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ABSTRACT

Multiclass classification (MCC) is a classical machine learning problem which
aims to classify each instance into one of a predefined set of classes. Given an
instance, a classification model computes a score for each class, all of which are
then used to sort the classes. The performance of a classification model is usually
measured by Top-K Accuracy (e.g., K = 1 or 5). In this paper, we examine MCC
through the lens of learning to rank (LTR) in the deep learning setting. By viewing
MCC as to rank classes for an instance, we first argue that ranking metrics from the
information retrieval literature, such as Normalized Discounted Cumulative Gain
(NDCG), can be more informative than the existing Top-K metrics in evaluating
the performance of classification models, especially for real-world user-facing ap-
plications. We further demonstrate that the most popular MCC architecture in
deep learning can be mathematically formulated as a LTR pipeline equivalently,
with a specific set of choices in terms of ranking model architecture and loss func-
tion. Based on these observations, we propose several techniques, stemmed from
the rich LTR literature, to improve the MCC performance. Comprehensive em-
pirical results on both text and image classification tasks, with diverse datasets
and backbone models (e.g., BERT for text classification and ResNet for image
classification) show the value of our proposed framework.

1 INTRODUCTION

Multiclass classification (MCC) is the problem of classifying instances into one of a predefined
set of classes (Hastie et al., 2001). It is one of the most fundamental machine learning problems
that has broad applications in many fields such as natural language processing (Sun et al., 2019) and
computer vision (He et al., 2016). For example, deciding the category of a news article or the subject
of an image is formulated as an MCC problem.

Different classification models for MCC have been proposed in the past, ranging from the linear
models to nonlinear decision trees and neural models (Aly, 2005). In the modern deep learning era,
numerous works approach the MCC problem with deep neural networks. While there are significant
advances in neural architectures in different fields, dominating MCC methods share the same recipe:
an input instance, being it a feature vector, an image, or a sentence, is fed into a neural model and
scored against a predefined set of classes. The model is then trained by using a loss function,
typically the softmax cross entropy loss, between the labels and scores over all classes (Goodfellow
et al., 2016). During inference, the candidate classes are sorted after an instance is scored against
them. Metrics such as Top-1 Accuracy (also known as simply “classification accuracy”) or Top-
5 Accuracy (the percentage of test instances whose correct class label is in the top 5 predicted
classes) are used to compare different classification models. Following this recipe, most efforts
in the literature focus on designing more powerful neural network architectures for representation
learning (He et al., 2016; Krizhevsky et al., 2012; Huang et al., 2017; Dosovitskiy et al., 2021;
Minaee et al., 2021). Few work has studied a formulation different from the recipe above so far.

Different from existing works, we seek for a different formulation for MCC by examining it through
the lens of learning to rank (LTR), a rich research field stemmed from information retrieval (Liu,
2009). As shown in the paper, the benefits of such a formulation are that it allows us to better
evaluate model performances by borrowing more informative ranking metrics, train models with
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ranking losses that are closely connected with ranking metrics, and use flexible ranking architectures
for MCC in deep learning.

We first show that the classical MCC problem can be treated as a ranking problem. As hinted above
in our description of MCC, dominating neural MCC methods score a given instance on a predefined
set of classes and sort the classes during inference. This is equivalent to a LTR setting where a set
of items (i.e., classes) are scored and ranked given a query (i.e., the input instance). In fact, a Top-K
Accuracy measure itself can be viewed as a ranking metric, similar to Precision@K in the informa-
tion retrieval literature. However, other ranking metrics such as Normalized Discounted Cumulative
Gain (NDCG) are commonly used in LTR because they are more informative than Precision@K to
reflect the utility of a model in real-world user-facing applications. They can be borrowed to enrich
the MCC evaluation metrics but have not been adopted widely.

For modeling, we show a general “equivalent view” for MCC from ranking perspectives, and that
the classical MCC model architecture can be transformed to an equivalent ranking architecture. This
view will give us insight into the design choices of dominating MCC models and their limitations.
We then propose several approaches to further improve MCC performance in the LTR setting. In this
paper, we mainly focus on two aspects: loss functions and model architectures. For loss functions,
one major research focus in LTR is designing ranking losses specific to certain metrics so there is a
rich literature to leverage. For model architecture, we show that the vast MCC literature focuses on
only one component in the ranking architecture, the input instance encoding. With the LTR view,
we can enhance the modeling capacity of other components as well. In this paper, we specifically
study the effect of enhancing the interactions between instances and classes, a setup similar to the
one commonly used in information retrieval for queries and items (Li & Xu, 2014).

