL36	0.72	MED6 -0.16	1877
1808	NUP93	0.35	CIAO1 0.10	1878
1809	RPS24	0.83	SNAPC5 0.01	1879
1810	NUP133	0.49	ZCRB1 -0.03	1880
1811	RPS18	0.46	TRMT112 0.07	1881
1812	RPS14	0.60	RPS29 0.23	1882
1813	PDCD11	0.43	PDCD2 0.10	1883
1814	NOC3L	0.34	RPP21 -0.16	1884
1815	BMS1	0.56	RPL5 0.10	1885
1816	RPS25	0.49	EIF6 0.19	1886
1817	EBNA1BP2	0.39	SNW1 0.28	1887

1888	HEATR1	0.06	ANAPC11	-0.07	1958
1889	RPL28	0.34	HSPA9		1959
1890	WDR18	0.07	SMG1	0.15	1960
1891	PAK4	0.07	SBN01	-0.03	1961
1892	AFDN	-0.06	PSMB4		1962
1893	VCL	-0.02	COPB1	0.14	1963
1894	CATSPERG	-0.09	PSMA3	0.05	1964
1895	PTK2	-0.10	COPB2		1965
1896	BCAR1	-0.08	PSMA5	0.34	1966
1897	ACTR3	-0.06	PSMA2	0.29	1967
1898	RAPGEF1	0.19	CDK11A		1968
1899	WWTR1	-0.10	PRELID1	0.22	1969
1900	VWA8	0.26	FARSB	0.13	1970
1901	FERMT2	-0.12	RSL24D1	0.11	1971
1902	RSU1	0.12	RPL12		1972
1903	MST01	0.02	DHX37	0.29	1973
1904	NLRP2B	-0.09	BUD31	0.08	1974
	ARPC4		CDC123		
1905		0.05			1975
1906	ARPC2	-0.12	TXNL4A	-0.25	1976
1907	KIF2C	-0.13	INTS11	0.26	1977
1908	SRF	0.01	DBR1		1978
1909	RNASE1	0.16	HSPE1	-0.03	1979
1910	NCKAP1	-0.14	NPIPB6	-0.15	1980
1911	ZFAND5	-0.01	PAFAH1B1	-0.26	1981
1912	SMAD2	0.15	NFS1		1982
1913	MAGED2	-0.03	DDX56	0.21	1983
1914	POTEE	-0.09	CDC27		1984
					1985
1915	IFNA10	-0.18	DDX49		
1916	AKAIN1	-0.18	SF3B4	0.18	1986
1917	ZNF614	0.08	RPL23	0.09	1987
1918	ZNF157		WEE1		1988
		-0.11			
1919	MAPK8	0.09	NIP7	0.22	1989
1920	POLI	-0.21	SF3B5	0.26	1990
1921	ATXN3L	-0.11	CDC20		1991
1922	FOXD4L4	-0.09	RPS9		1992
1923	CDR1	-0.12	LRR1	-0.03	1993
1924	NELL1	0.03	GEMIN5	0.00	1994
1925	AP1S2	0.06	SNRPA1		1995
1926	IFNB1	-0.13	RPLP0		1996
1927	ARMCX4	-0.14	EIF2S1	0.02	1997
1928	ZNF729	-0.10	DNAJC17	0.04	1998
1929	NKX3-2	-0.13	XRCC6		1999
1930	LUZP4	-0.17	DUX4	-0.01	2000
1931	STX17	0.07	RPS19	0.23	2001
1932	SPINK2	0.29	WDR43		2002
1933	MEIG1	0.07	RRM1		2003
1934	DAB2IP	-0.22	ATP6V0C	0.06	2004
1935	ZNF611	0.03	RPS2	0.33	2005
1936	VGLL1	-0.05	PUF60		2006
1937	OR52E6	0.06	SEC61A1		2007
1938	GUCY2F	0.03	TSR1	0.23	2008
1939	OR10Z1	0.07	WDR74		2009
1940	CLTC	0.26	RPL7		2010
1941	THOC7	0.17	RPS27	0.13	2011
1942	ANKLE2	0.20	MCM7		2012
1943	SF3A1	0.17	LUC7L3		2013
1944	SAP30BP	0.26	EEF1A1	0.21	2014
1945	ZMAT5	0.19	RPSA	0.28	2015
1946	LSM2	-0.18	PPWD1	0.29	2016
1947	CDC45	0.08	TOMM22		2017
1948	TANG06	0.10	RACGAP1	0.25	2018
1949	NUP85	-0.11	DYNC1H1	-0.17	2019
1950	TBC1D3B	0.13	SNRNP25		2020
1951	SEC13	0.19	TIMELESS	0.11	2021
1952	NEDD1	0.32	UQCRH		2022
					2023
1953	RFC2	0.30	PAM16		
1954	SDE 2	0.31	PFDN6	-0.21	2024
1955	CCT3	0.23	DDX10	0.32	2025
1956	PSMB3	-0.01	RRP12		2026
1957	KPNB1	0.14	GPN1	0.08	2027

