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ABSTRACT

Post-hoc explainability methods are a subset of Machine Learning (ML) that aim
to provide a reason for why a model behaves in a certain way. In this paper, we
show a new black-box model-agnostic adversarial attack for post-hoc explainable
Artificial Intelligence (XAI), particularly in the image domain. The goal of the
attack is to modify the original explanations while being undetected by the hu-
man eye and maintain the same predicted class. In contrast to previous methods,
we do not require any access to the model or its weights, but only to the model’s
computed predictions and explanations. Additionally, the attack is accomplished
in a single step while significantly changing the provided explanations, as demon-
strated by empirical evaluation. The low requirements of our method expose a crit-
ical vulnerability in current explainability methods, raising concerns about their
reliability in safety-critical applications. We systematically generate attacks based
on the explanations generated by post-hoc explainability methods (saliency maps,
integrated gradients, and DeepLIFT SHAP) for pretrained ResNet-18 and ViT-
B16 on ImageNet. The results show that our attacks could lead to dramatically
different explanations without changing the predictive probabilities. We validate
the effectiveness of our attack, compute the induced change based on the explana-
tion with mean absolute difference, and verify the closeness of the original image
and the corrupted one with the Structural Similarity Index Measure (SSIM).

1 INTRODUCTION

As deep learning models have become more complex and applied across various fields, the demand
for transparency in artificial intelligence (AI) outcome has also accordingly increased, particularly in
some scientific domains (Lipton, 2018; Mengaldo, 2024; Imrie et al., 2023). Nowadays, explaining
why a model makes certain decisions is as important as prediction itself. Being unable to explain an
output is detrimental to the widespread adoption of AI and the user trust (Shin, 2021). Furthermore,
in high-risk sectors, like medicine and healthcare (Chaddad et al., 2023), autonomous driving and
industry automation (Atakishiyev et al., 2024), and finance (Weber et al., 2024), providing expla-
nations is required for safety concerns, beyond just making accurate predictions. Many explainable
artificial intelligence (XAI) methods, especially feature attribution approaches, have been developed
to pinpoint input features that significantly influence the model outcome. They are often categorized
into ante-hoc methods (interpretable models) (Turbé et al., 2024; Li et al., 2018), which are model-
specific and produce an explanation along with the prediction, and post-hoc methods (Turbé et al.,
2023; Samek et al., 2017), which are model-agnostic and can be applied to a wide variety of models.
For an in-depth overview of explainability, we refer to the following surveys (Zhang et al., 2021;
Samek et al., 2021).

However, having an explanation is not enough. The explanation itself must be reliable and robust
to establish trust and transparency between users and the model. For example, clinicians may re-
quire the feature attribution details when an AI system assists in diagnosing a disease. Yet if the
patient data is maliciously corrupted–nearly indistinguishable from the original and also predicted
as a certain disease–but produces a markedly different explanation, it would mislead the clinician
towards recognizing a different cause for the disease and, therefore, prescribing the wrong treat-
ment. In such cases, though the model robustly makes correct predictions, fragile explanations pose
significant risks for real-world deployment.
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Since Ghorbani et al. (2019) first introduced the notion of adversarial perturbations to neural net-
work interpretation, a new category of adversarial attacks has emerged in the domain that target
explanations while keeping the model prediction unchanged. These attacks, based on the scenarios,
could prove even more dangerous than traditional adversarial attacks. Most of existing adversarial
attacks on explanations have highlighted how destructive these attacks can be (Ghorbani et al., 2019;
Kindermans et al., 2019; Adebayo et al., 2018; Dombrowski et al., 2019). Despite this, they have not
received enough attention due to their impracticality, as they have stringent requirements like access
to the model, the ability to modify the model’s weights, and the possibility of performing multi-step
attacks.

Our contributions. In this paper, we propose a novel black-box model-agnostic adversarial attack
method that has fewer realistic requirements. Specifically, we generate the attack to the original
image by leveraging the explanation of an attack image from a running-up class. We systematically
investigate three post-hoc interpretability methods (this includes saliency maps, integrated gradi-
ents, and DeepLIFT SHAP) on ImageNet in two different network architectures. We show how to
design adversarial perturbation that can disrupt the explanation of the explainability method while
being visually undetectable and without significantly altering the classification prediction (Figure 1).
Unlike previous work, our approach does not require access to the model architecture, weights, or
the ability to modify them, and provides one-step attack by exploiting the explanations of the other
classes. These characteristics make the attack far more feasible in real case scenarios, proving how
dangerous it could be to rely blindly on AI explanations.

While we focus on the image data in this work because most of explainability methods have been
motivated in computer vision domain, the vulnerability of neural network interpretability could be
a much broader problem. Our proposed adversarial attack approach could also be applied to other
types of data, such as time series, texts, tabular data.

2 RELATED WORKS AND PRELIMINARIES

Related works Adversarial attacks usually involve a maliciously intention attacker whose goal
is to disrupt the performance of deep neural networks. It is a fairly well-studied domain, both
from a cybersecurity perspective to safeguard systems and infrastructures, as well as from a AI
standpoint, where adversarial attacks can be used to augment datasets and create a more robust
and resilient model. Some of the most famous works on adversarial attack include Goodfellow
et al. (2014), where they applied a small perturbation in the direction of the gradient of the loss
with respect to the input. This provides a one-step attack that proves very effective but requires
the ability to perform backpropagation. Madry et al. (2017) improved it by finetuning the attack
through iterations, and Carlini & Wagner (2017) formulated the attack as an optimization problem
by minimizing the perturbation norm subject to misclassifications. Some work suggests that the
model that are robust to adversarial attacks could improve the explainability (Ross & Doshi-Velez,
2018; Dong et al., 2017). The focus of these work is on adversarial attacks on predictions rather
than attacks on explanations.

