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ABSTRACT

By leveraging tools from the statistical mechanics of complex systems, in these
short notes we extend the architecture of a neural network for hetero-associative
memory called three-directional associative memories (TAM) to explore super-
vised and unsupervised learning protocols. In particular, by providing entropic-
heterogeneous datasets to its various layers, we predict and quantify a new emer-
gent phenomenon - that we term layer’s “cooperativeness”- where the interplay
of dataset entropies across network’s layers enhances their retrieval capabilities
beyond those they would have without reciprocal influence. Naively we would
expect layers trained with less informative datasets to develop smaller retrieval re-
gions compared to those pertaining to layers that experienced more information:
this does not happen and all the retrieval regions settle to the same amplitude,
allowing for optimal retrieval performance globally. This cooperative dynamics
marks a significant advancement in understanding emergent computational capa-
bilities within disordered systems.
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1 INTRODUCTION

John Hopfield’s legacy, recently recognized with the Nobel Prize in Physics, continues to inspire
the study of associative memories. His groundbreaking work established the foundation for un-
derstanding how networks of simple units can give rise to complex, emergent behaviors. Thanks
to modern variations of Hopfield’s networks, they are experiencing a resurgence of interest Krotov
(2023); Krotov & Hopfield (2016; 2020); Ramsauer et al. (2020); Barra et al. (2023); Demircigil
et al. (2017); Lucibello & Mézard (2024); Agliari et al. (2020b).

Building on the layered associative Hebbian network architecture introduced for pattern recognition
and disentanglement tasks Agliari et al. (2025a;b), this paper extends the exploration to new learning
paradigms, pushing the boundaries of what these associative networks may accomplish.
While earlier work demonstrated how such networks could autonomously extract fundamental com-
ponents from composite inputs—like identifying individual notes from musical chords—we delve
deeper into the dynamics that govern these emergent capabilities. This dual framework enables a
comprehensive examination of how varying levels of data structure and supervision influence the
network’s performance, especially under noisy or corrupted conditions Agliari et al. (2023a;b).
The most striking finding of our study is the emergence of a phenomenon we term “cooperative-
ness”. A detailed examination of the network phase diagrams, parameterized by dataset entropy
values across distinct layers, reveals that the retrieval performance of each layer is not merely a
reflection of its corresponding dataset’s quality. Instead, it is governed by the collective interplay of
datasets’ entropy distributions across all layers (similar to the optimization tradeoff present in the
Information Plane idea Shwartz-Ziv & Tishby (2017)). Interestingly, heterogeneous entropy levels
diminish the retrieval performance of layers trained over more high-quality datasets while enhancing
the performance of those associated with noisier ones. This dynamics results in a balanced retrieval
capacity across the network, a synergistic interaction absent in classical associative networks where
layers operate independently. Notably, our approach leverages tools from the statistical mechan-
ics of complex systems Mézard et al. (1987); Talagrand (2003); Agliari et al. (2020a); Franz et al.
(2001); Agliari et al. (2021); Albanese et al. (2022), allowing us to rigorously predict and quantify
this cooperative phenomenon through mathematically robust frameworks. This cooperative dynamic
represents a significant advancement in understanding emergent intelligence in disordered systems.

2 THE SUPERVISED AND UNSUPERVISED HEBBIAN PROTOCOLS

We consider a neural network composed of three different families of binary neurons hereafter in-
dicated by σ ≡ {σA

i }
A=1,2,3
i=1,...,NA

which interact in pairs via generalized Hebbian couplings (vide
infra) whose goal lies in reconstructing the information encoded in a triplet of K binary archetypes
{ξAµ }

A=1,2,3
µ=1,...,K respectively of length N1, N2 and N3. However, such archetypes are not provided

directly to the network, hence the latter has to infer them by experiencing solely their noisy or cor-
rupted versions. In particular, we assume that for each triplet of archetypes (µ,A), M examples
ηa,Aµ , with a = 1, . . . ,M , are available, which are corrupted versions of the archetypes, such that
for each A = 1, 2, 3 and i = 1, . . . , NA we have

P(ηa,Ai,µ |ξAi,µ) =
1 + rA

2
δ(ηa,Ai,µ − ξAi,µ) +

1− rA
2

δ(ηa,Ai,µ + ξAi,µ) (1)

where rA ∈ [0, 1] rules the quality of the dataset, i.e. for rA = 1 the example matches perfectly the
archetype, while for rA = 0 it is totally random. To quantify the information content of the dataset
it is useful to introduce the variables

ρA =
1− r2A
Mr2A

, ρAB =
1− r2Ar

2
B

Mr2Ar
2
B

with A,B ∈ {1, 2, 3} (2)

that we shall refer to as the dataset entropies as deepened in Alemanno et al. (2023); Agliari et al.
(2024). We observe that both ρA and ρAB approaches zero either when the examples perfectly match
the archetypes (i.e., rA, rB → 1), when the number of examples becomes infinite (i.e., M → ∞),
or under both conditions simultaneously.