We report experimental results on a variety of MCC tasks, including different datasets and backbone
models for different modalities (image and text). Examples include BERT (Devlin et al., 2019)
for text classification on GoEmotions (Demszky et al., 2020) and ResNet (He et al., 2016) for
image classification on ImageNet (Krizhevsky et al., 2012). Results show that the proposed methods
outperform or perform competitively with the baselines in all settings. We expect that the promising
results can encourage the community to further examine MCC from LTR perspectives.

By making the connection between LTR and MCC in deep learning, our contributions can be sum-
marized as follows:

• We show that ranking metrics can be more informative than the Top-K Accuracy metrics
and thus propose to also use ranking metrics for MCC evaluations.

• We show that the commonly used neural architecture in MCC is equivalent to a specific
ranking architecture with limited interactions between instances and classes.

• We propose to use ranking losses for MCC and also other ranking architectures that enable
richer interactions between instances and classes for MCC.

• We conduct experiments on both image and text classification tasks and show the usefulness
of ranking losses and ranking architectures in MCC.

The paper is organized as follows. We give an in-depth analysis of classification and ranking metrics
in Section 2. In Section 3, we mathematically show an equivalent view of MCC from the ranking
perspectives and examine its design choices. In Section 4, we describe alternatives on the selection
of loss functions and interaction architectures that can potentially improve MCC performance and
evaluate them on various classification tasks in Section 5. We discuss related work in Section 6. We
conclude the paper and discuss future directions in Section 7.

2 RANKING METRICS FOR MCC

2.1 METRICS FOR CLASSIFICATION

The basic binary classification problem classifies examples into positive and negative classes. MCC
extends binary classification to more than 2 classes. Going from binary to multi-class is not trivial
for evaluations. Binary classification metrics are usually class-oriented. For example, the metrics
such as AUC and Accuracy are based on measures such as true positives (TP) and false negatives
(FN) that are computed with respect to positive and negative classes (Sokolova & Lapalme, 2009).
These metrics are not directly used in MCC when there are more than two classes. In contrast,
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Figure 1: Here we show an simulated example of evaluating image classification performance of two
models with Top-1/5 Accuracy and NDCG@5. The Top-1/5 Accuracy of two models are exactly the
same, and can not differentiate the two models. While NDCG@5 can successfully tell that Model 1
has a better classification performance than Model 2.

MCC metrics are usually instance-oriented. The commonly used metrics are the Top-K Accuracy
metrics, popularized by the ImageNet competition (Russakovsky et al., 2015). Some earlier works
like Crammer & Singer (2002) defined the “empirical error” when working on multi-class SVM
algorithm, which is equivalent to Top-1 Accuracy.

2.2 RELATIONS TO RANKING METRICS

The Top-K Accuracy metrics can be thought as a type of ranking metrics. In fact, it is very close
to the Precision@K ranking metrics: Top-K Accuracy is the same as min(1,K · Precision@K) and
Top-1 Accuracy is the same as Precision@1. Besides Precision@K, there are other commonly used
ranking metrics such as Normalized Discounted Cumulative Gains (NDCG) and Mean Reciprocal
Rank (MRR) (Järvelin & Kekäläinen, 2002). To the best of our knowledge, these ranking metrics
are not commonly used for MCC evaluations but can be more informative in evaluating MCC tasks.

We use NDCG as an example. Let y be the relevance labels of all items and yi be the one for the
i-th item, the calculation of NDCG is as follows:

NDCG(πs,y) =
DCG(πs,y)

DCG(π∗,y)
, and DCG(π,y) =

n∑
i=1

2yi − 1

log2(1 + π(i))
, (1)

where πs is a ranked list induced by sorting the items based on model outputs, π∗ is the ideal ranked
list sorted by y, n is the total number of items and π(i) is the rank of the i-the item. In practice,
NDCG@K, the Top-K version of NDCG, is commonly used and defined by summing over only the
top-K items in πs and π∗. When there is a single yi = 1 in y, it’s easy to show that NDCG@1 is
equivalent to Precision@1 and Top-1 Accuracy.