As XAI gained popularity, a natural research direction has been to apply adversarial attacks to ex-
planations. Ghorbani et al. (2019) was one of the first to show the fragility of explanations to
small perturbations, Kindermans et al. (2019) added a constant shift to the input image, which, by
construction, is compensated by the bias of a neural network. Adebayo et al. (2018) changes the ex-
planations by randomizing the weights of the classification network, and Dombrowski et al. (2019)
provided a method to manipulate attack while penalizing the change in model prediction arbitrar-
ily. For more related works, refer to the survey Baniecki & Biecek (2024). All these methods rely
on stringent requirements like access to the model weights, the ability to manipulate them, and the
possibility of performing an attack in multiple steps.

Post-hoc feature attribution methods This class of explainability methods explains model output
in terms of the important features of the input. Given the input sample xi and the model’s prediction
f(xi), feature attribution methods seek to pinpoint the portions of the input data that significantly
affect the prediction. In doing so, these methods assign feature relevance score to each input feature.
These are some of the most popular in the XAI domain, and to our knowledge, no method in this
subfield is inherently safe from the attack framework we proposed. We summarize three feature
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attribution methods used in this paper below, denoted by E(xi; f(xi)). All three methods are used
from the Captum Python library (Kokhlikyan et al., 2020).

• Saliency maps (Simonyan et al., 2013) is one of the earliest and easiest methods for com-
puting the gradient of the model output with respect to the input. It can be understood
as taking a first-order Taylor expansion of the network at the input, and the gradients are
coefficients. The absolute value of these coefficients can be taken to represent feature im-
portance, E(xi; f(xi)) =

∣∣∣∂f(xi)
∂xi

∣∣∣.
• Integrated gradients (Sundararajan et al., 2017) improved on some limitations of saliency

maps–saturation problem discussed in (Shrikumar et al., 2017; Sundararajan et al., 2017)–
by integrating the gradients with the use of a baseline input x0. Letting ∆xi =
xi − x0, the feature importance score can be calculated by, E(xi; f(xi)) = ∆xi ×∫ 1

β=0
∂f(x0+β∆xi)

∂xi
dβ, where β is the scaling coefficient.

• DeepLIFT SHAP (Lundberg & Lee, 2017), by extending DeepLIFT (Shrikumar et al.,
2017) to approximate the Shapley value (Shapley et al., 1953). DeepLIFT SHAP takes a
distribution of baselines and computes the DeepLIFT attribution for each input-baseline
pair and averages the resulting attributions per input, propagating the contribution through
the network relative to a reference input.

Metrics for measuring sample similarity We use Structural Similarity Index Measure
(SSIM) (Wang et al., 2004) to quantify the similarity between two images x and y, as follows,

SSIM(x, y) =
(2µxµy + c1) (2σxy + c2)(

µ2
x + µ2

y + c1
) (

σ2
x + σ2

y + c2
) (1)

where µx and µy are the pixel sample mean, σ2
x and σ2

y are sample variance, σxy is the sample
covariance of x and y, c1 = (k1L)

2 and c2 = (k2L)
2 are two variables to stabilize the division with

weak denominator, L is the dynamic range of the pixel-values (typically this is 2#bits per pixel − 1),
k1 = 0.01 and k2 = 0.03 by default.

3 PROPOSED METHODOLOGY

Problem statement We consider an image classification problem for a dataset X where each ele-
ment of it is a tuple (xi, yi), where xi ∈ RW×H×C defines the i-th image (with width W ∈ N,
height H ∈ N, and channel C ∈ N), and yi ∈ RJ defines the i-th one-hot encoding of the
classification label, where J is the total number of classes. A trained neural network model
f(·) : RW×H×C → RJ can classify the input image and produce the predicted probability
ŷi = f(xi). For a given classifier f(·) and an original image xi, a post-hoc explainability method
E(xi; f(xi) : RW×H×C → RW×H×C produces an explanation E(xi; f(·)) = zi. Our goal is to
devise a visually imperceptible adversarial attack that maximizes the difference in the explanation
of the input,

max
∑

W,H,C

|E(xi; f(xi))− E(x̂i; f(x̂i))| = max
∑

W,H,C

|zi − ẑi| (2)

where the sum over W , H , and C represents the sum over all the pixels of the image, and ẑi is
the explanation of the corrupted image x̂i. At the same time, for a successful attack, we aim at
minimizing the changes in the probability of the predicted class, such that

min |f(xi)− f(x̂i)|, (3)

and the visual difference between the original image and the corrupted image as

maxDSSIM (xi, x̂i), (4)

where DSSIM (·, ·) represents the Structural Similarity Index Measure (SSIM) in Equation 1, a per-
ceptual metric that compares two images on luminance, contrast, and structural similarity in local
windows. SSIM ranges between [−1, 1] (most of the time clipped between [0, 1]), and is 1 for iden-
tical images (hence the maximization), while it is −1 (or 0) when there is no structural similarity.
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Figure 1: A scheme representing the structure of our adversarial attack on explanations. The classi-
fications’ probabilities of the original image (dog) are computed through the classifier, from here an
attack image(cat) from the running-up class is selected. The same post-hoc explainability method of
the original image is used to extract the positive attribution of the attack image. With the top-k posi-
tive features selected, we mask the attack image (

⊗
symbol) and obtain the attack injections which

are combined with the original image with an α-weighted sum (
⊕

symbol) to create the corrupted
image. The final corrupted image is not distinguishable from the original one by the human eye, but
leads to different explanations.

The maximization in Equation 4 aims to ensure a perturbation that human observers will not easily
detect. In Equation 2 and 3, we use absolute difference to measure the changes in the explanations
and predictive probabilities. The higher the absolute difference, the greater the difference.

