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Abstract

Causal disentanglement aims to uncover a representation of data using latent vari-
ables that are interrelated through a causal model. Such a representation is identifi-
able if the latent model that explains the data is unique. In this paper, we focus on
the scenario where unpaired observational and interventional data are available,
with each intervention changing the mechanism of a latent variable. When the
causal variables are fully observed, statistically consistent algorithms have been
developed to identify the causal model under faithfulness assumptions. We here
show that identifiability can still be achieved with unobserved causal variables,
given a generalized notion of faithfulness. Our results guarantee that we can re-
cover the latent causal model up to an equivalence class and predict the effect of
unseen combinations of interventions, in the limit of infinite data. We implement
our causal disentanglement framework by developing an autoencoding variational
Bayes algorithm and apply it to the problem of predicting combinatorial perturba-
tion effects in genomics.

1 Introduction

The discovery of causal structure from observational and interventional data is important in many
fields including statistics, biology, sociology, and economics [42, 17]. Directed acyclic graph (DAG)
models enable scientists to reason about causal questions, e.g., predicting the effects of interventions
or determining counterfactuals [46]. Traditional causal structure learning has considered the setting
where the causal variables are observed [21]. While sufficient in many applications, this restriction is
limiting in most regimes where the available datasets are either perceptual (e.g., images) or very-high
dimensional (e.g., the expression of > 20k human genes). In an imaging dataset, learning a causal
graph on the pixels themselves would not only be difficult since there is no common coordinate
system across images (pixel i in one image may have no relationship with pixel i in another image)
but of questionable utility due to the relative meaninglessness of interventions on individual pixels.
Similar problems are also present when working with very high-dimensional data. For example,
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in a gene-expression dataset, subsets of genes (e.g. belonging to the same pathway) may function
together to induce other variables and should therefore be aggregated into one causal variable.

These issues mean that the causal variables need to be learned, instead of taken for granted. The re-
cent emerging field of causal disentanglement [9, 65, 30] seeks to remedy these issues by recovering
a causal representation in latent space, i.e., a small number of variables U that are mapped to the
observed samples in the ambient space via some mixing map f . This framework holds the potential
to learn more semantically meaningful latent factors than current approaches, in particular factors
that correspond to interventions of interest to modelers. Returning to the image and the genomic ex-
amples, latent factors could, for example, be abstract functions of pixels (corresponding to objects)
or groups of genes (corresponding to pathways).

Despite a recent flurry of interest, causal disentanglement remains challenging. First, it inherits the
difficulties of causal structure learning where the number of causal DAGs grows super-exponentially
in dimension. Moreover, since we only observe the variables after the unknown mixing function but
never the latent variables, it is generally impossible to recover the latent causal representations with
only observational data. Under the strong assumption that the causal DAG is the empty graph, such
unidentifiability from observational data has been discussed in previous disentanglement works [28].

However, recent advances in many applications enable access to interventional data. For example, in
genomics, researchers can perturb single or multiple genes through CRISPR experiments [13]. Such
interventional data can be used to identify the causal variables and learn their causal relationships.
When dealing with such data, it is important to note that single-cell RNA sequencing and other
biological assays often destroy cells in the measurement process. Thus, the available interventional
data is unpaired: for each cell, one only obtains a measurement under a single intervention.

In this work, we establish identifiability for soft interventions on general structural causal models
(SCMs), when the latent causal variables are observed through a class of (potentially non-linear)
polynomial mixing functions proposed by [3]. Prior works [57, 20, 67] show that the causal model
can be identified under faithfulness assumptions, when all the causal variables are observed. We here
demonstrate that idenfiability can still be achieved when the causal variables are unobserved under
a generalized notion of faithfulness. The identifiability is up to an equivalence class and guarantees
that we can predict the effect of unseen combinations of interventions, in the limit of infinite data.
It then remains to design an algorithmic approach to estimate the latent causal representation from
data. We propose an approach based on autoencoding variational Bayes [29], where the decoder is
composed of a deep SCM (DSCM) [45] followed by a deep mixing function. Finally, we apply our
approach to a real-world genomics dataset to find genetic programs and predict the effect of unseen
combinations of genetic perturbations.

1.1 Related Work

Identifiable Representation Learning. The identifiability of latent representations from observed
data has been a subject of ongoing study. Common assumptions are that the latent variables are
independent [11], are conditionally independent given some observed variable [23, 28], or follow a
known distribution [71]. In contrast, we do not make any independence assumptions on the latent
variables or assume we know their distribution. Instead, we assume that the variables are related via
a causal DAG model, and we use data from interventions in this model to identify the representation.

Causal Structure Learning. The recovery of a causal DAG from data is well-studied for the setting
where the causal representation is directly observed [21]. Methods for this task take a variety of
approaches, including exact search [12] and greedy search [10] to maximize a score such as the
posterior likelihood of the DAG, or an approximation thereof. These scores can be generalized
to incorporate interventional data [62, 67, 33], and methods can often be naturally extended by
considering an augmented search space [43]. Indeed, interventional data is generally necessary for
identifiability without further assumptions on the functions relating variables [54].

Causal Disentanglement. The task of identifying a causal DAG over latent causal variables is
less well-studied, but has been the focus of much recent work [9, 65, 30]. These works largely
do not consider interventions, and thus require restrictions on functional forms as well as structural
assumptions on the map from latent to observed variables. Among works that do not restrict the map,
[2] and [6] assume access to paired counterfactual data. In contrast, we consider only unpaired
data, which is more common in applications such as biology [55]. Unpaired interventional data
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is considered by [3], [53], and as a special case of [37]. These works do not impose structural
restrictions on the map from latent to observed variables but assume functional forms of the map,
such as linear or polynomial. Our work builds on and complements these results by providing
identifiability for soft interventions and by offering a learning algorithm based on variational Bayes.
We remark here that the task of causal disentanglement is sometimes called causal representation
learning in literature. We adopted the term causal disentanglement mainly following [26], as causal
representation learning also includes methods such as Invariant Risk Minimization (IRM) [4] which
do not completely learn latent variables. We discuss contemporaneous related work in Appendix I.

2 Problem Setup

We now formally introduce the causal disentanglement problem of identifying latent causal variables
and causal structure between these variables. We consider the observed variables X = (X1, ..., Xn)
as being generated from latent variables U = (U1, ..., Up) through an unknown deterministic (po-
tentially non-linear) mixing function f . In the observational setting, the latent variables U follow a
joint distribution PU that factorizes according to an unknown directed acyclic graph (DAG) G with
nodes [p] = {1, ..., p}. Concisely, we have the following data-generating process:

X = f(U), U ∼ PU =
∏p

i=1
P(Ui | UpaG(i)), (1)

where paG(i) = {j ∈ [p] : j → i} denotes the parents of i in G. We also use chG(i), deG(i)
and anG(i) to denote the children, descendants and ancestors of i in G. Let PX denote the induced
distribution over X .

Figure 1: Example of the data-generating
process, where observed gene expressions
X = f(U) and the distribution of U factor-
izes with respect to an unknown DAG G.

We consider atomic (i.e., single-node) interventions
on the latent variables. While our main focus is on
general types of soft interventions, our proof also
applies to hard interventions. In particular, an in-
tervention I with target TG(I) = i ∈ [p] modifies
the joint distribution PU by changing the conditional
distribution P(Ui | UpaG(i)). A hard intervention
sets the conditional distribution as PI(Ui), remov-
ing the dependency of Ui on UpaG(i), whereas a soft
intervention is allowed to preserve this dependency
but changes the mechanism into PI(Ui | UpaG(i)).
An example of a soft intervention is as a shift in-
tervention [50, 69], which modifies the conditional
distribution as PI(Ui = u+ ai | UpaG(i)) = P(Ui =

u | UpaG(i)) for some shift value ai. In the following, we will use PI
U =

∏p
i=1 PI(Ui | UpaG(i)) to

denote the interventional distribution, where PI(Uj | UpaG(j)) = P(Uj | UpaG(j)) for j ̸= TG(I).
We denote the induced distribution over X by PI

X . In cases where the referred random variable is
clear from the context, we abbreviate the subscript and use PI instead.

We consider the setting where we have unpaired data from observational and interventional distri-
butions, i.e., D,DI1 , ...,DIK . Here, D denotes samples of X = f(U) where U ∼ PU ; DIk denotes
samples of X where U ∼ PIk

U . We focus on the scenario where we have at least one intervention
per latent node. In the worst case, one intervention per node is necessary for identifiability in linear
SCMs [53]. We note that having at least one intervention per latent node is a strict generalization
of having exactly one intervention per latent node, since we assume no knowledge of which inter-
ventions among I1, ..., IK target the same node. Throughout the paper, we assume latent variables
U are unobserved and their dimension p, the DAG G, and the interventional targets of I1, ..., IK are
unknown. The goal is to identify these given samples of X in D,DI1 , ...,DIK .

3 Equivalence Class for Causal Disentanglement

In this section, we characterize the equivalence class for causal disentanglement, i.e., the class of
latent models that can generate the same observed samples of X in D,DI1 , ...,DIK . Since we only
have access to this data, the latent model can only be identified up to this equivalence class.
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First, note that the data-generation process is agnostic to the re-indexing of latent variables, provided
that we change the mixing function to reflect such re-indexing. More precisely, consider an arbitrary
permutation π of [p]. Denote Uπ = (Uπ(1), ..., Uπ(p)) and fπ as the mixing function such that
fπ(Uπ) = f(U). We define Gπ as the DAG with nodes in [p] and edges i → j if and only if
π(i) → π(j) ∈ G. Then the following data-generating process,

X = fπ(Uπ), Uπ ∼ PUπ =
∏p

i=1
P
(
(Uπ)i | (Uπ)paGπ

(i)

)
,

satisfies X = f(U). The same argument holds when U is generated from an interventional distribu-
tion PI , where this process generates the same X when Uπ is sampled from PIπ

Uπ
. Here Iπ is such that

TGπ
(Iπ) = π−1(TG(I)) and the mechanism PIπ

(
(Uπ)i | (Uπ)paGπ

(i)

)
= PI

(
Uπ(i) | UpaG(π(i))

)
.

We would also observe the same data if each Ui is affinely transformed into λiUi + bi for constants
λi ̸= 0 and bi and the mixing function is rescaled element-wise to accommodate this transformation.
To account for these two types of equivalences, we define the following notion of causal disentan-
glement (CD) equivalence class.

Definition 1 (CD-Equivalence). Two sets of variables, ⟨U,G, I1, ..., IK⟩ and ⟨Û , Ĝ, Î1, ..., ÎK⟩ are
CD-equivalent if and only if there exists a permutation π of [p], non-zero constants λ1, ..., λp ̸= 0,
and b1, ..., bp such that

Ûi = λπ(i)Uπ(i) + bπ(i), ∀i ∈ [p], Ĝ = Gπ, and Îk = (Ik)π, ∀k ∈ [K].

The same definition applies to ⟨G, I1, ..., Ik⟩ and ⟨Ĝ, Î1, ..., Îk⟩, where we say they are CD-equivalent
if and only if Ĝ = Gπ , and Îk = (Ik)π for some permutation π.

For simplicity, we refrain from talking about transformations on the mixing function f and mech-
anisms of latent variables. These can be obtained once U,G, TG(I1), ..., TG(IK) are identified. In
particular, f is the map from U to the observed X; and the joint distribution PU (and PIk

U ) can be
decomposed with respect to G to obtain the mechanisms PU (Ui | UpaG(i)) (and PIk

U (Ui | UpaG(i))).

4 Identifiability Results

In this section, we present our main results, namely the identifiability guarantees for causal disen-
tanglement from soft interventions. For this discussion, we consider the infinite-data regime where
enough samples are obtained to exactly determine the observational and interventional distributions
PX ,PI1

X , ...,PIK
X . Detailed proofs are deferred to Appendices A and B.

4.1 Preliminaries

Following [3], we pose assumptions on the support of U and on the function class of the map f .
Our support assumption is for example satisfied under the common additive Gaussian structural
causal model [47], and our assumption on the function class is for example satisfied if f is linear
and injective (Lemma 2 in Appendix A), a setting considered in many identifiability works (e.g.,
[11, 1, 53]).
Assumption 1. Let U be a p-dimensional random vector. Following [3], we assume that the interior
of the support of PU is a non-empty subset of Rp, and that f is a full row rank polynomial.2

Under this assumption, the authors in [3] showed that if p is known, U is identifiable up to a linear
transformation. This remains true when p is unknown, as summarized in the following lemma.
Lemma 1. Under Assumption 1, we can identify the dimension p of U as well as its linear transfor-
mation UΛ + b for some non-singular matrix Λ and vector b. In fact, with observational data, we
can only identify U up to such linear transformations.

Denote all pairs of PU , f that satisfy this assumption as Fp. The proof of this lemma is provided by
solving the following constrained optimization problem:

min(PÛ ,f̂)∈Fp̂
p̂ subject to Pf̂(Û) = PX .

2There exists some integer d, a full row rank H ∈ R(p+...+pd)×n and a vector h ∈ Rn such that f(U) =
(U, ⊗̄U2, ..., ⊗̄Ud)H+h, where ⊗̄Uk denotes the size-pk vector with degree-k polynomials of U as its entries.
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In other words, let p̂ be the smallest dimension such that there exists a pair of PÛ , f̂ in Fp̂ that
generates the observational distribution PX . Then p = p̂ and we recover the latent factors up to
linear transformation. The intuition is that (1) the support with non-empty interior guarantees that
we can identify p by checking its geometric dimension, and (2) the full-rank polynomial assumption
ensures that we search for f (and consequently U ) in a constrained subspace.

On the other hand, to show we cannot identify more than linear transformations, we construct a
mixing function f̂ for Û := UΛ + b such that the induced distribution PX is the same under both
representations. This also means that we cannot identify the underlying DAG G up to any nontrivial
equivalence class; we give an example showing that any causal DAG can explain the observational
data in Appendix A. Next, we discuss how identifiability can be improved with interventional data.

4.2 Identifying ancestral relations

Lemma 1 guarantees identifiability up to linear transformations from solely observational data. This
reduces the problem to the case where an unknown invertible linear mixing of the latent variables
X = f(U) = UΛ + b is observed. Without loss of generality, we thus work with this reduction for
the remainder of the section.

When the causal variables are fully observed, we can identify causal relationships from the changes
made by interventions [57]. In particular, an intervention on a node will not alter the marginals of its
non-descendants as compared to the observational distribution, i.e., P(Uj) = PI(Uj) for TG(I) = i
and j /∈ deG(i). However, it is possible that P(Uj) = PI(Uj) for some j ∈ deG(i) in degenerate
cases where the change made by Ui is canceled out on the path from i to j. Hence, prior works3

defined influentiality or interventional faithfulness [57, 66], which avoids such degenerate cases by
assuming that intervening on a node will always change the marginals of all its descendants, i.e.,
P(Uj) ̸= PI(Uj) for j ∈ deG(i). Under this assumption, we can identify the descendants of an
intervention target in G, by testing if a node has a changed marginal interventional distribution.

Figure 2

However, if we only observe a linear mixing of the causal variables, interven-
tional faithfulness is not enough to identify such ancestral relations. Consider the
following example.