The information related to the archetypes is encoded in the synaptic matrix, as outlined by the
following cost function (or Hamiltonian):
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Figure 1: Schematic representation of the neural network described in equation 3 for the case
(N1, N2, N3) = (4, 3, 2).

Hg
N (σ|J) = −1

2

3∑
A̸=B

gAB

NA,NB∑
i,j=1

JAB
ij σA

i σ
B
j , (3)

where g ∈ R3×3 represents the strength of the interactions between different layers. The network
architecture is sketched in Fig. 1. In order to let the network deal with examples rather than patterns,
in this paper we inspect the following two variations of the above coupling matrix:

(J (unsup))AB
ij =

1

rArB
√
NANB(1 + ρA)(1 + ρB)

K∑
µ=1

1

M

M∑
a=1

ηa,Ai,µ ηa,Bj,µ , (4)

(J (sup))AB
ij =

√
(1 + ρA)(1 + ρB)

NANB

K∑
µ=1

(
1

M

M∑
a=1

ηa,Ai,µ

)(
1

M

M∑
b=1

ηb,Bj,µ

)
. (5)

In the first case, there is no external teacher who knows the labels and can organize the examples
based on archetypes, as occurs in the second scenario. This distinction is why the two formula-
tions are associated with unsupervised and supervised learning protocols, respectively Agliari et al.
(2023a;b); Alemanno et al. (2023); Agliari et al. (2024).

As calculations will be performed in the thermodynamic limit, where N1, N2, N3 → ∞, it is impor-
tant to highlight that the sizes of the three layers—and consequently the lengths of the corresponding
examples—as well as the number of samples in each dataset, can differ from one another, meaning
N1 ̸= N2 ̸= N3 and M1 ̸= M2 ̸= M3. Furthermore, despite these differences, the number of
archetypes remains constant across all layers, denoted by K for each. Moreover, in order to ensure
a meaningful asymptotic (thermodynamic) behavior, the ratio between the number of patterns and
their respective lengths must remain finite. To achieve this, we impose the following conditions on
K, N1, N2 and N3:

lim
N1,N3→∞

√
N1

N3
= α , lim

N1,N2→∞

√
N1

N2
= θ , lim

N1,K→∞

K

N1
= γ (6)

where α, θ, γ ∈ R+ are control parameters. The parameter γ characterizes the storage capacity of
the network, and our focus will be on the high-storage regime, where γ > 0.

Pivotal for a statistical mechanical analysis is the study of the quenched free energy in the thermo-
dynamic limit, defined as

Ag
α,θ,γ(β) = lim

N1,N2,N3→∞
E
1

L
ln

 ∑
{σ1,σ2,σ3}

exp (−βHg
N (σ|J))

 , (7)

where E averages over the J distributions, L = 1
3

(
1√

N1N2
+ 1√

N1N3
+ 1√

N2N3

)
and β ∈ R+ tunes

the fast noise in the network such that for β → 0+ network’s dynamics is a pure random walk in the
neural configuration space (and any configuration is equally likely to occur), while for β → +∞ its
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Figure 2: Phase diagrams of the TAM network in the supervised setting in the noise versus storage
plane at α = θ = 1. The analysis includes different inter-layer interaction strengths and various
values of the dataset entropy ρ, as indicated in the legend. Each solid line depicts the phase transition
for the whole network splitting the working region (bottom left) -where archetypes are learned and
thus their retrieval and generalization allowed- from the blackout region (up right) -where spin glass
effects prevail- for a specific value of dataset entropy i.e., ρ1 = ρ2 = ρ3 = ρ. The retrieval
region is determined by the conditions |m1