We now discuss how our method generates a corrupted image x̂ starting from an original image x.
For simplicity, we omit the subscript i when referring to the i-th image. The main intuition lies
in injecting a curated undetectable perturbation that confuses the explainability methods while not
altering the classification model prediction. In sum, this paper advocates selecting an image that
mostly confuses the classifier to devise an adversarial attack, which is depicted in Figure 1. The
proposed method features a three-phase technical pipeline: attack image selection (Sec. 3.1), feature
extraction (Sec. 3.2), and feature injection (Sec. 3.3).

3.1 PHASE ONE: ATTACK IMAGE SELECTION

In the first phase, we aim to select an attack image x̄ that will be used to generate an adversarial
attack on the original image. As highlighted in several studies on the robustness of the explainabil-
ity methods (Alvarez-Melis & Jaakkola, 2018; Hooker et al., 2019; Wei et al., 2024), there often is
a correlation between the confidence of model predictions and the explanations provided. There-
fore, we want to slightly stir the model prediction towards the class with which the model is mostly
confused (running-up class). To choose an image, we pass the original image through the classi-
fier and extract the predicted class y∗ = argmaxj∈{1,...,J} fj(x), where fj(·) stands for the j-th

4
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classification probability of y = f(x). We extract the running-up class such that

yr = argmax
j ̸=y∗

fj(x).

Now we select the image with the highest confidence for the running-up class yr as follows,

x̄ = argmax
x′∈Xyr

fyr(x
′).

For example, as shown in Figure 1, given the original image (dog), we select the cat as the running-
up class, which has the second-highest predictive probability after the dog. The attack image (cat)
is the image with the highest confidence in the cat’s class. This choice is again motivated by the
correlation between high-confidence predictions and strong attribution by the XAI method.

3.2 PHASE TWO: FEATURE EXTRACTION

Given the attack image x̄, we now want to extract a small but significant set of features in this
phase. The selection of a small number of pixels is crucial, as injecting more pixels would make
the perturbation more susceptible to being detected. By using the same explainability method E(·)
as the original image, we can extract a set of attributions that are relevant to the model and will
interfere with the original explanation, once injected into the image. The attributions uncovered not
only rely on the color of the pixels’ channel but also on the spatial structure between them. We do
so by computing the explanation z̄ = E(x̄, f(·)) and selecting the top-k positive attribution indices
as follows,

Ik = argmax
I⊆[W ]×[H]×[C]

|I|=k

∑
(w,h,c)∈I

z̄w,h,c,

where [W ] = {1, ...,W}, [C] = {1, ..., C}, [H] = {1, ...,H}, w ∈ [W ], h ∈ [H], and c ∈ [C]. The
notation z̄w,h,c indicates the value of the attribution at coordinates w, h, c. By taking the arguments
that maximize the sum over all the attributions and limiting the set Ik to a maximum of k arguments,
we extracted the set of k most prominent features according to the post-hoc explainability method.

3.3 PHASE THREE: FEATURE INJECTION

We now blend the original image channels with the attack image. Simply substituting the value of
the original pixel’s channel with the extracted features would drastically change the original image,
making the perturbation easily detectable and altering the prediction of the classifier. We use a
weighted sum with parameter α ∈ (0, 1) (to avoid a discoloration, we do so only for the channels
extracted), as follows:

x̂ =

{
clip((1− α)xw,h,c + αx̄w,h,c) if (w, h, c) ∈ Ik
xw,h,c otherwise

(5)

where clip is a clipping function to the original image domain. The final image x̂ is a corrupted
version of the original x that is visually similar to it DSSIM (x̂,x) ≈ 1, has a close prediction
confidence under the classifier f(x̂) ≈ f(x), but different explanations E(x̂, f(x̂)) ̸= E(x, f(x)).

4 EXPERIMENTS

Datasets and models For generating attacks against feature attribution explanations, we use Ima-
geNet (Deng et al., 2009). Additionally, we run some secondary results, impractical to compute on
ImageNet, on CIFAR-10 (Krizhevsky et al., 2009). For the classification task, we use a pre-trained
ResNet-18 model (He et al., 2016) and a ViT-B16 model (Dosovitskiy et al., 2020). All the results
are examined on feature attribution explanations obtained by saliency maps, integrated gradients,
and DeepLIFT SHAP. We run our attack algorithm for different α ∈ [0.03, 0.06, 0.09, 0.12, 0.15]
and top-k ∈ [0.01, 0.05, 0.1, 0.15, 0.2, 0.3, 0.4, 0.5, 0.6, 0.8]. We choose these values of α to have
a broad range of parameters and see how the method performs from being unrecognizable to being
quite visible (the notion of visibility differs not only between pairs of original and injection images,
but also from human to human, so we opted for a broader range to have a better understanding of the
method’s performance). Similarly, we choose an irregularly spaced range of top-k that spans from
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Figure 2: Percentage change of explanations with different α. Each graph represents a pair of
classifier and explainability method. The x-axis represents the top-k while the y-axis represents
the change in explanations. The graphs in the same row share the same y-axis scale. Each line
represents the mean and standard deviation of a different value of α as represented in the legend,
and corresponding dotted line represents the baseline performance relative to the same α.

inserting very few top positive features (hardly detected) to almost all the positive features (more
easily detected). The irregularity better showcases the lower part of top-k, which is of more interest
for our attack and is more dynamic according to our results. We use values of top-k ∈ (0, 1) to
represent the percentage amount of positive features to extract.

We select a random image from a subset of 500 classes. For every image that we attack, we select
the 3 images from the running-up class with the highest classification score for that class, and for
each of them, we compute the attack with all the possible combinations of the sets of predefined α
and top-k. Additionally, we compared our method with a baseline, computed by adding Gaussian
noise to the original image.