Example 1. Let G = {1→2} with P(U1)=N (0, 1) and P(U2 |U1) = N (U1, 1).
Suppose that TG(I1) = 1, with PI1(U1) = N (1, 1), and that TG(I2) = 2, with
PI2(U2 | U1) = N (U1 + 1, 1). Note that this model satisfies interventional
faithfulness.

Let f be the identity map, i.e., X = U . Consider latent variables Û = (U2, U2 − U1) and f̂(Û) =

(Û1 − Û2, Û1). Then X = f̂(Û) = f(U). However, we have Ĝ = {2→1} with P(Û2) = N (0, 1)

and P(Û1 | Û2) = N (Û2, 1), TĜ(I1) = 1 with PI1(Û1 | Û2) = N (Û2 + 1, 1), and TĜ(I2) = 2 with
PI2(Û2) = N (1, 1). We thus may reverse ancestral relations between the intervention targets, as
illustrated in Figure 2.

This example shows that the effect on U2 from intervening on U1 can be canceled out by linearly
combining U2 with U1. In other words, intervening on U1 does not change the marginal distribution
of U2−U1, even under interventional faithfulness. Thus, we need a stronger faithfulness assumption
to account for the effect of linear mixing. In general, we want to avoid the case that the effect of an
intervention on a downstream variable Uj can be canceled out by combining Uj linearly with other
variables.

Assumption 2. Intervention I with target i satisfies linear interventional faithfulness if for every
j ∈ {i} ∪ chG(i) such that paG(j) ∩ deG(i) = ∅, it holds that P(Uj +USC

⊤) ̸= PI(Uj +USC
⊤)

for all constant vectors C ∈ R|S|, where S = [p] \ ({j} ∪ deG(i)).

This assumption ensures that an intervention on Ui not only affects its children, but that the effect
remains even when we take a linear combination of a child with certain other variables. Note that
the condition need only hold for the most upstream children of Ui, which may be arbitrarily smaller
than the set of all children of Ui. To illustrate this assumption, we give a simple example on a 2-node

3A more detailed discussion of interventional faithfulness can be found in Appendix B.1.
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DAG where this assumption is generically satisfied. In general, we show in Appendix B that a large
class of non-linear SCMs and soft interventions satisfy this assumption.
Example 2. Consider G = {1 → 2}. Let P(U2 | U1) = N (βU2

1 , σ
2
2) and P(U1) = N (0, σ2

1).
Intervention I that changes P(U1) into N (0, σ′2

1 ) satisfies Assumption 2 as long as β ̸= 0. To see
this, note that P(U2 + U1C) ̸= PI(U2 + U1C) for any C, since EP(U2 + U1C) = βσ2

1 ̸= βσ′2
1 =

EPI (U2 + U1C).

Under Assumption 2, we can show that we can identify causal relationships by detecting marginal
changes made by interventions. In particular, consider an easier setting where K = p, i.e., we have
exactly one intervention per latent node. For a source node4 i of G, P(Ui) ̸= PI(Ui) if and only
if TG(I) = i. Therefore the source node will have its marginal changed under one intervention
amongst {I1, ..., Ip}. This is a property of the latent model that we can utilize when solving for it.

Since we have access to X = UΛ+ b, we solve for Ui in the form of XC⊤+ c with C ∈ Rn, c ∈ R,
or equivalently, UC⊤+ c with C ∈Rp. By enforcing that V = UC⊤ + c only has P(V ) ̸= PI(V )
for one I ∈ {I1, ..., Ip}, Assumption 2 guarantees that V can only be an affine transformation of a
source node and that this I corresponds to intervening on this source node. Otherwise: (1) if Cj ̸= 0
for a non-source node j, take j to be the most downstream node with Cj ̸= 0, then P(V ) ̸= PI(V )
for at least two I’s targeting j and its most downstream parents in paG(j); (2) if Ci1 ̸= 0 and
Ci2 ̸= 0 for two source nodes i1, i2, then P(V ) ̸= PI(V ) for two I’s targeting i1 and i2.

In general, we can apply this argument to identify all interventions in I1, ..., IK that target source
nodes of G. Then using an iterative argument, we can identify all interventions that target source
nodes of the subgraph of G after removing its source nodes. This procedure results in the ancestral
relations between the targets of I1, . . . , IK . Namely, if TG(Ik) ∈ anG(TG(Ij)), then Ij is identified
in a later step than Ik in the above procedure. We thus have the following theorem.

Theorem 1. Under Assumption 1 and Assumption 2 for I1, ..., IK , we can identify ⟨Ĝ, Î1, ..., ÎK⟩,
where Ĝ = T S(Gπ), and Îk = (Ik)π for some permutation π.

Here T S denotes the transitive closure of a DAG [57], where i → j ∈ T S(G) if and only if
i ∈ anG(j). Note that this limitation is not due to the linear mixing of the causal variables. It
was shown in [57] that with fully observed causal variables, one can only identify a DAG up to its
transitive closure by detecting marginal distribution changes. In the next section, we show how to
reduce T S(Gπ) to Gπ , i.e., identifying the CD-equivalence class of ⟨G, I1, ..., Ik⟩.

4.3 Identifying direct edges

Figure 3

DAGs with the same transitive closure can span a spectrum of
sparsities; for example, a complete graph and a line graph with
the same topological ordering have the same transitive closure.
The following example shows that under Assumption 2, in some
cases we cannot identify more than the transitive closure.
Example 3. Let G be the 3-node DAG shown on the left in Fig-
ure 3. Suppose that P(U1) is N (0, 1), P(U2|U1) is N (U2

1 , 1),
and P(U3|U1, U2) is N ((U1 +U2)

2, 1). Let f be the identity map and I1, I2, I3 target nodes 1, 2, 3,
respectively, each changing their conditional variances to 2.5

Now consider a different model with variables Û = (U1, U1 +U2, U3) and mixing function f̂(Û) =

(Û1, Û2 − Û1, Û3). Then f̂(Û) = U = f(U) = X . The distributions P(Û), PI1(Û), PI2(Û), and
PI3(Û) each factorizes according to the DAG Ĝ that is missing the edge 1 → 3 (Figure 3), where
we let I1, I2 and I3 change the conditional variances of Û1, Û2, and Û3 to 2, respectively.

This example shows that we cannot identify 1 → 3 since U1⊥⊥U3|U1 + U2. In the case when the
causal variables are fully observed, 1 → 3 can be identified by assuming U1 ̸⊥⊥ U3|U2. However,
when allowing for linear mixing, we need to avoid cases such as U1⊥⊥U3|U1 + U2 in order to be
able to identify 1 → 3. We will show that the following assumption guarantees identifiability of G.

4A source node is a node without parents.
5We show in Appendix B that this model satisfies Assumptions 1 and 2.
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When G is a polytree (a DAG whose skeleton is a tree), this assumption is implied by Assumption 2
under mild regularity conditions (proven in Appendix B). Thus if G is the sparsest DAG within its
transitive closure, we can always identify it with just the Assumptions 1 and 2.
Assumption 3. For every edge i → j ∈ G, there do not exist constants cj , ck ∈ R for k ∈ S such
that Ui⊥⊥Uj + cjUi | {Ul}l∈paG(j)\(S∪{i}), {Uk + ckUi}k∈S , where S = paG(j) ∩ deG(i).

Theorem 2. Under Assumptions 1,2,3, ⟨G, I1, ..., IK⟩ is identifiable up to its CD-equivalence class.

4.4 Further remarks

Next we discuss if it is possible to recover U along with ⟨G, I1, . . . , Ik⟩ up to their CD-equivalence
class. Note a simple contradiction with G = {1 → 2}: since we consider general soft interventions,
there will always be a valid explanation if we add U1 to U2. Therefore even when we can identify
⟨G, I1, . . . , Ik⟩ up to its CD-equivalence class, we still cannot identify U in an element-wise fashion.
However, our identifiability results still allow us to draw causal explanations and predict the effect
of unseen combinations of interventions, as we discuss below.

Application of Theorem 1 and 2. Given unpaired data D,DI1 , ...DIK , these two theorems guaran-
tee that we can identify which I1, ..., IK correspond to intervening on the same latent node. Further-
more, Theorem 1 shows that we are able to identify ancestral relationships between the intervention
targets of I1, ..., IK , while Theorem 2 guarantees identifiability of the exact causal structure.

For example, given high-dimensional single-cell transcriptomic readout from a genome-wide knock-
down screen, we can under Assumption 1 identify the number of latent causal variables (which we
can interpret as the programs of a cell), under Assumption 2 identify which genes belong to the same
program, and under Assumption 3 identify the full regulatory relationships between the programs.

Extrapolation to unseen combinations of interventions. Theorems 1 and 2 also guarantee that we
can predict the effect of unseen combinations of interventions. Namely, consider a combinatorial
intervention I ⊂ {I1, ..., IK}, where TG(I) ̸= TG(I

′) for all I ̸= I ′ ∈ I. In other words, I is an
intervention with multiple intervention targets that is composed by combining interventions among
I1, ..., IK with different targets.

Denote by ⟨Û , Ĝ, Î1, ..., ÎK⟩ the latent model identified from the interventions {I1, ..., IK}. Recall
from Section 3 that we can also infer the mixing function f̂ and mechanisms from Û , Ĝ, Î1, ..., ÎK .
From this, we can infer the interventional distribution under the combinatorial intervention I:

X = f̂(Û), Û ∼ PÎ
Û
=
∏

Î /∈I
PÛ

(
ÛTĜ(Î) | ÛpaĜ(TĜ(Î))

)
·
∏

Î∈I
PÎ
Û

(
ÛTĜ(Î) | ÛpaĜ(TĜ(Î))

)
. (2)

We state the conditions for this result informally in the following theorem. A formal version of this
theorem together with its proof are given in Appendix B.5.
Theorem 3 (Informal). Let I be a combinatorial intervention (i.e., with multiple intervention tar-
gets) combining several interventions among I1, ..., IK with different targets. The above procedure
allows sampling X according to the distribution X = f(U), U ∼ PI .

5 Discrepancy-based VAE Formulation

Having shown identifiability guarantees for causal disentanglement, we now focus on developing a
practical algorithm for recovering the CD-equivalence class from data. As indicated by our proof of
Theorem 2, the latent causal graph can be identified by taking the sparsest model compatible with
the data. This characterization suggests maximizing a penalized log-likelihood score, a common
method for model selection in causal structure learning [10]. The resulting challenging combina-
torial optimization problem has been tackled using a variety of approaches, including exact search
using integer linear programming [12], greedy search [10, 48, 52], and more recently, gradient-
based approaches where the combinatorial search space is relaxed to a continuous search space
[70, 34, 38, 61].

Gradient-based approaches offer several potential benefits, including scalability, ease of implemen-
tation in automatic differentiation frameworks, and significant flexibility in the choice of com-
ponents. In light of these benefits, we opted for a gradient-based approach to optimization. In
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Figure 4: Our proposed CausalDiscrepancyVAE architecture. Gray boxes represent inputs, white
boxes the generated values, blue boxes the trainable modules, and orange boxes the terms of the loss
function. Dashed lines indicate copies of the same module or related modules. Highlighted boxes
show the procedure to generate virtural counterfactual samples.

particular, we replace the log-likelihood term of our objective function with a variational lower
bound by employing the framework of autoencoding variational Bayes (AVB), widely used in prior
works for causal disentanglement [36, 6]. To employ AVB, we re-parameterize each distribution
P(Ui | UpaG(i)) in Eq. (1) into Ui = si(UpaG(i), Zi), where Zi is an independent exogenous noise
variable and si denotes the causal mechanism that generates Ui from UpaG(i) and Zi. We let p(Z)

be a prior distribution over Z and pθ,∅(X | Z) be the conditional distribution of X given Z under
no intervention, thereby defining the marginal distribution pθ,∅(X). Given an arbitrary distribution
qϕ(Z | X), we have the following well-known inequality (often called the Evidence Lower Bound
or ELBO) for any sample x:

log pθ,∅(x) ≥ Lrecon
θ,ϕ (x) + Lreg

ϕ (x), where Lrecon
θ,ϕ (x) := Eqϕ(Z|x) log pθ,∅(x | Z),

Lreg
ϕ (x) := −DKL(qϕ(Z | x)∥p(Z)).

Putting this into the framework of an autoencoder, we call the distribution qϕ the encoder and the
distribution pθ,∅ the decoder. In our case, the decoder is composed of two functions. First, a deep
structural causal model (Aθ, sθ,∅) maps the exogenous noise Z to the causal variables U∅. In par-
ticular, the adjacency matrix Aθ defines the parent set for each variable, while sθ,∅ = {(sθ,∅)i}pi=1
denotes the learned causal mechanisms. Second, a mixing function fθ maps the causal variables U∅

to the observed variables X∅. Because of the permutation symmetry of CD-equivalence, we can
fix Aθ to be upper triangular without loss of generality. We add a loss term Lsparse

θ := −∥Aθ∥1 to
encourage Aθ to be sparse.

While the observational samples are generated from the distribution pθ,∅, the interventional sam-
ples are drawn from a different but related distribution pθ,I . The modularity of our decoder allows
us to replace (Aθ,mθ,∅) with an interventional counterpart (Aθ,mθ,I), while keeping the mixing
function fθ constant. This is illustrated by the highlighted boxes in Fig. 4. For each intervention
label I , the corresponding intervention target i and a shift6 ai is determined by an intervention en-
coder Tϕ, which uses softmax normalization to approximate a one-hot encoding of the intervention
target. Given these intervention targets, we generate “virtual” counterfactual samples for each ob-
servational sample. Such samples follow the distribution Pθ,ϕ(X̂

Îk), the pushforward of P∅
X under

the action of the encoder qϕ and decoder pθ,I . These samples are compared to real samples from
the corresponding interventional distribution. A variety of discrepancy measures can be used for
this comparison. To avoid the saddle point optimization challenges that come with adversarial train-
ing, we do not consider adversarial methods (e.g. the dual form of the Wasserstein distance in [5]).

6For simplicity, we parameterize interventions in DSCM as shifts, though the theoretical results hold for
general nonparameteric interventions.
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Figure 5: The distribution of generated samples mirrors the distribution of actual samples.
Samples are visualized using UMAP. Left: Samples from the 14 single target-node interventions
with more than 800 cells. Middle-Right: Samples for target genes SET, CEBPE, and KLF1.

This leaves non-adversarial discrepancy measures, such as the MMD (Maximum Mean Discrep-
ancy) [18], the entropic Wasserstein distance [15], and the sliced Wasserstein distance [63]. In this
work, we focus on the MMD measure, whose empirical estimate we recall in Appendix C.1. We
take Ldiscrep

θ,ϕ := −
∑K

k=1 MMD(Pθ,ϕ(X̂
Îk),PIk

X ). Thus, the full loss function used during training is

Lα,β,λ
θ,ϕ := EX∅

[
Lreg
θ,ϕ(X) + βLrecon

ϕ (X)
]
+ αLdiscrep

θ,ϕ + λLsparse
θ . (3)

A diagram of the proposed architecture is shown in Fig. 4. Values of the hyperparameters α, β, λ
used in our loss function as well as other hyperparameters are described in Appendix F.

Our loss function exhibits several desirable properties. First, as we show in Appendix D, the un-
paired data loss function lower bounds the paired data log-likelihood that one would directly op-
timize in the oracle setting where true counterfactual pairs were available. Second, as we show in
Appendix E, this procedure is consistent, in the sense that optimizing the loss function in the limit of
infinite data will recover the generative process (under suitable conditions). This consistency result
also guarantees that the learned model can consistently predict the effect of multi-node interventions;
see Appendix E.2.

