
LLMs for Bayesian Optimization in Scientific Domains: Are We There Yet?

Anonymous ACL submission

Abstract001

Large language models (LLMs) have recently002
been proposed as general-purpose agents for003
experimental design, with claims that they004
can perform in-context experimental design.005
We evaluate this hypothesis using open-source006
instruction-tuned LLMs applied to genetic per-007
turbation and molecular property discovery008
tasks. We find that LLM-based agents show no009
sensitivity to experimental feedback: replacing010
true outcomes with randomly permuted labels011
has no impact on performance. Across bench-012
marks, classical methods such as linear bandits013
and Gaussian process optimization consistently014
outperform LLM agents. We further propose015
a simple hybrid method, LLM-guided Nearest016
Neighbour (LLMNN) sampling, that combines017
LLM prior knowledge with nearest-neighbor018
sampling to guide the design of experiments.019
LLMNN achieves competitive or superior per-020
formance across domains without requiring sig-021
nificant in-context adaptation. These results022
suggest that current open-source LLMs do not023
perform in-context experimental design in prac-024
tice and highlight the need for hybrid frame-025
works that decouple prior-based reasoning from026
batch acquisition with updated posteriors.027

1 Introduction028

Experimental design enables data-efficient scien-029

tific discovery (Shields et al., 2021; Ueno et al.,030

2016; Lei et al., 2021; Huan et al., 2024; Jain et al.,031

2023). In domains such as biology and chemistry032

each experiment can be costly or time-consuming033

so we need methods that select the most informa-034

tive candidates under a constrained budget. Classi-035

cal approaches typically adopt a Bayesian frame-036

work (Lindley, 1956; Houlsby et al., 2011): they037

construct a surrogate model of the response func-038

tion, update this model with new data, and select039

future experiments by optimizing an acquisition040

function such as expected improvement or informa-041

tion gain (Gal et al., 2017; Kirsch et al., 2019).042

Recent work has proposed using LLMs to re- 043

place these components, offering a unified inter- 044

face that can incorporate prior knowledge, reason 045

over experimental history, and directly select can- 046

didates via prompting. Examples include BioDis- 047

coveryAgent (BDA) (Roohani et al., 2024) for ge- 048

netic perturbation design and LLAMBO (Liu et al., 049

2024) for hyperparameter optimization. These sys- 050

tems are built on proprietary LLMs (e.g., Claude 051

3.5 Sonnet (Anthropic, 2024) or OpenAI’s GPT- 052

3.5 (OpenAI, 2023) and o1 (OpenAI, 2024)) and 053

design experiments by iteratively prompting the 054

LLM with prior experimental outcomes, and rely 055

on in-context learning to guide future experiment 056

selection. 057

In domains that are well-studied, the priors from 058

the LLMs offer clear benefits over the traditional 059

methods for the first round of experimentation be- 060

cause the LLMs can leverage information from 061

the pretraining corpus to select actions. However, 062

it is less clear whether in-context learning alone 063

(without finetuning) leads to good action selection. 064

This paper investigates whether such LLM-based 065

approaches, when implemented with open-source 066

models and without external tool use, can perform 067

effective experimental design. Specifically, we 068

ask, do off-the-shelf, instruction-tuned LLMs 069

exhibit strong in-context experiment design abil- 070

ities when prompted with experimental history? 071

We address this question using the BioDiscov- 072

eryAgent pipeline implemented with two pub- 073

licly available LLMs—LLaMA-3.1-8B-Instruct 074

(Grattafiori et al., 2024) and Qwen-2-7B-Instruct 075

(Yang et al., 2024)—applied to experimental de- 076

sign tasks in two domains: single-gene perturba- 077

tion and molecular property prediction. To evaluate 078

in-context learning behavior, we conduct ablation 079

studies that compare the standard BioDiscoveryA- 080

gent to a variant receiving randomly permuted feed- 081

back (BDA-Rand), removing any correspondence 082

between past actions and outcomes. Our experi- 083
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mental analysis reveals the following findings:084

1. LLMs are insensitive to feedback. Across085

all datasets and models (including Claude Son-086

net 3.5), BDA and BDA-Rand perform com-087

parably. In some cases, the BDA-Rand even088

performs slightly better. This suggests that089

the tested LLMs’ selection behavior is deter-090

mined primarily by prior knowledge rather091

than adaptation to feedback.092

2. LLMs underperform classical baselines.093

Linear UCB and Gaussian process-based094

Bayesian optimization methods, given access095

to the same candidate embeddings, consis-096

tently outperform BDA on both domains.097

3. A simple heuristic performs better search.098

We introduce LLM-guided Nearest Neigh-099

bour (LLMNN), a method that prompts the100

LLM to propose seed candidates and then se-101

lects batches via nearest-neighbor expansion102

in embedding space. LLMNN also receives103

in-context feedback but outperforms BDA and104

matches or exceeds classical methods across105

benchmarks.106

In summary, we make following contributions,107

• We provide a diagnostic evaluation of108

in-context experimental design using109

randomized-feedback ablations.110

• We benchmark open-source LLMs against111

Bayesian optimization and bandit-based meth-112

ods across five gene perturbation and three113

molecular property prediction datasets.114

• We show that open-source and proprietary115

instruction-tuned LLMs do not leverage ex-116

perimental feedback to perform in-context ex-117

perimental design in practical experimental118

design tasks.119

• We introduce a simple hybrid method,120

LLMNN, which leverages LLM prior knowl-121

edge for exploration and embedding-based122

nearest-neighbor sampling for exploitation.123

These results indicate that LLMs, while encod-124

ing valuable domain priors, still need explicit mech-125

anisms that enable posterior updating and selec-126

tion for efficient experimental design. Hybrid ap-127

proaches that combine LLM priors with classical128

exploration strategies offer a promising direction129

for scalable, general-purpose experiment design.130

2 Problem Statement 131

Consider the following real-world experimental 132

settings across two domains: 133

Single Gene Perturbation. Let’s say we have 134

the ability to knock out a single gene at a time 135

from the human cell to induce a certain desired 136

phenotypic response. Correspondingly, for every 137

knockout, we are able to measure the phenotypic 138

response value of perturbing the gene. However, ex- 139

haustive trials with the whole set of protein-coding 140

genes (> 19000) are infeasible due to both time 141

and budget constraints. Thus, how do we design 142

perturbation experiments to identify genes that pro- 143

duce the phenotype under tight budget constraints 144

and a sequential experiment protocol? 145

Chemical Properties of Molecules. Similarly, 146

say given a large library of molecules, we seek to 147

identify the molecules that exhibit high values for 148

a given property. For every molecule tried, we can 149

obtain its property value. How do we effectively 150

screen the library to identify top-performing 151

molecules for the given property, under similar 152

constraints as above? 153

154

More formally, both these settings are examples 155

of closed-loop experiment design, which is our 156

center of focus in this work. At any experimen- 157

tal round, the agent determines which candidates 158

to investigate next, given the results from all the 159

prior experiments. The process continues for N 160

number of rounds, depending on the experimental 161

budget available, with the objective of detecting a 162

maximum number of hit candidates. 163

Specifically, let C be the set of all the can- 164

didates and f : C → R be the function that 165

maps each candidate to a real-valued measurement. 166

The task is inherently sequential, spread over N 167

rounds, where each round i is defined as the trial 168

of {c1, c2, . . . , cB} ⊆ C candidates independently. 169

The goal of the experiment is to identify the can- 170

didates with measurement value greater than some 171

threshold τ , i.e., f(c) > τ for c ∈ C. Such can- 172

didates are termed as hits for that measurement 173

function. 174

Further, let Ci be the set of candidates selected 175

by the agent at any round i and let Zi be the set 176

comprising of entire experiment history, i.e. Zi = 177

{(c, f(c)) | c ∈
i−1⋃
t=1

Ct}. Given Zi, the agent is 178

then expected to guide the formation of Ci. 179

2



At the end of N rounds, let Ca =
N⋃
t=1

C+
t , where180

C+
t = {c ∈ Ct : f(c) > τ} represents the hits181

identified in round t. Thus, Ca represents the cumu-182

lative set of hits across all rounds up to t. Similarly,183

let Cgt be the set of all true hits for the measurement184

function f , Cgt = {c ∈ C : f(c) > τ}.185

We typically fix the N = 5 and B = 128 for all186

our experiments unless stated otherwise. Addition-187

ally, the τ for the molecular property task is set to188

be at the 90th percentile of the property value.189

3 Related Work190

BO for Scientific Applications: Bayesian191

Optimization in scientific domains has focused192

on a variety of applications like drug discovery193

(Griffiths and Hernández-Lobato, 2020; Korovina194

et al., 2020), biological experiment design195

(Roohani et al., 2024; Lyle et al., 2023; King et al.,196

2004), and chemical/molecular tasks (Kristiadi197

et al., 2024; Fromer et al., 2024; Ranković and198

Schwaller, 2023; Shields et al., 2021). Simulta-199

neously, there have also been works that advance200

autonomous AI-driven closed-loop experiment201

design (M. Bran et al., 2024; Tom et al., 2024;202

Boiko et al., 2023). In this work, we study how203

LMs can be used to incorporate prior information204

into the search process in the context of two205

real-world domains: single gene perturbations and206

chemical property optimization. Both tasks are207

similar in terms of extensive candidate space and208

complex relationships between the candidate and209

its associated measurement. However, the genetic210

domain has a finite candidate space of genes in the211

human genome, whereas the space of all molecule212

is far larger (up to 1060 small molecules (Bohacek213

et al., 1996)) making it harder to have priors over214

any particular molecule.215

216

LLMs for Bayesian Optimization: A series of217

recent works have explored the use of LLM embed-218

dings in different ways, like for general-purpose219

regression (Nguyen et al., 2024), to improve surro-220

gate modeling (Nguyen and Grover, 2024), and to221

augment the traditional methods like Gaussian Pro-222

cesses (Hartford et al., 2020; Ramos et al., 2023).223

We focus on using LLMs as the backend for an224

agent that interacts with the laboratory feedback225

and performs closed-loop experiment design.226

The two closest related prior works to our study227

are BioDiscoveryAgent (Roohani et al., 2024) and228

LLAMBO (Liu et al., 2024). LLAMBO is based on 229

GPT-3.5 and primarily focuses on hyperparameter- 230

tuning tasks, with LLM performing end-to-end 231

Bayesian Optimization via suitable prompting. In 232

a similar spirit, BioDiscoveryAgent proposes an 233

LLM agent based on Claude 3.5 Sonnet and aug- 234

mented with external tools that performs closed- 235

loop experiment design of genetic perturbations. 236

Both these approaches leverage proprietary LLMs 237

and heavily rely on in-context learning to design 238

experiments conditional on the experimental his- 239

tory. BioDiscoveryAgent, in particular, prompts 240

the LLM to generate the entire batch of candidates 241

to try next. In this work, we take a critical view 242

of these methods, particularly BioDiscoveryAgent 243

(BDA), and resort to instruction-tuned open-source 244

models like Llama3.1-8B (Grattafiori et al., 2024) 245

and Qwen2-7B (Yang et al., 2024) to further ex- 246

amine it. While there exists evidence that trans- 247

formers have been shown to perform amortized 248

Bayesian inference (Müller et al., 2024) when ap- 249

propriately trained, it is not obvious that the abil- 250

ity arises from the next-token prediction and post- 251

training objectives, and hence we specifically test 252

the open-source BDA for the ability to select ex- 253

periments. Eventually, we take a departure from a 254

purely LLM-based approach and explore the syn- 255

ergy between LLMs and classical methods in our 256

proposed hybrid approach, LLMNN, that achieves 257

significantly superior performance. 258

4 Tasks and Datasets 259

We perform experiments on two scientific domains 260

in this work. In particular, we work with sin- 261

gle gene perturbations and chemical properties of 262

molecules. We simulate running experiments on a 263

set of candidates by retrieving the corresponding 264

measurement value from a tabular dataset. How- 265

ever, in real-world settings, the corresponding ex- 266

periments would be conducted in a laboratory or an 267

in-silico simulator. In the subsequent subsections, 268

we describe the datasets used in the two domains. 269

4.1 Single Gene Perturbations 270

Section 2 explains the details of the task, such as the 271

goal with experiment design, candidate space, and 272

the associated measurements. In terms of datasets, 273

we use the IL2, IFNG, Carnevale, Sanchez, 274

and Sanchez Down datasets from Roohani et al. 275

(2024)’s BioDiscoveryAgent as each of them cov- 276

ers a distinct biological process. For example, IL2 277
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Method IL2 IFNG Carnevale Sanchez Sanchez Down

Ground truth (| Cgt |) 654 920 943 924 924

Llama-3.1-8B backbone
BDA 39.4 44 32.4 23.2 43.6

BDA-Rand 37 51 31.6 30.8 45

Qwen-2-7B backbone
BDA 33.2 26.2 27.2 26.4 26

BDA-Rand 29 32.4 29 24.2 35.4

Claude 3.5 Sonnet backbone
BDA (Reported Numbers) 68.01 87.4 39.6 60.72 N/A

BDA (Replicated) 59.4 78.8 43.8 31.6 51.8
BDA-Rand 57.6 79.4 42 33.8 57.6

Table 1: Cumulative number of hits secured by each method on the gene perturbation datasets. The values are
averaged over 5 runs. Note that we experiment with the No-Tool version of BioDiscoveryAgent. BDA-Rand is
the BioDiscoveryAgent baseline provided with random feedback after each round of experimentation. It can be
concluded that LLMs trained on next token prediction and RLHF fail to perform in-context experimental design.