Explainability performance Figure 2 represents the percentage change of explanations, that is
the difference in explanations between the original and corrupted image (summed across all pixels
and channels in absolute values) and divided by the explanations of the original image (this is no
different than the sum of absolute difference only reported in a more meaningful scale in reference
to the attacked image). The higher the value, the bigger the change in the attacked explanations; a
value of 0% means the two explanations are identical. We see that for equal values of α our method
significantly outperforms the baseline. Our method proves to be more effective for transformer-
based architecture. We see recurring patterns as α and top-k change across different architectures
and explainability methods. Consistent with the theory of our approach, as α and top-k increase,
so does performance. Nonetheless, α experiences diminishing returns (e.g., the distance between
the gap with α = 0.03 and α = 0.06 is bigger than the one between α = 0.06 and α = 0.09 and
so on). Similarly, for top-k, there’s a fast improvement at the beginning, which plateaus. This is
explained by the meaning of a higher top-k, as it approaches 1, the injected features are less and less
representative, and small improvements are justified by the additional corrupted pixels. Furthermore,
the values α and top-k are dependent on each other. A bigger value of α pushes forward the point
from where a higher top-k relates to diminishing improvement.

Detectability performance Figure 3 shows for each test how similar the computed corrupted image

6
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Figure 3: SSIM between the original image and the corrupted one. The structure follows the same
one as Figure 2.

Figure 4: The confidence absolute change for the predicted class of the original image vs the cor-
rupted image. The structure follows the same one as Figure 2.

is to the original image under SSIM. Our method, as expected, deviates slightly more when com-
pared to the baseline, but still achieves good performance, showcasing a high similarity between the

7
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two images. The baseline is expected to have higher similarity since, by adding random Gaussian
noise, it overall injects less information with respect to our method.

Prediction performance In Figure 4, we highlight the absolute mean difference in the prediction
confidence between the corrupted and original image relative to the class of the original most con-
fident prediction. Despite inducing a higher prediction change compared to the baseline, only high
values of α reach a change greater than 10% and are otherwise on average smaller than 5%. Once
more, in the case of our approach, Vit-B16 is weaker than ResNet-18, resulting in lower changes in
the predictions. This follows as a result of the architecture being more robust to input noise pertur-
bation (Bhojanapalli et al., 2021; Shao et al., 2021). Interestingly enough, this robustness doesn’t
seem to transfer to the domain of explanations as previously highlighted in Figure 2. In Table 1 we

Table 1: Comparison of the different models and explainability tested, for the various values of α
and top-k used, including both the percentage of change of the explanation and the percentage drop
in confidence of the model. For each cross-section of a value of α and a value of top-k there are
four values. In bold we highlight the values of our method, while the other represent the baseline. In
both cases, the first number is the percentage of change in the explanation induced, while the smaller
value, sided by the ↓, is the mean absolute prediction confidence change in the class predicted on
the original image. Similarly, the values below them are the metric computed on the baseline.

DeepLIFT SHAP

α \top-k 0.01 0.05 0.1 0.2 0.4 0.6 0.8

R
es

N
et

-1
8

0.03 11.5 0.33↓ 27.2 0.74↓ 37.6 1.06↓ 49.0 1.45↓ 59.9 1.96↓ 64.7 2.27↓ 67.4 2.47↓
15.1 0.14↓ 29.1 0.29↓ 35.4 0.43↓ 41.9 0.62↓ 48.8 0.88↓ 51.8 1.04↓ 53.5 1.19↓

0.06 17.8 0.75↓ 39.8 1.72↓ 52.8 2.33↓ 66.9 3.18↓ 79.5 4.47↓ 85.1 5.17↓ 87.7 5.63↓
21.8 0.31↓ 41.2 0.65↓ 49.9 0.93↓ 58.1 1.30↓ 66.0 1.79↓ 69.9 2.16↓ 72.1 2.50↓

0.09 22.9 1.21↓ 48.4 2.66↓ 63.0 3.62↓ 78.2 5.04↓ 91.1 7.14↓ 96.3 8.42↓ 98.9 9.04↓
27.1 0.50↓ 50.4 1.04↓ 59.8 1.48↓ 69.0 2.05↓ 77.2 2.94↓ 81.2 3.48↓ 83.4 3.93↓

0.12 27.1 1.69↓ 55.3 3.68↓ 70.6 5.02↓ 86.2 7.07↓ 98.9 9.92↓ 103.8 11.75↓ 106.1 12.85↓
31.6 0.73↓ 57.1 1.44↓ 67.5 2.08↓ 77.0 2.91↓ 85.4 4.26↓ 89.0 4.87↓ 91.2 5.41↓

0.15 30.9 2.16↓ 61.1 4.74↓ 76.6 6.51↓ 92.2 9.10↓ 104.0 12.82↓ 108.8 15.29↓ 110.6 16.76↓
35.7 0.97↓ 63.1 1.85↓ 73.6 2.68↓ 83.0 3.81↓ 90.8 5.59↓ 94.4 6.27↓ 96.4 6.92↓

V
iT

-B
16

0.03 25.9 0.34↓ 54.2 0.77↓ 71.9 1.08↓ 88.6 1.44↓ 105.8 1.88↓ 115.6 2.14↓ 120.5 2.25↓
11.0 0.06↓ 23.2 0.13↓ 31.5 0.18↓ 41.1 0.29↓ 52.1 0.41↓ 56.8 0.50↓ 59.0 0.54↓

0.06 45.4 0.76↓ 87.1 1.80↓ 109.3 2.41↓ 129.3 3.27↓ 144.3 4.26↓ 153.3 4.74↓ 156.9 5.05↓
21.6 0.12↓ 43.0 0.32↓ 56.3 0.46↓ 68.7 0.68↓ 82.1 0.91↓ 86.8 1.04↓ 89.4 1.11↓

0.09 60.8 1.21↓ 109.2 2.82↓ 130.6 3.86↓ 149.0 5.14↓ 164.1 6.51↓ 168.3 7.28↓ 172.1 7.81↓
30.8 0.21↓ 58.5 0.53↓ 73.6 0.75↓ 85.6 1.08↓ 98.7 1.40↓ 103.1 1.53↓ 105.4 1.69↓