2028 PFDN2 0.06 RBM17 0.00 2029 ZNHIT2 0.20 XRN2 0.06 2030 BYSL 0.04 OSGEP 0.10 2031 USP36 -0.03 UTP18 0.02 2032 SF3B1 0.30 Here is a strategy to follow: Update 2033 VP525 -0.08 your priors appropriately and 2034 PRPF38A 0.15 Choose genes that gave you hits. 2035 EIF5 -0.12 Also, be sure to explore by 2036 ATP6V0B 0.06 including some genes that could give 2037 RNPC3 -0.02 Please propose 5 different yet valid 2038 PSMA4 0.23 Please propose 5 different yet valid 2040 EIF4A3 0.33 nomenclature you want to explore 2041 POLE2 0.09 mext. Note that I will choose 2042 GPN3 0.15 unexplored genes closest to your 2044 COPA 0.06 exactly follow the format: 2045 CHMP2A 0.06 exactly follow the format:	2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125
2030 BYSL 0.04 OSGEP 0.10 2031 USP36 -0.03 UTP18 0.02 2032 SF3B1 0.30 UTP18 0.02 2033 VPS25 -0.08 Your priors appropriately and choose genes that gave you hits. 2035 EIF5 -0.12 Also, be sure to explore by including some genes that could give hits. 2038 PSMA4 0.23 Please propose 5 different yet valid gene names as per the HGNC 2039 UBL5 -0.00 gene names as per the HGNC 2041 POLE2 0.09 nomenclature you want to explore next. Note that I will choose 2041 POLE2 0.09 nextl. Note that I will choose 2042 GPN3 0.15 unexplored genes to form the 2044 COPA 0.05 your results on nervious 2045 CHMP2A 0.06 exactly follow the format: 2046 RPL27A 0.27 **Research Plan: The full high level 2049 WBP11 0.32 research plan, with current status 2050 PS	2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124
2031 USP36 -0.03 UTP18 0.02 2032 SF3B1 0.30 Here is a strategy to follow: Update 2033 VPS25 -0.08 your priors appropriately and 2034 PRFF38A 0.15 Also, be sure to explore by 2036 ATP6V0B 0.06 including some genes that could give 2037 RNPC3 -0.02 hits. 2038 PSMA4 0.23 Please propose 5 different yet valid 2039 UBL5 -0.00 gene names as per the HGNC 2040 EIF4A3 0.33 nomenclature you want to explore 2041 POLE2 0.09 next. Note that I will choose 2043 PSMD3 0.27 predicted genes to form the 2044 COPA 0.05 predictions. Your response should 2045 CHMP2A 0.06 exactly follow the format: 2046 RPL27A 0.27 **Reflection: Thoughts on previous 2047 PSMD1 0.32 research Plan: The full high level 2050 PSMD4 0.23 and reasoning behind each proposed 2051 DDX3X 0.03 approach. It should be at most 5 2052 EIF1AX 0.10 sentences. 2054 EIF2S3 0.10 ## G	2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124
2032SF3B10.30Here is a strategy to follow: Update your priors appropriately and choose genes that gave you hits.2034PRPF38A0.15Also, be sure to explore by including some genes that could give hits.2036ATP6V0B0.06Mincluding some genes that could give hits.2037RNPC3-0.02Please propose 5 different yet valid gene names as per the HGNC nomenclature you want to explore next. Note that I will choose unexplored genes closest to your predicted genes to form the predicted genes to form the predictions. Your response should exactly follow the format: **Reflection: Thoughts on previous results and next steps.2048CWC220.22**Research Plan; The full high level research plan, with current status 20502051DDX3X0.03and reasoning behind each proposed approach. It should be at most 5 sentences.2054EIF2S30.10## <gene 1=""></gene>	2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124
2033VPS25-0.08your priors appropriately and choose genes that gave you hits.2034PRPF38A0.15choose genes that gave you hits.2035EIF5-0.12Also, be sure to explore by including some genes that could give hits.2036ATP6V0B0.06including some genes that could give hits.2037RNPC3-0.02hits.2038PSMA40.23Please propose 5 different yet valid gene names as per the HGNC nomenclature you want to explore next. Note that I will choose2041POLE20.09next. Note that I will choose unexplored genes closest to your predictions. Your response should exactly follow the format:2043PSMD30.27predictions. Your response should exactly follow the format:2044COPA0.06exactly follow the format:2045CHMP2A0.26**Research Plan: The full high level2047PSMD10.32results and next steps.2048CWC220.22**Research Plan: The full high level2050PSMD40.23and reasoning behind each proposed approach. It should be at most 52052EIF1AX0.10**Solution:2053UBA10.21**Solution:2054EIF2S30.10## <gene 1=""></gene>	2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124
2034PRPF38A0.15choose genes that gave you hits.2035EIF5-0.12Also, be sure to explore by2036ATP6V0B0.06including some genes that could give2037RNPC3-0.02hits.2038PSMA40.23Please propose 5 different yet valid2039UBL5-0.00gene names as per the HGNC2040EIF4A30.33nomenclature you want to explore2041POLE20.09next. Note that I will choose2042GPN30.15unexplored genes closest to your2043PSM030.27predictions. Your response should2044COPA0.05exactly follow the format:2045CHMP2A0.06exactly follow the format:2046RPL27A0.27results and next steps.2047PSMD10.32results and next steps.2048CWC220.22**Reflection: Thoughts on previous2050PSM040.23and reasoning behind each proposed2051DDX3X0.03gaproach. It should be at most 52052EIF1XX0.10**Solution:2054EIF2S30.10## <gene 1=""></gene>	2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124
2035EIF5-0.12Also, be sure to explore by including some genes that could give hits.2036ATP6V0B0.06including some genes that could give hits.2038PSMA40.23Please propose 5 different yet valid gene names as per the HGNC nomenclature you want to explore next. Note that I will choose unexplored genes closest to your predicted genes to form the predicted genes to form the 20442044COPA0.05predictions. Your response should exactly follow the format: **Reflection: Thoughts on previous results and next steps.2048CW220.22**Research Plan: The full high level research plan, with current status and reasoning behind each proposed approach. It should be at most 5 sentences.2051DDX3X0.03sentences. **Solution: ## <gene 1=""></gene>	2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124
2036ATP6V0B0.06including some genes that could give hits.2037RNPC3-0.02hits.2038PSMA40.23Please propose 5 different yet valid gene names as per the HGNC2040EIF4A30.33nomenclature you want to explore next. Note that I will choose unexplored genes closest to your2041POLE20.09unexplored genes closest to your predicted genes to form the predictions. Your response should exactly follow the format: **Reflection: Thoughts on previous results and next steps.2048CWC220.22**Research Plan: The full high level research plan, with current status and reasoning behind each proposed approach. It should be at most 5 sentences.2050DX3X0.03approach. It should be at most 5 sentences.2053UBA10.21**Solution: ## <gene 1=""></gene>	2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124
2037RNPC3-0.02hits.2038PSMA40.23Please propose 5 different yet valid gene names as per the HGNC2039UBL5-0.00nomenclature you want to explore2040EIF4A30.33nomenclature you want to explore2041POLE20.09next. Note that I will choose2042GPN30.15unexplored genes closest to your2043PSMD30.27predictions. Your response should2044COPA0.06exactly follow the format:2045CHMP2A0.06results and next steps.2046RPL27A0.27**Reflection: Thoughts on previous2047PSMD10.32results and next steps.2048CWC220.22**Research Plan: The full high level2049WBP110.13research plan, with current status2050PSMD40.23and reasoning behind each proposed2051DDX3X0.03sentences.2053UBA10.21**Solution:2054EIF2S30.10## <gene 1=""></gene>	2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124
2038PSMA40.23Please propose 5 different yet valid gene names as per the HGNC2040EIF4A30.33nomenclature you want to explore next. Note that I will choose2041POLE20.09next. Note that I will choose2042GPN30.15unexplored genes closest to your2043PSMD30.27predicted genes to form the predictions. Your response should2044COPA0.05exactly follow the format:2045CHMP2A0.06exactly follow the format:2046RPL27A0.27**Reflection: Thoughts on previous2047PSMD10.32results and next steps.2048CWC220.22**Research Plan: The full high level2049WBP110.13and reasoning behind each proposed2051DDX3X0.03approach. It should be at most 52052EIF1AX0.10**Solution:2054EIF2S30.10## <gene 1=""></gene>	2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124
2039 UBL5 -0.00 gene names as per the HGNC 2040 EIF4A3 0.33 nomenclature you want to explore 2041 POLE2 0.09 next. Note that I will choose 2042 GPN3 0.15 unexplored genes closest to your 2043 PSMD3 0.27 predicted genes to form the 2044 COPA 0.05 predictions. Your response should 2045 CHMP2A 0.06 exactly follow the format: 2046 RPL27A 0.27 **Reflection: Thoughts on previous 2047 PSMD1 0.32 results and next steps. 2048 CWC22 0.22 **Research Plan: The full high level 2049 WBP11 0.13 research plan, with current status 2050 PSMD4 0.23 and reasoning behind each proposed 2051 DDX3X 0.03 approach. It should be at most 5 2052 EIF1AX 0.10 **Solution: 2053 UBA1 0.21 **Solution:	2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124
2040EIF4A30.33nomenclature you want to explore next. Note that I will choose unexplored genes closest to your predicted genes to form the predictions. Your response should exactly follow the format: **Reflection: Thoughts on previous results and next steps.2043CWC220.222044COPA0.062045CHMP2A0.062046RPL27A0.272047PSMD10.322048CWC220.222049WBP110.132050PSMD40.232051DDX3X0.032052EIF1AX0.102053UBA10.212054EIF2S30.10	2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124
2041POLE20.09next. Note that I will choose2042GPN30.15unexplored genes closest to your2043PSMD30.27predicted genes to form the2044COPA0.05predictions. Your response should2045CHMP2A0.06exactly follow the format:2046RPL27A0.27**Reflection: Thoughts on previous2047PSMD10.32results and next steps.2048CWC220.22**Research Plan: The full high level2049WBP110.13research plan, with current status2050PSMD40.23and reasoning behind each proposed2051DDX3X0.03sentences.2052EIF1AX0.10**Solution:2053UBA10.21**Solution:2054EIF2S30.10## <gene 1=""></gene>	2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124
2042GPN30.15unexplored genes closest to your2043PSMD30.27predicted genes to form the2044COPA0.05predictions. Your response should2045CHMP2A0.06exactly follow the format:2046RPL27A0.27**Reflection: Thoughts on previous2047PSMD10.32results and next steps.2048CWC220.22**Research Plan: The full high level2049WBP110.13research plan, with current status2050PSMD40.23and reasoning behind each proposed2051DDX3X0.03sentences.2052EIF1AX0.10**Solution:2053UBA10.21**Solution:2054EIF2S30.10## <gene 1=""></gene>	2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124
2043PSMD30.27predicted genes to form the predictions. Your response should exactly follow the format:2045CHMP2A0.06exactly follow the format:2046RPL27A0.27**Reflection: Thoughts on previous results and next steps.2047PSMD10.32**Research Plan: The full high level2048CWC220.22**Research Plan: The full high level research plan, with current status2050PSMD40.23and reasoning behind each proposed approach. It should be at most 52052EIF1AX0.10**Solution:2053UBA10.21**Solution:2054EIF2S30.10## <gene 1=""></gene>	2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124
2044COPA0.05predictions. Your response should exactly follow the format:2045CHMP2A0.06exactly follow the format:2046RPL27A0.27**Reflection: Thoughts on previous results and next steps.2047PSMD10.32**Research Plan: The full high level2048CWC220.22**Research Plan: The full high level research plan, with current status2050PSMD40.23and reasoning behind each proposed2051DDX3X0.03approach. It should be at most 52052EIF1AX0.10**Solution:2053UBA10.21**Solution:2054EIF2S30.10## <gene 1=""></gene>	2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124
2045CHMP2A0.06exactly follow the format:2046RPL27A0.27**Reflection: Thoughts on previous2047PSMD10.32results and next steps.2048CWC220.22**Research Plan: The full high level2049WBP110.13research plan, with current status2050PSMD40.23and reasoning behind each proposed2051DDX3X0.03sentences.2052EIF1AX0.10**Solution:2053UBA10.21**Solution:2054EIF2S30.10## <gene 1=""></gene>	2116 2117 2118 2119 2120 2121 2122 2123 2124
2047 P SMD1 0.32 results and next steps. 2048 CWC22 0.22 **Research Plan: The full high level 2049 WBP11 0.13 research plan, with current status 2050 PSMD4 0.23 and reasoning behind each proposed 2051 DDX3X 0.03 approach. It should be at most 5 2052 EIF1AX 0.10 sentences. 2053 UBA1 0.21 **Solution: 2054 EIF2S3 0.10 ## <gene 1=""></gene>	2117 2118 2119 2120 2121 2122 2123 2124
2048CWC220.22**Research Plan: The full high level research plan, with current status and reasoning behind each proposed approach. It should be at most 52050PSMD40.23and reasoning behind each proposed approach. It should be at most 52052EIF1AX0.10sentences.2053UBA10.21**Solution: ## <gene 1=""></gene>	2118 2119 2120 2121 2122 2123 2123 2124
2049 WBP11 0.13 research plan, with current status 2050 PSMD4 0.23 and reasoning behind each proposed 2051 DDX3X 0.03 approach. It should be at most 5 2052 EIF1AX 0.10 sentences. 2053 UBA1 0.21 **Solution: 2054 EIF2S3 0.10 ## <gene 1=""></gene>	2119 2120 2121 2122 2123 2124
2050 PSMD4 0.23 and reasoning behind each proposed approach. It should be at most 5 2051 DDX3X 0.03 approach. It should be at most 5 2052 EIF1AX 0.10 sentences. 2053 UBA1 0.21 **Solution: 2054 EIF2S3 0.10 ## <gene 1=""></gene>	2120 2121 2122 2123 2124
2050 PSMD4 0.23 and reasoning behind each proposed approach. It should be at most 5 2051 DDX3X 0.03 approach. It should be at most 5 2052 EIF1AX 0.10 sentences. 2053 UBA1 0.21 **Solution: 2054 EIF2S3 0.10 ## <gene 1=""></gene>	2121 2122 2123 2124
2052 EIF1AX 0.10 sentences. 2053 UBA1 0.21 **Solution: 2054 EIF2S3 0.10 ## <gene 1=""></gene>	2122 2123 2124
2053 UBA1 0.21 **Solution: 2054 EIF2S3 0.10 ## <gene 1=""></gene>	2123 2124
2054 EIF2S3 0.10 ## <gene 1=""></gene>	2124
2055 TSP2 0 10 ## <cono 25<="" td=""><td>2125</td></cono>	2125
2056 POLA1 0.24	2126
2057 DHDDS -0.26 ## <gene 5=""></gene>	2127
2058 ANAPC2 0.23 Each gene in the solution should	2128
2059 GPKOW 0.07 only be the gene name in the HGNC	2129
2060 HCFC1 0.06 nomenclature.	2130
2061 PDRG1 -0.16 DO NOT ADD ANY COMMENTS IN THE	2131
2062 TRAPPC3 0.07 SOLUTION OR AFTER THE SOLUTION.	2132
2063 LSM3 0.05)	2133
2064 ATP6AP2 -0.05END PROMPT	2134
2065 GPN2 0.03BEGIN OUTPUT	2135
2066 DTL 0.06 **Reflection: Thoughts on previous	2136
2067 ZFP36L2 0.01 results and next steps.**	2137
2068 RPS15A 0.21 The previous results have identified	2138
2069 NEDD8 0.09 several genes that are involved in	2139
2070 WDR75 0.31 the regulation of Interleukin-2 (IL	2140
2071 NSA2 0.12 -2) production. The top-scoring 2072 TDNT1 0.00	2141
2072 TRNT1 0.09 genes from the previous round	2142
2073 ISCU -0.01 include RPL27, RPL23A, RPL18, RPS13, 2074 MRPL13 0.09 RPL10A, RPL8, MAK16, RPL19, CPSF4,	2143
	2144
	2145
2076BIRC50.30ribosomal proteins, suggesting that2077ARL20.02the regulation of IL-2 production is	2146 2147
2077ARL20.02the regulation of IL-2 production is2078PWP20.02tightly linked to protein synthesis	2147
2079 SPPL2B 0.01 . The next steps will focus on	2140
2080 NIFK 0.26 exploring more genes that are	2149
2081 ABCE1 0.28 closely related to these hits and	2150
2082 PRIM1 0.11 are not yet explored.	2151
2083 EIF3G 0.08	2152
2084 NOLC1 0.02 **Research Plan: The full high level	2153
2085 NOC4L 0.11 research plan, with current status	2155
2086 UTP20 0.33 and reasoning behind each proposed	2156
2087 NOP10 -0.04 approach.**	2157
2088 URB1 0.04 We will update our priors based on	2158
2089 NMD3 0.33 the previous results and choose	2159
2090 ZPR1 0.15 genes that are closely related to	2160
2091 NOL9 0.11 the hits from the previous round. We	2161
2092 TCP1 0.02 will also include some genes that	2162
2093 TBCB 0.10 could give hits based on their	2163
2094 UBA2 -0.17 functional annotation. We will use	2164
2095 RSL1D1 0.28 the HGNC nomenclature to select 5	2165
2096 PAK1IP1 0.22 unexplored genes that are closest to	2166
2097 NOP56 -0.08 the predicted genes. We will then	2167