(Schmidt et al., 2022) is concerned with the phe-278

notype of change in the production of Interleukin-279

2 (IL2), a cytokine involved in immune signaling.280

More details about each of the datasets are included281

in the appendix B.1.1. Each dataset contains mea-282

surements for over 18000 genes, i.e., | C |> 18000,283

each knocked down in a distinct cell.284

4.2 Chemical Properties of Molecules285

For the chemical properties task, we focus on the286

following three molecular datasets: ESOL (wa-287

ter solubility), FreeSolv (hydration free energy288

in water), and Ion. E. (ionization energy of the289

molecules). Note that | C |= 1128, 642 and290

11565 respectively for each of the aforementioned291

datasets. For more details, see appendix B.1.2292

5 Is Naively Prompting LLM Enough for293

Experiment Design?294

Experimental design is inherently a sequential295

process where at each round, one should select296

experiments on the basis of both prior informa-297

tion and the outcomes of previous experiments.298

Through the pretraining objective, LLMs have ex-299

tensive prior information which enables strong per-300

formance in experimental design settings with rel-301

atively few rounds of experiments (i.e. where302

the guidance of the prior matters most). For ex-303

ample, LLAMBO (Liu et al., 2024) focuses on304

tasks related to hyperparameter-tuning, and BioDis-305

coveryAgent (Roohani et al., 2024) demonstrates306

strong performance on genetic perturbation experi- 307

ment design. Despite minor differences, there are 308

major similarities between these approaches. Both 309

works pass on the experiment history and corre- 310

sponding observations by simply appending them 311

within the prompt itself with the hope that the LLM 312

can leverage its in-context abilities to incorporate 313

this feedback and adapt its subsequent predictions. 314

We test the extent to which BioDiscoveryAgent 315

is actually using this information by breaking the 316

relationship between candidates, ci, and their asso- 317

ciated outcomes, f(ci). In particular, we randomly 318

pair each ci with some other outcome, f(cj), which 319

breaks their joint dependency, while keeping their 320

respective marginal distributions fixed.

Hits:
CD5 1.300
WIZ 0.384

Other Results:
LAT    -0.890
SP1 0.398

Hits:
CD5 0.398
LAT     1.300

Other Results:
WIZ 0.384
SP1    -0.890

Level 1

Level 2

Figure 1: Illustration of the 2 levels of random per-
mutation in the experimental feedback to the LLM on
the genetic domain. Level 1 modifies the measurement
value, whereas level 2 modifies whether a candidate is a
hit or not. Note that it is possible that a particular gene
has both level 1 and 2 modifications.

321
Method. For our investigation, we work with 322

the BioDiscoveryAgent (BDA) pipeline on a small 323

open-source LLM backbone without any external 324
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Method IL2 IFNG Carnevale Sanchez Sanchez Down
Ground truth (| Cgt |) 654 920 943 924 924

Llama-3.1-8B backbone
Linear UCB 35 72 38 39 42

GP 147.8 23 22.2 27.6 30
BDA 39.4 44 32.4 23.2 43.6

Qwen-2-7B backbone
Linear UCB 93 74 31 31 41

GP 147.8 23 22.2 27.6 30
BDA 33.2 26.2 27.2 26.4 26

Table 2: Cumulative number of hits secured by each method on the gene perturbation datasets. The values are
averaged over 5 runs. The max values in each column for each LLM backbone have been bolded. Note that we
experiment with the No-Tool version of BioDiscoveryAgent. Further, all the statistical methods use the embeddings
corresponding to the LLM in the backbone of BDA to ensure the same amount of knowledge. It can be observed
clearly that principled statistical approaches outperform the BioDiscoveryAgent baseline on most datasets and
across both families of open-source LLMs.

tools. In the first set of experiments, we evaluate the325

ability of the LLMs to leverage experimental feed-326

back. We compare BDA with BDA-Rand, which327

is the same as BDA but receives randomized feed-328

back instead of true feedback. We perform 2 levels329

of randomization, level 1 being random measure-330

ment values and level 2 being randomness in hit331

vs not-hit feedback. Figure 1 contains an illustra-332

tion of the randomization procedure. Both methods333

are evaluated against the ground truth hits for each334

dataset. As a second step, we compare BDA with335

classical models like Linear UCB and Gaussian336

Process (GP) to evaluate whether the LLM has337

sufficient information to make strong selections.338

Both Linear UCB and the GP only condition on339

the residual stream embeddings of the LLM so can340

only outperform the LLM insofar as they can better341

use the experimental feedback.342

Results. We investigated the in-context experi-343

mental design abilities of the LLMs, and Table 1344

shows the results for the same. The numbers in the345

table correspond to the cumulative number of hits346

obtained after 5 rounds of experiments with 128347

perturbations in every round and are averaged over348

5 runs. Across both LLMs and all 5 datasets, it349

is evident that passing random feedback does not350

hurt the performance of the framework at all. In351

fact, the performance remains nearly the same or352

improves slightly. To further substantiate our hy-353

pothesis, we also perform a similar experiment on354

Claude 3.5 Sonnet, a proprietary large-scale LLM,355

and observe that even Claude maintains nearly the356

same performance despite random feedback 1. The 357

strong initially performance of the LLMs is there- 358

fore likely the result of theirs priors on ordering of 359

genes and is not affected by the feedback of past 360

experiments appended in its prompt. 361

The above flaw in the LLM’s capabilities moti- 362

vated us to compare BDA with classical approaches. 363

Table 2 shows the cumulative number of hits ob- 364

tained for BDA and classical baselines as described 365

above. It can be seen clearly that across the 5 366

datasets, either LinearUCB or GP outperforms the 367

BDA framework by a significant margin on both 368

choices of LLM models. In contrast to the trend of 369

Claude-based BDA, these results further highlight 370

the lack of robustness of the framework’s perfor- 371

mance with respect to the base LLM. 372

6 LLMNN: A Hybrid Experiment Design 373

Method 374

In light of the above observations, we propose 375

LLM guided Nearest Neighbour (LLMNN) 376

framework, a simple greedy approach that prompts 377

an LLM to guide the location of cluster centers and 378

leverages nearest neighbour sampling to form the 379

batch Bi at any round i. The LLMNN framework 380

is designed to leverage: 1.) Generalist LLMs’ 381

intrinsic domain knowledge to guide the search 382

in the vast candidate space, and 2) the inductive 383

bias that similar genes/molecules have similar 384

functionalities/properties. The schematic workflow 385

1We generate the numbers for BDA using the publicly
available code as we could not replicate their original numbers,
possibly due to LLM updates.
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Cluster Centers

+ Feedback Human/Lab Oracle

N rounds
  + Experiment Protocol
  + Task Instructions
  + Dataset Information
  + Expected Output Format

Prompt Language Model

Selected candidates

Candidate 
Memory

Nearest Neighbour Sampling

Cluster Center

Nearest
Unexplored
Neighbours

Figure 2: Schematic Workflow of the LLM-guided Nearest Neighbour (LLMNN) method. The red rounded boxes
are the inputs and outputs of the Language Model. For ease, only cluster centers have been shown in the output.
Please refer to Section 6 for detailed output specification and information about the components of the method.
Refer to Appendix A for the detailed prompt template and to Appendix C for a full trace of the method.

of the proposed LLMNN framework is illustrated386

in Figure 2. Below, we discuss the important387

components of the LLMNN framework, followed388

by a detailed workflow of the method.389

390

Candidate Memory. stores the pool of candidates,391

each represented in the following format: {"name":392

<candidate name>, "score": <measurement393

value>, "explored": <bool>}. For molecules,394

the candidate name is the SMILES string and395

measurement is the property value, whereas for396

genes, the candidate name is the gene name in397

the HGNC nomenclature and measurement is the398

phenotypic response value. Each candidate is399

also associated with an embedding. The explored400

key tracks whether a candidate has already been401

selected, preventing repetition in the optimization402

process. The memory interacts with the LLMNN403

framework by receiving a query candidate name404

and returning the nearest unexplored neighbors405

based on distance in the embedding space.406

407

Candidate Embeddings. Each candidate in408

the memory has an associated embedding. We409

experiment both with LLM embeddings for the410

candidates and also domain-specific embeddings411

like Achilles embeddings for genes (Tsherniak412

et al., 2017) and Molformer (Ross et al., 2022)413

embeddings for the SMILES strings. The distance414

metric for Achilles embeddings is the cosine415

distance, whereas for all other embeddings, the416

L2-squared distance is used. More details about417

the embeddings are included in Appendix B.3418

419

Agent Response Format: We borrow the420

agent response format from BioDiscoveryAgent 421

(Roohani et al., 2024), and direct the LLM 422

to structure its responses into several parts: 423

Reflection, Research Plan, Solution, 424

similar to Huang et al. (2023). Through the 425

Reflection and Research Plan entries, the 426

model is able to articulate its reasoning behind a 427

particular prediction. Solution contains a list of 428

nc cluster centers to sample around next. For our 429

experiments, we fix nc = 5 unless stated otherwise. 430

431

Workflow. The exact flow of the LLMNN frame- 432

work is defined as follows: 433

1. LLMNN framework takes experiment protocol, 434

task, and candidate space details as the context 435

in its prompt to generate the first set of cluster 436

centers it seeks to explore. 437

2. The output cluster centers are then used to re- 438

trieve candidates from the candidate memory. 439

3. The selected candidates for the round are then 440

sent to the human or a lab oracle to obtain their 441

value of the measurement function f and to de- 442

termine if they were a hit. 443

4. This hit vs not hit qualitative feedback, along 444

with the measurement value, is appended to the 445

prompt from Step 1 and passed to the LLM to 446

generate the next set of cluster centers. 447

5. Steps 2-4 are repeated for N -1 rounds. The total 448

hits identified successfully at the end indicate 449

the method’s performance. 450
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Method IL2 IFNG Carnevale Sanchez Sanchez Down

Ground truth (| Cgt |) 654 920 943 924 924
Random 23.8 26 35 32.2 34.6
Coreset 9.2 31.4 29.4 33.8 30.2

Linear UCB 110 98 51 75 87
GP 139 24 20.4 24.6 33

BDA-GS (Claude 3.5 Sonnet) 65.4 88.32 40.55 57.28 N/A

Llama-3.1-8B backbone
BDA 39.4 44 32.4 23.2 43.6

BDA-GS 63.4 57.4 42.59 22.2 39.6
LLMNN NoExp 137.8 86.3 58.9 42.5 42.3

LLMNN 163.3 107.9 65.6 54.2 45.5

Qwen-2-7B backbone
BDA 33.2 26.2 27.2 26.4 26

BDA-GS 38.6 35.2 32.8 28.6 38
LLMNN NoExp 146.4 59.1 44.5 62.8 46.4

LLMNN 160.7 78 60.9 53.5 45.1

Table 3: Cumulative hits over 5 rounds of experiments with 128 candidates in each experiment. The values in
the table are averaged over 5 runs. The max values in each column have been bolded. Note that we use Achilles
embeddings of genes for the gene search tool in the case of LLMNN and BDA-GS on Llama and Qwen backbones.
The results indicate the strong performance of LLMNN, even surpassing the BDA based on Claude 3.5 Sonnet,
which has access to a sophisticated gene search tool. Since the numbers for this BDA variant have been taken from
Table 3 of the original paper, we do not have a score for Sanchez Down as it isn’t included in the original text.