0.12 72.5 1.60↓ 123.2 3.73↓ 145.2 5.12↓ 160.5 6.76↓ 173.9 8.57↓ 178.2 9.67↓ 181.5 10.50↓
39.2 0.31↓ 71.5 0.72↓ 84.8 1.01↓ 99.3 1.42↓ 108.1 1.84↓ 112.2 2.01↓ 114.4 2.22↓

0.15 78.7 1.97↓ 133.1 4.46↓ 153.7 6.12↓ 168.7 8.09↓ 181.9 10.39↓ 185.1 11.86↓ 188.8 12.97↓
47.2 0.41↓ 80.6 0.89↓ 94.5 1.25↓ 105.3 1.72↓ 113.2 2.24↓ 118.8 2.44↓ 122.0 2.74↓

report for some values of α and top-k, across different architectures, and for DeepLIFT Shap, the
percentage of change in the explanation, and the percentage drop in prediction of our method and
the baseline (the full table and other explainability methods are available at Table B.1, B.2, and B.3).
This highlights that, especially as top-k increases, our method induces a similar change in explana-
tion and prediction, with a lower value of α; this, by the method’s structure, is less detectable as the
weighted merge with a lower value. The table furthermore emphasizes that for the same values of
α and top-k, the ViT-B16 is more vulnerable to our attack, with a higher explainability percentage
change and a lower prediction drop. Lastly, we empirically validate the intuition behind choosing a
picture from the running-up class, by which we refer to the class with the second-highest classifica-
tion (or misclassifications in this case) by the model. In a real-world scenario, there are countless
images from which to extract noise (injection) and insert it into the target image, especially in cases
like ImageNet, where the number of classes is large. Figure 5, computed on the CIFAR-10 dataset,
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Figure 5: The figure compares the mean and standard deviation of injecting the original image with
one from a running-up class (full line) vs the average of using all the other classes (dotted lines). The
lines have been computed on the CIFAR10 dataset, with a ResNet-18 and different explainability
methods (saliency maps, integrated gradients, and DeepLIFT SHAP). The computation scales lin-
early in the number of classes; therefore, it’s not practical to compute the same graph on ImageNet.

shows that the explanation change induced by the images of the running-up class (full lines) is al-
ways as good as or better than picking an attack image from any other class. As intuition suggests,
to induce the most ’confusion’ in a model’s explanations, you should inject features of an image of
the class for which the model is mostly confused in the prediction.

5 CONCLUSIONS

We proposed a new black-box model-agnostic one-step adversarial attack on the explanations. The
method exploits the uncertainties of the classification model to select an image from which to extract
features that are injected into the original image. Our approach allows us to control how many
features to inject and how much they should be weighted compared to the original image to obtain an
undetectable attack. The attack hardly changes the prediction scores while significantly disrupting
the original explanations. Our work serves as a fundamental step towards achieving more robust
explainability models, especially in safety-critical domains like medicine, where XAI is used to
understand diseases and illnesses, and the stakes are high. Future research directions can be grouped
as follows:

• robustness: includes utilizing our new method to understand how the model robustness
improves if fine-tuned on such attacks.

• different domain: currently, the attack has been created and tested on images. Other do-
mains of interest are the signal domain (where, given the usually smaller input space, de-
tecting alteration is easier), as well as the video domains

• attack improvement: one area that we did not explore in depth is the step where the im-
age and injections are combined with a weighted sum. Although simple and effective,
this approach can be improved by using more advanced blending techniques, such as local
pixel-aware blending and Poisson blending, to reduce the detectability of the attack while
maintaining the high explanation manipulation. Another area of improvement could be
adapting the method to multi-label classification tasks. In this scenario, XAI methods usu-
ally produce as many attributions as classes. A possible adaptation could either create an
image for each class or search for a common ”running-up” class that was not recognized in
the original prediction.

Ethics statement This paper proposes a novel adversarial attack on the explanation to spread aware-
ness about this new kind of technique. We do not identify any violation.

Reproducibility statement The paper provides all the details of the method, including algorithm
details and experimental settings, models, datasets, and parameters used. Implementation and code
will be shared with the public if the paper gets accepted.
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Hugues Turbé, Mina Bjelogrlic, Christian Lovis, and Gianmarco Mengaldo. Evaluation of post-
hoc interpretability methods in time-series classification. Nature Machine Intelligence, pp. 1–11,
2023.
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A APPENDIX: ON THE CHOICE OF THE MOST CONFIDENT CLASS
PREDICTION IMAGE AS ATTACK IMAGE

Figure A.1: Comparison between selecting the images with the highest confidence in the running-up
class (full lines) vs choosing the images ranked 95-th to 100-th in confidence (dotted lines).

In the test we ran, to choose an image from a specific class to extract the explanations to inject
into the original image, we selected the image with the highest confidence in the prediction of the
running-up class. These images produce the strongest attribution explanations and therefore induce
the highest result in the attack. Figure A.1, computed on the CIFAR-10 dataset, shows the difference
in the attack performances between choosing the top 5 images in a class to perform the attack (full
line) vs picking the images ranked 95-th to 100-th in the ordered confidence score for the running
up class (dotted line). This result could also be inferred from Figure 5, since using a different class
for attacking instead of the original image is like choosing a low confidence image in the running up
class.