0100			2.45	
2168	use these genes for the next round	ETF1	-0.45	2238
2169	of experimentation.	CDC23	0.75	2239
2170		GINS2	0.38	2240
2171	**Solution:**	RPS11	0.64	2241
2172	## RPL22	RPS20	0.43	2242
2173	## RPS11	RBM22	0.61	2243
2174	## RPL14	FAU	0.49	2244
2175	## RPS4X	RPL17	0.49	2245
2176	## RPL32	PRPF19	0.38	2246
2177	END OUTPUT	RPL9	0.44	2247
2178	ROUND 5: BEGIN PROMPT	UTP15	0.59	2248
2179	SystemMessage(You are a biomedicine	RPS3A	0.39	2249
2180	expert who will assist me on	RPL37	0.68	2250
2181	problems in drug discovery. I am	RPS27A	0.48	2251
2182	planning to run a CRISPR screen to	RPL27	0.87	2252
2183	identify genes that regulate the	PRPF8	0.45	2253
2184	production of Interleukin-2 (IL-2).	CCT4	0.35	2253
2185	I can only perturb exactly 128 genes	RPS16	0.38	2254
2185			0.61	2255
	at a time. For each predicted	RPL7A		
2187	perturbation, I am able to measure	CDC7	0.62	2257
2188	out the log fold change in	RPS6	0.47	2258
2189	Interleukin-2 (IL-2) normalized read	RPL23A	0.79	2259
2190	counts which will be referred to as	RPS13	0.92	2260
2191	the score. I can only do 5 rounds	RPL32	0.68	2261
2192	of experimentation. After every	RPL18	0.77	2262
2193	round of experiment, I will provide	RPLP2	0.52	2263
2194	you with feedback on your	RPS8	0.69	2264
2195	predictions, including the correctly	RPL10A	0.86	2265
2196	identified genes called hits and	RPL8	0.81	2266
2197	the corresponding score. The	MAK16	1.15	2267
2198	predictions which are not hits will	RPS17	0.82	2268
2199	be included in other results.)	RPL19	1.21	2269
2200	HumanMessage(RPL3	0.42	2270
2201	This is round 5.	RPL15	0.92	2271
2202	Here is the feedback on all your	CPSF4	1.13	2272
2203	predictions till now:	XP01	0.35	2273
2203	[HITS]	RRM2	0.50	2274
2205	name score	RPL14	0.61	2275
2205	MYBL2 0.51	INTS3	0.53	2275
2200	GBF1 0.43	RFC3	0.50	2270
2207	DDX41 0.47	RBM25	0.47	2278
2209	ZMAT2 0.45	FCF1	0.40	2279
2210	RPL4 0.35	POLR1B	0.36	2280
2211	HNF4A -0.34	POLD3	0.52	2281
2212	CDC16 0.48	CHMP6	0.85	2282
2213	WDR5 0.82	PSMC5	0.34	2283
2214	MYC 0.41	RPL31	0.40	2284
2215	ZNF536 -0.38	ERH	0.45	2285
2216	TLN1 -0.49	RPS4X	0.70	2286
2217	LIN37 -0.39	CHERP	0.49	2287
2218	SULT2B1 -0.44	DKC1	0.40	2288
2219	SPC24 0.58	CNOT 3	0.44	2289
2220	SNRPD2 0.39	SNRPC	1.25	2290
2221	POLR1A 0.47	MTBP	0.57	2291
2222	SF3A2 0.65	SYMPK	0.68	2292
2223	SNRNP200 0.78	CDC6	0.47	2293
2224	CDK1 0.43	PPAN	0.89	2294
2225	DUT 0.44	SPOUT1	0.38	2295
2226	PRC1 0.38	EIF3I	0.45	2296
2227	DONSON 0.65	RPL36	0.72	2297
2228	EEF2 0.43	NUP93	0.35	2298
2229	PSMA6 0.34	RPS24	0.83	2299
2229	XAB2 0.41	NUP133	0.49	2300
2231	VCP 0.66	RPS18	0.46	2301
2232	PSMA1 0.39	RPS14	0.60	2302
2233	PSMD7 0.57	PDCD11	0.43	2303
2234	SMU1 0.45	NOC3L	0.34	2304
2235	POLE 0.57	BMS1	0.56	2305
2236	SF3B3 0.36	RPS25	0.49	2306
2237	KIF11 0.36	EBNA1BP2	0.39	2307