7 Does LLMNN do Any Better on Our451

Experiment Design Domains?452

We observed BioDiscoveryAgent struggled to out-453

perform the traditional baselines (when provided454

with the same priors via access to embeddings) on455

the genetic perturbation datasets, and that the per-456

formance was largely the result of having better457

priors. Given this, one would expect better per-458

formance from LLM-based approaches in settings459

with well-studied candidate spaces—e.g. genes in460

the human genome—compare with much larger461

spaces—e.g. all of chemical space.462

LLMNN addresses the poor response to exper-463

imental feedback by taking advantage of the fact464

that LLMs encode candidates into a common em-465

bedding space. This allows us to greedily construct466

experimental batches by performing nearest neigh-467

bor sampling in the neighborhood of previously468

observed hits. LLMNN requires minimal assump-469

tions of LLM generating valid gene names as per470

HGNC nomenclature and valid SMILES strings,471

which is reasonable for modern-day LLMs that472

have been pretrained on an internet-scale of knowl-473

edge. Further, LLMNN is an attempt at exploit-474

ing the known inductive biases of the domain to475

achieve higher performance. 476

Method. We experiment with two variants of 477

LLMNN, one original with the Research Plan 478

and Reflection outputs, and the other that con- 479

tains purely the Solution, without any explana- 480

tions. Both LLMNN variants have access to the 481

gene similarity tool based on the Achilles (Tsher- 482

niak et al., 2017) embeddings. Against LLMNN, 483

we include traditional baselines like Random, Core- 484

set (pure diversity-based approach), LinearUCB, 485

and Gaussian Process (GP). Apart from these meth- 486

ods, we also include three variants of BioDiscov- 487

eryAgent: 1) BDA, i.e., without any tools, 2) BDA- 488

GS with access to the same gene similarity tool that 489

LLMNN has access to, and 3) BDA-GS (Claude 490

3.5 Sonnet), which is the originally proposed ap- 491

proach in Roohani et al. (2024) that uses Claude 492

3.5 Sonnet LLM in the backbone and has access to 493

more sophisticated gene similarity search tools like 494

enrichment analysis on Reactome database (Gille- 495

spie et al., 2022). We do not include BDA in the 496

molecules domain because BDA is not constrained 497

to predict molecules that exist in the library and 498

hence one needs a large number of retries to con- 499

struct a batch. The tool for molecular similarity 500
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Method Ion. E. ESOL FreeSolv

G. truth (| Cgt |) 1156 112 64
Random 77.8 29 14.4
Coreset 151.6 57.6 20.4

Linear UCB 283 76 39
GP 151.39 35 16.8

Llama-3.1-8B backbone
LLMNN NoExp 152.8 23.4 12.2

LLMNN 103.2 22.2 10.2

Qwen-2-7B backbone
LLMNN NoExp 147.2 24 25.8

LLMNN 131 29 7

Table 4: Cumulative hits over 5 rounds of experiments
with B = 128, 64, and 32 candidates in each experiment
and nc = 5, 4 and 4, respectively, for Ion. E., ESOL and
FreeSolv datasets. The values in the table are averaged
over 5 runs. Note that we use molecule embeddings
from MolFormer XL-10pct for the similarity search
tool. The results indicate that the NoExp variants of
LLMNN perform competitively compared to classical
baselines on 2/3 datasets.

available to LLMNN is based on Molformer (Ross501

et al., 2022) embeddings of SMILES strings.502

Results. Table 3 displays the performance com-503

parison between different methods on the single504

gene perturbation domain. Note that the same ex-505

perimental budget has been provided to all the506

methods, and the numbers are averaged over 5507

runs. The table illustrates that the LLMNN method508

based on the Llama-3.1 backbone outperforms509

BDA based on both Llama and Claude backends510

on 5/5 and 3/4 datasets, respectively, by signifi-511

cant margins. It is worth noting that Llama-3.1512

is just an 8 billion parameter model as compared513

to Claude 3.5, which has been trained on larger514

data with significantly more parameters. Further,515

LLMNN only had access to a basic gene similar-516

ity tool as compared to Claude BDA, which had517

more sophisticated gene search tools. Similarly,518

Qwen-based LLMNN outperforms the correspond-519

ing BDA on 5/5 datasets. Another interesting ob-520

servation is that the traditional baselines still per-521

form really well, surpassing Claude BDA on 4/4522

datasets and LLMNN as well on 2/5 datasets. One523

of the contributing factors to the performance of524

LLMNN is maintaining a memory that keeps track525

of which genes have already been explored. This526

ensures that similarity queries return unexplored527

neighbours at every query, in contrast to the BioDis-528

coveryAgent, which doesn’t maintain this state 529

and hence, would inevitably return the same set 530

of genes always for the same query, irrespective of 531

the experiment history. 532

On the molecular domain, Table 4 contains the 533

numbers for cumulative hits for all methods av- 534

eraged over 5 runs, given the same experimen- 535

tal budget. The numbers highlight that while 536

Qwen2-based LLMNN without explanations per- 537

forms closely to the traditional baselines on 2/3 538

datasets, the latter still wins over the LLMNN ap- 539

proach across all the datasets, especially with the 540

ESOL dataset. This underscores that LLMs with 541

simple inductive biases are still not enough alone 542

to serve as experiment designers across different 543

scientific domains, but need tight coupling with the 544

more principled statistical methods that trade off 545

exploration and exploitation like linear UCB and 546

GPs to achieve higher performance. 547

8 Conclusion 548

In this work, we set out to critically examine 549

this hypothesis using instruction-tuned open-source 550

LLMs. We particularly focused on BioDiscoveryA- 551

gent and experimented on two domains: single 552

gene perturbations (5 datasets) and molecular prop- 553

erty optimization (3 datasets). When compared to 554

classical methods like Linear UCB and Gaussian 555

Process that used the embedding from the same 556

LLM as BDA, the open-source BDA performed 557

significantly worse. Furthermore, on deeper exper- 558

iments with random feedback to the LLM’s con- 559

text, the open-source BDA still retained a similar 560

average performance, showcasing that the LLMs 561

trained on next token prediction and RLHF do not 562

leverage experimental feedback in the design of 563

their experiments. Finally, we proposed an LLM- 564

guided Nearest Neighbour framework (LLMNN), 565

a simple combination of LLM and a classic nearest 566

neighbour method. LLMNN outperforms BDA 567

significantly on gene datasets and is applicable 568

to molecular domains, and performs at par with 569

the classical baselines, except on some molecular 570

datasets. Overall, this work suggests that more 571

work is needed to effectively incorporate experi- 572

ment feedback into LLM-based experimental de- 573

sign pipelines. It introduces a plausible avenue for 574

future research marked by the synergy of LLMs, 575

classical methods, and domain-specific inductive 576

biases. 577
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Limitations and Future Works578

While we demonstrate superior performance with579

LLMNN on both gene perturbation and molecular580

domains, this study has several limitations. Firstly,581

LLMNN augments the LLM with a very simplistic582

nearest neighbour sampling that allocates an equal583

budget to each cluster to generate better predictions.584

However, more complex schemes can be explored585

to adaptively allocate more budget to centers that586

have a higher probability of detecting hits. For587

example, a probabilistic model like GP could be588

used to determine the hit likelihood of the predicted589

centers that can, in turn, be used to define budget590

allocation between the centers.591

Due to the policy of sampling around centers,592

the method is largely exploitative and hence sensi-593

tive to the choice of embeddings and hits identified594

in earlier rounds. More tightly-coupled integration595

of LLMs and classic exploration methods could be596

investigated to improve the robustness of the exper-597

iment design agent. Further, the inductive bias that598

similar candidates have similar properties is clearly599

not the best bias on molecular domains, as the clas-600

sic exploration approaches maintain a strong per-601

formance as compared to LLMNN, suggesting the602

need to identify and encode more domain-specific603

and task-specific biases.604

Lastly, we primarily focused on small open-605

source LLMs like Llama-3.1-8B Instruct and606

Qwen2-7B-Instruct for our experiments with no607

external tool use. It shall be interesting to con-608

duct similar studies with both larger (like 70B) and609

smaller models. Another promising direction is to610

explore how external tools like literature search,611

enrichment analysis tools for genes, etc. be ef-612

fectively augmented to the agent for better per-613

formance, as also highlighted by Roohani et al.614

(2024).615

Ethical Considerations616

This work deals with building hybrid AI agents that617

are powered by LLMs and classical exploration618

settings for guiding the design of scientific exper-619

iments. Since it involves the use of LLM, it is620

vulnerable to adversarial attacks where the agent621

might suggest experiments that lead to catastrophic622

outcomes in a real laboratory. Therefore, it is im-623

perative for the users to have human scientists in the624

loop to screen out such experiment configurations.625

Not just post-hoc, the safety could be ensured at626

the start by suitable constraints on the candidate627

space. 628

One of the domains in this work is single gene 629

perturbations, where the effect of knocking down 630

a gene is measured in human cells. While these 631

agents will help increase the robustness of the tar- 632

get discovery phase of the drug discovery pipeline, 633

it should be taken into account that human cells 634

often exhibit genetic variation from one population 635

to another, thus limiting the transferability of the 636

downstream insights to new groups. Thus, caution 637

needs to be exercised in utilizing the insights drawn 638

by this agent in the actual drug discovery pipeline. 639
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A.1 Single Gene Perturbation851

SYSTEM PROMPT:
You are a biomedicine expert who will
assist me on problems in drug discovery.
I am planning to run a CRISPR screen
to identify genes that {func desc}. I
can only perturb exactly {batch len}
genes at a time. For each predicted
perturbation, I am able to measure out
the {meas desc} which will be referred to
as the score. I can only do 5 rounds
of experimentation. After every round
of experiment, I will provide you with
feedback on your predictions, including
the correctly identified genes called
hits and the corresponding score. The
predictions which are not hits will be
included in other results.

852

USER PROMPT:
This is round {round num}.
Here is the feedback on all your
predictions till now:
{feedback}
Here is a strategy to follow: Update your
priors appropriately and choose genes
that gave you hits. Also, be sure to
explore by including some genes that could
give hits.
Please propose {num cluster centers}
different yet valid gene names as per
the HGNC nomenclature you want to explore
next. Note that I will choose unexplored
genes closest to your predicted genes
to form the predictions. Your response
should exactly follow the format:
**Reflection: Thoughts on previous
results and next steps.
**Research Plan: The full high-level
research plan, with current status and
reasoning behind each proposed approach.
It should be at most 5 sentences.
**Solution:
## <Gene 1>
## <Gene 2>
...
## <Gene {num cluster centers}>
Each gene in the solution should only be
the gene name in the HGNC nomenclature.
DO NOT ADD ANY COMMENTS IN THE SOLUTION
OR AFTER THE SOLUTION.

853

854

This is the prompt template at any round i. If855

i = 1, the segment about feedback in the user 856

prompt won’t be there. The different fields in bold 857

represent the following: 858

• round num: This is the round number for 859

which experiments are being selected. 860

• batch len: This corresponds to B i.e. the 861

experimental budget in each round. 862

• num cluster centers: This reflects the number 863

of cluster centers that LLMNN generates to 864

sample around. 865

• feedback: This is a string divided into two 866

parts: hits and non-hits. Both parts contain 867

the respective candidate names and their cor- 868

responding measurement values. 869

• func desc: This is the description of the task 870

for which we need to perform experiment de- 871

sign. In the context of genes, this means 872

the description of the phenotype we desire 873

to achieve. 874

• score desc: This elaborates on the measure- 875

ment values we have for the candidates. 876

Please refer to table 5 for detailed func desc and 877

score desc for each dataset. 878

A.2 Chemical Property Optimization 879

This prompt is used at any round i for the molecular 880

datasets. Note that for i = 1, the feedback segment 881

won’t be included in the prompt. Most fields 882

described in this prompt are similar to the genetic 883

perturbation, with the exception of candidate 884

space info that contains a high-level description 885

of the candidate space to provide more context to 886

the LLM. Table 6 contains the details of func desc 887

and candidate space info for each of the 3 datasets. 888
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SYSTEM PROMPT:
You are a chemistry expert who will
assist me with problems in molecular
property optimization. Given a library
of molecules, I am planning to conduct
wet-lab experiments to identify molecules
that have high {func desc}. {candidate
space info} I can only experiment with
exactly {batch len} molecules at a
time. For each predicted molecule, I
am able to measure out the property
value, which will be referred to as
the score. I can only do 5 rounds
of experimentation. After every round
of experiment, I will provide you with
feedback on your predictions, including
the correctly identified molecules called
hits and the corresponding score. The
predictions which are not hits will be
included in other results.

889

USER PROMPT:
This is round {round num}.
Here is the feedback on all your
predictions till now: {feedback str}
Here is a strategy to follow: Update your
priors appropriately and choose SMILES
that gave you hits. Also, be sure to
explore by including some SMILES strings
that could give hits.
Please propose {num cluster centers}
different yet valid SMILES strings of
molecules you want to explore next. Note
that I will choose unexplored molecules
closest to your predicted SMILES strings
to form the predictions. Your response
should exactly follow the format:
**Reflection: Thoughts on previous
results and next steps.
**Research Plan: The full high level
research plan, with current status and
reasoning behind each proposed approach.
It should be at most 5 sentences.
**Solution:
## <SMILES 1>
## <SMILES 2>
...
## <SMILES {num cluster centers}>
Each SMILES string in the solution should
be a SMILES string representation of a
valid molecule.
DO NOT ADD ANY COMMENTS IN THE SOLUTION
OR AFTER THE SOLUTION.