B APPENDIX: FULL TABLES OF PERFORMANCE COMPARISON

We now report the full tables that compare our algorithm and the baseline across all the α, top-k,
model architectures, and explainability methods tested.
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Table B.1: Comparison of our method with the baseline in the case of Saliency maps

Saliency maps

α \top-k 0.01 0.05 0.1 0.15 0.2

R
es

N
et

-1
8

0.03 24.9 0.37↓ 41.1 0.80↓ 48.9 1.09↓ 53.4 1.33↓ 56.4 1.47↓
22.2 0.14↓ 34.5 0.29↓ 40.1 0.43↓ 43.4 0.54↓ 45.7 0.62↓

0.06 34.0 0.86↓ 52.9 1.84↓ 61.3 2.50↓ 65.9 2.97↓ 68.9 3.29↓
30.3 0.31↓ 45.7 0.65↓ 52.2 0.93↓ 55.7 1.18↓ 58.3 1.30↓

0.09 40.1 1.35↓ 60.0 2.89↓ 68.3 3.94↓ 72.7 4.80↓ 75.5 5.35↓
36.1 0.50↓ 53.1 1.04↓ 59.6 1.48↓ 63.1 1.81↓ 65.7 2.05↓

0.12 44.8 1.84↓ 64.9 3.98↓ 72.8 5.52↓ 76.8 6.73↓ 79.3 7.47↓
40.7 0.73↓ 58.2 1.44↓ 64.8 2.08↓ 68.1 2.55↓ 70.5 2.91↓

0.15 48.5 2.36↓ 68.4 5.16↓ 75.9 7.09↓ 79.5 8.54↓ 81.7 9.55↓
44.5 0.97↓ 62.2 1.85↓ 68.5 2.68↓ 71.7 3.31↓ 73.9 3.81↓

V
it-

B
16

0.03 22.3 0.30↓ 40.5 0.61↓ 49.8 0.75↓ 54.2 0.84↓ 57.7 0.93↓
8.8 0.06↓ 17.7 0.13↓ 23.6 0.19↓ 27.2 0.25↓ 30.3 0.29↓

0.06 37.2 0.72↓ 64.1 1.42↓ 75.4 1.76↓ 81.5 1.97↓ 84.7 2.10↓
16.6 0.12↓ 31.5 0.32↓ 40.7 0.46↓ 45.7 0.59↓ 49.2 0.68↓

0.09 50.1 1.19↓ 81.6 2.38↓ 93.4 2.94↓ 98.6 3.26↓ 101.8 3.48↓
23.1 0.21↓ 42.1 0.53↓ 52.4 0.75↓ 57.4 0.92↓ 60.9 1.08↓

0.12 59.2 1.66↓ 93.5 3.36↓ 103.4 4.15↓ 109.2 4.67↓ 112.1 4.98↓
28.8 0.31↓ 51.2 0.72↓ 60.1 1.01↓ 66.0 1.22↓ 70.5 1.42↓

0.15 66.3 2.12↓ 102.7 4.32↓ 111.9 5.35↓ 116.0 6.00↓ 119.4 6.45↓
34.4 0.41↓ 57.2 0.89↓ 66.7 1.25↓ 71.7 1.49↓ 75.0 1.72↓

Saliency maps

α \top-k 0.3 0.4 0.5 0.6 0.8

R
es

N
et

-1
8

0.03 60.2 1.74↓ 62.2 1.92↓ 63.2 1.99↓ 63.5 2.07↓ 62.2 2.09↓
48.8 0.75↓ 51.3 0.88↓ 52.6 0.98↓ 53.7 1.04↓ 55.2 1.19↓

0.06 72.4 3.85↓ 74.4 4.29↓ 75.6 4.52↓ 76.1 4.64↓ 75.7 4.63↓
61.8 1.60↓ 63.8 1.79↓ 65.2 2.04↓ 66.5 2.16↓ 68.1 2.50↓

0.09 78.6 6.16↓ 80.5 6.88↓ 81.7 7.21↓ 82.4 7.42↓ 82.6 7.35↓
68.7 2.59↓ 70.8 2.94↓ 72.2 3.32↓ 73.4 3.48↓ 74.9 3.93↓

0.12 82.2 8.54↓ 84.0 9.49↓ 84.9 9.85↓ 85.9 10.19↓ 86.7 10.22↓
73.4 3.67↓ 75.3 4.26↓ 76.6 4.72↓ 77.5 4.87↓ 78.9 5.41↓

0.15 84.4 11.02↓ 86.0 12.25↓ 87.1 12.74↓ 88.0 13.25↓ 89.6 13.54↓
76.5 4.79↓ 78.0 5.59↓ 79.2 6.07↓ 80.0 6.27↓ 81.3 6.92↓

V
it-

B
16

0.03 62.0 1.01↓ 64.6 1.05↓ 66.9 1.10↓ 67.5 1.13↓ 68.1 1.13↓
34.8 0.34↓ 37.8 0.41↓ 39.7 0.46↓ 41.0 0.50↓ 42.5 0.54↓

0.06 91.4 2.31↓ 94.8 2.50↓ 98.4 2.66↓ 99.7 2.77↓ 105.1 2.87↓
55.4 0.80↓ 58.5 0.91↓ 62.1 0.99↓ 61.9 1.04↓ 64.0 1.12↓

0.09 107.4 3.84↓ 111.8 4.10↓ 116.9 4.34↓ 121.1 4.57↓ 127.8 4.87↓
66.6 1.22↓ 70.3 1.40↓ 73.8 1.47↓ 74.0 1.53↓ 76.4 1.69↓

0.12 118.2 5.44↓ 121.6 5.81↓ 127.0 6.14↓ 132.2 6.49↓ 140.8 6.95↓
73.6 1.62↓ 78.0 1.84↓ 79.7 1.93↓ 81.9 2.01↓ 84.3 2.22↓

0.15 125.5 7.02↓ 130.0 7.55↓ 135.6 7.95↓ 140.9 8.52↓ 154.0 9.26↓
78.9 1.99↓ 82.4 2.24↓ 85.2 2.39↓ 87.5 2.44↓ 91.2 2.74↓
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Table B.2: Comparison of our method with the baseline in the case of Integrated Gradients