2308	BOP1	0.51	BNIP3L	-0.17	2378
2309	NOP 2	0.55	FAM184B	-0.10	2379
2310	RRN3	0.35	RGMB	0.02	2380
2311	TUBGCP2	0.59	ZNF853	-0.09	2381
2312	RPS3	0.54	NPAS2	0.26	2382
2313	PKMYT1	0.46	ATAD1	-0.05	2383
2314	CLNS1A	0.47	SMCP	-0.08	2384
2315	GINS1	0.47	RAB27B	0.14	2385
2316	SNRNP27	0.63	BIN3	-0.10	2386
2317	TNP03	0.44	NPY2R	0.02	2387
2318	MCM5	0.43	EQTN	0.16	2388
2319	BUB3	0.48	AKR1B1	-0.21	2389
2320	WDR12	0.43	MAPK14	-0.02	2390
2321	NUTF2	0.45	MLST8	-0.15	2391
2322	RPLP1	0.66	PPP2R3C	-0.19	2392
2323	DYNC1I2	0.62	MNAT1	0.07	2393
2324	USP5	0.34	NOL10	0.05	2394
2325	RPL35	0.98	EMC7	0.08	2395
2326	RPL26	0.99	EMC3	-0.05	2396
2327	GINS4	0.59	GUK 1	0.19	2397
2328	EIF3B	0.48	MED6	-0.16	2398
2329	GNL 3L	0.39	CIA01	0.10	2399
2330	SMC1A	0.68	SNAPC5	0.01	2400
2331	RPL34	0.67	ZCRB1	-0.03	2401
2332		-0.42	TRMT112	0.07	2402
2333	MPHOSPH10	0.47	RPS29	0.23	2403
2334	RPL6	0.62	PDCD2	0.10	2404
2335	GNL 2	0.42	RPP21	-0.16	2405
2336	RUVBL1	0.56	RPL5	0.10	2406
2337	RPS7	1.02	EIF6	0.19	2407
2338	SNRPF	0.57	SNW1	0.28	2408
2339	MFAP1	0.42	HEATR1	0.06	2409
2340	SRBD1	0.56	RPL28	0.34	2410
2341	POLR1C	0.41	WDR18	0.07	2411
2342	NOB1	0.38	PAK4	0.07	2412
2343					
	PSMD6	0.43	AFDN	-0.06	2413
2344	[OTHER RESU	LTSJ	VCL	-0.02	2414
2345	name s	core	CATSPERG	-0.09	2415
2346		0.09	PTK2	-0.10	2416
2347		0.00	BCAR1	-0.08	2417
2348	COA3 -	0.05	ACTR3	-0.06	2418
2349	E2F6 -	0.11	RAPGEF1	0.19	2419
2350		0.05	WWTR1	-0.10	2420
2351	NDUFA4	0.04	VWA8	0.26	2421
2352	RAN	0.12	FERMT2	-0.12	2422
2353		0.14	RSU1	0.12	2423
2354		0.13	MST01	0.02	2424
2355	CD8B -	0.01	NLRP2B	-0.09	2425
2356	HMGB1 -	0.12	ARPC4	0.05	2426
2357		0.03	ARPC2	-0.12	2427
2358		0.16	KIF2C	-0.13	2428
2359	COX5B	0.07	SRF	0.01	2429
2360	COPS6 -	0.08	RNASE1	0.16	2430
2361			NCKAP1	-0.14	2431
		0.03			
2362		0.05	ZFAND5	-0.01	2432
2363	NCAPG	0.17	SMAD2	0.15	2433
2364		0.05	MAGED2	-0.03	2434
2365		0.00	POTEE	-0.09	2435
2366	OR51L1 -	0.17	IFNA10	-0.18	2436
2367	GHR	0.02	AKAIN1	-0.18	2437
2368		0.01	ZNF614	0.08	2438
2369		0.11	ZNF157	-0.11	2439
2370	TOX2	0.10	MAPK8	0.09	2440
2371		0.05	POLI	-0.21	2441
2372		0.24	ATXN3L	-0.11	2442
2373	TRAPPC3L	0.10	FOXD4L4	-0.09	2443
2374		0.00	CDR1	-0.12	2444
2375		0.10	NELL1	0.03	2445
2376		0.04	AP1S2	0.06	2446
2377	ZFAND2A	0.12	IFNB1	-0.13	2447
I					1