890

B Experiment Setup Details 891

The following subsections describe the additional 892

experiment details for better understanding: 893

B.1 Datasets 894

B.1.1 Single Gene Perturbation 895

The 5 datasets used in this domain are borrowed 896

from BioDiscoveryAgent (Roohani et al., 2024) 897

and are as follows: 1) IL2 (Schmidt et al., 2022) 898

is a dataset that measures the changes in the pro- 899

duction of Interleukin-2 (IL2) cytokine involved in 900

immune signaling; 2) IFNG (Schmidt et al., 2022) 901

is another similar dataset that measures changes in 902

production of Interferon-γ cytokine; 3) Carnevale 903

(Carnevale et al., 2022) aims to identify genes that 904

render T cells resistant to inhibitory signals encoun- 905

tered in the tumor microenvironment; 4) Sanchez 906

(Sanchez et al., 2021) dataset studies the change 907

in expression of endogenous tau protein levels in 908

neurons and 5) Sanchez Down (Sanchez et al., 909

2021) is exactly same as Sanchez dataset but fo- 910

cuses purely on decreasing the expression unlike 911

the Sanchez which includes both increasing and 912

decreasing expression. 913

B.1.2 Chemical Property Optimization 914

We describe the molecular property datasets in 915

greater detail below: 916

• ESOL: Part of the MoleculeNet benchmark, 917

ESOL (Delaney, 2004) is a small dataset com- 918

prising the water solubility data for | C |= 1128 919

compounds in log moles per litre. Each com- 920

pound is represented as a SMILES string. 921

• FreeSolv: Free Solvation (FreeSolv) Database 922

(Mobley and Guthrie, 2014) is another small 923

dataset that provides experimental and calculated 924

hydration free energies of | C |= 642 small 925

molecules in water. 926

• Ion. E.: This dataset is a subset of molecular 927

data from the JCESR molecules that are a part 928

of the Materials Project Database (Jain et al., 929

2013). The original set contains approximately 930

25, 000 molecules with annotations of many at- 931

tributes and properties. Our experiments focus 932

on one property: the Ionization Energy. We 933

apply two levels of filters on the whole set of 934

25, 000 molecules: first, we restrict to only those 935

molecules whose ionization energy lies between 936

−10 and 10 units (to avoid noisy outliers), and 937
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out of all these filtered molecules, we choose the938

molecules composed solely of ‘C’, ‘H’, ‘N’ or ‘O’939

atoms, leaving us with | C |= 11, 565 candidates.940

These filters avoid the dominating effects due to941

particular elements, leaving primary dependence942

on the molecular structure and functional groups943

captured in the SMILES strings.944

B.2 Compute945

All the experiments in this study have been con-946

ducted on a single Nvidia A100 GPU with 40 GB947

of memory. Since our proposed method, LLMNN,948

involves inference through the LLMs and repeated949

retrieval from the candidate memory, on average, a950

single run takes between 5-10 minutes to run.951

B.3 Embeddings952

Achilles Embeddings. We use the publicly avail-953

able Achilles embeddings (Tsherniak et al., 2017)954

for the gene similarity tool. These embeddings are955

808 dimensional in size.956

Molformer Embeddings. We use the pub-957

licly available Molformer-XL model to embed the958

SMILES strings2. This model has been trained on959

a collection of SMILES strings from the ZINC and960

PubChem datasets to learn molecular representa-961

tions. These embeddings are 768-dimensional in962

size.963

Llama 3.1 Embeddings. We use the LLM2Vec964

(BehnamGhader et al., 2024) approach to obtain965

the Llama 3.1 embeddings. Specifically, we use966

the publicly released checkpoints by the authors967

on Huggingface 3. These embeddings are 4096-968

dimensional in nature.969

Qwen2 Embeddings. We use the publicly avail-970

able Qwen2-based general text embedding model971

released by Alibaba-NLP (Li et al., 2023), as they972

claim to be on top of the MTEB leaderboard4.973

These embeddings are 3584 dimensional in nature.974

C Full trace of LLMNN975

Below we present a full trace of the LLMNN976

method, including both the prompts and the LLM977

outputs, on the IL2 dataset in the single gene per-978

turbation domain.979

2Model checkpoint taken from https://huggingface.co/ibm-
research/MoLFormer-XL-both-10pct

3Model checkpoint taken from
https://huggingface.co/McGill-NLP/LLM2Vec-Meta-
Llama-31-8B-Instruct-mntp-supervised

4Model checkpoint taken from
https://huggingface.co/Alibaba-NLP/gte-Qwen2-7B-instruct

Listing 1: Full trace of LLMNN method with explana-
tions on IL2 dataset

980
----ROUND 1: BEGIN PROMPT ---- 981

SystemMessage(You are a biomedicine 982
expert who will assist me on problems 983
in drug discovery. I am planning to 984
run a CRISPR screen to identify genes 985
that regulate the production of 986
Interleukin -2 (IL -2). I can only 987
perturb exactly 128 genes at a time. 988
For each predicted perturbation , I am 989
able to measure out the log fold 990
change in Interleukin -2 (IL -2) 991
normalized read counts which will be 992
referred to as the score. I can only 993
do 5 rounds of experimentation. After 994
every round of experiment , I will 995
provide you with feedback on your 996
predictions , including the correctly 997
identified genes called hits and the 998
corresponding score. The predictions 999
which are not hits will be included in 1000
other results .) 1001

HumanMessage( 1002
This is round 1. We are beginning 1003
with our experiments. 1004
Here is a strategy to follow: Choose 1005
genes that are very different in 1006

their biological pathways to 1007
discover what pathways give you hits 1008
. 1009
Please propose 5 different yet valid 1010
gene names as per the HGNC 1011

nomenclature you want to explore 1012
next. Note that I will choose 1013
unexplored genes closest to your 1014
predicted genes to form the 1015
predictions. Your response should 1016
exactly follow the format: 1017
** Reflection: Thoughts on previous 1018
results and next steps. 1019
** Research Plan: The full high level 1020
research plan , with current status 1021

and reasoning behind each proposed 1022
approach. It should be at most 5 1023
sentences. 1024
** Solution: 1025
## <Gene 1> 1026
## <Gene 2> 1027
... 1028
## <Gene 5> 1029
Each gene in the solution should 1030
only be the gene name in the HGNC 1031
nomenclature. 1032
DO NOT ADD ANY COMMENTS IN THE 1033
SOLUTION OR AFTER THE SOLUTION. 1034

) 1035
----END PROMPT ---- 1036

1037
----BEGIN OUTPUT ---- 1038
** Reflection: Thoughts on previous 1039
results and next steps .** 1040
Since we are starting from scratch , 1041
there is no previous data to reflect 1042
on. However , we will follow the 1043

strategy of choosing genes that are 1044
very different in their biological 1045
pathways to increase the chances of 1046
discovering novel regulators of IL -2 1047
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production.1048
1049

** Research Plan: The full high level1050
research plan , with current status1051

and reasoning behind each proposed1052
approach .**1053
We will choose genes involved in1054
different biological processes such1055
as cell signaling , transcription1056
regulation , and metabolic pathways1057
to identify potential regulators of1058
IL -2 production. For round 1, we1059
will select genes that are involved1060
in the regulation of cell growth ,1061
differentiation , and metabolism. We1062
will use the HGNC database to1063
identify genes with diverse1064
functions. Our goal is to identify1065
at least one hit in this round. We1066
will use the provided feedback to1067
refine our strategy for the next1068
round.1069

1070
** Solution :**1071
## ABL11072
## HNF4A1073
## MAPK141074
## PAK41075
## SMAD21076
----END OUTPUT ----1077

1078
----ROUND 2: BEGIN PROMPT ---1079

SystemMessage(You are a biomedicine1080
expert who will assist me on problems1081
in drug discovery. I am planning to1082
run a CRISPR screen to identify genes1083
that regulate the production of1084
Interleukin -2 (IL -2). I can only1085
perturb exactly 128 genes at a time.1086
For each predicted perturbation , I am1087
able to measure out the log fold1088
change in Interleukin -2 (IL -2)1089
normalized read counts which will be1090
referred to as the score. I can only1091
do 5 rounds of experimentation. After1092
every round of experiment , I will1093
provide you with feedback on your1094
predictions , including the correctly1095
identified genes called hits and the1096
corresponding score. The predictions1097
which are not hits will be included in1098
other results .)1099

HumanMessage(1100
This is round 2.1101
Here is the feedback on all your1102
predictions till now:1103
[HITS]1104

name score1105
MYBL2 0.511106
GBF1 0.431107

DDX41 0.471108
ZMAT2 0.451109
RPL4 0.351110

HNF4A -0.341111
CDC16 0.481112
WDR5 0.821113
MYC 0.411114

ZNF536 -0.381115
TLN1 -0.491116

LIN37 -0.391117

SULT2B1 -0.44 1118
[OTHER RESULTS] 1119

name score 1120
ABL1 0.09 1121
QRFP 0.00 1122
COA3 -0.05 1123
E2F6 -0.11 1124

NANOG -0.05 1125
NDUFA4 0.04 1126

RAN 0.12 1127
MRPL19 -0.14 1128

SLU7 0.13 1129
CD8B -0.01 1130

HMGB1 -0.12 1131
AP2S1 0.03 1132
RPS28 -0.16 1133
COX5B 0.07 1134
COPS6 -0.08 1135
RNGTT 0.03 1136
RPL11 0.05 1137
NCAPG 0.17 1138

NSF -0.05 1139
NCBP2 0.00 1140

OR51L1 -0.17 1141
GHR 0.02 1142

TSHZ2 -0.01 1143
GPX3 0.11 1144
TOX2 0.10 1145

FAM107B 0.05 1146
RGPD3 -0.24 1147

TRAPPC3L 0.10 1148
WFDC6 -0.00 1149

SLC24A3 0.10 1150
IFNE -0.04 1151

ZFAND2A 0.12 1152
BNIP3L -0.17 1153

FAM184B -0.10 1154
RGMB 0.02 1155

ZNF853 -0.09 1156
NPAS2 0.26 1157
ATAD1 -0.05 1158
SMCP -0.08 1159

RAB27B 0.14 1160
BIN3 -0.10 1161

NPY2R 0.02 1162
EQTN 0.16 1163

AKR1B1 -0.21 1164
MAPK14 -0.02 1165
MLST8 -0.15 1166

PPP2R3C -0.19 1167
MNAT1 0.07 1168
NOL10 0.05 1169
EMC7 0.08 1170
EMC3 -0.05 1171
GUK1 0.19 1172
MED6 -0.16 1173

CIAO1 0.10 1174
SNAPC5 0.01 1175
ZCRB1 -0.03 1176

TRMT112 0.07 1177
RPS29 0.23 1178
PDCD2 0.10 1179
RPP21 -0.16 1180
RPL5 0.10 1181
EIF6 0.19 1182
SNW1 0.28 1183

HEATR1 0.06 1184
RPL28 0.34 1185
WDR18 0.07 1186
PAK4 0.07 1187
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AFDN -0.061188
VCL -0.021189

CATSPERG -0.091190
PTK2 -0.101191

BCAR1 -0.081192
ACTR3 -0.061193

RAPGEF1 0.191194
WWTR1 -0.101195
VWA8 0.261196

FERMT2 -0.121197
RSU1 0.121198

MSTO1 0.021199
NLRP2B -0.091200
ARPC4 0.051201
ARPC2 -0.121202
KIF2C -0.131203

SRF 0.011204
RNASE1 0.161205
NCKAP1 -0.141206
ZFAND5 -0.011207
SMAD2 0.151208

MAGED2 -0.031209
POTEE -0.091210

IFNA10 -0.181211
AKAIN1 -0.181212
ZNF614 0.081213
ZNF157 -0.111214
MAPK8 0.091215
POLI -0.211216

ATXN3L -0.111217
FOXD4L4 -0.091218

CDR1 -0.121219
NELL1 0.031220
AP1S2 0.061221
IFNB1 -0.131222

ARMCX4 -0.141223
ZNF729 -0.101224
NKX3 -2 -0.131225
LUZP4 -0.171226
STX17 0.071227

SPINK2 0.291228
MEIG1 0.071229

DAB2IP -0.221230
ZNF611 0.031231
VGLL1 -0.051232

OR52E6 0.061233
GUCY2F 0.031234
OR10Z1 0.071235

Here is a strategy to follow: Update1236
your priors appropriately and1237

choose genes that gave you hits.1238
Also , be sure to explore by1239
including some genes that could give1240
hits.1241

Please propose 5 different yet valid1242
gene names as per the HGNC1243

nomenclature you want to explore1244
next. Note that I will choose1245
unexplored genes closest to your1246
predicted genes to form the1247
predictions. Your response should1248
exactly follow the format:1249
** Reflection: Thoughts on previous1250
results and next steps.1251
** Research Plan: The full high level1252
research plan , with current status1253

and reasoning behind each proposed1254
approach. It should be at most 51255
sentences.1256
** Solution:1257

## <Gene 1> 1258
## <Gene 2> 1259
... 1260
## <Gene 5> 1261
Each gene in the solution should 1262
only be the gene name in the HGNC 1263
nomenclature. 1264
DO NOT ADD ANY COMMENTS IN THE 1265
SOLUTION OR AFTER THE SOLUTION. 1266