ξ11
|, |m2

ξ11
|, |m3

ξ11
| > 0: these inequalities are all satisfied

simultaneously in the region below the solid line, while above it, all magnetizations vanish. The
influence of ρ is clearly visible: as ρ increases, the retrieval region progressively shrinks in all
diagrams. For ρ = 0, we recover the results of the standard Kosko’s BAM case Kosko (1988) (first
panel) and the novel ones pertaining to the TAM Agliari et al. (2025a) (second and third panels).
In the insets of each plots: MC simulation at zero-fast noise (β−1 = 0) with a symmetric network
(N1 = N2 = N3 = 1000), showing the evolution of the Mattis magnetizations mξ1 across the layers
as a function of network load (γ) for different ρ. The simulations agree with theoretical predictions,
correctly depicting the maximum load beyond which the network stops functioning.

dynamics steepest descends toward the minima of the Hamiltonian equation 3.
More precisely, our aim is to find an expression of Ag

α,θ,γ(β) in terms of a suitable set of macro-
scopic observables able to capture the global behavior of the system: these order parameters are
the K archetype (ground truth) Mattis magnetizations that assess the quality of network’s retrieval,
defined as

mA
ξAµ

=
1

NA

NA∑
i=1

ξA(i,µ)σ
A
i , (8)

such that mA
ξAµ

= 1 accounts for a perfect retrieval of the archetype ξµ by layer A, its lacking being

accounted by mA
ξAµ

= 0.

The application of Guerra’s interpolation method Guerra (2001) allows us to derive an explicit ex-
pression for the quenched free energy in the thermodynamic limit, in terms of the control parameters
(β, γ, α, θ and g) and the order ones, under the assumption of replica symmetry. This assumption
implies that, in the thermodynamic limit, the observables defined in equation 8 exhibit negligible
fluctuations around their means. Once the quenched free energy is expressed in terms of the control
and order parameters, we can proceed to extremize it with respect to the order parameters. This
process results in a set of self-consistent equations, whose solutions describe the behavior of the or-
der parameters as functions of the control ones. By analyzing these solutions, we can construct the
phase diagram, identifying regions in the control parameter space where the network successfully
learns the archetypes from the examples, retrieves them, and is thus capable of generalization.

Focusing specifically on the retrieval of the pattern triplet labeled by µ = 1 –without loss of
generality– we can extract an explicit expression for the self-consistency equations governing the
order parameters, under the large dataset limit assumption (i.e. M ≫ 1) which allows us to con-
struct the model self-diagrams both in the supervised and unsupervised scenarios.
For the sake of brevity, focusing on the supervised protocol (i.e. assuming the network has the
coupling equation 5)1, we first investigate the case of datasets sharing the same entropy (i.e.,

1For the unsupervised counterpart, outcomes are qualitatively similar, the only difference being in the defi-
nition of the dataset entropy (where ρA is replaced by ρAB).
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Figure 3: Phase diagrams in the symmetric case (α = θ = 1, (g12, g13, g23) = (1, 1, 1)) highlighting
the cooperative behavior among layers. Retrieval regions are shown for layers σ1, σ2, and σ3

under different dataset’s entropy values: (top) zero-entropy datasets (ρ1 = ρ2 = ρ3 = 0); (middle)
heterogeneous-entropy datasets (ρ2 = ρ3 = 0.2, ρ1 = 0); (bottom) homogeneous-entropy datasets
(ρ1 = ρ2 = ρ3 = 0.2). The comparison highlights that the amplitude of the retrieval regions
depends on the interplay between dataset entropies across layers: in the middle row, the first layer’s
retrieval region shrinks -orange curve- despite the noiseless inputs would allow to reach the dashed
blue line, allowing the noisy layers to expand theirs (from dashed green to orange boundary), an
effect impossible without inter-layer interactions. For brevity, the case ρ1 = 0, ρ2 = 0, ρ3 = 0.2 is
not shown in the figure; however, it exhibits a slight deterioration in retrieval performance compared
to the middle row.

ρ1 = ρ2 = ρ3 = ρ over all the layers): results are summarized by the phase diagrams in the
inter-layer activation strength g vs noise presented in Fig. 2. As shown in Fig. 2, increasing ρ
leads to a systematic reduction of the retrieval region—i.e., the domain in which the network can
successfully reconstruct patterns from examples. As expected, for ρ = 0 results collapse to those of
the standard Hebbian-like TAM scenario Agliari et al. (2025a). The main reward of this analysis is
the determination of the thresholds for learning, namely the minimal values of ρ required to sustain
a non-zero retrieval region, as it allows us to predict, a priori, through equation 2, the relationship
between dataset quality (rA) and dataset size (M ) providing crucial insights for optimizing learning
processes.