2448	ARMCX4	-0.14	EIF2S1	0.02	2518
-				0.04	
2449	ZNF729	-0.10	DNAJC17		2519
2450	NK X 3 – 2	-0.13	XRCC6	-0.22	2520
2451	LUZP4	-0.17	DUX4	-0.01	2521
2452	STX17	0.07	RPS19	0.23	2522
2453	SPINK2	0.29	WDR43	0.24	2523
2454	MEIG1	0.07	RRM1	0.32	2524
2455	DAB2IP	-0.22	ATP6V0C	0.06	2525
2456	ZNF611	0.03	RPS2	0.33	2526
2457	VGLL1	-0.05	PUF60	-0.07	2527
2458	OR52E6	0.06	SEC61A1	-0.17	2528
2459	GUCY2F	0.03	TSR1	0.23	2529
2460	OR10Z1	0.07	WDR74	0.33	2530
2461	CLTC	0.26	RPL7	0.31	2531
2462	THOC7	0.17	RPS27	0.13	2532
2463	ANKLE2	0.20	MCM7	0.01	2533
2464	SF3A1	0.17	LUC7L3	0.12	2534
2465	SAP30BP	0.26	EEF1A1	0.21	2535
2466	ZMAT5	0.19	RPSA	0.28	2536
2467	LSM2	-0.18	PPWD1	0.29	2537
2468	CDC45	0.08	TOMM22	-0.05	2538
2469	TANG06	0.10	RACGAP1	0.25	2539
2470	NUP85	-0.11	DYNC1H1	-0.17	2540
2471	TBC1D3B	0.13	SNRNP25	0.01	2541
2472	SEC13	0.19	TIMELESS	0.11	2542
2473	NEDD1	0.32	UOCRH	-0.09	2543
2474	RFC2	0.30	PAM16	0.19	2544
2475	SDE 2	0.31	PFDN6	-0.21	2545
2476	CCT3	0.23	DDX10	0.32	2546
2477	PSMB3	-0.01	RRP12	0.16	2547
2478	KPNB1	0.14	GPN1	0.08	2548
2479	ANAPC11	-0.07	PFDN2	0.06	2549
2480	HSPA9	-0.03	ZNHIT2	0.20	2550
2481	SMG1	0.15	BYSL	0.04	2551
2482	SBN01	-0.03	USP36	-0.03	2552
2483	PSMB4	0.14	SF3B1	0.30	2553
2484	COPB1	0.14	VPS25	-0.08	2554
2485	PSMA3	0.05	PRPF38A	0.15	2555
2486	COPB2	0.24	EIF5	-0.12	2556
2487	PSMA5	0.34	ATP6V0B	0.06	2557
2488	PSMA2	0.29	RNPC3	-0.02	2558
2489	CDK11A	-0.06	PSMA4	0.23	2559
2490	PRELID1	0.22	UBL5	-0.00	2560
2491	FARSB	0.13	EIF4A3	0.33	2561
2492	RSL24D1	0.11	POLE2	0.09	2562
2493	RPL12	0.34	GPN3	0.15	2563
2494	DHX37	0.29	P SMD 3	0.27	2564
2495	BUD31	0.08	СОРА	0.05	2565
2496	CDC123	-0.03	CHMP2A	0.06	2566
2497	TXNL4A	-0.25	RPL27A	0.27	2567
2498	INTS11	0.26	PSMD1	0.32	2568
2499	DBR1	0.14	CWC22	0.22	2569
2500	HSPE1	-0.03	WBP11	0.13	2570
2501	NPIPB6	-0.15	PSMD4	0.23	2571
2502	PAFAH1B1	-0.26	DDX3X	0.03	2572
2503	NFS1	0.15	EIF1AX	0.10	2573
2504	DDX56	0.21	UBA1	0.21	2574
2505	CDC27	0.17	EIF2S3	0.10	2575
2506	DDX49	0.22	TSR2	0.19	2576
2507	SF3B4	0.18	POLA1	0.24	2577
2508	RPL23	0.09	DHDDS	-0.26	2578
2509	WEE1	-0.18	ANAPC2	0.23	2579
2510	NIP7	0.22	GPKOW	0.07	2580
2511	SF3B5	0.26	HCFC1	0.06	2581
2512	CDC20	0.29	PDRG1	-0.16	2582
2513	RPS9	0.12	TRAPPC3	0.07	2583
2514	LRR1	-0.03	LSM3	0.05	2584
2515	GEMIN5	0.00	ATP6AP2	-0.05	2585
2516	SNRPA1	0.06	GPN2	0.03	2586
2517	RPLP0	0.26	DTL	0.06	2587
		0.20		0.00	2001