) 1267
----END PROMPT ---- 1268
----BEGIN OUTPUT ---- 1269
** Reflection: Thoughts on previous 1270
results and next steps .** 1271

1272
The previous round of CRISPR screen 1273
identified 11 hits that regulate the 1274
production of Interleukin -2 (IL -2), 1275
including MYBL2 , GBF1 , DDX41 , ZMAT2 1276

, RPL4 , HNF4A , CDC16 , WDR5 , MYC , 1277
ZNF536 , and TLN1. The scores of 1278
these hits ranged from 0.35 to 0.82, 1279
indicating varying degrees of 1280

regulation. The other results 1281
included 64 genes that did not show 1282
significant regulation of IL -2 1283
production. To refine our 1284
understanding of the IL -2 regulatory 1285
network , we will focus on the hits 1286

and their neighbors. We will update 1287
our priors to reflect the observed 1288
hits and select new genes that are 1289
closely related to the identified 1290
hits. 1291

1292
** Research Plan: The full high -level 1293
research plan , with current status 1294

and reasoning behind each proposed 1295
approach .** 1296

1297
We will update our prior 1298
probabilities based on the hits 1299
identified in the previous round and 1300
select new genes that are closely 1301

related to the hits. We will choose 1302
genes that are in the same 1303
biological pathways , have similar 1304
functional annotations , or have 1305
known interactions with the hits. We 1306
will then select the top -scoring 1307

genes from these candidates to form 1308
our next set of predictions. Our 1309
goal is to refine our understanding 1310
of the IL -2 regulatory network and 1311
identify new genes that play a role 1312
in its regulation. We will repeat 1313
this process for a total of 5 rounds 1314
, refining our predictions and 1315
updating our priors after each round 1316
. 1317

1318
** Solution :** 1319
## MYBL2 1320
## GBF1 1321
## DDX41 1322
## ZMAT2 1323
## RPL4 1324
----END OUTPUT ---- 1325
----ROUND 3: BEGIN PROMPT ---- 1326

SystemMessage(You are a biomedicine 1327
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expert who will assist me on problems1328
in drug discovery. I am planning to1329
run a CRISPR screen to identify genes1330
that regulate the production of1331
Interleukin -2 (IL -2). I can only1332
perturb exactly 128 genes at a time.1333
For each predicted perturbation , I am1334
able to measure out the log fold1335
change in Interleukin -2 (IL -2)1336
normalized read counts which will be1337
referred to as the score. I can only1338
do 5 rounds of experimentation. After1339
every round of experiment , I will1340
provide you with feedback on your1341
predictions , including the correctly1342
identified genes called hits and the1343
corresponding score. The predictions1344
which are not hits will be included in1345
other results .)1346

HumanMessage(1347
This is round 3.1348
Here is the feedback on all your1349
predictions till now:1350
[HITS]1351

name score1352
MYBL2 0.511353
GBF1 0.431354

DDX41 0.471355
ZMAT2 0.451356
RPL4 0.351357

HNF4A -0.341358
CDC16 0.481359
WDR5 0.821360
MYC 0.411361

ZNF536 -0.381362
TLN1 -0.491363

LIN37 -0.391364
SULT2B1 -0.441365

SPC24 0.581366
SNRPD2 0.391367
POLR1A 0.471368
SF3A2 0.651369

SNRNP200 0.781370
CDK1 0.431371
DUT 0.441372

PRC1 0.381373
DONSON 0.651374

EEF2 0.431375
PSMA6 0.341376
XAB2 0.411377
VCP 0.661378

PSMA1 0.391379
PSMD7 0.571380
SMU1 0.451381
POLE 0.571382

SF3B3 0.361383
KIF11 0.361384
ETF1 -0.451385

CDC23 0.751386
GINS2 0.381387
RPS11 0.641388
RPS20 0.431389
RBM22 0.611390

FAU 0.491391
RPL17 0.491392

PRPF19 0.381393
RPL9 0.441394

UTP15 0.591395
RPS3A 0.391396
RPL37 0.681397

RPS27A 0.48 1398
RPL27 0.87 1399
PRPF8 0.45 1400
CCT4 0.35 1401

RPS16 0.38 1402
RPL7A 0.61 1403
CDC7 0.62 1404
RPS6 0.47 1405

RPL23A 0.79 1406
RPS13 0.92 1407
RPL32 0.68 1408
RPL18 0.77 1409
RPLP2 0.52 1410
RPS8 0.69 1411

RPL10A 0.86 1412
RPL8 0.81 1413

MAK16 1.15 1414
RPS17 0.82 1415
RPL19 1.21 1416
RPL3 0.42 1417

RPL15 0.92 1418
CPSF4 1.13 1419
XPO1 0.35 1420
RRM2 0.50 1421

RPL14 0.61 1422
[OTHER RESULTS] 1423

name score 1424
ABL1 0.09 1425
QRFP 0.00 1426
COA3 -0.05 1427
E2F6 -0.11 1428

NANOG -0.05 1429
NDUFA4 0.04 1430

RAN 0.12 1431
MRPL19 -0.14 1432

SLU7 0.13 1433
CD8B -0.01 1434

HMGB1 -0.12 1435
AP2S1 0.03 1436
RPS28 -0.16 1437
COX5B 0.07 1438
COPS6 -0.08 1439
RNGTT 0.03 1440
RPL11 0.05 1441
NCAPG 0.17 1442

NSF -0.05 1443
NCBP2 0.00 1444

OR51L1 -0.17 1445
GHR 0.02 1446

TSHZ2 -0.01 1447
GPX3 0.11 1448
TOX2 0.10 1449

FAM107B 0.05 1450
RGPD3 -0.24 1451

TRAPPC3L 0.10 1452
WFDC6 -0.00 1453

SLC24A3 0.10 1454
IFNE -0.04 1455

ZFAND2A 0.12 1456
BNIP3L -0.17 1457

FAM184B -0.10 1458
RGMB 0.02 1459

ZNF853 -0.09 1460
NPAS2 0.26 1461
ATAD1 -0.05 1462
SMCP -0.08 1463

RAB27B 0.14 1464
BIN3 -0.10 1465

NPY2R 0.02 1466
EQTN 0.16 1467
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AKR1B1 -0.211468
MAPK14 -0.021469
MLST8 -0.151470

PPP2R3C -0.191471
MNAT1 0.071472
NOL10 0.051473
EMC7 0.081474
EMC3 -0.051475
GUK1 0.191476
MED6 -0.161477

CIAO1 0.101478
SNAPC5 0.011479
ZCRB1 -0.031480

TRMT112 0.071481
RPS29 0.231482
PDCD2 0.101483
RPP21 -0.161484
RPL5 0.101485
EIF6 0.191486
SNW1 0.281487

HEATR1 0.061488
RPL28 0.341489
WDR18 0.071490
PAK4 0.071491
AFDN -0.061492
VCL -0.021493

CATSPERG -0.091494
PTK2 -0.101495

BCAR1 -0.081496
ACTR3 -0.061497

RAPGEF1 0.191498
WWTR1 -0.101499
VWA8 0.261500

FERMT2 -0.121501
RSU1 0.121502

MSTO1 0.021503
NLRP2B -0.091504
ARPC4 0.051505
ARPC2 -0.121506
KIF2C -0.131507

SRF 0.011508
RNASE1 0.161509
NCKAP1 -0.141510
ZFAND5 -0.011511
SMAD2 0.151512

MAGED2 -0.031513
POTEE -0.091514

IFNA10 -0.181515
AKAIN1 -0.181516
ZNF614 0.081517
ZNF157 -0.111518
MAPK8 0.091519
POLI -0.211520

ATXN3L -0.111521
FOXD4L4 -0.091522

CDR1 -0.121523
NELL1 0.031524
AP1S2 0.061525
IFNB1 -0.131526

ARMCX4 -0.141527
ZNF729 -0.101528
NKX3 -2 -0.131529
LUZP4 -0.171530
STX17 0.071531

SPINK2 0.291532
MEIG1 0.071533

DAB2IP -0.221534
ZNF611 0.031535
VGLL1 -0.051536

OR52E6 0.061537

GUCY2F 0.03 1538
OR10Z1 0.07 1539

CLTC 0.26 1540
THOC7 0.17 1541

ANKLE2 0.20 1542
SF3A1 0.17 1543

SAP30BP 0.26 1544
ZMAT5 0.19 1545
LSM2 -0.18 1546

CDC45 0.08 1547
TANGO6 0.10 1548
NUP85 -0.11 1549

TBC1D3B 0.13 1550
SEC13 0.19 1551
NEDD1 0.32 1552
RFC2 0.30 1553
SDE2 0.31 1554
CCT3 0.23 1555

PSMB3 -0.01 1556
KPNB1 0.14 1557

ANAPC11 -0.07 1558
HSPA9 -0.03 1559
SMG1 0.15 1560

SBNO1 -0.03 1561
PSMB4 0.14 1562
COPB1 0.14 1563
PSMA3 0.05 1564
COPB2 0.24 1565
PSMA5 0.34 1566
PSMA2 0.29 1567

CDK11A -0.06 1568
PRELID1 0.22 1569

FARSB 0.13 1570
RSL24D1 0.11 1571

RPL12 0.34 1572
DHX37 0.29 1573
BUD31 0.08 1574

CDC123 -0.03 1575
TXNL4A -0.25 1576
INTS11 0.26 1577

DBR1 0.14 1578
HSPE1 -0.03 1579

NPIPB6 -0.15 1580
PAFAH1B1 -0.26 1581

NFS1 0.15 1582
DDX56 0.21 1583
CDC27 0.17 1584
DDX49 0.22 1585
SF3B4 0.18 1586
RPL23 0.09 1587
WEE1 -0.18 1588
NIP7 0.22 1589

SF3B5 0.26 1590
CDC20 0.29 1591
RPS9 0.12 1592
LRR1 -0.03 1593

GEMIN5 0.00 1594
SNRPA1 0.06 1595
RPLP0 0.26 1596

EIF2S1 0.02 1597
DNAJC17 0.04 1598

XRCC6 -0.22 1599
DUX4 -0.01 1600

RPS19 0.23 1601
WDR43 0.24 1602
RRM1 0.32 1603

ATP6V0C 0.06 1604
RPS2 0.33 1605

PUF60 -0.07 1606
SEC61A1 -0.17 1607
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TSR1 0.231608
WDR74 0.331609
RPL7 0.311610

Here is a strategy to follow: Update1611
your priors appropriately and1612

choose genes that gave you hits.1613
Also , be sure to explore by1614
including some genes that could give1615
hits.1616

Please propose 5 different yet valid1617
gene names as per the HGNC1618

nomenclature you want to explore1619
next. Note that I will choose1620
unexplored genes closest to your1621
predicted genes to form the1622
predictions. Your response should1623
exactly follow the format:1624
** Reflection: Thoughts on previous1625
results and next steps.1626
** Research Plan: The full high level1627
research plan , with current status1628

and reasoning behind each proposed1629
approach. It should be at most 51630
sentences.1631
** Solution:1632
## <Gene 1>1633
## <Gene 2>1634
...1635
## <Gene 5>1636
Each gene in the solution should1637
only be the gene name in the HGNC1638
nomenclature.1639
DO NOT ADD ANY COMMENTS IN THE1640
SOLUTION OR AFTER THE SOLUTION.1641

)1642
----END PROMPT ----1643
----BEGIN OUTPUT ----1644
** Reflection: Thoughts on previous1645
results and next steps .**1646
Based on the previous round of1647
experimentation , we have identified1648
several genes that are associated1649
with the regulation of Interleukin -21650
(IL -2) production. The hits from1651

this round include genes involved in1652
various cellular processes such as1653

RNA processing , translation , and1654
cell cycle regulation. We can update1655
our priors to reflect the1656

importance of these genes in IL -21657
regulation. To further explore the1658
regulatory network , we will choose1659
genes that are functionally related1660
to the hits from the previous round.1661

1662
** Research Plan: The full high -level1663
research plan , with current status1664

and reasoning behind each proposed1665
approach .**1666
We will select genes that are1667
functionally related to the hits1668
from the previous round , focusing on1669
RNA processing , translation , and1670

cell cycle regulation. We will1671
choose unexplored genes closest to1672
the hits to form the predictions.1673
This approach will allow us to1674
further refine our understanding of1675
the IL -2 regulatory network. We will1676
use the updated priors to inform1677

our selection of genes. Our goal is 1678
to identify additional genes that 1679
regulate IL -2 production. 1680

1681
** Solution :** 1682
## RPS27 1683
## SF3B1 1684
## DDX3X 1685
## RPS15 1686
## NOLC1 1687
----END OUTPUT ---- 1688
----ROUND 4: BEGIN PROMPT ---- 1689