Intergated Gradients

α \top-k 0.01 0.05 0.1 0.15 0.2

R
es

N
et

-1
8

0.03 14.0 0.36↓ 30.7 0.76↓ 40.7 1.04↓ 47.2 1.26↓ 52.1 1.41↓
17.5 0.14↓ 32.0 0.29↓ 38.7 0.43↓ 42.7 0.54↓ 45.6 0.62↓

0.06 21.8 0.77↓ 44.5 1.63↓ 57.5 2.34↓ 65.5 2.80↓ 71.5 3.18↓
25.1 0.31↓ 45.1 0.65↓ 54.2 0.93↓ 59.3 1.18↓ 63.0 1.31↓

0.09 28.1 1.22↓ 54.6 2.58↓ 69.2 3.69↓ 78.3 4.50↓ 84.5 5.08↓
31.1 0.50↓ 54.9 1.03↓ 65.0 1.49↓ 70.3 1.82↓ 74.8 2.05↓

0.12 33.5 1.68↓ 62.8 3.60↓ 78.2 5.10↓ 87.3 6.12↓ 93.4 6.99↓
36.2 0.73↓ 62.3 1.44↓ 73.2 2.08↓ 79.0 2.57↓ 83.6 2.93↓

0.15 38.4 2.17↓ 69.4 4.63↓ 84.8 6.47↓ 94.0 7.83↓ 100.1 9.07↓
40.8 0.97↓ 68.8 1.84↓ 79.9 2.68↓ 85.9 3.30↓ 90.3 3.83↓

V
it-

B
16

0.03 12.3 0.32↓ 28.2 0.81↓ 37.9 1.13↓ 44.3 1.36↓ 49.1 1.50↓
4.2 0.06↓ 9.1 0.13↓ 13.1 0.18↓ 15.5 0.25↓ 17.8 0.29↓

0.06 23.8 0.80↓ 48.4 1.92↓ 62.4 2.64↓ 70.7 3.08↓ 76.8 3.46↓
8.2 0.12↓ 18.3 0.32↓ 25.1 0.46↓ 29.7 0.59↓ 33.1 0.68↓

0.09 32.5 1.28↓ 62.9 3.07↓ 79.1 4.20↓ 88.3 4.95↓ 94.5 5.49↓
12.2 0.21↓ 26.7 0.53↓ 35.6 0.75↓ 41.8 0.92↓ 45.7 1.08↓

0.12 39.4 1.72↓ 74.2 4.11↓ 90.8 5.62↓ 99.9 6.60↓ 106.2 7.36↓
16.2 0.31↓ 34.5 0.72↓ 45.3 1.01↓ 51.7 1.22↓ 56.8 1.42↓

0.15 45.2 2.09↓ 82.5 4.98↓ 99.2 6.81↓ 108.8 8.07↓ 115.7 9.03↓
20.2 0.41↓ 41.1 0.89↓ 52.9 1.25↓ 59.7 1.49↓ 65.3 1.72↓

Intergated Gradients

α \top-k 0.3 0.4 0.5 0.6 0.8

R
es

N
et

-1
8

0.03 58.9 1.70↓ 63.3 1.93↓ 66.3 2.12↓ 68.6 2.26↓ 71.6 2.48↓
49.6 0.75↓ 53.0 0.88↓ 54.7 0.98↓ 56.1 1.04↓ 57.8 1.18↓

0.06 79.7 3.85↓ 84.9 4.33↓ 88.6 4.74↓ 91.1 5.05↓ 94.2 5.52↓
68.3 1.60↓ 71.4 1.79↓ 73.6 2.04↓ 75.6 2.15↓ 77.8 2.49↓

0.09 93.0 6.15↓ 98.3 6.93↓ 101.7 7.43↓ 104.1 7.95↓ 107.3 8.65↓
80.1 2.58↓ 83.8 2.94↓ 86.2 3.29↓ 87.9 3.46↓ 90.2 3.92↓

0.12 102.0 8.52↓ 106.9 9.46↓ 110.3 10.25↓ 112.5 11.00↓ 115.2 12.06↓
88.8 3.67↓ 92.6 4.23↓ 94.9 4.68↓ 96.5 4.84↓ 98.7 5.40↓

0.15 108.4 10.95↓ 113.1 12.23↓ 116.4 13.42↓ 118.5 14.36↓ 120.9 15.90↓
95.6 4.75↓ 98.9 5.57↓ 101.1 6.02↓ 102.4 6.23↓ 104.5 6.90↓

V
it-

B
16

0.03 55.8 1.75↓ 60.8 1.95↓ 64.3 2.12↓ 66.7 2.23↓ 69.5 2.38↓
21.1 0.34↓ 23.6 0.41↓ 25.3 0.46↓ 26.7 0.50↓ 28.5 0.54↓

0.06 85.3 4.01↓ 90.7 4.41↓ 94.2 4.69↓ 97.1 4.93↓ 100.4 5.20↓
38.5 0.80↓ 42.4 0.91↓ 45.4 0.99↓ 47.8 1.04↓ 50.0 1.11↓

0.09 102.7 6.37↓ 108.0 6.95↓ 111.7 7.36↓ 114.3 7.67↓ 117.9 8.15↓
52.7 1.22↓ 57.2 1.40↓ 60.4 1.47↓ 62.4 1.53↓ 65.1 1.69↓

0.12 114.6 8.53↓ 119.9 9.36↓ 123.7 9.99↓ 126.7 10.45↓ 130.8 11.13↓
63.3 1.62↓ 68.2 1.84↓ 71.4 1.93↓ 73.8 2.01↓ 76.8 2.22↓

0.15 123.8 10.46↓ 129.4 11.49↓ 134.1 12.33↓ 137.0 12.93↓ 140.8 13.85↓
72.1 1.99↓ 77.0 2.24↓ 80.0 2.39↓ 82.8 2.44↓ 85.9 2.74↓
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Table B.3: Comparison of our method with the baseline in the case of DeepLIFT Shap