6 Experiments

We now demonstrate our method on a biological dataset. We use the large-scale Perturb-seq study
from [44]. After pre-processing, the data contains 8,907 unperturbed cells (observational dataset D)
and 99,590 perturbed cells. The perturbed cells underwent CRISPR activation [16] targeting one
or two out of 105 genes (interventional datasets D1,...,DK , K = 217). CRISPR activation experi-
ments modulate the expression of their target genes, which we model as a shift intervention. Each
interventional dataset comprises 50 to 2,000 cells. Each cell is represented as a 5,000-dimensional
vector (observed variable X) measuring the expressions of 5,000 highly variable genes.

To test our model, we set the latent dimension p = 105, corresponding to the total number of
targeted genes. During training, we include all the unperturbed cells from D and the perturbed cells
from the single-node interventional datasets D1, ...,D105 that target one gene. For each single-node
interventional dataset with over 800 cells, we randomly extract 96 cells and reserve these for testing.
The double-node interventions (112 distributions D106, ...,D217) targeting two genes are entirely
reserved for testing. The following results summarize the model with the best training performance.
Extended evaluations and detailed implementation can be found in Appendix F and G. In additional,
we also provide ablation studies on biological data and a simple simulation study in Appendix H.

Single-node Interventional Distributions. To study the generative capacity of our model for inter-
ventions on single genes, we produce 96 samples for each single-node intervention with over 800
cells (14 interventions). We compare these against the left-out 96 cells of the corresponding distri-
butions. Figure 5 illustrates this for 3 example genes in 2 dimensions using UMAP [41] with all
other cells in the dataset as background (labeled by ‘NA’). Our model is able to discover subpopu-
lations of the interventional distributions (e.g., for KLF1, the generated samples are concentrated in
the middle left corner). We provide a quantitative evaluation for all 105 single-node interventions in
Figure 6. The model is able to obtain close to perfect R2 (on average 0.99 over all genes and 0.95
over most differentially expressed genes).

Double-node Interventional Distributions. Next, we analyze the generalization capabilities of
our model to the 112 double-node interventions. Despite never observing any cells from these
interventions during training, we obtain reasonable R2 values (on average 0.98 over all genes and
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Figure 6: Our model accurately predicts the effect of single-node interventions. ‘All genes’ indi-
cates measurements using the entire 5000-dimensional vectors; ‘DE genes’ indicates measurements
using the 20-dimensional vectors corresponding to the top 20 most differentially expressed genes.

0.88 over most differentially expressed genes). However, when looking at the generated samples
for individual pairs of interventions, it is apparent that our model performs well on many pairs, but
recovers different subpopulations for some pairs (examples shown in Figure 13 in Appendix G).
The wrongly predicted intervention pairs could indicate that the two target genes act non-additively,
which needs to be further evaluated and is of independent interest for biological research [22, 44].

OSR2

COL2A1

SET KLF1

TBX2

DUSP9

MAPK1
 / ETS2

DAG over programs (example genes)

Figure 7: Structure learning on the biological
dataset. Left: learned DAG between target genes
(colors indicate edge weights). Right: UMAP vi-
sualization of the distributions.

Structure Learning. Lastly, we examine the
learned DAG between the intervention targets.
Specifically, this corresponds to a learned gene
regulatory network between the learned pro-
grams of the target genes. For this, we reduce
p from 105 until the learned latent targets of
D1, ...,D105 cover all p latent nodes. This re-
sults in p = 7 groups of genes, where genes
are grouped by their learned latent nodes. We
then run our algorithm with fixed p = 7 multiple
times and take the learned DAG with the least
number of edges. This DAG over the groups of
targeted genes is shown with example genes in Figure 7 (left). This learned structure is in accor-
dance with previous findings. For example, we successfully identified the edges DUSP9→MAPK1
and DUSP9→ETS2, which is validated in [44] (see their Fig. 5). We also show the interventional
distributions targeting these example genes in Figure 7 (right). Among these, MAPK1 and ETS2
correspond to clusters that are heavily overlapping, which explains why the model maps both distri-
butions to the same latent node.

7 Conclusion

We derived identifiability results for causal disentanglement from single-node interventions, and
presented an autoencoding variational Bayes framework to estimate the latent causal representation
from interventional samples. Identification of the latent causal structure and generalization to multi-
node interventions was demonstrated experimentally on genetic data.

Limitations and Future Work. This paper has various limitations that may be useful to address
in future work. We provide an overview here, where an extended discussion can be found in Ap-
pendix I. In addition, we also provide a brief summary of concurrent related works in Appendix I.

First, we focused on the setting where single-node interventions on each latent node are available.
This is overly optimistic for example in the case of chemical perturbations where the available drugs
could all have multiple targets. The VAE framework can still be applied in such settings; however,
its theoretical guarantees are subject to further investigations. The key techniques in our proofs can
be generalized to the multi-node setting, but further assumptions on the set of interventions needed
for identifiability are required. Second, we have focused on the infinite data regime for analyzing
identifiability; given that obtaining interventional samples tends to be expensive in practice, there is
much room for further investigations in terms of sample complexity.
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B. Schölkopf. Nonparametric identifiability of causal representations from unknown interven-
tions. arXiv preprint arXiv:2306.00542, 2023.

[61] M. J. Vowels, N. C. Camgoz, and R. Bowden. D’ya like dags? a survey on structure learning
and causal discovery. ACM Computing Surveys, 55(4):1–36, 2022.

[62] Y. Wang, L. Solus, K. D. Yang, and C. Uhler. Permutation-based causal inference algorithms
with interventions. In Neural Information Processing Systems, volume 31, 2017.

[63] J. Wu, Z. Huang, D. Acharya, W. Li, J. Thoma, D. P. Paudel, and L. V. Gool. Sliced wasserstein
generative models. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 3713–3722, 2019.

[64] F. Xie, R. Cai, B. Huang, C. Glymour, Z. Hao, and K. Zhang. Generalized independent noise
condition for estimating latent variable causal graphs. Advances in neural information pro-
cessing systems, 33:14891–14902, 2020.

[65] F. Xie, B. Huang, Z. Chen, Y. He, Z. Geng, and K. Zhang. Identification of linear non-gaussian
latent hierarchical structure. In International Conference on Machine Learning, pages 24370–
24387. PMLR, 2022.

[66] K. Yang, A. Katcoff, and C. Uhler. Characterizing and learning equivalence classes of causal
dags under interventions. In International Conference on Machine Learning, pages 5541–
5550. PMLR, 2018.

[67] K. D. Yang, A. Katcoff, and C. Uhler. Characterizing and learning equivalence classes of causal
DAGs under interventions. Proceedings of Machine Learning Research, 80:5537–5546, 2018.

[68] H. Yu and J. D. Welch. Perturbnet predicts single-cell responses to unseen chemical and genetic
perturbations. BioRxiv, pages 2022–07, 2022.

[69] J. Zhang, C. Squires, and C. Uhler. Matching a desired causal state via shift interventions.
Advances in Neural Information Processing Systems, 34:19923–19934, 2021.

[70] X. Zheng, B. Aragam, P. K. Ravikumar, and E. P. Xing. Dags with no tears: Continuous
optimization for structure learning. Advances in Neural Information Processing Systems, 31,
2018.

[71] R. S. Zimmermann, Y. Sharma, S. Schneider, M. Bethge, and W. Brendel. Contrastive learning
inverts the data generating process. In International Conference on Machine Learning, pages
12979–12990. PMLR, 2021.

14



Contents of Appendix

A Useful Lemmas 16

A.1 Remarks on Assumption 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

A.2 Proof of Lemma 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

B Proof of Identifiability with Soft Interventions 17

B.1 Faithfulness Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

B.2 Summary of representations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

B.3 Proof of Theorem 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

B.4 Proof of Theorem 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

B.5 Proof of Theorem 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

C Details on Discrepancy-based VAE 29

C.1 Maximum Mean Discrepancy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

C.2 Discrepancy VAE Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

D Lower Bound to Paired Log-Likelihood 30

E Consistency of Discrepancy-based VAE 31

E.1 CD-Equivalence Class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

E.2 Consistency for Multi-Node Interventions . . . . . . . . . . . . . . . . . . . . . . 32

F Discrepancy-based VAE Implementation Details 33

G Extended Results on Biological Dataset 33

G.1 Single-node interventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

G.2 Double-node interventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

G.3 Structure Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

H Extended Experiments 36

H.1 Ablation Studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

H.2 Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

I Extended Discussion 38

I.1 Limitations and Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

I.2 Discussion of Contemporaneous Works. . . . . . . . . . . . . . . . . . . . . . . . 39

15



A Useful Lemmas

A.1 Remarks on Assumption 1

Here we show that the assumption on the functional class of f is satisfied if f is linear and injective,
whenever the support of PU has non-empty interior. Recall Assumption 1.

Assumption 1. Let U be a p-dimensional random vector. Following [3], we assume that the interior
of the support of PU is a non-empty subset of Rp, and that f is a full row rank polynomial.7

Denote the support of PU ,PX as U,X respectively. Let U◦ be the interior of U.

Lemma 2. Suppose U◦ is a non-empty subset of Rp. If f : U → X is linear and injective, then it
must be a full row rank polynomial.

Proof. Since f is linear, it can be written as f(U) = UH + h for some H ∈ Rp×n and h ∈ Rp.
If H is not of full row rank, then there exists a non-zero vector V ∈ Rp such that V H = 0. Let
U ∈ U◦, then there exists ϵ > 0 such that U+ϵV ∈ U. We have f(U+ϵV ) = f(U), which violates
f being injective. Therefore H must have full row rank.

A.2 Proof of Lemma 1

The proof of Lemma 1 follows from [3]. For completeness, we present a concise proof here. Then
we state a few remarks. Recall Lemma 1.

Lemma 1. Under Assumption 1, we can identify the dimension p of U as well as its linear transfor-
mation UΛ + b for some non-singular matrix Λ and vector b. In fact, with observational data, we
can only identify U up to such linear transformations.

Proof. We solve for the smallest integer p̂ such that there exists a full row rank polynomial f̂ : Rp̂ →
Rn where Û := f̂−1(X) for X ∈ X has non-empty support Û◦ ⊆ Rp̂. In other words, denote all
pairs of PU , f that satisfy Assumption 1 as Fp, we solve for

min(PÛ ,f̂)∈Fp̂
p̂ subject to Pf̂(Û) = PX . (4)

Note that f̂(Û) = X = f(U) for all U ∈ U. Since f̂ , f are full row rank polynomials, there exist
full row rank matrices Ĥ ∈ R(p+...+pd̂)×n, H ∈ R(p+...+pd)×n and vectors ĥ, h ∈ Rn such that

(Û , ⊗̄Û2, ..., ⊗̄Ûd)Ĥ + ĥ = f̂(Û) = X = f(U) = (U, ⊗̄U2, ..., ⊗̄Ud)H + h. (5)

Since Ĥ,H are of full rank, they have pseudo-inverses Ĥ†, H† such that ĤĤ† = Ip+...+pd̂ and

HH† = Ip+...+pd . Multiplying Ĥ† to Eq. (5), we have

(Û , ⊗̄Û2, ..., ⊗̄Ûd) = (U, ⊗̄U2, ..., ⊗̄Ud)HĤ† + (h− ĥ)Ĥ†.

Therefore Û can be written as a polynomial of U , i.e., Û = poly1(U). Similarly, we have U =

poly2(Û). Therefore U = poly2(poly1(U)) for all U ∈ U. Since U◦ is non-empty, we know that
U = poly2(poly1(U)) on some open set. By the fundamental theorem of algebra [14], we know
that poly1 and poly2 must have degree 1. Thus Û = UΛ + b for some full row rank matrix Λ and
vector b. Since Λ ∈ Rp×p̂ is of full row rank, it indicates that p ≤ p̂. Since PU , f ∈ Fp satisfy
Pf(U) = PX , by Eq. (4), we must have p̂ ≤ p. Thus p̂ = p and Û = UΛ + b for some non-singular
matrix Λ and vector b.

This proof also shows that we can only identify U up to such linear transformations with observa-
tional data. Since for any non-singular matrix Λ and vector b, let f̂(Û) = f((Û − b)Λ−1). We have
PÛ , f̂ satisfy Assumption 1 and they generate the same observational data.

7There exists some integer d, a full row rank H ∈ R(p+...+pd)×n and a vector h ∈ Rn such that f(U) =
(U, ⊗̄U2, ..., ⊗̄Ud)H+h, where ⊗̄Uk denotes the size-pk vector with degree-k polynomials of U as its entries.
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Remark 1. With observational data X = f(U) ∈ D, we can identify Û = ĝ(X) such that Û =
UΛ + b for non-singular Λ. Then for any interventional data X = f(U) ∈ DI , the analytic
continuation of ĝ to DI satisfies Û := ĝ(X) = UΛ + b for all X ∈ DI .

Proof. The proof follows immediately by writing ĝ, f−1 as polynomial functions.

Next, we discuss identifiability of the underlying DAG G. First, we give an example showing that
any causal DAG can explain the observational data.

Example 4. Suppose the ground-truth DAG is an empty graph G = ∅. With observational data
alone, any DAG can explain the data.

Proof. Let Ĝ be an arbitrary DAG with topological order τ(1), ..., τ(p), i.e., τ(j) ∈ paĜ(τ(i)) only
if j < i. Let Λ be the permutation matrix such that Û = UΛ satisfies Ûτ(i) = Ui for any i ∈ [p].
Then Û factorizes as P(Û) = P(U) =

∏p
i=1 P(Ui) =

∏p
i=1 P(Ûτ(i)). This implies Ûτ(i)⊥⊥ Ûτ(j)

for j ≤ i − 1. Therefore P(Ûτ(i)) = P(Ûτ(i) | ÛpaĜ(i)
) and P(Û) =

∏p
i=1 P(Ûτ(i) | ÛpaĜ(i)

)

factorizes with respect to Ĝ. Thus Ĝ can explain the data.

Therefore with observational data alone, we cannot identify the underlying DAG G up to any nontriv-
ial equivalence class. In [3], it was shown that with a do intervention8 per latent node and assuming
the interior of the support of the non-targeted variables is non-empty, one can identify U up to a finer
class of linear transformations. Namely, one can identify U up to CD-equivalence (permutation and
element-wise affine transformation); see Definition 1. Then, assuming for example faithfulness and
influentiality [57], one can identify G.

While several extensions beyond do-interventions are discussed in [3], they all involve manipulat-
ing the support of the intervention targets. In the case where the support of the intervention targets
remains unchanged (e.g., additive Gaussian SCMs with shift interventions), a completely new ap-
proach and theory needs to be developed.

B Proof of Identifiability with Soft Interventions

In this section, we provide the proofs for the results in Section 4. While our main focus is on
general types of soft interventions, our results also apply to hard interventions which include do-
interventions as a special case.

Notation. We let ei denote the indicator vector with the i-th entry equal to one and all other entries
equal to zero. To be consistent with other notation in the paper, let ei ∈ Rp be a row vector. We call
j ∈ chG(i) a maximal child of i if paG(j) ∩ deG(i) = ∅. Denote the set of all maximal children of
i as mchG(i). For node i, define deG(i) := deG(i) ∪ {i}. Given a DAG G, we denote the transitive
closure of G by T S(G), i.e., i → j ∈ T S(G) if and only if there is a directed path from i to j in G.