SystemMessage(You are a biomedicine 1690
expert who will assist me on problems 1691
in drug discovery. I am planning to 1692
run a CRISPR screen to identify genes 1693
that regulate the production of 1694
Interleukin -2 (IL -2). I can only 1695
perturb exactly 128 genes at a time. 1696
For each predicted perturbation , I am 1697
able to measure out the log fold 1698
change in Interleukin -2 (IL -2) 1699
normalized read counts which will be 1700
referred to as the score. I can only 1701
do 5 rounds of experimentation. After 1702
every round of experiment , I will 1703
provide you with feedback on your 1704
predictions , including the correctly 1705
identified genes called hits and the 1706
corresponding score. The predictions 1707
which are not hits will be included in 1708
other results .) 1709

HumanMessage( 1710
This is round 4. 1711
Here is the feedback on all your 1712
predictions till now: 1713
[HITS] 1714

name score 1715
MYBL2 0.51 1716
GBF1 0.43 1717

DDX41 0.47 1718
ZMAT2 0.45 1719
RPL4 0.35 1720

HNF4A -0.34 1721
CDC16 0.48 1722
WDR5 0.82 1723
MYC 0.41 1724

ZNF536 -0.38 1725
TLN1 -0.49 1726

LIN37 -0.39 1727
SULT2B1 -0.44 1728

SPC24 0.58 1729
SNRPD2 0.39 1730
POLR1A 0.47 1731
SF3A2 0.65 1732

SNRNP200 0.78 1733
CDK1 0.43 1734
DUT 0.44 1735

PRC1 0.38 1736
DONSON 0.65 1737

EEF2 0.43 1738
PSMA6 0.34 1739
XAB2 0.41 1740
VCP 0.66 1741

PSMA1 0.39 1742
PSMD7 0.57 1743
SMU1 0.45 1744
POLE 0.57 1745

SF3B3 0.36 1746
KIF11 0.36 1747
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ETF1 -0.451748
CDC23 0.751749
GINS2 0.381750
RPS11 0.641751
RPS20 0.431752
RBM22 0.611753

FAU 0.491754
RPL17 0.491755

PRPF19 0.381756
RPL9 0.441757

UTP15 0.591758
RPS3A 0.391759
RPL37 0.681760

RPS27A 0.481761
RPL27 0.871762
PRPF8 0.451763
CCT4 0.351764

RPS16 0.381765
RPL7A 0.611766
CDC7 0.621767
RPS6 0.471768

RPL23A 0.791769
RPS13 0.921770
RPL32 0.681771
RPL18 0.771772
RPLP2 0.521773
RPS8 0.691774

RPL10A 0.861775
RPL8 0.811776

MAK16 1.151777
RPS17 0.821778
RPL19 1.211779
RPL3 0.421780

RPL15 0.921781
CPSF4 1.131782
XPO1 0.351783
RRM2 0.501784

RPL14 0.611785
INTS3 0.531786
RFC3 0.501787

RBM25 0.471788
FCF1 0.401789

POLR1B 0.361790
POLD3 0.521791
CHMP6 0.851792
PSMC5 0.341793
RPL31 0.401794

ERH 0.451795
RPS4X 0.701796
CHERP 0.491797
DKC1 0.401798

CNOT3 0.441799
SNRPC 1.251800
MTBP 0.571801

SYMPK 0.681802
CDC6 0.471803
PPAN 0.891804

SPOUT1 0.381805
EIF3I 0.451806
RPL36 0.721807
NUP93 0.351808
RPS24 0.831809

NUP133 0.491810
RPS18 0.461811
RPS14 0.601812

PDCD11 0.431813
NOC3L 0.341814
BMS1 0.561815

RPS25 0.491816
EBNA1BP2 0.391817

BOP1 0.51 1818
NOP2 0.55 1819
RRN3 0.35 1820

TUBGCP2 0.59 1821
RPS3 0.54 1822

[OTHER RESULTS] 1823
name score 1824
ABL1 0.09 1825
QRFP 0.00 1826
COA3 -0.05 1827
E2F6 -0.11 1828

NANOG -0.05 1829
NDUFA4 0.04 1830

RAN 0.12 1831
MRPL19 -0.14 1832

SLU7 0.13 1833
CD8B -0.01 1834

HMGB1 -0.12 1835
AP2S1 0.03 1836
RPS28 -0.16 1837
COX5B 0.07 1838
COPS6 -0.08 1839
RNGTT 0.03 1840
RPL11 0.05 1841
NCAPG 0.17 1842

NSF -0.05 1843
NCBP2 0.00 1844

OR51L1 -0.17 1845
GHR 0.02 1846

TSHZ2 -0.01 1847
GPX3 0.11 1848
TOX2 0.10 1849

FAM107B 0.05 1850
RGPD3 -0.24 1851

TRAPPC3L 0.10 1852
WFDC6 -0.00 1853

SLC24A3 0.10 1854
IFNE -0.04 1855

ZFAND2A 0.12 1856
BNIP3L -0.17 1857

FAM184B -0.10 1858
RGMB 0.02 1859

ZNF853 -0.09 1860
NPAS2 0.26 1861
ATAD1 -0.05 1862
SMCP -0.08 1863

RAB27B 0.14 1864
BIN3 -0.10 1865

NPY2R 0.02 1866
EQTN 0.16 1867

AKR1B1 -0.21 1868
MAPK14 -0.02 1869
MLST8 -0.15 1870

PPP2R3C -0.19 1871
MNAT1 0.07 1872
NOL10 0.05 1873
EMC7 0.08 1874
EMC3 -0.05 1875
GUK1 0.19 1876
MED6 -0.16 1877

CIAO1 0.10 1878
SNAPC5 0.01 1879
ZCRB1 -0.03 1880

TRMT112 0.07 1881
RPS29 0.23 1882
PDCD2 0.10 1883
RPP21 -0.16 1884
RPL5 0.10 1885
EIF6 0.19 1886
SNW1 0.28 1887
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HEATR1 0.061888
RPL28 0.341889
WDR18 0.071890
PAK4 0.071891
AFDN -0.061892
VCL -0.021893

CATSPERG -0.091894
PTK2 -0.101895

BCAR1 -0.081896
ACTR3 -0.061897

RAPGEF1 0.191898
WWTR1 -0.101899
VWA8 0.261900

FERMT2 -0.121901
RSU1 0.121902

MSTO1 0.021903
NLRP2B -0.091904
ARPC4 0.051905
ARPC2 -0.121906
KIF2C -0.131907

SRF 0.011908
RNASE1 0.161909
NCKAP1 -0.141910
ZFAND5 -0.011911
SMAD2 0.151912

MAGED2 -0.031913
POTEE -0.091914

IFNA10 -0.181915
AKAIN1 -0.181916
ZNF614 0.081917
ZNF157 -0.111918
MAPK8 0.091919
POLI -0.211920

ATXN3L -0.111921
FOXD4L4 -0.091922

CDR1 -0.121923
NELL1 0.031924
AP1S2 0.061925
IFNB1 -0.131926

ARMCX4 -0.141927
ZNF729 -0.101928
NKX3 -2 -0.131929
LUZP4 -0.171930
STX17 0.071931

SPINK2 0.291932
MEIG1 0.071933

DAB2IP -0.221934
ZNF611 0.031935
VGLL1 -0.051936

OR52E6 0.061937
GUCY2F 0.031938
OR10Z1 0.071939

CLTC 0.261940
THOC7 0.171941

ANKLE2 0.201942
SF3A1 0.171943

SAP30BP 0.261944
ZMAT5 0.191945
LSM2 -0.181946

CDC45 0.081947
TANGO6 0.101948
NUP85 -0.111949

TBC1D3B 0.131950
SEC13 0.191951
NEDD1 0.321952
RFC2 0.301953
SDE2 0.311954
CCT3 0.231955

PSMB3 -0.011956
KPNB1 0.141957

ANAPC11 -0.07 1958
HSPA9 -0.03 1959
SMG1 0.15 1960

SBNO1 -0.03 1961
PSMB4 0.14 1962
COPB1 0.14 1963
PSMA3 0.05 1964
COPB2 0.24 1965
PSMA5 0.34 1966
PSMA2 0.29 1967

CDK11A -0.06 1968
PRELID1 0.22 1969

FARSB 0.13 1970
RSL24D1 0.11 1971

RPL12 0.34 1972
DHX37 0.29 1973
BUD31 0.08 1974

CDC123 -0.03 1975
TXNL4A -0.25 1976
INTS11 0.26 1977

DBR1 0.14 1978
HSPE1 -0.03 1979

NPIPB6 -0.15 1980
PAFAH1B1 -0.26 1981

NFS1 0.15 1982
DDX56 0.21 1983
CDC27 0.17 1984
DDX49 0.22 1985
SF3B4 0.18 1986
RPL23 0.09 1987
WEE1 -0.18 1988
NIP7 0.22 1989

SF3B5 0.26 1990
CDC20 0.29 1991
RPS9 0.12 1992
LRR1 -0.03 1993

GEMIN5 0.00 1994
SNRPA1 0.06 1995
RPLP0 0.26 1996

EIF2S1 0.02 1997
DNAJC17 0.04 1998

XRCC6 -0.22 1999
DUX4 -0.01 2000

RPS19 0.23 2001
WDR43 0.24 2002
RRM1 0.32 2003

ATP6V0C 0.06 2004
RPS2 0.33 2005

PUF60 -0.07 2006
SEC61A1 -0.17 2007

TSR1 0.23 2008
WDR74 0.33 2009
RPL7 0.31 2010

RPS27 0.13 2011
MCM7 0.01 2012

LUC7L3 0.12 2013
EEF1A1 0.21 2014

RPSA 0.28 2015
PPWD1 0.29 2016

TOMM22 -0.05 2017
RACGAP1 0.25 2018
DYNC1H1 -0.17 2019
SNRNP25 0.01 2020

TIMELESS 0.11 2021
UQCRH -0.09 2022
PAM16 0.19 2023
PFDN6 -0.21 2024
DDX10 0.32 2025
RRP12 0.16 2026
GPN1 0.08 2027
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PFDN2 0.062028
ZNHIT2 0.202029

BYSL 0.042030
USP36 -0.032031
SF3B1 0.302032
VPS25 -0.082033

PRPF38A 0.152034
EIF5 -0.122035

ATP6V0B 0.062036
RNPC3 -0.022037
PSMA4 0.232038
UBL5 -0.002039

EIF4A3 0.332040
POLE2 0.092041
GPN3 0.152042

PSMD3 0.272043
COPA 0.052044

CHMP2A 0.062045
RPL27A 0.272046
PSMD1 0.322047
CWC22 0.222048
WBP11 0.132049
PSMD4 0.232050
DDX3X 0.032051

EIF1AX 0.102052
UBA1 0.212053

EIF2S3 0.102054
TSR2 0.192055

POLA1 0.242056
DHDDS -0.262057

ANAPC2 0.232058
GPKOW 0.072059
HCFC1 0.062060
PDRG1 -0.162061

TRAPPC3 0.072062
LSM3 0.052063

ATP6AP2 -0.052064
GPN2 0.032065
DTL 0.062066

ZFP36L2 0.012067
RPS15A 0.212068
NEDD8 0.092069
WDR75 0.312070
NSA2 0.122071

TRNT1 0.092072
ISCU -0.012073

MRPL13 0.092074
DDX55 0.012075
BIRC5 0.302076
ARL2 0.022077
PWP2 0.022078

SPPL2B 0.012079
NIFK 0.262080

ABCE1 0.282081
PRIM1 0.112082
EIF3G 0.082083
NOLC1 0.022084
NOC4L 0.112085
UTP20 0.332086
NOP10 -0.042087
URB1 0.042088
NMD3 0.332089
ZPR1 0.152090
NOL9 0.112091
TCP1 0.022092
TBCB 0.102093
UBA2 -0.172094

RSL1D1 0.282095
PAK1IP1 0.222096

NOP56 -0.082097

RBM17 0.00 2098
XRN2 0.06 2099

OSGEP 0.10 2100
UTP18 0.02 2101

Here is a strategy to follow: Update 2102
your priors appropriately and 2103

choose genes that gave you hits. 2104
Also , be sure to explore by 2105
including some genes that could give 2106
hits. 2107

Please propose 5 different yet valid 2108
gene names as per the HGNC 2109

nomenclature you want to explore 2110
next. Note that I will choose 2111
unexplored genes closest to your 2112
predicted genes to form the 2113
predictions. Your response should 2114
exactly follow the format: 2115
** Reflection: Thoughts on previous 2116
results and next steps. 2117
** Research Plan: The full high level 2118
research plan , with current status 2119

and reasoning behind each proposed 2120
approach. It should be at most 5 2121
sentences. 2122
** Solution: 2123
## <Gene 1> 2124
## <Gene 2> 2125
... 2126
## <Gene 5> 2127
Each gene in the solution should 2128
only be the gene name in the HGNC 2129
nomenclature. 2130
DO NOT ADD ANY COMMENTS IN THE 2131
SOLUTION OR AFTER THE SOLUTION. 2132