2588	ZFP36L2	0.01	NOP58 0.22	2658
2589	RPS15A	0.21	SSU72 0.13	2659
2590	NEDD8	0.09	TOMM40 -0.06	2660
2591	WDR75	0.31	HSPD1 -0.02	2661
2592	NSA2	0.12	YKT6 -0.04	2662
2593	TRNT1	0.09	ATP6V1A -0.07	2663
2594	ISCU	-0.01	LSM7 0.09	2664
2595	MRPL13	0.09	ATP6V1F 0.03	2665
2596	DDX55	0.01	CSE1L 0.06	2666
2597	BIRC5	0.30	RBM19 0.14	2667
2598	ARL2	0.02	RPA3 -0.02	2668
	PWP2	0.02		
2599			PSMB2 0.17	2669
2600	SPPL2B	0.01	LSM8 0.16	2670
2601	NIFK	0.26	SRP54 -0.19	2671
	ABCE1	0.28	CCT2 0.10	2672
2602				
2603	PRIM1	0.11	LYRM4 -0.02	2673
2604	EIF3G	0.08	MDN1 0.32	2674
2605	NOLC1	0.02	POLD1 0.30	2675
2606	NOC4L	0.11	RABGGTB -0.07	2676
2607	UTP20	0.33	ATP2A2 -0.01	2677
2608	NOP10	-0.04	TTC27 0.24	2678
2609	URB1	0.04	PSMD13 0.15	2679
2610	NMD 3	0.33	EIF3E 0.21	2680
2611	ZPR1	0.15	ALG14 -0.08	2681
2612	NOL9	0.11	NVL 0.23	2682
2613	TCP1	0.02	HTATSF1 0.02	2683
2614	TBCB	0.10	ZRSR2 0.06	2684
2615	UBA2	-0.17	0GT 0.02	2685
2616	RSL1D1	0.28	RPN1 -0.02	2686
2617	PAK1IP1	0.22	SF3B2 0.29	2687
2618	NOP56	-0.08	DDB1 0.23	2688
2619	RBM17	0.00	NUS1 -0.04	2689
2620	XRN2	0.06	RBMX2 -0.19	2690
2621	OSGEP	0.10	MMS22L 0.26	2691
2622	UTP18	0.02	TIMM8A 0.15	2692
2623	RPL22	-0.23	ZNF830 0.13	2693
2624	TP53BP1	-0.04	ALG2 0.09	2694
2625	NELFCD	0.03	RNF113A 0.28	2695
2626	METTL14	0.14	INTS1 0.01	2696
2627	DEPDC1	0.00	PSMG4 -0.16	2697
2628	WTAP	0.12	DDOST -0.20	2698
2629	CA6	-0.08	SNAPC1 0.04	2699
2630	PREB	0.13	NDC80 0.05	2700
2631	ZNF676	-0.04	NKAP 0.27	2701
2632	PRAMEF18	-0.11	EIF2B2 -0.17	2702
2633	STN1	0.01	INTS4 0.03	2703
2634	SLC35G6	-0.20	EXOSC8 0.07	2704
2635				2705
	ZNF 318	-0.13		
2636	DPPA2	0.18	RPAP1 -0.01	2706
2637	GSTM3	0.11	KIF23 0.26	2707
2638	SRSF10	0.13	PLA2G10 -0.09	2708
2639	SCAF4	-0.04	SPC25 0.31	2709
2640	PNRC2	0.07	PSMA7 -0.00	2710
2641	IFITM3	0.00	ANKRD36B -0.07	2711
2642	WDR55	0.11	PSMC6 0.27	2712
2643	TMA7	-0.06	PRPF38B 0.06	2713
2644	MRPS2	0.14	KRI1 0.22	2714
2645	TSEN54	0.21	SNAPC2 0.05	2715
2646	GGPS1	0.06	POP5 0.20	2716
2647	EIF1AD	0.19	GAPDH -0.10	2717
2648	RPL18A	0.31	SF3A3 0.34	2718
2649	SAE1	-0.03	TRAPPC1 0.15	2719
2650	RABGGTA	0.25	Here is a strategy to follow: Update	2720
2651	SS18L2	0.10	your priors appropriately and	2721
2652	MRPS12	0.06	choose genes that gave you hits.	2722
2653	HAUS5	0.25	Also, be sure to explore by	2723
2654	FOXD4	0.15	including some genes that could give	2724
2655	TOP2A	0.13	hits.	2725
2656	SNRNP70	0.33	Please propose 5 different yet valid	2726
2657	INTS9	0.01	gene names as per the HGNC	2727