B.1 Faithfulness Assumptions

We start by discussing previous interventional faithfulness assumptions. Prior interventional faith-
fulness assumptions [57, 66, 24] vary by a few technicalities; but they all assume that all causal
variables are observed (causal sufficiency), and, more importantly, that intervening on a node will
always change the marginal of its descendants. In particular, [57] (Definition 2, called “influential-
ity”) only made this assumption and showed that the causal graph is identifiable up to its transitive
closure by detecting marginal changes. [57] showed that their algorithm consistently identifies the
full causal graph by assuming additionally that intervening on a node changes the conditional distri-
bution of its direct children giving its neighbors (details can be found in Assumption 4.5 of [66]). A
similar notion was also introduced in [24] where they made further assumptions regarding changes
in the conditional distributions.

8Do interventions are a special type of hard interventions where the intervention target collapses to one
specific value.
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We now show our linear interventional faithfulness (Assumption 2) is satisfied by a large class of
nonlinear SCMs and soft interventions. Recall Assumption 2.
Assumption 2. Intervention I with target i satisfies linear interventional faithfulness if for every
j ∈ {i} ∪ chG(i) such that paG(j) ∩ deG(i) = ∅, it holds that P(Uj +USC

⊤) ̸= PI(Uj +USC
⊤)

for all constant vectors C ∈ R|S|, where S = [p] \ ({j} ∪ deG(i)).

In Example 2, we discussed a 2-node graph where Assumption 2 is satisfied. This example can be
extended in the following way, which subsumes the case in Example 3.
Example 5. Consider an SCM with additive noise, where each mechanism P(Uk | UpaG(k)) is
specified by Uk = sk(UpaG(k))+ϵk, where ϵk for k ∈ [p] are independent exogenous noise variables.
Assumption 2 is satisfied if I only changes the variance of ϵi and sj is a quadratic function with non-
zero coefficient of U2

i for each j ∈ mchG(i).

Proof. If j = i in Assumption 2, then S = [p] \ deG(i) ⊃ paG(i). Since US⊥⊥ϵi, we have

Var(Ui + USC
⊤) = Var(ϵi) + Var(si(UpaG(i)) + USC

⊤).

Note that PI does not change the joint distribution of US , and therefore

VarP(si(UpaG(i)) + USC
⊤) = VarPI (si(UpaG(i)) + USC

⊤).

By VarP(ϵi) ̸= VarPI (ϵi), we then know thatVarP(Ui + USC
⊤) ̸= VarPI (Ui + USC

⊤). Thus
P(Ui + USC

⊤) ̸= PI(Ui + USC
⊤).

If j ̸= i in Assumption 2, then by linearity of expectation E(Uj + USC
⊤) = E(Uj) + E(US)C

⊤.
Note that S = [p] \ ({j} ∪ deG(i)) = [p] \ deG(i), and therefore EP(US) = EPI (US). Next
we show that EP(Uj) ̸= EPI (Uj). Once this is proven, then we have that EP(Uj + USC

⊤) ̸=
EPI (Uj + USC

⊤), which concludes the proof for P(Uj + USC
⊤) ̸= PI(Uj + USC

⊤).

Since sj is a quadratic function of Ui, suppose the coefficient of U2
i in sj is β ̸= 0. Then

E(Uj)− E(ϵj) = E(Uj − ϵj)

= E
(
sj,0(UpaG(j)\{i}) + sj,1(UpaG(j)\{i}) · Ui + βU2

i

)
= E

(
sj,0(UpaG(j)\{i}) + s′j,1(UpaG(j)\{i}, UpaG(i)) · ϵi + βϵ2i

)
= E

(
sj,0(UpaG(j)\{i})

)
+ E

(
s′j,1(UpaG(j)\{i}, UpaG(i)) · ϵi

)
+ βE(ϵ2i ),

(6)

for some functions sj,0, sj,1 and s′j,1. Since paG(j)∩ deG(i) = ∅, we know that PI will not change
the joint distribution of UpaG(j)\{i} and that ϵi⊥⊥UpaG(j)\{i}, UpaG(i). Therefore we have

EP
(
sj,0(UpaG(j)\{i})

)
= EPI

(
sj,0(UpaG(j)\{i})

)
,

EP
(
s′j,1(UpaG(j)\{i}, UpaG(i)) · ϵi

)
= EP

(
s′j,1(UpaG(j)\{i}, UpaG(i))

)
· EP(ϵi)

= EPI

(
s′j,1(UpaG(j)\{i}, UpaG(i))

)
· EPI (ϵi)

= EPI

(
s′j,1(UpaG(j)\{i}, UpaG(i)) · ϵi

)
.

By EP(ϵj) = EPI (ϵj), EP(ϵ
2
i ) ̸= EPI (ϵ2i ) and Eq. (6), we have EP(Uj) ̸= EPI (Uj), which concludes

the proof.

This example shows how we may check P(Uj+USC
⊤) ̸= PI(Uj+USC

⊤) by examining the mean
and variance of Uj + USC

⊤. In general, this can be extended to checking any finite moments of
Uj + USC

⊤ as stated in the following lemma.
Lemma 3. Assumption 2 is satisfied if for each i ∈ [p] one of the following conditions holds:

(1) if EP(Ui | UpaG(i)) = EPI (Ui | UpaG(i)), then there exits an integer m > 1 such that

EP(U
m
i | UpaG(i)) ̸= EPI (Um

i | UpaG(i)),

and the smallest m that satisfies this also satisfies EP(U
m
i ) ̸= EPI (Um

i ). In addition, for
all j ∈ mchG(i), it holds that EP(Uj) ̸= EPI (Uj);
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(2) if EP(Ui) ̸= EPI (Ui), then for all j ∈ mchG(i), there exists an integer m > 1 such that
EP((Uj + cjUi)

m | US\{i}) ̸= EPI ((Uj + cjUi)
m | US\{i}),

where S is as defined in Assumption 2, and the smallest m that satisfies this also satisfies
EP((Uj + cjUi)

m) ̸= EPI ((Uj + cjUi)
m), where

cj = − (EP(Uj)− EPI (Uj))

(EP(Ui)− EPI (Ui))
.

Proof. Suppose (1) holds true. If j = i in Assumption 2, then P(US) = PI(US) for S = [p]\deG(i),
and

EP
(
(Ui + USC

⊤)m
)

= EP(U
m
i ) +

m−1∑
l=0

(
m

l

)
EP
(
U l
i (USC

⊤)m−l
)

= EP(U
m
i ) +

m−1∑
l=0

(
m

l

)
EP

(
EP(U

l
i |US) · (USC

⊤)m−l
)

(law of total expectation)

= EP(U
m
i ) +

m−1∑
l=0

(
m

l

)
EP

(
EP(U

l
i |UpaG(i)) · (USC

⊤)m−l
)

(since Ui⊥⊥US\paG(i) | UpaG(i))

̸= EPI (Um
i ) +

m−1∑
l=0

(
m

l

)
EP

(
EPI (U l

i |UpaG(i)) · (USC
⊤)m−l

)
= EPI (Um

i ) +

m−1∑
l=0

(
m

l

)
EPI

(
EPI (U l

i |UpaG(i)) · (USC
⊤)m−l

)
= EPI

(
(Ui + USC

⊤)m
)
,

where the inequality is because of EP(U
m
i ) ̸= EPI (Um

i ) and EP(U
l
i |UpaG(i)) = EPI (U l

i |UpaG(i))

for any l < m. Therefore P(Ui + USC
⊤) ̸= PI(Ui + USC

⊤).

If j ̸= i in Assumption 2, then EP(Uj) ̸= EPI (Uj) implies EP(Uj + USC
⊤) ̸= EPI (Uj + USC

⊤),
which proves that P(Uj + USC

⊤) ̸= PI(Uj + USC
⊤).

Suppose (2) holds true. If j = i in Assumption 2, then EP(Ui) ̸= EPI (Ui) implies EP(Ui +
USC

⊤) ̸= EPI (Ui + USC
⊤), which proves that P(Ui + USC

⊤) ̸= PI(Ui + USC
⊤).

If j ̸= i in Assumption 2, then for C ∈ R|S|, if the coordinate for Ui is not cj , then
EP(Ui + USC

⊤) = EP(Ui) + EP(US)C
⊤ ̸= EPI (Ui) + EPI (US)C

⊤ = EPI (Ui + USC
⊤), since

EP(US\{i}) = EPI (US\{i}). If the coordinate for Ui in C is cj , denote USC
⊤ = US\{i}C

⊤
−j+cjUi,

and then similar to above we obtain
EP
(
(Uj + USC

⊤)m
)

= EP
(
(Uj + cjUi + US\{i}C

⊤
−j)

m
)

= EP
(
(Ui + cjUi)

m
)
+

m−1∑
l=0

(
m

l

)
EP
(
(Ui + cjUi)

l(US\{i}C
⊤
−j)

m−l
)

= EP
(
(Ui + cjUi)

m
)
+

m−1∑
l=0

(
m

l

)
EP

(
EP
(
(Ui + cjUi)

l|US\{i}
)
· (US\{i}C

⊤
−j)

m−l
)

̸= EPI

(
(Ui + cjUi)

m
)
+

m−1∑
l=0

(
m

l

)
EP

(
EPI

(
(Ui + cjUi)

l|US\{i}
)
· (US\{i}C

⊤
−j)

m−l
)

= EPI

(
(Ui + cjUi)

m
)
+

m−1∑
l=0

(
m

l

)
EPI

(
EPI

(
(Ui + cjUi)

l|US\{i}
)
· (US\{i}C

⊤
−j)

m−l
)

= EPI

(
(Uj + USC

⊤)m
)
.

Thus P(Uj + USC
⊤) ̸= PI(Uj + USC

⊤), which completes the proof.
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This lemma gives a sufficient condition for Assumption 2 to hold. Since it involves only finite
moments of the variables, one can easily check if this is satisfied for a given SCM associated with
soft interventions. Note that Example 5 satisfies the first condition of Lemma 3 for m = 2.

Next we show that Assumption 3 is satisfied on a tree graph if Assumption 2 holds, under mild
regularity conditions such as that the interventional support lies within the observational support.
Recall Assumption 3.
Assumption 3. For every edge i → j ∈ G, there do not exist constants cj , ck ∈ R for k ∈ S such
that Ui⊥⊥Uj + cjUi | {Ul}l∈paG(j)\(S∪{i}), {Uk + ckUi}k∈S , where S = paG(j) ∩ deG(i).

Lemma 4. Suppose G is a polytree and Assumption 2 holds for an intervention I targeting node i.
Then for any edge i → j ∈ G, Assumption 3 holds if 9

P(Ui = u | UpaG(j)\{i}) = 0 ⇒ PI(Ui = u | UpaG(j)\{i}) = 0, (7)

for almost every u and all realizations of UpaG(j)\{i}.

Proof. Suppose G is a tree graph and Assumption 2 holds for I targeting i. For any edge i → j ∈ G,
since there is only one undirected path between i and j, we have S = paG(j) ∩ deG(i) = ∅.
Therefore we only need to show that Ui and Uj + cjUi are not conditionally independent given
UpaG(j)\{i} for any cj ∈ R.

The regularity condition in Eq. (7) ensures that∫
P(Ui=r|UpaG(j)\{i} )̸=0

PI(Ui = r | UpaG(j)\{i})dr = 1, (8)

for any realization of UpaG(j)\{i}.

Suppose Ui and Uj + cjUi are conditionally independent given UpaG(j)\{i}. Then for any l ∈ R and
realization of UpaG(j)\{i}, Ui (denote the realization of Ui as r),

P(Uj + cjUi = l | UpaG(j)\{i}) = P(Uj + cjUi = l | Ui = r, UpaG(j)\{i})

= P(Uj = l − cjr | Ui = r, UpaG(j)\{i}).

Since this is true for any r with P(Ui = r | UpaG(j)\{i}) ̸= 0, by Eq. (8), we have

P(Uj + cjUi = l | UpaG(j)\{i})

=

∫
P(Ui=r|UpaG(j)\{i}) ̸=0

P(Uj + cjUi = l | UpaG(j)\{i}) · PI(Ui = r | UpaG(j)\{i})dr

=

∫
P(Ui=r|UpaG(j)\{i}) ̸=0

P(Uj = l − cjr | Ui = r, UpaG(j)\{i}) · PI(Ui = r | UpaG(j)\{i})dr.

Note that P(Uj | Ui, UpaG(j)\{i}) = PI(Uj | Ui, UpaG(j)\{i}) since I targets i, and we therefore
have

P(Uj + cjUi = l | UpaG(j)\{i})

=

∫
P(Ui=r|UpaG(j)\{i} )̸=0

PI(Uj = l − cjr | Ui = r, UpaG(j)\{i}) · PI(Ui = r | UpaG(j)\{i})dr

=

∫
P(Ui=r|UpaG(j)\{i} )̸=0

PI(Uj = l − cjr, Ui = r | UpaG(j)\{i})dr

=

∫
PI(Ui=r|UpaG(j)\{i} )̸=0

PI(Uj = l − cjr, Ui = r | UpaG(j)\{i})dr

= PI(Uj + cjUi = l | UpaG(j)\{i}),

where the second-to-last equality uses the regularity condition in Eq. (7).
9For simplicity, we assume U is continuous and treat P as the density. For discrete U , the proofs extend by

replacing
∫

with
∑

.
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Since paG(j) ∩ deG(i) = ∅, it holds that P(UpaG(j)\{i}) = PI(UpaG(j)\{i}), and thus P(Uj +

cjUi) = PI(Uj+cjUi), which is a contradiction to linear interventional faithfulness of I . Therefore,
we must have that Ui and Uj + cjUi are not conditionally independent given UpaG(j)\{i}, which
completes the proof.

Essentially, Assumption 2 guarantees influentiality and Assumption 3 guarantees adjacency faith-
fulness. These assumptions differ from existing faithfulness conditions (c.f., [57, 58, 67]) due to the
fact that we can only observe a linear mixing of the causal variables.

B.2 Summary of representations

In the remainder of this appendix, we will develop a series of representations which are increasingly
related to the underlying representation U . These representations are summarized in Table 1.

Symbol Definition Section
U Section 2
X X = UΛ + b, Λ ∈ Rp×p, b ∈ Rp Section 2
Ũ Ũ = U Γ̃ + c̃, Γ̃ = ΛΠ, c̃ = bΠ for Π ∈ Rp×p Appendix B.3.1
Û Û = U Γ̂ + ĉ, Γ̂ = Γ̃R̂, ĉ = c̃R̂ for R̂ ∈ Rp×p upp. tri. Appendix B.3.2
Ū Ū = U Γ̄ + c̄, Γ̄ = Γ̂R̄, c̄ = ĉR̄ for R̄ ∈ Rp×p upp. tri. Appendix B.4

Table 1: Representations of U that are used in this appendix. Note that, under Assumption 1, we
can assume X = UΛ + b without loss of generality, by Lemma 1 and Remark 1.