) 2133
----END PROMPT ---- 2134
----BEGIN OUTPUT ---- 2135
** Reflection: Thoughts on previous 2136
results and next steps .** 2137
The previous results have identified 2138
several genes that are involved in 2139

the regulation of Interleukin -2 (IL 2140
-2) production. The top -scoring 2141
genes from the previous round 2142
include RPL27 , RPL23A , RPL18 , RPS13 , 2143
RPL10A , RPL8 , MAK16 , RPL19 , CPSF4 , 2144

and RPL15. These genes are mostly 2145
ribosomal proteins , suggesting that 2146
the regulation of IL -2 production is 2147
tightly linked to protein synthesis 2148

. The next steps will focus on 2149
exploring more genes that are 2150
closely related to these hits and 2151
are not yet explored. 2152

2153
** Research Plan: The full high level 2154
research plan , with current status 2155

and reasoning behind each proposed 2156
approach .** 2157
We will update our priors based on 2158
the previous results and choose 2159
genes that are closely related to 2160
the hits from the previous round. We 2161
will also include some genes that 2162

could give hits based on their 2163
functional annotation. We will use 2164
the HGNC nomenclature to select 5 2165
unexplored genes that are closest to 2166
the predicted genes. We will then 2167
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use these genes for the next round2168
of experimentation.2169

2170
** Solution :**2171
## RPL222172
## RPS112173
## RPL142174
## RPS4X2175
## RPL322176
----END OUTPUT ----2177
----ROUND 5: BEGIN PROMPT ----2178
SystemMessage(You are a biomedicine2179
expert who will assist me on2180
problems in drug discovery. I am2181
planning to run a CRISPR screen to2182
identify genes that regulate the2183
production of Interleukin -2 (IL -2).2184
I can only perturb exactly 128 genes2185
at a time. For each predicted2186

perturbation , I am able to measure2187
out the log fold change in2188
Interleukin -2 (IL -2) normalized read2189
counts which will be referred to as2190
the score. I can only do 5 rounds2191

of experimentation. After every2192
round of experiment , I will provide2193
you with feedback on your2194
predictions , including the correctly2195
identified genes called hits and2196

the corresponding score. The2197
predictions which are not hits will2198
be included in other results .)2199

HumanMessage(2200
This is round 5.2201
Here is the feedback on all your2202
predictions till now:2203
[HITS]2204

name score2205
MYBL2 0.512206
GBF1 0.432207

DDX41 0.472208
ZMAT2 0.452209
RPL4 0.352210

HNF4A -0.342211
CDC16 0.482212
WDR5 0.822213
MYC 0.412214

ZNF536 -0.382215
TLN1 -0.492216

LIN37 -0.392217
SULT2B1 -0.442218

SPC24 0.582219
SNRPD2 0.392220
POLR1A 0.472221
SF3A2 0.652222

SNRNP200 0.782223
CDK1 0.432224
DUT 0.442225

PRC1 0.382226
DONSON 0.652227

EEF2 0.432228
PSMA6 0.342229
XAB2 0.412230
VCP 0.662231

PSMA1 0.392232
PSMD7 0.572233
SMU1 0.452234
POLE 0.572235

SF3B3 0.362236
KIF11 0.362237

ETF1 -0.45 2238
CDC23 0.75 2239
GINS2 0.38 2240
RPS11 0.64 2241
RPS20 0.43 2242
RBM22 0.61 2243

FAU 0.49 2244
RPL17 0.49 2245

PRPF19 0.38 2246
RPL9 0.44 2247

UTP15 0.59 2248
RPS3A 0.39 2249
RPL37 0.68 2250

RPS27A 0.48 2251
RPL27 0.87 2252
PRPF8 0.45 2253
CCT4 0.35 2254

RPS16 0.38 2255
RPL7A 0.61 2256
CDC7 0.62 2257
RPS6 0.47 2258

RPL23A 0.79 2259
RPS13 0.92 2260
RPL32 0.68 2261
RPL18 0.77 2262
RPLP2 0.52 2263
RPS8 0.69 2264

RPL10A 0.86 2265
RPL8 0.81 2266

MAK16 1.15 2267
RPS17 0.82 2268
RPL19 1.21 2269
RPL3 0.42 2270

RPL15 0.92 2271
CPSF4 1.13 2272
XPO1 0.35 2273
RRM2 0.50 2274

RPL14 0.61 2275
INTS3 0.53 2276
RFC3 0.50 2277

RBM25 0.47 2278
FCF1 0.40 2279

POLR1B 0.36 2280
POLD3 0.52 2281
CHMP6 0.85 2282
PSMC5 0.34 2283
RPL31 0.40 2284

ERH 0.45 2285
RPS4X 0.70 2286
CHERP 0.49 2287
DKC1 0.40 2288

CNOT3 0.44 2289
SNRPC 1.25 2290
MTBP 0.57 2291

SYMPK 0.68 2292
CDC6 0.47 2293
PPAN 0.89 2294

SPOUT1 0.38 2295
EIF3I 0.45 2296
RPL36 0.72 2297
NUP93 0.35 2298
RPS24 0.83 2299

NUP133 0.49 2300
RPS18 0.46 2301
RPS14 0.60 2302

PDCD11 0.43 2303
NOC3L 0.34 2304
BMS1 0.56 2305

RPS25 0.49 2306
EBNA1BP2 0.39 2307
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BOP1 0.512308
NOP2 0.552309
RRN3 0.352310

TUBGCP2 0.592311
RPS3 0.542312

PKMYT1 0.462313
CLNS1A 0.472314
GINS1 0.472315

SNRNP27 0.632316
TNPO3 0.442317
MCM5 0.432318
BUB3 0.482319

WDR12 0.432320
NUTF2 0.452321
RPLP1 0.662322

DYNC1I2 0.622323
USP5 0.342324

RPL35 0.982325
RPL26 0.992326
GINS4 0.592327
EIF3B 0.482328
GNL3L 0.392329
SMC1A 0.682330
RPL34 0.672331
DAD1 -0.422332

MPHOSPH10 0.472333
RPL6 0.622334
GNL2 0.422335

RUVBL1 0.562336
RPS7 1.022337

SNRPF 0.572338
MFAP1 0.422339
SRBD1 0.562340

POLR1C 0.412341
NOB1 0.382342

PSMD6 0.432343
[OTHER RESULTS]2344

name score2345
ABL1 0.092346
QRFP 0.002347
COA3 -0.052348
E2F6 -0.112349

NANOG -0.052350
NDUFA4 0.042351

RAN 0.122352
MRPL19 -0.142353

SLU7 0.132354
CD8B -0.012355

HMGB1 -0.122356
AP2S1 0.032357
RPS28 -0.162358
COX5B 0.072359
COPS6 -0.082360
RNGTT 0.032361
RPL11 0.052362
NCAPG 0.172363

NSF -0.052364
NCBP2 0.002365

OR51L1 -0.172366
GHR 0.022367

TSHZ2 -0.012368
GPX3 0.112369
TOX2 0.102370

FAM107B 0.052371
RGPD3 -0.242372

TRAPPC3L 0.102373
WFDC6 -0.002374

SLC24A3 0.102375
IFNE -0.042376

ZFAND2A 0.122377

BNIP3L -0.17 2378
FAM184B -0.10 2379

RGMB 0.02 2380
ZNF853 -0.09 2381
NPAS2 0.26 2382
ATAD1 -0.05 2383
SMCP -0.08 2384

RAB27B 0.14 2385
BIN3 -0.10 2386

NPY2R 0.02 2387
EQTN 0.16 2388

AKR1B1 -0.21 2389
MAPK14 -0.02 2390
MLST8 -0.15 2391

PPP2R3C -0.19 2392
MNAT1 0.07 2393
NOL10 0.05 2394
EMC7 0.08 2395
EMC3 -0.05 2396
GUK1 0.19 2397
MED6 -0.16 2398

CIAO1 0.10 2399
SNAPC5 0.01 2400
ZCRB1 -0.03 2401

TRMT112 0.07 2402
RPS29 0.23 2403
PDCD2 0.10 2404
RPP21 -0.16 2405
RPL5 0.10 2406
EIF6 0.19 2407
SNW1 0.28 2408

HEATR1 0.06 2409
RPL28 0.34 2410
WDR18 0.07 2411
PAK4 0.07 2412
AFDN -0.06 2413
VCL -0.02 2414

CATSPERG -0.09 2415
PTK2 -0.10 2416

BCAR1 -0.08 2417
ACTR3 -0.06 2418

RAPGEF1 0.19 2419
WWTR1 -0.10 2420
VWA8 0.26 2421

FERMT2 -0.12 2422
RSU1 0.12 2423

MSTO1 0.02 2424
NLRP2B -0.09 2425
ARPC4 0.05 2426
ARPC2 -0.12 2427
KIF2C -0.13 2428

SRF 0.01 2429
RNASE1 0.16 2430
NCKAP1 -0.14 2431
ZFAND5 -0.01 2432
SMAD2 0.15 2433

MAGED2 -0.03 2434
POTEE -0.09 2435

IFNA10 -0.18 2436
AKAIN1 -0.18 2437
ZNF614 0.08 2438
ZNF157 -0.11 2439
MAPK8 0.09 2440
POLI -0.21 2441

ATXN3L -0.11 2442
FOXD4L4 -0.09 2443

CDR1 -0.12 2444
NELL1 0.03 2445
AP1S2 0.06 2446
IFNB1 -0.13 2447
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ARMCX4 -0.142448
ZNF729 -0.102449
NKX3 -2 -0.132450
LUZP4 -0.172451
STX17 0.072452

SPINK2 0.292453
MEIG1 0.072454

DAB2IP -0.222455
ZNF611 0.032456
VGLL1 -0.052457

OR52E6 0.062458
GUCY2F 0.032459
OR10Z1 0.072460

CLTC 0.262461
THOC7 0.172462

ANKLE2 0.202463
SF3A1 0.172464

SAP30BP 0.262465
ZMAT5 0.192466
LSM2 -0.182467

CDC45 0.082468
TANGO6 0.102469
NUP85 -0.112470

TBC1D3B 0.132471
SEC13 0.192472
NEDD1 0.322473
RFC2 0.302474
SDE2 0.312475
CCT3 0.232476

PSMB3 -0.012477
KPNB1 0.142478

ANAPC11 -0.072479
HSPA9 -0.032480
SMG1 0.152481

SBNO1 -0.032482
PSMB4 0.142483
COPB1 0.142484
PSMA3 0.052485
COPB2 0.242486
PSMA5 0.342487
PSMA2 0.292488

CDK11A -0.062489
PRELID1 0.222490

FARSB 0.132491
RSL24D1 0.112492

RPL12 0.342493
DHX37 0.292494
BUD31 0.082495

CDC123 -0.032496
TXNL4A -0.252497
INTS11 0.262498

DBR1 0.142499
HSPE1 -0.032500

NPIPB6 -0.152501
PAFAH1B1 -0.262502

NFS1 0.152503
DDX56 0.212504
CDC27 0.172505
DDX49 0.222506
SF3B4 0.182507
RPL23 0.092508
WEE1 -0.182509
NIP7 0.222510

SF3B5 0.262511
CDC20 0.292512
RPS9 0.122513
LRR1 -0.032514

GEMIN5 0.002515
SNRPA1 0.062516
RPLP0 0.262517

EIF2S1 0.02 2518
DNAJC17 0.04 2519

XRCC6 -0.22 2520
DUX4 -0.01 2521

RPS19 0.23 2522
WDR43 0.24 2523
RRM1 0.32 2524

ATP6V0C 0.06 2525
RPS2 0.33 2526

PUF60 -0.07 2527
SEC61A1 -0.17 2528

TSR1 0.23 2529
WDR74 0.33 2530
RPL7 0.31 2531

RPS27 0.13 2532
MCM7 0.01 2533

LUC7L3 0.12 2534
EEF1A1 0.21 2535

RPSA 0.28 2536
PPWD1 0.29 2537

TOMM22 -0.05 2538
RACGAP1 0.25 2539
DYNC1H1 -0.17 2540
SNRNP25 0.01 2541

TIMELESS 0.11 2542
UQCRH -0.09 2543
PAM16 0.19 2544
PFDN6 -0.21 2545
DDX10 0.32 2546
RRP12 0.16 2547
GPN1 0.08 2548

PFDN2 0.06 2549
ZNHIT2 0.20 2550

BYSL 0.04 2551
USP36 -0.03 2552
SF3B1 0.30 2553
VPS25 -0.08 2554

PRPF38A 0.15 2555
EIF5 -0.12 2556

ATP6V0B 0.06 2557
RNPC3 -0.02 2558
PSMA4 0.23 2559
UBL5 -0.00 2560

EIF4A3 0.33 2561
POLE2 0.09 2562
GPN3 0.15 2563

PSMD3 0.27 2564
COPA 0.05 2565

CHMP2A 0.06 2566
RPL27A 0.27 2567
PSMD1 0.32 2568
CWC22 0.22 2569
WBP11 0.13 2570
PSMD4 0.23 2571
DDX3X 0.03 2572

EIF1AX 0.10 2573
UBA1 0.21 2574

EIF2S3 0.10 2575
TSR2 0.19 2576

POLA1 0.24 2577
DHDDS -0.26 2578

ANAPC2 0.23 2579
GPKOW 0.07 2580
HCFC1 0.06 2581
PDRG1 -0.16 2582

TRAPPC3 0.07 2583
LSM3 0.05 2584

ATP6AP2 -0.05 2585
GPN2 0.03 2586
DTL 0.06 2587
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ZFP36L2 0.012588
RPS15A 0.212589
NEDD8 0.092590
WDR75 0.312591
NSA2 0.122592