2728 nomenclature you want to explore next. Note that I will choose unexplored genes closest to your 2730 2731 predicted genes to form the 2732 predictions. Your response should exactly follow the format: 2733 **Reflection: Thoughts on previous 2734 2735 results and next steps. **Research Plan: The full high level 2736 2737 research plan, with current status 2738 and reasoning behind each proposed 2739 approach. It should be at most 5 2740 sentences. 2741 **Solution: 2742 ## <Gene 1> 2743 ## <Gene 2> 2744 2745 ## <Gene 5> 2746 Each gene in the solution should 2747 only be the gene name in the HGNC 2748 nomenclature. 2749 DO NOT ADD ANY COMMENTS IN THE SOLUTION OR AFTER THE SOLUTION. 2750 2751) 2752 ----END PROMPT--------BEGIN OUTPUT----2753 2754 **Reflection: Thoughts on previous 2755 results and next steps.** 2756 From the previous rounds of 2757 experimentation, we have identified 2758 several genes that regulate the 2759 production of Interleukin-2 (IL-2). The 2760 top-scoring genes from previous rounds 2761 include WDR5, SF3A2, SNRNP200, RPL27, RPL3, RPL15, RPL10A, RPL8, MAK16, RPL19, 2762 CPSF4, SNRPF, RPS27A, RPL36, RPS24, RPL37, RPL32, RPL18, RPS8, RPLP2, RPS13, 2764 2765 RPL23A, RPL2, RPL26, RPL35, RPS17, RPL14, RPS7, RPS29, RPS25, RPS3, RPS4X, 2766 RPS18, RPS16, RPS15, RPS14, RPS13, RPS12 2768 , RPS11, RPS10, RPS9, RPS8, RPS7, RPS6, 2769 RPS5, RPS4, RPS3, RPS2, RPS1, RPS0A, RPS0L1, RPS0L2, RPS0L3, RPS0L4, RPS0L5, 2770 2771 RPL30, RPL29, RPL28, RPL27, RPL26, RPL25 2772 RPL24, RPL23, RPL22, RPL21, RPL20, 2773 RPL19, RPL18, RPL17, RPL16, RPL15, RPL14 2774 , RPL13, RPL12, RPL11, RPL10, RPL9, RPL8 2775 $\mathsf{RPL7}$, $\mathsf{RPL6}$, $\mathsf{RPL5}$, $\mathsf{RPL4}$, $\mathsf{RPL3}$, $\mathsf{RPL2}$, RPL1, RPL0, RPS27, RPS26, RPS25, RPS24 2777 RPS23, RPS22, RPS21, RPS20, RPS19, RPS18 2778 RPS17, RPS16, RPS15, RPS14, RPS13, RPS12, RPS11, RPS10, RPS9, RPS8, RPS7. 2779 RPS6, RPS5, RPS4, RPS3, RPS2, RPS1, 2780 2781 RPS0A, RPS0L1, RPS0L2, RPS0L3, RPS0L4, RPS0L5, RPS0L6, RPS0L7, RPS0L8, RPS0L9, 2782 2783 RPS0L10, RPS0L11, RPS0L12, RPS0L13, RPS0L14, RPS0L15, RPS0L16, RPS0L17, 2784 RPS0L18, RPS0L19, RPS0L20, RPS0L21, RPS0L22, RPS0L23, RPS0L24, RPS0L25, RPS0L26, RPS0L27, RPS0L28, RPS0L29, 2786 2788 RPS0L30, RPS0L31, RPS0L32, RPS0L33, 2789 RPS0L34, RPS0L35, RPS0L36, RPS0L37, 2790 RPS0L38, RPS0L39, RPS0L40, RPS0L41, 2791 RPS0L42, RPS0L43, RPS0L44, RPS0L45, 2792 RPS0L46, RPS0L47, RPS0L48, RPS0L49, 2793 RPS0L50, RPS0L51, RPS0L52, RPS0L53, 2794 RPS0L54, RPS0L55, RPS0L56, RPS0L57, 2795 RPS0L58, RPS0L59, RPS0L60, RPS0L61, RPS0L62, RPS0L63, RPS0L64, RPS0L65, 2796 2797 RPS0L66, RPS0L67, RPS0L68, RPS0L69,