B.3 Proof of Theorem 1

In the main text (Section 4.2), we laid out an illustrative procedure to identify the transitive closure
of G when we consider a simpler setting with K = p. This process relies on iteratively finding
source nodes of G. In the generalized setting with K ≥ p, the proof works in the reversed way,
where we iteratively identify the sink nodes10 of G.

In Section B.3.1, we introduce the concept of a topological representation: a representation Ũ of
the data for which marginal distributions change in a way consistent with an assignment ρ1, . . . , ρp
of intervention targets. In Lemma 5, we show that under Assumptions 1 and 2, a topological rep-
resentation is guaranteed to exist. In Lemma 6, we show that any topological representation is also
topologically consistent in a natural way with the underlying representation U .

In Section B.3.2, we consider transforming a topological representation Ũ into a different topologi-
cal representation Û . For any such representation Û = Ũ R̂′, we define an associated graph ĜR̂′

. In
Lemma 7, we show that picking R̂ so that ĜR̂′

has the fewest edges will yield that ĜR̂ = T S(Gτ ).

Together, these results are used to prove Theorem 1: that we can identify G up to transitive closure.

B.3.1 Topologically ordered representations

We begin by introducing the concept of a topological representation.

Definition 2. Suppose X = UΛ+ b. Let Π ∈ Rp×p be a non-singular matrix, let Ũ = XΠ, and let
ρ1, . . . , ρp ∈ [K]. We call Ũ a topological representation of X with intervention targets ρ1, . . . , ρp
if the following two conditions are satisfied for all j ∈ [p]:

(Condition 1) P(Ũj) ̸= PIρj (Ũj).

(Condition 2) P(Ũ1:j−1C
⊤) = PIρj (Ũ1:j−1C

⊤) and for any C ∈ Rj−1.

Here, P(Ũ),PIk(Ũ) are the induced distributions for Ũ when X ∼ PX and X ∼ PIk
X , respectively.

10A sink node is a node without children
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The next result shows that a topological representation always exists. In particular, we show that a
topological representation can be recovered simply be re-ordering the nodes of G.
Lemma 5. Suppose that Assumption 2 hold. Then, there exists a topological representation of X .

Proof. Assume without loss of generality that G has topological order τ = (1, 2, ..., p), i.e., i →
j ∈ G only if i < j. Let Π = Λ−1, then Ũ = U + c̃ for constant vector c̃ = bΠ. Set ρ1, ..., ρp to be
such that T (Iρj ) = j for j ∈ [p]. Let j ∈ [p] and C ∈ Rj−1.

Condition 1. Since Iρj
targets Uj , by Assumption 2, we have P(Uj) ̸= PIρj (Uj), and thus P(Ũj) ̸=

PIρj (Ũj).

Condition 2. Since Iρj
targets Uj and U1:j−1 ⊂ U[p]\deG(j), we have P(U1:j−1C

⊤) ̸=
PIρj (U1:j−1C

⊤), and thus P(Ũ1:j−1C
⊤) ̸= PIρj (Ũ1:j−1C

⊤).

Now, we show that any topological representation is also consistent with the underlying representa-
tion U up to some linear transformation which respects the topological ordering.

Lemma 6. Suppose that Assumptions 2 hold. Let Ũ = XΠ be a topological representation of X
and denote Γ̃ = ΛΠ. Then, there exists a topological ordering τ of G such that for any j ∈ [p], we
have that

i < j =⇒ Γ̃τ(j),i = 0 and Γ̃τ(j),j ̸= 0. (9)

Proof. We prove by induction. Let c̃ = bΠ. Note that Ũ = U Γ̃ + c̃.

Base case.
Consider Iρp

. Let T (Iρp
) = i. We will show that i must be a sink node in G.

Suppose i is not a sink node, and let j ∈ mchG(i). Since Γ̃ is nonsingular,
rank(span(Γ̃:,1, ..., Γ̃:,p−1)) = p−1. Therefore, we must have span(ei, ej)∩span(Γ̃:,1, ..., Γ̃:,p−1) ̸=
{0}. Thus,

Γ̃γ⊤ = ae⊤i + be⊤j for some a, b ∈ R, γ ∈ Rp such that a2 + b2 ̸= 0, γp = 0

By Condition 2, we have that P(Ũγ⊤) = PIρp
(Ũγ⊤). Since c̃γ⊤ is a constant, this implies that

P(aUi + bUj) = PIρp (aUi + bUj). However, this contradicts Assumption 2. Thus, i must be a sink
node, which we denote by τ(p).

We also have that Γ̃τ(p),i = 0 for any i < p. Otherwise suppose Γ̃τ(p),i ̸= 0, then Ũi = U Γ̃:,i + hi

can be written as Γ̃τ(p),i · Uτ(p) + USC
⊤ + c̃i with S = [p] \ ({τ(p)}) = [p] \ deG(τ(p)). By

Assumption 2, we have P(Ũi) ̸= PIρp (Ũi), a contradiction to Condition 2.

Induction step.
Suppose that we have proven the statement for q ≤ p. Denote the intervention targets of Iρq

, . . . , Iρp

as τ(q), . . . , τ(p), respectively. Let K = [p] \ {τ(q), . . . , τ(p)}.

Consider Iρq−1
with T (Iρq−1

) = i. Let Gq denote the graph G after removing the nodes
τ(q), . . . , τ(p). We will show that i must be a sink node in Gq .

Suppose that i is not a sink node Gq and let j be a maximal child of i in Gq . Since Γ̃[p]\K,[q] = 0,
|K| = q, and Γ̃ is nonsingular, we have that Γ̃K,[q] is nonsingular. Thus, as above,

Γ̃γ⊤ = ae⊤i(q)+be⊤j(q) for some a, b ∈ R, γ ∈ Rp such that a2+b2 ̸= 0, γq = γq+1 = . . . = γp = 0

where ei(q), ej(q) are indicator vectors in Rq with ones at positions of i, j in 1, ..., p after removing
τ(q + 1), ..., τ(p), respectively. Thus, by Condition 2, we have that P(Ũγ⊤) = PIρq (Ũγ⊤), which
contradicts Assumption 2. Therefore Iρq

targets a sink node of Gq .

To show that Γ̃τ(q),i = 0 for any i < q, use Γ̃τ(k),i = 0 for all k ≥ q and write Ũi = U Γ̃:,i + c̃i as
Γ̃τ(q−1),i · Uτ(q−1) + USC

⊤ + c̃i with S = [p] \ {τ(q − 1), τ(q), ..., τ(p)} ⊂ [p] \ deG(τ(q)). By
Assumption 2, we have P(Ũi) ̸= PIρq (Ũi) if Γ̃τ(q),i ̸= 0, a contradiction to Condition 2.
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By induction, we have thus proven that the solution to Condition 1 and Condition 2 satisfies i <
j ⇒ Γ̃τ(j),i = 0. Therefore Γ̃τ,: is upper triangular. Since it is also non-singular, it must hold that
Γ̃τ(j),j ̸= 0. Thus Eq. (9) holds for some unknown τ . Furthermore, the proof shows that Iρ1

, ..., Iρp

target Uτ(1), ..., Uτ(p) respectively.

B.3.2 Sparsest topological representation

In the section, we will introduce a graph associated to any topological representation. We consider
picking a topological representation such that the associated graph is as sparse is possible, and we
show that this choice recovers the underlying graph G up to transitive closure.

We begin by establishing the following property of a topological representation Ũ , which relates
ancestral relationships in the underlying graph G to changes in marginals of Ũ .

Proposition 1. Suppose that Assumptions 2 hold. Let Ũ be a topological representation with inter-
vention targets ρ1, . . . , ρp.

Then, for any i < j such that τ(j) ∈ deG(τ(i)), we must have

P(Ũj) ̸= PIρk (Ũj) for some i ≤ k < j such that τ(k) ∈ deG(τ(i)).

Proof. By Lemma 6, Eq. (9), Ũj is a linear combination of Uτ(1), ..., Uτ(j) with nonzero coefficient
of Uτ(j). Let k0 be

(Case 1) the largest such that i ≤ k0 < j where τ(k0) ∈ deG(τ(i)) and the coefficient of
Uτ(k0) in Ũj is nonzero,

(Case 2) i, if no k0 satisfies Case 1.

Then let k = k0 if τ(j) /∈ deG(τ(k0)); otherwise let k be such that τ(k) ∈ deG(τ(k0)) and
τ(j) ∈ mchG(τ(k)) (such k exists by considering the parent of τ(j) on the longest directed path
from τ(k0) to τ(j) in G). Figure 8 illustrates the different scenarios for k0, k. Note that we always
have τ(k) ∈ deG(τ(i)).

(A) Case 1-1 (B) Case 1-2 (C) Case 2

Figure 8: Illustration of k0, k.

(Case 1): We first show that Ũj can be written as a linear combination of Uτ(j), Uτ(k0) and US for
S ⊂ [p] \ deG(τ(k0)) with nonzero coefficient for Uτ(j), Uτ(k0). Consider an arbitrary l ∈ [p]. If
the coefficient for Uτ(l) in Ûj is nonzero, by Eq. (9), we have l ≤ j. Also since k0 is the largest,
we have l = k0 or l = j or l < k0 or τ(l) /∈ deG(τ(i)). If l < k0, then by the topological order,
it holds that τ(l) /∈ deG(τ(k0)). If τ(l) /∈ deG(τ(i)), since τ(k0) ∈ deG(τ(i)), it also holds that
τ(l) /∈ deG(τ(k0)). Therefore Ũj can be written as a linear combination of Uτ(j), Uτ(k0) and US

with nonzero coefficient for Uτ(j), Uτ(k0). Next, we show that P(Ũj) ̸= PIρk (Ũj) by considering
two subcases of Case 1.

If τ(j) /∈ deG(τ(k0)), then k = k0 (illustrated in Figure 8A). Then S ∪ {τ(j)} ⊂ [p] \ deG(τ(k)).
Therefore Ũj can be written as a linear combination of Uτ(k) and US′ for S′ ⊂ [p] \ deG(τ(k)) with
nonzero coefficient for Uτ(k). By Assumption 2, we have P(Ũj) ̸= PIρk (Ũj).
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If τ(j) ∈ deG(τ(k0)), then since τ(k) ∈ deG(τ(k0)), we have τ(k0) ∈ [p] \ deG(τ(k)) (illustrated
in Figure 8B). Then we have S ⊂ [p] \ deG(τ(k0)) ⊂ [p] \ deG(τ(k)), and thus S ∪ {τ(k0)} ⊂
[p]\deG(τ(k)). In fact, S∪{τ(k0)} is a subset of [p]\(deG(τ(k))∪{τ(j)}), since τ(j) ∈ deG(τ(k))

by τ(k) ∈ paG(τ(i)) (definition of k). Therefore Ũj can be written as a linear combination of
Uτ(j) and US′ for S′ ⊂ [p] \ (deG(τ(k)) ∪ {τ(j)}) with nonzero coefficient for Uτ(j). Since
τ(j) ∈ mchG(τ(k)) (definition of k), by Assumption 2, we have P(Ũj) ̸= PIρk (Ũj), as Iρk

targets
Uτ(k).

(Case 2): In this case k0 = i (illustrated in Figure 8C). Then for any l < j such that τ(l) ∈
deG(τ(k)), the coefficient of Uτ(l) in Ũj is zero. Otherwise since deG(τ(k)) ⊂ deG(τ(k0)) =
deG(τ(i)), it holds that τ(l) ∈ deG(τ(i)), which by Eq. (11) implies i < l < j. Thus l satisfies Case
1, a contradiction. Therefore, also by Eq. (11), Ũi can be written as a linear combination of Uτ(j)

and US with nonzero coefficient of Uτ(j), where S ⊂ [p] \ deG(τ(k)).

Since τ(j) ∈ deG(τ(i)) = deG(τ(k0)), by definition of k, we have τ(j) ∈ mchG(τ(k)). Note that
Ũi can be written as a linear combination of Uτ(j) and US′ with nonzero coefficient of Uτ(j), where
S′ ⊂ [p] \ (deG(k) ∪ {τ(j)}). By Assumption 2, P(Ũj) ̸= PIρk (Ũj), as Iρk

targets Uτ(k).

Therefore, in both cases it holds that P(Ũj) ̸= PIρk (Ũj). Since i ≤ k < j and τ(k) ∈ deG(τ(i)),
the claim is proven.

Now, we use marginal changes to define a graph associated to any topologically-ordered representa-
tion. We use Proposition 1 to show that picking the the topologically-ordered representation which
yields the sparsest graph will recover the transitive closure of G.

Lemma 7. Let Ũ be a topological representation of X with intervention targets ρ1, ..., ρp. Let
R̂′ ∈ Rp×p be an invertible upper triangular and let Û = Ũ R̂′. Define the following:

• Let ĜR̂′

0 be the DAG such that i → j ∈ Ĝ0 if and only if i < j ∈ [p] and P(Ûj) ̸= PIρi (Ûj).

• Let ĜR̂′
= T S(ĜR′

0 ).

Let R̂ be such that ĜR̂ has the fewest edges over any choice of R̂′. Then ĜR̂ = T S(Gτ ). We call Û
a sparsest topological representation of X .

Proof.
Direction 1.
We first show that for any R̂′,

T S(Gτ ) ⊆ ĜR̂′
. (10)

Let i → j ∈ T S(Gτ ), so i < j. By Proposition 1, we have k such that i ≤ k < j with τ(k) ∈
deG(τ(i)). By definition of ĜR̂′

0 , we have k → j ∈ ĜR̂′

0 . Repeating this argument iteratively, we
obtain a directed path from i to j in ĜR̂′

0 . Thus, by definition of ĜR̂′
, we have T S(Gτ ) ⊆ ĜR̂′

.

Direction 2.
Now we give an example of R̂ such that the constructed ĜR̂ satisfies

ĜR̂ ⊆ T S(Gτ ).

Denote Γ̃R̂ = Γ̂ and ĉ = c̃R̂. Since R̂ is upper-triangular and invertible, by Eq. (9), we have
Û = U Γ̂ + ĉ, where

i < j ⇒ Γ̂τ(j),i = 0 and Γ̂τ(j),j ̸= 0, (11)
where τ is the topological order in Eq. (9). By Eq. (11), there exists an invertible upper-triangular
matrix R ∈ Rp×p such that Û = (U Γ̃ + c̃)R = (Uτ(1), ..., Uτ(p)) + c for some constant vector c.
Now for i < j ∈ [p], we have i → j ∈ ĜR

0 ⇔ P(Uτ(j)) ̸= PIρi (Uτ(j)). Since Iρi
targets Uτ(i), this

would only be true when τ(j) ∈ deG(τ(i)). Therefore i → j ∈ ĜR̂
0 ⇒ τ(j) ∈ deG(τ(i)). Thus

ĜR̂
0 ⊆ T S(Gτ ). As T S(Gτ ) is a transitive closure, this means ĜR̂ = T S(ĜR̂

0 ) ⊆ T S(Gτ ).
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Analogously to Lemma 6, the following result shows that a sparsest topological representation is
topologically consistent with U in a stronger sense than a topological representation.

Lemma 8. Let Assumption 2 hold. For Γ̃ ∈ Rp×p and c̃ ∈ Rp, let Ũ = U Γ̃ + c̃ be a sparsest
topological representation of U with intervention targets ρ1, . . . , ρp. Let τ be a topological ordering
of G such that

i < j ⇒ Γ̃τ(j),i = 0 and Γ̃τ(j),j ̸= 0. (12)

Then Γ̃τ(j),l = 0 for τ(l) /∈ deG(τ(j)).