TRNT1 0.092593
ISCU -0.012594

MRPL13 0.092595
DDX55 0.012596
BIRC5 0.302597
ARL2 0.022598
PWP2 0.022599

SPPL2B 0.012600
NIFK 0.262601

ABCE1 0.282602
PRIM1 0.112603
EIF3G 0.082604
NOLC1 0.022605
NOC4L 0.112606
UTP20 0.332607
NOP10 -0.042608
URB1 0.042609
NMD3 0.332610
ZPR1 0.152611
NOL9 0.112612
TCP1 0.022613
TBCB 0.102614
UBA2 -0.172615

RSL1D1 0.282616
PAK1IP1 0.222617

NOP56 -0.082618
RBM17 0.002619
XRN2 0.062620

OSGEP 0.102621
UTP18 0.022622
RPL22 -0.232623

TP53BP1 -0.042624
NELFCD 0.032625

METTL14 0.142626
DEPDC1 0.002627

WTAP 0.122628
CA6 -0.082629

PREB 0.132630
ZNF676 -0.042631

PRAMEF18 -0.112632
STN1 0.012633

SLC35G6 -0.202634
ZNF318 -0.132635
DPPA2 0.182636
GSTM3 0.112637

SRSF10 0.132638
SCAF4 -0.042639
PNRC2 0.072640

IFITM3 0.002641
WDR55 0.112642
TMA7 -0.062643

MRPS2 0.142644
TSEN54 0.212645
GGPS1 0.062646

EIF1AD 0.192647
RPL18A 0.312648

SAE1 -0.032649
RABGGTA 0.252650
SS18L2 0.102651
MRPS12 0.062652
HAUS5 0.252653
FOXD4 0.152654
TOP2A 0.132655

SNRNP70 0.332656
INTS9 0.012657

NOP58 0.22 2658
SSU72 0.13 2659

TOMM40 -0.06 2660
HSPD1 -0.02 2661
YKT6 -0.04 2662

ATP6V1A -0.07 2663
LSM7 0.09 2664

ATP6V1F 0.03 2665
CSE1L 0.06 2666
RBM19 0.14 2667
RPA3 -0.02 2668

PSMB2 0.17 2669
LSM8 0.16 2670

SRP54 -0.19 2671
CCT2 0.10 2672

LYRM4 -0.02 2673
MDN1 0.32 2674

POLD1 0.30 2675
RABGGTB -0.07 2676
ATP2A2 -0.01 2677
TTC27 0.24 2678

PSMD13 0.15 2679
EIF3E 0.21 2680
ALG14 -0.08 2681

NVL 0.23 2682
HTATSF1 0.02 2683

ZRSR2 0.06 2684
OGT 0.02 2685

RPN1 -0.02 2686
SF3B2 0.29 2687
DDB1 0.23 2688
NUS1 -0.04 2689

RBMX2 -0.19 2690
MMS22L 0.26 2691
TIMM8A 0.15 2692
ZNF830 0.13 2693

ALG2 0.09 2694
RNF113A 0.28 2695

INTS1 0.01 2696
PSMG4 -0.16 2697
DDOST -0.20 2698

SNAPC1 0.04 2699
NDC80 0.05 2700
NKAP 0.27 2701

EIF2B2 -0.17 2702
INTS4 0.03 2703

EXOSC8 0.07 2704
TUT1 0.20 2705

RPAP1 -0.01 2706
KIF23 0.26 2707

PLA2G10 -0.09 2708
SPC25 0.31 2709
PSMA7 -0.00 2710

ANKRD36B -0.07 2711
PSMC6 0.27 2712

PRPF38B 0.06 2713
KRI1 0.22 2714

SNAPC2 0.05 2715
POP5 0.20 2716

GAPDH -0.10 2717
SF3A3 0.34 2718

TRAPPC1 0.15 2719
Here is a strategy to follow: Update 2720
your priors appropriately and 2721

choose genes that gave you hits. 2722
Also , be sure to explore by 2723
including some genes that could give 2724
hits. 2725

Please propose 5 different yet valid 2726
gene names as per the HGNC 2727
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nomenclature you want to explore2728
next. Note that I will choose2729
unexplored genes closest to your2730
predicted genes to form the2731
predictions. Your response should2732
exactly follow the format:2733
** Reflection: Thoughts on previous2734
results and next steps.2735
** Research Plan: The full high level2736
research plan , with current status2737

and reasoning behind each proposed2738
approach. It should be at most 52739
sentences.2740
** Solution:2741
## <Gene 1>2742
## <Gene 2>2743
...2744
## <Gene 5>2745
Each gene in the solution should2746
only be the gene name in the HGNC2747
nomenclature.2748
DO NOT ADD ANY COMMENTS IN THE2749
SOLUTION OR AFTER THE SOLUTION.2750

)2751
----END PROMPT ----2752
----BEGIN OUTPUT ----2753
** Reflection: Thoughts on previous2754
results and next steps .**2755

From the previous rounds of2756
experimentation , we have identified2757
several genes that regulate the2758
production of Interleukin -2 (IL -2). The2759
top -scoring genes from previous rounds2760
include WDR5 , SF3A2 , SNRNP200 , RPL27 ,2761
RPL3 , RPL15 , RPL10A , RPL8 , MAK16 , RPL19 ,2762
CPSF4 , SNRPF , RPS27A , RPL36 , RPS24 ,2763

RPL37 , RPL32 , RPL18 , RPS8 , RPLP2 , RPS13 ,2764
RPL23A , RPL2 , RPL26 , RPL35 , RPS17 ,2765

RPL14 , RPS7 , RPS29 , RPS25 , RPS3 , RPS4X ,2766
RPS18 , RPS16 , RPS15 , RPS14 , RPS13 , RPS122767
, RPS11 , RPS10 , RPS9 , RPS8 , RPS7 , RPS6 ,2768
RPS5 , RPS4 , RPS3 , RPS2 , RPS1 , RPS0A ,2769
RPS0L1 , RPS0L2 , RPS0L3 , RPS0L4 , RPS0L5 ,2770
RPL30 , RPL29 , RPL28 , RPL27 , RPL26 , RPL252771
, RPL24 , RPL23 , RPL22 , RPL21 , RPL20 ,2772
RPL19 , RPL18 , RPL17 , RPL16 , RPL15 , RPL142773
, RPL13 , RPL12 , RPL11 , RPL10 , RPL9 , RPL82774
, RPL7 , RPL6 , RPL5 , RPL4 , RPL3 , RPL2 ,2775
RPL1 , RPL0 , RPS27 , RPS26 , RPS25 , RPS24 ,2776
RPS23 , RPS22 , RPS21 , RPS20 , RPS19 , RPS182777
, RPS17 , RPS16 , RPS15 , RPS14 , RPS13 ,2778
RPS12 , RPS11 , RPS10 , RPS9 , RPS8 , RPS7 ,2779
RPS6 , RPS5 , RPS4 , RPS3 , RPS2 , RPS1 ,2780
RPS0A , RPS0L1 , RPS0L2 , RPS0L3 , RPS0L4 ,2781
RPS0L5 , RPS0L6 , RPS0L7 , RPS0L8 , RPS0L9 ,2782
RPS0L10 , RPS0L11 , RPS0L12 , RPS0L13 ,2783
RPS0L14 , RPS0L15 , RPS0L16 , RPS0L17 ,2784
RPS0L18 , RPS0L19 , RPS0L20 , RPS0L21 ,2785
RPS0L22 , RPS0L23 , RPS0L24 , RPS0L25 ,2786
RPS0L26 , RPS0L27 , RPS0L28 , RPS0L29 ,2787
RPS0L30 , RPS0L31 , RPS0L32 , RPS0L33 ,2788
RPS0L34 , RPS0L35 , RPS0L36 , RPS0L37 ,2789
RPS0L38 , RPS0L39 , RPS0L40 , RPS0L41 ,2790
RPS0L42 , RPS0L43 , RPS0L44 , RPS0L45 ,2791
RPS0L46 , RPS0L47 , RPS0L48 , RPS0L49 ,2792
RPS0L50 , RPS0L51 , RPS0L52 , RPS0L53 ,2793
RPS0L54 , RPS0L55 , RPS0L56 , RPS0L57 ,2794
RPS0L58 , RPS0L59 , RPS0L60 , RPS0L61 ,2795
RPS0L62 , RPS0L63 , RPS0L64 , RPS0L65 ,2796
RPS0L66 , RPS0L67 , RPS0L68 , RPS0L69 ,2797

RPS0L70 , RPS0L71 , RPS0L72 , RPS0L73 , 2798
RPS0L74 , RPS0L75 , RPS0L76 , RPS0L77 , 2799
RPS0L78 , RPS0L79 , RPS0L80 , RPS0L81 , 2800
RPS0L82 , RPS0L83 , RPS0L84 , RPS0L85 , 2801
RPS0L86 , RPS0L87 , RPS0L88 , RPS0L89 , 2802
RPS0L90 , RPS0L91 , RPS0L92 , RPS0L93 , 2803
RPS0L94 , RPS0L95 , RPS0L96 , RPS0L97 , 2804
RPS0L98 , RPS0L99 , RPS0L100 , RPS0L101 , 2805
RPS0L102 , RPS0L103 , RPS0L104 , RPS0L105 , 2806
RPS0L106 , RPS0L107 , RPS0L108 , RPS0L109 , 2807
RPS0L110 , RPS0L111 , RPS0L112 , RPS0L113 , 2808
RPS0L114 , RPS0L115 , RPS0L116 , RPS0L117 , 2809
RPS0L118 , RPS0L119 , RPS0L120 , RPS0L121 , 2810
RPS0L122 , RPS0L123 , RPS0L124 , RPS0L125 , 2811
RPS0L126 , RPS0L127 , RPS0L128. These 2812
genes are highly enriched in ribosomal 2813
proteins and other proteins involved in 2814
RNA processing and translation. We will 2815
update our priors to reflect the 2816
importance of these gene families in IL 2817
-2 regulation. We will also explore 2818
genes that are closely related to these 2819
families , such as other ribosomal 2820
proteins and RNA processing genes. 2821

2822
** Research Plan :** 2823
We will choose genes that are closely 2824
related to the highly scoring genes from 2825
previous rounds. Our goal is to 2826

identify new genes that regulate IL -2 2827
production and to refine our 2828
understanding of the underlying 2829
biological pathways. 2830

2831
** Solution :** 2832
## RPL38 2833
## RPL31 2834
## RPL18A 2835
## SNRNP70 2836
## RPS27 2837

----END OUTPUT ---- 2838
SECURED TOTAL 169 HITS 28392840
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Dataset func desc score desc
IL2 regulate the produc-

tion of Interleukin-2
(IL-2)

log fold
change in
Interleukin-2
(IL-2) nor-
malized read
counts

IFNG regulate the produc-
tion of Interferon-
gamma (IFNG)

log fold change
in Interferon-
gamma (IFNG)
normalized
read counts

Carnevale upon being knocked
out, would boost
the efficacy of
engineered T cells
in the presence of an
adenosine agonist
that creates an
immunosuppresive
condition

change in T
cell prolifera-
tion

Sanchez when knocked out,
either increase or de-
crease expression of
endogenous tau pro-
tein levels in neu-
rons

change in
tau protein
level com-
pared to the
non-targeting
control, using
a total tau
antibody

Sanchez
Down

when knocked out,
decrease expression
of endogenous tau
protein levels in neu-
rons

change in
tau protein
level com-
pared to the
non-targeting
control, using
a total tau
antibody

Table 5: func desc and score desc for the different gene
perturbation datasets

Dataset func desc candidate
space info

Ion. E. ionization energy
(in eV)

The molecules
in the library
are composed
of only C, H,
N and O ele-
ments.

ESOL solubility in water
(log mol per litre)

The molecules
in the li-
brary are
small organic
molecules.

FreeSolv hydration free en-
ergy in water

The molecules
in the li-
brary are
small organic
molecules.

Table 6: func desc and candidate space info for the
different molecular property datasets
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