By treating classes as items and define yi as whether an instance belongs to class i, the NDCG
metric can be used to evaluate MCC models. In Figure 1, we simulate an image MCC application
in a user-facing interface. In particular, there are two models to be compared. We can see that
NDCG@5 is more informative to distinguish the difference between the results from two models,
where both Top-1 Accuracy and Top-5 Accuracy metrics cannot. The reason is that there is a posi-
tion discounting function in NDCG, while Top-K metrics impose a simple hard cut at position K.
Therefore, NDCG@5 can capture more information when comparing different models. In the rest of
this paper, we choose NDCG@5 as our representatives for ranking metrics and further demonstrate
its advantage in MCC evaluations in Section 5.

3 MCC FROM RANKING PERSPECTIVES

3.1 CLASSICAL MCC MODEL ARCHITECTURES

The general model architecture for MCC based on deep neural networks (DNN) is composed of three
parts: the input instance to be classified, an encoder to extract latent representations of the input, and
a classification layer for generating scores on candidate classes, as illustrated in Figure 2 Left. We
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Figure 2: Classical MCC models from LTR perspectives. Left: the typical DNN structure for MCC;
Middle: the equivalent neural ranking structure; Right: The ranking generalization for MCC which
allows the exploration of different class encoders, interaction layers, and loss functions.

use x to represent the input instance such as a textual sentence or an image. The encoder can have
different structure designs based on the modality of the input, such as transformers (Vaswani et al.,
2017) to encode textual sentences; and convolutional neural networks (CNN) (Krizhevsky et al.,
2012) to encode images. The encoder can be represented as a function H(·) that maps x to a d-
dimensional embedding vector h = H(x). The classification layer is in most cases a dense layer
with weight matrix W ∈ Rn×(d+1). Then the classification scores are calculated by s = Wh′,
where h′ := [h, 1] with an added dimension of value 1 for the bias, and s is a n-dimensional vector
for n classes. The score for the i-th class is si = e>i Wh′, where ei is an n-dimensional one-hot
vector with the i-th dimension being 1.

For training neural MCC models, the softmax cross entropy loss is used by default in almost all prior
work (Goodfellow et al., 2016; Zhang et al., 2021). However, whether it is the most suitable loss for
optimizing the evaluation metrics of interest is not carefully studied. Very recently, empirical results
show that the mean squared error (MSE) can sometimes outperform softmax cross entropy loss in
MCC tasks, but rescaling is needed in certain tasks (Hui & Belkin, 2021).

3.2 AN EQUIVALENT VIEW FROM NEURAL RANKING MODELS

LTR learns a ranking model to score and sort a set of items (e.g., documents, news, etc.) based on
their relevance to a given query. Neural ranking models (Guo et al., 2020) adopt DNNs to match the
query and items with their latent representations.

We show the equivalent view of a classical MCC model as a neural ranking model in Figure 2
Middle. In particular, we treat the input instance x as the query, and the n candidate classes as
input items to be ranked by the neural ranking model. The same as in the classical MCC model,
we apply the encoder H(·) to x to get a d-dimensional embedding h = H(x), and h′ = [h, 1].
For representing the classes, we use one-hot vector ei for the i-th class and obtain its embedding
ci =W>ei, whereW is the weight matrix from the classification layer of the classical MCC model.
Finally, the ranking score of the i-th class can be calculated by s′i ≡ c>i h

′ = e>i Wh′ = si. In this
way, we show the classical MCC model based on DNNs can be transformed to an equivalent neural
ranking model when they are both trained by the softmax cross entropy loss.

4 RANKING ARCHITECTURES FOR MCC

Here we discuss the possible new designs of different components inspired by the ranking view of
MCC. We call the new framework ranking for multiclass classification, or Rank4Class in short.

As discussed in Section 1, existing work mostly focus on the instance encoder. From the ranking
perspective, however, we can see that there are several other promising directions to improve MCC
performance. First, existing work mainly use softmax cross entropy loss, while there are many
advanced ranking losses that can be leveraged. Second, the interaction between the instance and
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class embeddings is simply a dot product, while richer interaction patterns can be explored. Third,
while existing work focus on instance encoder, the class encoder is a simple linear projection that
uses one-hot encoding of classes as input, where more powerful class encoders with richer inputs
(e.g., class metadata) can be deployed. We illustrate the potential improvements in Figure 2 Right.
In this paper, we focus on ranking losses and interaction patterns, and leave the rest for future work.