Then, by keeping the network symmetric in terms of both sizes and activation strengths 2 (i.e.,
α = θ, g12 = g13 = g23 = 1), we deepened the analysis for datasets characterized by different
entropies: results of this investigation are shown in Fig. 3. A detailed examination of the resulting
phase diagrams, parameterized by the entropy values across the distinct layers, reveals an intriguing
phenomenon: the retrieval region pertaining to each layer does not merely reflect the entropy of
its corresponding dataset but is instead governed by the collective interplay of entropy distributions

2The general case in which the activation strengths differ from 1, is being studied, and the results will be
presented in a forthcoming publication.
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across all the layers. Indeed, when the network has to handle entropic-heterogeneous datasets, a re-
distribution effect spontaneously appears: the retrieval region pertaining to the layer associated with
the most informative dataset shrinks, while those of the layers at work with messy datasets enlarge,
benefiting from their mutual interaction. This results in a more balanced retrieval performance across
the network’s layers. This emergent effect highlights their intrinsic cooperative nature, wherein the
presence of a low entropy training set can enhance the performance of noisier ones, fostering a form
of mutual reinforcement. We propose the term “cooperativeness” to describe this emergent property
of the network, a feature that inherently arises from the reciprocal influence among the layers. This
cooperative behavior is not merely a byproduct of parameter tuning but an intrinsic characteristic
of the multipartite network structure, which only becomes evident through a comprehensive analyt-
ical treatment of the system’s self-consistency equations and whose presence can be crucial when
dealing with dirty or small datasets.

3 CONCLUSION

Our work focuses on Hebbian information processing by a hetero-associative model able to cope
with three sources of information simultaneously (i.e. the TAM network). In our setting, rather
than directly providing the network with the original archetypes (i.e. the patterns), we expose it to
examples—corrupted versions of them—thereby assessing its ability to learn and generalize from
incomplete or noisy data.
Through a statistical mechanics analysis, we obtained the phase diagrams of the network: the latter
highlights how the amplitude of the retrieval region is affected by the entropy of the experienced
datasets. Our results emphasize that successful pattern retrieval depends critically on both the qual-
ity and the quantity of examples provided, much like how human learning benefits from both clear
instruction and repeated exposure.
The most noteworthy finding of this study is the cooperative behavior emerging among the layers
of the network. A detailed examination of the phase diagrams, further corroborated by extensive
numerical simulations, has revealed that layers associated with higher-informative datasets actively
assist those provided with lower-informative ones, enhancing the amplitude of their retrieval regions
by sacrificing their own. This effect arises because the lower the entropy of a dataset, the larger the
retrieval region of the corresponding layer; thus, the stronger layer, benefiting from a higher-quality
dataset, can partially reduce its own retrieval region for the overall advantage of the system. This
trade-off results in an optimal redistribution of learning and retrieval capacity across the network,
fostering a form of mutual reinforcement that is absent in classical associative memory models.
This phenomenon is particularly striking because it has no direct counterpart in the existing litera-
ture: our findings suggest that cooperativity may play a crucial and previously overlooked role in
multidirectional associative models, potentially offering new insights into both artificial and biolog-
ical memory systems and their applications.
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Carlo Lucibello and Marc Mézard. Exponential capacity of dense associative memories. Physical
Review Letters, 132(7):077301, 2024.
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networks is all you need. arXiv preprint arXiv:2008.02217, 2020.

Ravid Shwartz-Ziv and Naftali Tishby. Opening the black box of deep neural networks via informa-
tion. arXiv preprint arXiv:1703.00810, 2017.

Michel Talagrand. Spin glasses: a challenge for mathematicians. Springer Press, 2003.

7

https://arxiv.org/abs/2501.16789
https://arxiv.org/abs/2501.16789


New Frontiers in Associative Memory workshop at ICLR 2025

ACKNOWLEDGMENTS

A.B. acknowledges PRIN 2022 grant Statistical Mechanics of Learning Machines: from algorithmic
and information theoretical limits to new biologically inspired paradigms n. 20229T9EAT funded
by European Union - Next Generation EU.
A.B., A.A. are members of GNFM-INdAM which is acknowledged.
The research has received financial support from the ‘National Centre for HPC, Big Data and Quan-
tum Computing–HPC’, Projects CN-00000013, CUP B83C22002940006, NRP Mission 4 Compo-
nent 2 Investment 1.5, Funded by the European Union–NextGenerationEU.

8


	Introduction
	The Supervised and Unsupervised Hebbian protocols
	Conclusion