Proof. For sake of contradiction, let l, j ∈ [p]. Without loss of generality, let j be the largest value
for which Γ̃τ(j),l ̸= 0 and τ(l) ̸∈ deG(τ(j)). By transitivity of deG and the choice of j as the largest
value, there is no j′ such that τ(j′) ∈ deG(τ(j)) and Γ̃τ(j′),l ̸= 0. Therefore Ũl can be written as a
linear combination of Uτ(j) and US with nonzero coefficient of Uτ(j), where S ⊂ [p] \ deG(τ(j)).

By Assumption 2, we have P(Ũl) ̸= PIρj (Ũl). Since τ(l) /∈ deG(τ(j)) and Ĝ = T S(Gτ ), we have
j → l /∈ Ĝ, in which case P(Ũl) ̸= PIρ

j′ (Ũl) violates Condition 1, a contradiction.

B.3.3 Proof of Theorem 1

Theorem 1. Under Assumption 1 and Assumption 2 for I1, ..., IK , we can identify ⟨Ĝ, Î1, ..., ÎK⟩,
where Ĝ = T S(Gπ), and Îk = (Ik)π for some permutation π.

Here, we combine the results of the previous two sections to show that we can recover G up to
transitive closure and permutation, and that we recover the intervention targets I1, . . . , IK up to the
same permutation.

Proof. By Lemma 1 and Remark 1, we can assume, without loss of generality, that p is known
and that X = f(U) = UΛ + b for some non-singular matrix Λ, as this can be identified from
observational data D.

By Lemma 7, we can identify a topological representation Û = U Γ̂ + ĉ with intervention targets
ρ1, ..., ρp ∈ [K], where Γ̂ ∈ Rp×p and ĉ ∈ Rp. Further, for some unknown topological ordering τ

of G, Γ̂ satisfies Eq. (11), T (Iρi
) = τ(i) for i ∈ [p], and we identify Ĝ = T S(Gτ ).

Identifying additional intervention targets.
So far, we only guarantee that we identify the intervention targets for Iρ1

, . . . , Iρp
. Now, consider

any k ∈ [K] \ {ρ1, ..., ρp}. Let l be such that TG(Ik) = τ(l). We now argue that l can be identified
as the smallest l′ in [p] such that P(Ûl′) ̸= PIk(Ûl′).

By Assumption 2, we have P(Ûl) ̸= PIk(Ûl), since Ik targets Uτ(l) and Ûl can be written as a linear
combination of Uτ(1), ..., Uτ(l) with nonzero coefficient Uτ(l) (note that Uτ(1), ..., Uτ(l−1) ∈ [p] ⊂
deG(τ(l))).

On the other hand, for l′ < l, we have P(Ûl) = PIk(Ûl), since Ûl′ can be written as a linear
combination of Uτ(1), ..., Uτ(l′) and τ is the topological order.

B.4 Proof of Theorem 2

In this section, we show that by introducing Assumption 3, we can go beyond recovering the transi-
tive closure of G, and we instead recover G. We begin by establishing a basic fact about conditional
independences in our setup.

Claim 1. Under Assumption 1, let A,B,C,D denote (potentially linear combinations of) compo-
nents of U , and assume that A⊥⊥B | C,D and A⊥⊥C | B,D. Then A⊥⊥B | D.

Proof. By Assumption 1, PA,B,C,D has positive measure on some full-dimensional set. By Propo-
sition 2.1 of [56], PA,B,C,D is a graphoid, i.e., it obeys the intersection property. Invoking this
property, we obtain A⊥⊥B | D, as desired.
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With this, we are ready to prove Theorem 2, which we recall here.

Theorem 2. Under Assumptions 1,2,3, ⟨G, I1, ..., IK⟩ is identifiable up to its CD-equivalence class.

Note that, from Theorem 1, we have already identified the interventions I1, . . . , IK up to CD-
equivalence for a permutation τ . Thus, the only remaining result to show is that we identify G
up to the same permutation.

In particular, we can again characterize the solution in terms of the sparsest solution.

Theorem 2, Constructive. Let Û be a sparsest topological representation of X with intervention
targets ρ1, ..., ρp. Let R̄′ ∈ Rp×p be an invertible upper triangular matrix, and let Ū = Û R̄′. Define
the following:

• Let ḠR̄′
be the DAG such that i → j for i < j ∈ [p], if and only if Ūi ̸⊥⊥ Ūj |

Ū1, . . . , Ūi−1, Ūi+1, . . . , Ūj−1

Let R̄ be such that ḠR̄ has the fewest edges over any choice of R̄′. Then ḠR̄ = Gτ for τ satisfying
Eq. (12).

Proof. By Lemma 7, we have Û = U Γ̂ for some matrix Γ̂ ∈ Rp×p satisfying Eq. (9) under some
topological order τ of G. Further, we identify Ĝ = T S(Gτ ) .

Denoting Γ̂R̄ = Γ̄ and c̄ = ĉR̄, by Lemma 8, we have Ū = U Γ̄ + c̄ with

i < j ⇒ Γ̄τ(j),i = 0 and Γ̄τ(j),j ̸= 0,

τ(l) /∈ deG(τ(j)) ⇒ Γ̄τ(j),l = 0.
(13)

Direction 1.
First, we show that

Gτ ⊆ ḠR̄.

Assume on the contrary that there exists τ(i) → τ(j) ∈ G such that i → j ̸∈ ḠR̄. By
definition, we have Ūi⊥⊥ Ūj | Ū1, . . . , Ūi−1, Ūi+1, . . . , Ūj−1. By Eq. (13), we know that we
can retrieve Uτ(1), ..., Uτ(i−1) by linearly transforming Ū1, ..., Ūi−1; this implies Uτ(i)⊥⊥ Ūj |
Uτ(1), ..., Uτ(i−1), Ūi+1, ..., Ūj−1. By subtracting terms in Uτ(1), ..., Uτ(i−1) from Ūi+1, ..., Ūj and
then subtracting terms Ūl from Ūl+1, ..., Ūj for l = i+ 1, ..., j − 1, we have that

Uτ(i)⊥⊥Uτ(j) + cjUτ(i) | Uτ(1), ..., Uτ(i−1),

Uτ(i+1) + ci+1Uτ(i), ..., Uτ(j−1) + cj−1Uτ(i), .
(14)

for some ci+1, ..., cj ∈ R. Since by Eq. (13) there is Γ̄τ(i),l = 0 for any τ(l) /∈ deG(τ(i)), this
subtraction gives us cl = 0 if τ(l) /∈ deG(τ(i)).

Therefore let

A = Uτ(j) + cjUτ(i), B = Uτ(i)

C = {Uτ(l) + clUτ(i)}l≤j−1,τ(l)/∈paG(τ(j)), and D = {Uτ(l) + clUτ(i)}τ(l)∈paG(τ(j))\{τ(i)},

where c1 = ... = ci−1 = 0. There is A⊥⊥B | C,D.

On the other hand, since τ(i) → τ(j) ∈ G, i.e., τ(i) ∈ paG(τ(j)). We will now show
that this implies A⊥⊥C | B,D. Starting with the local Markov property, we have for any
c1, . . . , ci−1, ci+1, . . . , cj that

Uτ(j)⊥⊥{Uτ(l)}l≤j−1,τ(l)/∈paG(τ(j)) | {Uτ(l)}τ(l)∈paG(τ(j))

=⇒ Uτ(j) + cjUτ(i)⊥⊥{Uτ(l) + clUτ(i)}l≤j−1,τ(l)/∈paG(τ(j)) | {Uτ(l)}τ(l)∈paG(τ(j))

=⇒ Uτ(j) + cjUτ(i)⊥⊥{Uτ(l) + clUτ(i)}l≤j−1,τ(l)/∈paG(τ(j))

| Uτ(i), {Uτ(l) + clUτ(i)}τ(l)∈paG(τ(j))\{τ(i)}

(15)
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where the first implication follows from the definition of conditional independence, and the sec-
ond implication follows since {Uτ(l)}τ(l)∈paG(τ(j)) is a deterministic function of Uτ(i), {Uτ(l) +

clUτ(i)}τ(l)∈paG(τ(j))\{τ(i)}.

Thus, by Claim 1, if i → j ̸∈ ḠR̄ and τ(i) → τ(j) ∈ G, then A⊥⊥B | D, i.e.,

Uτ(i)⊥⊥Uτ(j) + cjUτ(i) | {Uτ(l) + clUτ(i)}l∈paG(τ(j))\{τ(i)}.

Since cl = 0 for any τ(l) /∈ deG(τ(i)) and τ is the topological order, this can be further written as

Uτ(i)⊥⊥Uτ(j) + cjUτ(i) | {Uτ(l)}l∈paG(τ(j))\(S∪{τ(i)}), {Uτ(l) + clUτ(i)}l∈S ,

where S = paG(τ(j))∩deG(τ(i)), which violates Assumption 3. Therefore we must have Gτ ⊆ ḠR̄.

Direction 2.
There exists an invertible upper-triangular matrix R̄ ∈ Rp×p such that Ū = Û R̄ =
(Uτ(1), ..., Uτ(p)) + c̄ for some constant vector c̄. Note that clearly Ū satisfies Condition 1. Also for
i < j ∈ [p] such that τ(i) → τ(j) /∈ G, by the Markov property and τ being the topological order,
we have Ūi⊥⊥ Ūj | Ū1, ..., Ūi−1, Ūi+1, ..., Ūj−1. Thus τ(i) → τ(j) /∈ G ⇒ i → j /∈ Ḡ, and hence
Ḡ ⊆ Gτ , which completes the proof.

Remark 2. These proofs (Lemma 1, Theorem 1,2) together indicate that under Assumptions 1,2,3,
we can identify ⟨G, I1, ..., IK⟩ up to its CD-equivalence class by solving for the smallest p̂, an
encoder ĝ : Rn → Rp̂, Ĝ and Î1, ..., ÎK̂ that satisfy

(1) there exists a full row rank polynomial decoder f̂(·) such that f̂ ◦ ĝ(X) = X for all
X ∈ D ∪ DI1 ∪ ... ∪ DIK ;

(2) the induced distribution on Û := ĝ(X) by X ∈ D factorizes with respect to Ĝ;

(3) the induced distribution on Û by X ∈ DIk where k ∈ [K] changes the distribution of
ÛTĜ(Îk)

but does not change the joint distribution of non-descendants of ÛTĜ(Îk)
in Ĝ;

(4) [p̂] ⊆ TĜ(Î1) ∪ ... ∪ TĜ(ÎK̂);

(5) Ĝ has topological order 1, ..., p̂;

(6) the transitive closure T S(Ĝ) of the DAG Ĝ is the sparsest amongst all solutions that satisfy
(1)-(5);

(7) the DAG Ĝ is the sparsest amongst all solutions that satisfy (1)-(6);

We will use these observations in Appendix E to develop a discrepancy-based VAE and show that it
is consistent in the limit of infinite data.

Proof. We first show that there is a solution to (1)-(7). For this, it suffices to show that there is a
solution to (1)-(5). Then since p̂ and Ĝ are discrete, one can find the solution to (1)-(7) by searching
amongst all solutions to (1)-(5) such that p̂ is the smallest and (6)-(7) are satisfied. Assume without
loss of generality that G has topological order 1, ..., p. Then p̂ = p, ĝ = f−1, Ĝ = G, and Îk = Ik
for k ∈ [K] satisfy (1)-(5).

Next we show that any solution must recover p̂ = p and ⟨Ĝ, Î1, . . . , ÎK⟩ that is in the same CD
equivalence class as ⟨G, I1, . . . , IK⟩. Since we solve for the smallest p̂, the former paragraph also
implies that p̂ ≤ p. By the proof of Lemma 1, (1) guarantees that p̂ ≥ p. Therefore it must hold that
p̂ = p.

Since we solve for the sparsest transitive closure, the first paragraph implies that T S(Ĝ) ⊂ T S(G).
Also by the proof of Lemma 1, Û can be written as an invertible linear mixing of U . Then (3)-(5)
guarantee that Condition 1 and Condition 2 in Step 1 in the proof of Theorem 1 are satisfied. Then
by the proof of Step 2 in the proof of Theorem 1, we have T S(G) ⊂ T S(Ĝ). Therefore, it must
hold that T S(Ĝ) = T S(G).
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Lastly, by (2) and (5), we obtain that Ĝ satisfies Condition 1 and Condition 2 in Theorem 2. There-
fore by the proof of Theorem 2, we obtain G ⊂ Ĝ. Again, by the first paragraph and the fact that
the sparsest transitive closure satisfies T S(Ĝ) = T S(G), we obtain that the sparsest Ĝ with this
transitive closure must satisfy Ĝ ⊂ G, and thus Ĝ = G. With this result, it is easy to see that Îk = Ik
for all k ∈ [K], as Ik changes the distribution of ÛTG(Ik) but does not change the joint distribution
of Û[p]\deG(TG(Ik))

.

Therefore we can recover p and the CD equivalence class of ⟨G, I1, ..., IK⟩ by solving (1)-(7). Note
that this proof assumes the topological order of G is 1, ..., p, and therefore it does not violate the fact
that G, I1, ..., IK cannot be recovered exactly.

B.5 Proof of Theorem 3

Now, we will show that recovering ⟨U,G, I1, . . . , IK⟩ up to Theorem 1 is sufficient for predicting
the effect of combinatorial interventions..

Theorem 3. Letting ⟨Û , Ĝ, Î1, ..., ÎK⟩ be the solution identified in the proof of Theorem 1. Then
the interventional distribution PI for any combinatorial intervention I ⊂ {I1, ..., IK} is given by
Eq. (2), i.e., we can generate samples X from the distribution X = f(U), U ∼ PI .

Proof. Since I contains interventions with different intervention targets, for each i ∈ [p], we can
define PÎ(Ûi | ÛpaĜ(i)) as PÎk(Ûi | ÛpaĜ(i)) if i = TĜ(Îk) for some Ik ∈ I and otherwise P(Ûi |
ÛpaĜ(i)). Using this definition, we define the joint distribution of Û as PÎ(Û) =

∏p
i=1 PÎ(Ûi |

ÛpaĜ(i)). In the following we show that PÎ(Û) = PI(U) in the sense that PÎ(Û = f̂−1(x)
)
=

PI(U = f−1(x)) for all x ∈ Rn.

Our proof combines the following equalities. For any i ∈ [p], we have

Equality 1: PÎ(Ûi | ÛpaĜ(i)) = PÎ(Ûi | ÛanĜ(i)),

Equality 2: PÎ(Ûi | ÛanĜ(i)) = PI(Ui | UanG(i)),

Equality 3: PI(Ui | UanG(i)) = PI(Ui | UpaG(i)).

Proof of Equality 1. This follows by definition of Ĝ, since it is transitively closed, we have paĜ(i) =
anĜ(i).

Proof of Equality 2. By similar arguments below Eq. (13), we have Û = U Γ̂ + ĉ for an invertible
matrix Γ̂, where Γ̂τ(j),l = 0 for any τ(l) ̸∈ deG(τ(j)). Therefore we can recover UanG(i) by
linear transforming U Γ̂:,anG(i) and vise versa. We can also recover Ui by subtracting linear terms of
UanG(i) from U Γ̂:,i.