RPS0L70, RPS0L71, RPS0L72, RPS0L73, RPS0L74, RPS0L75, RPS0L76, RPS0L77, RPS0L78, RPS0L79, RPS0L80, RPS0L81, RPS0L82, RPS0L83, RPS0L84, RPS0L85, RPS0L86, RPS0L87, RPS0L88, RPS0L89, RPS0L90, RPS0L91, RPS0L92, RPS0L93, RPS0L94, RPS0L95, RPS0L96, RPS0L97 RPS0L98, RPS0L99, RPS0L100, RPS0L101, RPS0L102, RPS0L103, RPS0L104, RPS0L105, RPS0L106, RPS0L107, RPS0L108, RPS0L109, RPS0L110, RPS0L111, RPS0L112, RPS0L113, RPS0L114, RPS0L115, RPS0L116, RPS0L117, RPS0L118, RPS0L119, RPS0L120, RPS0L121, RPS0L122, RPS0L123, RPS0L124, RPS0L125, RPS0L126, RPS0L127, RPS0L128. These genes are highly enriched in ribosomal proteins and other proteins involved in RNA processing and translation. We will update our priors to reflect the importance of these gene families in IL -2 regulation. We will also explore genes that are closely related to these families, such as other ribosomal proteins and RNA processing genes.

2798

2799

2801

2802

2805

2808

2810

2811

2812

2813

2814

2815

2816

2817

2818

2819

2821

2822

2824

2825

2827

2829

2831

2834

2835

2837

3838

Research Plan:
We will choose genes that are closely
related to the highly scoring genes from
previous rounds. Our goal is to
identify new genes that regulate IL-2
production and to refine our
understanding of the underlying
biological pathways.

Solution: ## RPL38 ## RPL31 ## RPL18A ## SNRNP70 ## RPS27 ----END OUTPUT----SECURED TOTAL 169 HITS

Dataset	func desc	score desc			
IL2	regulate the produc- tion of Interleukin-2 (IL-2)	logfoldchangeinInterleukin-2(IL-2)nor-malizedreadcounts			
IFNG	regulate the produc- tion of Interferon- gamma (IFNG)	log fold change in Interferon- gamma (IFNG) normalized read counts	Dataset	func desc	candidate space info
Carnevale	upon being knocked out, would boost the efficacy of engineered T cells in the presence of an adenosine agonist that creates an immunosuppresive condition	change in T cell prolifera- tion	ESOL	ionization energy (in eV) solubility in water (log mol per litre)	The molecules in the library are composed of only C, H, N and O ele- ments. The molecules in the li- brary are small organic
Sanchez	when knocked out, either increase or de- crease expression of endogenous tau pro- tein levels in neu- rons	change in tau protein level com- pared to the non-targeting control, using a total tau antibody	FreeSolv	hydration free en- ergy in water	molecules. The molecules in the li- brary are small organic molecules.
Sanchez Down	when knocked out, decrease expression of endogenous tau protein levels in neu- rons	change in tau protein level com- pared to the non-targeting control, using a total tau antibody		e desc and candidate spa	ace info for the

Table 5: func desc and score desc for the different gene perturbation datasets