DeepLIFT Shap

α \top-k 0.01 0.05 0.1 0.15 0.2

R
es

N
et

-1
8

0.03 11.5 0.33↓ 27.2 0.74↓ 37.6 1.06↓ 44.4 1.24↓ 49.0 1.45↓
15.1 0.14↓ 29.1 0.29↓ 35.4 0.43↓ 39.2 0.54↓ 41.9 0.62↓

0.06 17.8 0.75↓ 39.8 1.72↓ 52.8 2.33↓ 61.0 2.76↓ 66.9 3.18↓
21.8 0.31↓ 41.2 0.65↓ 49.9 0.93↓ 54.5 1.18↓ 58.1 1.30↓

0.09 22.9 1.21↓ 48.4 2.66↓ 63.0 3.62↓ 72.1 4.35↓ 78.2 5.04↓
27.1 0.50↓ 50.4 1.04↓ 59.8 1.48↓ 64.9 1.81↓ 69.0 2.05↓

0.12 27.1 1.69↓ 55.3 3.68↓ 70.6 5.02↓ 79.9 6.14↓ 86.2 7.07↓
31.6 0.73↓ 57.1 1.44↓ 67.5 2.08↓ 73.0 2.55↓ 77.0 2.91↓

0.15 30.9 2.16↓ 61.1 4.74↓ 76.6 6.51↓ 86.0 7.90↓ 92.2 9.10↓
35.7 0.97↓ 63.1 1.85↓ 73.6 2.68↓ 79.2 3.31↓ 83.0 3.81↓

V
it-

B
16

0.03 25.9 0.34↓ 54.2 0.77↓ 71.9 1.08↓ 81.1 1.26↓ 88.6 1.44↓
11.0 0.06↓ 23.2 0.13↓ 31.5 0.18↓ 36.7 0.25↓ 41.1 0.29↓

0.06 45.4 0.76↓ 87.1 1.80↓ 109.3 2.41↓ 122.1 2.88↓ 129.3 3.27↓
21.6 0.12↓ 43.0 0.32↓ 56.3 0.46↓ 63.7 0.59↓ 68.7 0.68↓

0.09 60.8 1.21↓ 109.2 2.82↓ 130.6 3.86↓ 141.5 4.60↓ 149.0 5.14↓
30.8 0.21↓ 58.5 0.53↓ 73.6 0.75↓ 80.8 0.92↓ 85.6 1.08↓

0.12 72.5 1.60↓ 123.2 3.73↓ 145.2 5.12↓ 155.4 6.06↓ 160.5 6.76↓
39.2 0.31↓ 71.5 0.72↓ 84.8 1.01↓ 92.7 1.22↓ 99.3 1.42↓

0.15 78.7 1.97↓ 133.1 4.46↓ 153.7 6.12↓ 162.0 7.22↓ 168.7 8.09↓
47.2 0.41↓ 80.6 0.89↓ 94.5 1.25↓ 100.4 1.49↓ 105.3 1.72↓

DeepLIFT Shap

α \top-k 0.3 0.4 0.5 0.6 0.8

R
es

N
et

-1
8

0.03 55.6 1.74↓ 59.9 1.96↓ 62.8 2.11↓ 64.7 2.27↓ 67.4 2.47↓
45.7 0.75↓ 48.8 0.88↓ 50.6 0.98↓ 51.8 1.04↓ 53.5 1.19↓

0.06 74.4 3.95↓ 79.5 4.47↓ 82.7 4.82↓ 85.1 5.17↓ 87.7 5.63↓
63.1 1.60↓ 66.0 1.79↓ 68.2 2.04↓ 69.9 2.16↓ 72.1 2.50↓

0.09 86.3 6.29↓ 91.1 7.14↓ 94.2 7.74↓ 96.3 8.42↓ 98.9 9.04↓
74.0 2.59↓ 77.2 2.94↓ 79.7 3.32↓ 81.2 3.48↓ 83.4 3.93↓

0.12 94.2 8.72↓ 98.9 9.92↓ 101.8 10.83↓ 103.8 11.75↓ 106.1 12.85↓
81.8 3.67↓ 85.4 4.26↓ 87.4 4.72↓ 89.0 4.87↓ 91.2 5.41↓

0.15 99.9 11.19↓ 104.0 12.82↓ 106.9 14.11↓ 108.8 15.29↓ 110.6 16.76↓
88.1 4.79↓ 90.8 5.59↓ 92.9 6.07↓ 94.4 6.27↓ 96.4 6.92↓

V
it-

B
16

0.03 98.7 1.69↓ 105.8 1.88↓ 112.1 2.03↓ 115.6 2.14↓ 120.5 2.25↓
48.0 0.34↓ 52.1 0.41↓ 54.8 0.46↓ 56.8 0.50↓ 59.0 0.54↓

0.06 138.2 3.84↓ 144.3 4.26↓ 150.1 4.51↓ 153.3 4.74↓ 156.9 5.05↓
77.9 0.80↓ 82.1 0.91↓ 87.0 0.99↓ 86.8 1.04↓ 89.4 1.11↓

0.09 157.7 5.95↓ 164.1 6.51↓ 167.1 6.88↓ 168.3 7.28↓ 172.1 7.81↓
93.6 1.22↓ 98.7 1.40↓ 102.9 1.47↓ 103.1 1.53↓ 105.4 1.69↓

0.12 168.0 7.83↓ 173.9 8.57↓ 176.9 9.16↓ 178.2 9.67↓ 181.5 10.50↓
103.2 1.62↓ 108.1 1.84↓ 110.4 1.93↓ 112.2 2.01↓ 114.4 2.22↓

0.15 176.1 9.45↓ 181.9 10.39↓ 184.4 11.21↓ 185.1 11.86↓ 188.8 12.97↓
109.0 1.99↓ 113.2 2.24↓ 116.0 2.39↓ 118.8 2.44↓ 122.0 2.74↓
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