Note also, since T S(G) = T S(Ĝ), there must be anĜ(i) = anG(i). Thus

PÎ(Ûi | ÛanĜ(i)) = PI(U Γ̂:,i | U Γ̂:,anĜ(i))

= PI(U Γ̂:,i | U Γ̂:,anG(i))

= PI(U Γ̂:,i | UanG(i)) = PI(Ui | UanG (i)).

Proof of Equality 3. Follows from the Markov property on U .

Combining these equalities, we have PÎ(Ûi | ÛpaĜ(i)) = PI(Ui | UpaG(i)) for all i ∈ [p]. Thus

PÎ(Û) =
∏p

i=1 PÎ(Ûi | ÛpaĜ(i)) =
∏p

i=1 PI(Ui | UpaG(i)) = PI(U). Therefore the procedure in
Section 4.4 generates X from the same distribution as X = f(U), U ∼ PI .
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C Details on Discrepancy-based VAE

In previous sections, we have shown that the data-generating process in Section 2 is identifiable
up to equivalence classes. However, the proofs (Appendix A, B) do not lend themselves to an
algorithmically efficient approach to learning the latent causal variables from data. Therefore, we
propose a discrepancy-based VAE in Section 5, which inherits scalable tools of VAEs that can in
principle learn flexible deep latent-variable models. In this framework, Eq. (3) can be computed and
optimized efficiently using the reparametrization trick [29] and gradient-based optimizers.

C.1 Maximum Mean Discrepancy

We recall the definition of the maximum mean discrepancy measure between two distributions, and
its empirical counterpart.
Definition 3. Let k be a positive definite kernel function and let H be the reproducing kernel Hilbert
space defined by this kernel. Given distributions P and P′, we define

MMD(P,P′) := sup
f∈H

(EP[f(X)]− EP′ [f(X)])

The following empirical counterpart is an unbiased estimate of the squared MMD, see Lemma 6 of
[18].
Definition 4. Let k be a positive definite kernel. Let {X(i)}mi=1 be samples from P and {X ′

(i)}
m
i=1

be samples from P′. We define

M̂MD
2
({X(i)}mi=1, {X ′

(i)}
m
i=1) =

1

m(m− 1)

m∑
i=1

∑
j ̸=i

k(Xi, Xj) +
1

m(m− 1)

m∑
i=1

∑
j ̸=i

k(X ′
i, X

′
j)

− 2

m2

m∑
i=1

m∑
j=1

k(Xi, X
′
j)

C.2 Discrepancy VAE Details

We walk through the details of this model in this section, where we illustrate it using two types of
interventions, namely do interventions and shift interventions.

Noiseless vs. Noisy Measurement Model with General SCMs. Recall that each latent causal
variable Ui is a function of its parents in G and an exogenous noise term Zi. All the Zi’s are
mutually independent. The overall model can be defined (recursively) as

Uj = sj(UpaG(j), Zj),

X = f(U1, ..., Up).
(16)

In particular, there exists a function sfull
∅ such that U = sfull

∅ (Z). We model each intervention I as a
set of intervention targets T (I) and a vector aI . Under I , the observations X are generated by

U I
j =

{
sj(U

I
paG(j), Zj)1j /∈T (I) + aIj1j∈T (I), for do intervention,

sj(U
I
paG(j), Zj) + aIj1j∈T (I), for shift intervention,

XI = f(U I
1 , ..., U

I
p ).

(17)

As above, there exists a function sfull
I such that U I = sfull

I (Z). Note that here we assume that the
measurements (sometimes called “observations” in the literature11) X are noiseless. Our theoretical
results are built upon noiseless measurements. In practice, however, one can consider the noisy
measurement model in which X = f(U)+ϵ (resp. XI = f(U I)+ϵ), where ϵ is some measurement
noise independent of U .

We leave as future work to prove consistency under the noisy measurement model. [28] established
identifiability results of the noisy measurement model, when the latent variables conditioned on

11We use “measurements” to distinguish from the observational distribution defined for U .
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additionally observed variables follow a factorized distribution in an exponential family. Their tech-
niques can be potentially used to generalize our results to the noisy measurement model; however,
further assumptions on the mechanisms si’s will be needed.

Discrepancy-based VAE. We use one decoder

pθ(X|U)

parameterized by θ to approximate both X = f(U) and XI = f(U I) in the noiseless measurement
model (or X = f(U) + ϵ and XI = f(U I) + ϵ in the noisy measurement model). As for the
encoder, we do not directly learn the posteriors P(U |X) and P(U I |XI). Instead, we approximate
one posterior P(Z|X) and then use Eq. (16), (17) to transform Z into U , U I respectively. This is
done by two encoders for Z and (T (I), aI) parameterized by ϕ and denoted as

qϕ(Z|X), (Tϕ(I), aϕ(I))

The dimension p of Z is set as a hyperparameter. Note that the procedure of learning a posterior
P(Z|X) in the observational distribution and then mapping to U I using Eq. (17) can be regarded as
learning the counterfactual posterior of P(U I |X).

In the following, to better distinguish data from observational and interventional distributions, we
use X∅, U∅ instead of X,U to denote samples generated by Eq. (16). After encoding X∅ and I
into Z and (T (I), aI) respectively, we parameterize the causal mechanisms sj’s in Eq. (16), (17) as
neural networks (e.g., multi-layer perceptrons or linear layers). We absorb the paramterizations of
sj’s into θ and denote

pθ,∅(X
∅|Z) = pθ

(
X∅ | U∅ = sfull

∅ (Z)
)
,

pθ,I(X
I |Z) = pθ

(
XI | U I = sfull

I (Z)
)
.

Note that in implementation, to make sure Uj only depends on its parents UpaG(j), one can train
an adjacency matrix A that is upper-triangular up to permutations and then apply any layers after
individual rows of matrix U ⊗ A12. Since identifiability can be only up to permutations of latent
nodes, one can simply use an upper-triangular adjacency matrix A.

D Lower Bound to Paired Log-Likelihood

In this section, we consider the paired setting, in which we have access to samples from the joint
distribution P(X∅, XI). To discuss counterfactual pairs, we must introduce structure beyond the
structure described in Section 2. In particular, in the observational setting, assume that the latent
variables U∅ are generated from a structural causal model with exogenous noise terms Z. This
implies that there is a function g∅ such that U∅ = g∅(Z). Similarly, under intervention I , assume
there is a function gI such that U I = gI(Z). Then, given a distribution P(Z), the joint distribution
P(X∅, XI) is simply the induced distribution under the maps X∅ = f(U∅) and XI = f(U I).

Since X∅ and XI are independent conditioned on Z, we have

logP(X∅, XI) ≥ EP(X∅,XI)

[
Eqϕ(Z|X∅) log pθ,∅(X

∅ | Z) + Eqϕ(Z|X∅) log pθ,I(X
I |Z)

−DKL
(
qϕ(Z|X∅)∥p(Z)

) ] (18)

We have the following result on the loss function in Eq. (3).

Proposition 2. Let k be a Gaussian kernel with width ϵ, i.e., k(x, y) = exp
(
−∥x−y∥2

2

2ϵ2

)
. Let

pθ,I(X
I | U) be Gaussian with mean µI

θ(U) and a fixed variance σ2. Then, for ϵ sufficiently large,
for α given in the proof, and for some constant c depending only on σ and data dimension d,

EP(X∅,XI)

[
Eqϕ(Z|X∅) log pθ,I(X

I |Z)
]
≥ −α · MMD

(
pθ,I(X

I),PI(XI)
)
+ c.

Thus, up to an additive constant, Lα,1,0
θ,ϕ lower bounds the paired-data ELBO in Eq.(18) and by

extension the paired-data log-likelihood logP(X∅, XI).
12Here ⊗ denotes the Kronecker product.
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Proof. By the choice of a Gaussian distribution for pθ,I(XI | U), we have

log pθ,I(X
I | Z) = log pθ(X

I | U I = sfull
I (Z)) = c− 1

2σ2
∥XI − µI

θ(U)∥22, (19)

where c is a constant depending only on σ and data dimension d. Let {(X∅
(i), X

I
(i))}

m
i=1 be indepen-

dent and identically distributed according to P(X∅, XI). Then

EP(X∅,XI)

[
Eqϕ(Z|x(0))[log pθ,I(X

I |Z)]
]

= EP(X∅,XI)

[
Eqϕ(Zi|X∅

i )

[
1

m

m∑
i=1

log pθ,I(X
I
i |Zi)

]]

= c− 1

2σ2
EP(X∅,XI)

[
Eqϕ(Z(i)|X∅

(i)
)

[
1

m

m∑
i=1

∥XI
(i) − µI

θ(U(i))∥22

]]
Now, for the empirical MMD, we have

M̂MD
2 (

{XI
(i)}

m
i=1, {X̂I

(i)}
m
i=1

)
=

1

m(m− 1)

m∑
i=1

∑
j ̸=i

exp

(
−
∥XI

(i) −XI
(j)∥

2
2

2ϵ2

)
+

1

m(m− 1)

m∑
i=1

∑
j ̸=i

exp

(
−
∥X̂I

(i) − X̂I
(j)∥

2
2

2ϵ2

)

− 2

m2

m∑
i=1

m∑
j=1

exp

(
−
∥XI

(i) − X̂I
(j)∥

2
2

2ϵ2

)

≥ − 2

m2

m∑
i=1

m∑
j=1

exp

(
−
∥XI

(i) − X̂I
(j)∥

2
2

2ϵ2

)

≥ −2 +
1

2m2ϵ2

m∑
i=1

m∑
j=1

∥XI
(i) − X̂I

(j)∥
2
2

≥ −2 +
1

2m2ϵ2

m∑
i=1

∥XI
(i) − X̂I

(i)∥
2
2,

where we have used the positivity of the exponential function and for the penultimate inequality
used the fact that ϵ is large enough and that e−x ≤ 1−x/2 for x sufficiently small. Substituting into
(20) yields the theorem, with α = 1

2mσ2ϵ2 .

E Consistency of Discrepancy-based VAE

We consider Discrepancy-based VAE described in the last section. Suppose the conditions in The-
orem 2 is satisfied by the ground-truth model, i.e., it is possible to identify CD-equivalence class in
theory.

E.1 CD-Equivalence Class

Theorem 4. Let X∅, XI1 , . . ., XIK be generated as in Section 2. Suppose that Assumptions 1, 2,
and 3 hold. Define

M1 = argminθ,ϕLθ,ϕ

M2 = argminθ,ϕ∈M1
|T S(Gθ)|

θ̂, ϕ̂ ∈ argminθ,ϕ∈M2
|Gθ|

for Lθ,ϕ defined in Equation 3. Further, suppose that the VAE prior p(Z) is equal to the true
distribution over Z, that pθ(X | U) and qϕ(Z | X) are Dirac distributions. Let ⟨Û , Ĝ, Î1, . . . , ÎK⟩
be the solution induced by θ̂, ϕ̂.
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Then ⟨Û , Ĝ, Î1, ..., ÎK⟩ is CD-equivalent to ⟨U,G, I1, ..., IK⟩.

Proof. Note that the parameterization of sj , G, and the induced distributions of U through prior
p(Z) using Eq. (16), (17) satisfy (2),(3) and (5) in Remark 2.

The first two terms in combined in Eq. (18) satisfy

EP(X∅)

[
Eqϕ(Z|X∅) log pθ,∅(X

∅|Z)−DKL

(
qϕ(Z|X∅)∥p(Z)

)]
= EP(X∅)

[
log pθ,∅(X

∅)−DKL

(
qϕ(Z|X∅)∥pθ,∅(Z|X∅)

)]
≤ EP(X∅) log pθ,∅(X

∅)

= EP(X∅) logP(X∅)−DKL

(
pθ,∅(X

∅)∥P(X∅)
)

≤ EP(X∅) logP(X∅),

where the equality holds if and only if qϕ(Z|X∅) = pθ,∅(Z|X∅) and pθ,∅(X
∅) = P(X∅). On

the other hand, since MMD(·, ·) is a valid measure between distributions, we have

−MMD
(
Pθ,ϕ

(
X̂ Îk),P(XIk

))
≤ 0,

where the inequality is satisfied with equality if and only if X̂ Îk and XIk are equal in distribution.

Therefore if the learned intervention targets of I1, ..., IK cover [p̂] and the minimum loss function
is not larger that for p̂ = K, we have the solution satisfy (1)-(5) in Remark 2. Since G has the
sparsest transitive closure and G is the sparsest with this transitive closure, (6)-(7) in Remark 2 are
also satisfied. Therefore Remark 2 guarantees the smallest p̂ ≤ K satisfying the conditions recovers
the CD-equivalence class.

Note that in practice, it can be hard to ensure that the gradient-based approach returns a DAG G
that has the sparsest transitive closure and is simultaneously the sparsest DAG with this transitive
closure. We instead search for sparser DAGs G by penalizing its corresponding adjacency in Eq. (3).

E.2 Consistency for Multi-Node Interventions

Theorem 3 guarantees that in an SCM with additive noises where interventions modify the exoge-
nous noises, if the CD equivalence can be identified, we can extrapolate to unseen combinations of
interventions with different intervention targets. In fact, for certain types of interventions, extrapola-
tion to unseen combinations of any interventions is possible. We illustrate this for shift interventions
in an SCM with additive Gaussian noises, where an intervention changes the mean of the exogenous
noise variable.

For single-node intervention I , let aI denote the corresponding changes in the mean of the exoge-
nous noise variables, i.e.,

aIi =

{
E(ϵIi )− E(ϵi), i ∈ T (I),

0, i /∈ T (I).

We encode it as Î with T (Î) containing one element and âÎ being a one-hot vector, where

âÎi =

{
âi, i ∈ T (Î),

0, i /∈ T (Î).

We extend this notation for I with potentially multiple intervention targets (i.e., sets I, Î that contain
multiple elements) where aI , âÎ can be a multi-hot vector.

In the shift intervention case, from Theorem 3, we know that the encoded âÎ1 , ..., âÎK satisfy âÎk =
M(aIk) in the limit of infinite data, where M is a linear operation with M(a)i = Υτ(i),iaτ(i).
Thus for single-node interventions It(1), ..., It(k) amongst I1, ..., IK , the multi-node intervention
I = It(1) ∪ ... ∪ It(k)

13 corresponds multi-hot vector aI that satisfies M(aI) = M(aIt(1) + ... +

13Note that we allow overlapping intervention targets among It(1), ..., It(k), where It(1) ∪ ...∪ It(k) adds up
all the shift values for intervention target i.
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aIt(k)) = âÎt(1) + ... + âÎt(k) . Thus if we encode I as âÎ := âÎt(1) + ... + âÎt(k) , we can also
generate X̂ Î from the ground-truth distribution of X = f(U) where U ∼ PI

U (U) following the
encoding-decoding process of Fig. 4.

F Discrepancy-based VAE Implementation Details

We summarize our hyperparameters in Table 2. Below, we describe where they are used in more
detail. We use a linear structural equation with shift interventions. In practice, due to the nonlinear
encoding from the latent U to observed X , not much expressive power is lost. Code for our method
is at https://github.com/uhlerlab/discrepancy_vae.

Loss function
Kernel width (MMD) 200

Number of kernels (MMD) 10
λ 0.1

βmax 1
αmax 1

Training
tmax 100

Learning rate 0.001
Batch size 32

Table 2: Hyper-Parameters

VAE Parameterization. As is standard with VAEs, our encoder and decoder are parameterized as
neural networks, and the exogenous variables are described via the reparameterization trick. We use
a standard isotropic normal prior for p(Z). To encode interventions, the function Tϕ(·) is parame-
terized as a fully connected neural network, where for differentiable training Tϕ(C) is encoded as a
one-hot vector via a softmax function, i.e., Tϕ(C)i = exp(tT ′

ϕ(C)i)/
∑p

j=1 exp(tT ′
ϕ(C)j) for some fully

connected T ′
ϕ and temperature t > 0. During training, we adopt an annealing temperature for t. In

particular, t = 1 until half of the epochs elapse, and t is linearly increased to tmax over the remaining
epochs. At test time, the temperature of the softmax is set to a large value, recovering a close-to-true
one-hot encoding.

Loss Functions. We use a mixture of MMD discrepancies, each with a Gaussian kernel with widths
that are dyadically spaced [18]. This helps prevent numerical issues and vanishing gradient issues
in training. The coefficient α of the discrepancy loss term Ldiscrep

θ,ϕ is given the following schedule:
α = 0 for the first 5 epochs, then α is linearly increased to αmax until half of the epochs elapse,
at which point it remains at αmax for the rest of training. Similarly, the coefficient β of the KL
regularization term is given the following schedule: β = 0 for the first 10 epochs, then β is linearly
increased to βmax until half of the epochs elapse, at which point it remains at βmax for the rest of
training.

Optimization. We train using the Adam optimizer, with the default parameters from PyTorch and a
learning rate of 0.001.

Biological Data. For the experiments described in Section 6, the encoder qϕ was implemented as a
2-layer fully connected network with leaky ReLU activations and 128 hidden units. The intervention
encoder Tϕ uses 128 hidden units. To account for interventions with less samples, we use a batch
size of 32. We train for 100 epochs in total, which takes less than 45 minutes on a single GPU.

G Extended Results on Biological Dataset

In this section, we provide additional evaluations of the experiments on the Perturb-seq dataset. The
computation of RMSE are computed for individual interventional distributions. The computation
of R2 (we capped the minimum by 0 to avoid overflow) records the coefficient of determination by
regressing the mean of the generated samples on the ground-truth distribution mean.
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G.1 Single-node interventions

Figure 9 shows the same visualization as Figure 5 in the main text for the remaining 11 = 14 −
3 single target-gene interventions with more than 800 cells. Figure 10 presents this side-by-side
for the training samples. For the entire 105 single interventions, we visualize for each individual
intervention the empirical MMD between the generated populations and ground-truth populations
in Figure 11, where the bars record the MMD in different batches.

Figure 9: For single-node interventions, the distribution of generated test samples visually
mirrors the distribution of the actual samples. A UMAP visualization of 11 single target inter-
ventions shows that the generated and the actual distributions closely match.

Figure 10: For single-node interventions, the distribution of generated training samples visu-
ally mirrors the distribution of the actual samples. As with the test samples, the distributions of
the generated training samples closely match the actual distributions.
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Figure 11: For single-node interventions, the distribution of generated training samples quan-
titatively mirrors the distribution of the actual samples. The figure shows the empirical MMD,
defined in Appendix C.1, between the generated populations and ground-truth populations for 105
single target-node interventions.

G.2 Double-node interventions

We plot the generated samples for 11 random double target-gene interventions in Figure 12. In
Figure 13, we highlight two interventions for which the generated samples differ from the actual
samples. The plots for all 112 interventions are provided at https://github.com/uhlerlab/
discrepancy_vae.

Figure 12: UMAP visualization for a random sampling of double-node interventions. Compared
to single-node interventions, the generated samples of the double-node interventions match only for
certain pairs.

Figure 13: For some double-node interventions, the generated samples match the actual sam-
ples, and for some combinations they do not. The model accurately predicts the effect of the com-
binations ETS2+CEBPE and SET+IRF1, but does not accurately predict the effect of ETS2+DUSP9.

The MMD losses for all 112 interventions are summarized in Figure 14. Similar to Figure 6 in the
main text, Figure 15 shows the distribution of RMSE and R2 of the 112 interventions.

We remark here that this task has also been studied in previous works (e.g., [39, 8, 68, 49]) with
different setups. Formally benchmarking the empirical results under a unified setting would be of
interest in future works.
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Figure 14: For some double-node interventions, the distribution of generated samples quanti-
tatively mirrors the distribution of the actual samples. The figure shows the empirical MMD,
defined in Appendix C.1, between the generated populations and ground-truth populations for 105
single target-node interventions.

Figure 15: Our model accurately predicts the effect of many double-node interventions. ‘All
genes’ indicates measurements using the entire 5000-dimensional vectors; ‘DE genes’ indicates
measurements using the 20-dimensional vectors for the top 20 most differentially expressed genes.

G.3 Structure Learning

In Figure 16, we show the learned latent structure between gene programs, along with descriptions
of each gene program.

Program 0

Program 4

Program 5 Program 6

Program 1

Program 2

Program 3

Program 0: OSR2
Program 1: SLC38A2, MAP2K3, ELMSAN1, TBX2, MAML2, MAP2K6
Program 2: TGFBR2, ZBTB1, PLK4, HNF4A, ARID1A, ATL1, IKZF3, BPGM, BCORL1, LYL1, BCL2L11, HK2, RUNX1T1, CLDN6, 
CDKN1A, NCL, CNN1, MAP4K3, TSC22D1, HOXA13, CDKN1B, KIF2C, AHR, SGK1, DUSP9, ZC3HAV1, S1PR2, TP73, CKS1B, 
C19orf26, POU3F2, ZBTB25, CNNM4, FOXA3, SAMD1, STIL, PTPN12, IGDCC3, KMT2A, MAP7D1, PRDM1, SLC6A9, 
PTPN9, ZBTB10, CDKN1C, BAK1, MEIS1, CSRNP1, RREB1, MAP4K5, PTPN13, KIF18B, IER5L, CITED1, FOXF1, FOXA1, EGR1, 
KIAA1804, ZNF318, UBASH3B, PTPN1, PRTG, UBASH3A, RHOXF2, FOXO4, ARRDC3, GLB1L2, JUN, HOXC13, CBL
Program 3: MAPK1, CEBPE, TMSB4X, CELF2, DLX2, SPI1, HES7, NIT1, ETS2, LHX1, CBFA2T3, HOXB9, MIDN, CEBPA, SNAI1, 
FOSB, COL1A1, C3orf72, FOXL2, CEBPB, ISL2
Program 4: FEV, COL2A1, IRF1
Program 5: SLC4A1, SET, TBX3
Program 6: KLF1

Figure 16: Regulatory relationships between programs learned in G and full list of genes in each
program.

H Extended Experiments

In this section, we provide additional experimental results. First, we perform ablation studies of
different components of the proposed architecture on biological data. Then, we provide a simple
simulation study to examine the performance of the framework on different tasks.

H.1 Ablation Studies

For the ablation studies of different components, we compared the performance of our final model
(depicted in Figure 4) against three alternative versions. All models are trained with the same setting
(data split, schedule, learning rate, etc). In particular, we compared against

• Models without the discrepancy loss. These models learn the distributions similar to
conditional VAE [51], where both an interventional sample and its interventional label are
fed in to learn the exogenous Z. Then inside the latent space, we use the same causal layer
as our model to generate a virtual sample. During inference, we can generate interventional
samples via two approaches. One is sampling the exogenous Z from p(Z) and decoding.
The other is sampling an observational sample, obtaining its exogenous Z using the encoder
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then decoding. These two approaches correspond to the second and third rows of Table 3
respectively.

• A model without the causal layer. This model uses a similar workflow as our final model
in Figure 4, where we do not use a causal-based decoder but a simple MLP decoder. This
corresponds to the fourth row of Table 3.

We note that the encoder, decoder, DSCM, and intervention encoder are needed to learn distributions
and the latent causal graph from this setting where observational and interventional data are present.

For the metrics, we report both MMD and R2 in Table 3. However, MMD is more meaningful as we
are assessing the quality of generating a distribution. We observe that models without discrepancy
perform much worse due to mode collapses, whereas the sampling approach using observational
data performs slightly better. Our final model works the best in general; however on the MMD for
double-node interventions, the version without a causal layer seems to work slightly better. This is
potentially because some double-node interventions that act non-additively can be captured better
without imposing the structure.

Method MMD (single) R2 (single) MMD (double) R2 (double)

ours 0.324±0.007 0.986±0.001 0.432±0.006 0.978±0.001
ours w/o discrepancy 2.966±0.054 0.984±0.003 3.358±0.031 0.972±0.002
ours w/o discrepancy (obs) 2.965±0.054 0.984±0.002 3.355±0.030 0.972±0.002
ours w/o causal layer 0.348±0.009 0.982±0.002 0.427±0.006 0.978±0.002

Table 3: Ablation studies. We report testing metrics and their standard error on the biological
datasets. The results on single-node interventions are computed over 14 interventions. The results
on double-node interventions are computed over all 112 interventions.

H.2 Simulation

For the simulation study, as a proof-of-concept, we tested on a simple 5-node graph, where we
generate 2048 samples in each of the 5 interventional datasets. We map this to a 10-dimensional ob-
servation space, where we pad zeros to the additional dimensions. This ensures clear visualization
of the generated samples in Figure 17, where we compare the zero-shot learned double-node inter-
ventional samples against ground truth. In Table 4, we report the quantitative metrics. In addition
to the MMD on left-out single and double-node interventions, we also report the training MMD and
Structural Hamming Distance (SHD) of the learned graph.

Due to the combinatorial nature of learning a DAG and the small sample sizes in this setting, we
observe that the learned intervention targets can be quite sensitive to initializations. Therefore during
evaluation, we report the metrics while fixing the intervention targets to be of different transposition
distances to the true targets. For single-node generations, different transposition distances return
similar results, meaning that the model is expressive enough to learn these distributions, although
we observe that the result with zero transposition distance is marginally better. This also holds
during training, which can potentially be used as model selection to overcome the initialization
issue. For double-node extrapolation, the result with zero transposition distance shows a larger
benefit, as expected from our theory.

Transposition Distance MMD (training) MMD (single) MMD (double) SHD

0 0.030±0.007 0.047±0.008 0.041±0.004 2
1 0.057±0.028 0.058±0.030 0.181±0.048 6
10 0.042±0.007 0.041±0.009 0.119±0.023 11

Table 4: A simple simulation study. On a 5-node DAG, we test the model performance with
varying transposition distances of the identified intervention targets. For sample generations, we
report MMD and its standard error. The training metric is evaluated on all single-node interventions,
where the third and forth rows are evaluated based on held-out samples of single and double-node
interventions.
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Figure 17: An illustration of double-node intervention extrapolation in simulation. We visualize
16 samples of the double-node intervention on nodes 2, 3. The generated samples are shown on the
left, where the ground-truth samples are shown on the right.

I Extended Discussion

I.1 Limitations and Future Work

This paper opens up several direction for future theoretical and empirical work, which we now
discuss.

Theoretical Perspective. We have focused on the setting where a single-node intervention on each
latent node is available, similar to prior works on causal disentanglement [3, 53]. However, we
highlight three issues in this setup and discuss potential remedies. First, by assuming access to data
from intervening on every single latent node, we inherently possess partial knowledge of all the latent
variables, even though we are unaware of their specific values or whether multiple interventions act
on the same variable. The setups that do not assume interventions but the existence of anchored
observed variables (i.e., variables with only one latent parent) [19, 9, 64, 65] face the same issue.
This assumption can be unsatisfying in the context of causal representation learning, where the
causal variables are assumed to be entirely unknown. Second, it may be impossible to intervene
on all latent causal variables, especially in scenarios involving latent confounding. For instance, in
climate research, it might be impossible to intervene on a variable like the precipitation level in a
particular region. Finally, the assumption of single-node interventions can be overly optimistic in
many applications. For example, in the case of chemical perturbations on cells, it is known that
drugs often target multiple variables.

Nevertheless, the results obtained in the current setup can serve as a foundation and stepping stone
towards the ultimate goal of general causal representation learning. On one hand, our analysis
showed what can be learned from each intervention. This is helpful when considering cases where
only a subset of the latent causal variables can be intervened on. On the other hand, the key tech-
niques employed in our proofs can be extended to the multi-node setting. Specifically, in the latent
space, one should expect only the marginals of variables downstream of a multi-node intervention
to change.

Moreover, we have primarily focused on the infinite data regime for analyzing identifiability. Con-
sidering the expensive nature of obtaining interventional samples in practice, there is ample room
for further investigation concerning sample complexity. Aside from the feasibility of identifiability,
many applications are concerned with specific downstream tasks. Full identification of the under-
lying causal representations provides a comprehensive understanding of the system and would be
beneficial for multiple downstream tasks. However, in certain cases, full identification may be un-
necessary or inefficient for a particular task. Therefore, it is of interest to develop task-specific
identifiability criteria for causal representation learning.

Empirical Perspective. We make two remarks on the VAE framework proposed in this work.
First, as shown in our experiments in Section 6, our proposed framework can still be applied in
settings with multi-node interventions and fewer single-node interventions. For instance, one can
model multi-node interventions by reducing the temperature in the softmax layer. Second, due
to the permutation symmetry of CD-equivalence, we impose an upper-triangular structure on the
adjacency matrix in the deep SCM and learn the intervention targets. Alternatively, when there is
exactly one intervention available for each latent node, one can instead prefix the intervention targets
and learn the adjacency matrix. Specifically, we can set the intervention targets of I1, ..., Ip to be
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a random permutation of [p]. Subsequently, the adjacency matrix can be learned for example via
the nontears penalty [70] to enforce acyclicity. However, both methods inherit the combinatorial
nature of learning a DAG, and therefore their performance may require large sample sizes and can
be sensitive to initialization [27]. Consequently, endeavors to improve the optimization process and
robustness of such models would be valuable.

I.2 Discussion of Contemporaneous Works.

This work is concurrent with a number of other works in interventional causal representation learn-
ing. Unless otherwise noted, all of these works consider single-node interventions, as we do in
this paper. Most similar to our setting is [59], which studies identifiability of nonparametric latent
SCMs under linear mixing. They consider the case where exactly one intervention per latent node
is available, which is an easier setting as we discussed in Section 2. In that setting, they provide a
characterization of the learned causal variables. On the other hand, [7] studies identifiability of a
linear latent SCM under nonparametric mixing. They also consider both hard and soft interventions,
but in the form of linear SCM with additive Gaussian noises. Three concurrent works [25, 60, 35]
consider both nonparametric SCMs and nonparametric mixing functions: [60] prove identifiability
for the case of p = 2 latent variables when there is one intervention per latent variable. They provide
an extension to arbitrary p for settings where there are paired interventions on each latent variable.
Meanwhile, [25] consider arbitrary p, without paired interventions. However, they use only condi-
tional independence statements over the observed variables X to recover the latent causal graph. As
a result, their identifiability guarantees place restrictions on the latent causal graph, unlike the other
works discussed here. The third work [35] studies the Causal Component Analysis problem, where
the latent causal graph is assumed to be known. Finally, we note that other concurrent works study
causal representation learning without interventional data [40, 32] or with vector-valued contexts
instead of interventions [31].
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