4.1 RANKING LOSSES FOR MCC

Although softmax cross entropy loss (SoftmaxCE) is widely adopted for training MCC models,
how it can optimize the evaluation metrics is not clear. We have shown that ranking metrics are
more suitable for evaluating MCC tasks, where different ranking losses should be considered since
they can be better choices to directly optimize certain ranking metrics, such as NDCG. Next, we first
discuss the soundness of SoftmaxCE in MCC tasks with respect to ranking metrics. Then we present
two other ranking losses as examples, i.e., pairwise logistic loss (PairLogLoss) and approximate
NDCG loss (ApproxNDCG).

We denote the ground-truth label for the i-th class of an instance by yi, i ∈ {1, . . . , n}, where only
the correct class has label 1 and the rest classes have label 0. To compute the SoftmaxCE, the
classification scores si, i ∈ {1, . . . , n} produced by the model are first projected to the probability
simplex p by softmax activation as pi = esi∑n

j=1 e
sj , then the cross entropy loss is defined as

`ce(y,p) = −
n∑
i=1

yi log pi.

Intuitively the SoftmaxCE is promoting the correct class against all other classes since only the term
with yi = 1 is counted in the loss. Therefore, it can be viewed as a listwise ranking loss, which
aims to rank the class with label 1 above all other classes. In fact, Bruch et al. (2019) has shown that
the SoftmaxCE is a bound on MRR and NDCG, which explains its promising performance in MCC
tasks.

There is rich literature of developing ranking losses for optimizing ranking metrics (Burges et al.,
2005; 2006; Burges, 2010). Such ranking losses are usually directly derived from the target ranking
metric, and bound the metric by approximation techniques (Qin et al., 2010). One of the most
historical and popularly used ranking losses is the PairLogLoss.

`pl(y, s) =

n∑
i=1

n∑
j=1

Iyi>yj log(1 + e−σ(si−sj)), (2)

where I is the indicator and σ is a hyper-parameter. The PairLogLoss is proved to be able to minimize
the rank of the relevant item (Wang et al., 2018).

Another popular ranking loss is the ApproxNDCG (Qin et al., 2010), which directly optimizes the
NDCG metric in Eq 1. The rank of an item i can be computed as πs(i) = 1 +

∑
j 6=i Isi<sj , where

the indicator Is<t is discrete but can be approximated by a sigmoid function to be smooth:

Is<t = It−s>0 ≈
1

1 + e−α(t−s)
, (3)

where α > 0 is a parameter to control how tightly the indicator is approximated.

To summarize, the popular SoftmaxCE can be viewed as a ranking loss that bounds a specific ranking
metric. Other ranking losses can also be valuable. We further investigate the empirical use of
different ranking losses for MCC in Section 5.

4.2 ENHANCING INSTANCE-CLASS INTERACTIONS

After obtaining the embeddings h for the input instance and ci for class i, it is also important to
design the matching mechnism for producing the score si between the embeddings of the instance
and the class. For this purpose, we can add different interactions between h and ci rather than simple
dot-product for producing the score, si = I(h, ci),. I(·, ·) is a function to represent the interaction
between instance and class embeddings which produces a ranking score. In this paper, we enhance
the interaction by the following two patterns:
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Table 1: Statistics of datasets used in experiments.

Dataset #classes Train Validation Test

GoEmotions 28 36.3K 4.5K 4.6K
MIND 18 78.8K 25.7K 25.9K

ImageNet 1000 1.28M 50K -
CIFAR-10 10 50K - 10K

• LC+MLP: We first apply the latent cross (LC) operation (Beutel et al., 2018) on h, ci and
then follow with a multilayer perceptron (MLP) to get the score si.

• Concat+MLP: We first concatenate (Concat) the two embeddings h, ci and then follow
with an MLP to compute si.

5 EXPERIMENTS

In this section, we study the Rank4Class framework on several datasets and instance encoders in
comparison to classical MCC models. We consider both text classification and image classification
tasks for evaluation. The datasets we used are summarized in Table 1. For text classification, we
include GoEmotions (Demszky et al., 2020) and MIND (Wu et al., 2020). The GoEmotions dataset
contains instances with multiple labels. Since we focus on single-label MCC tasks in this paper,
we filter out instances with more than one label. We adopt ELECTRA (Clark et al., 2020) and
BERT (Devlin et al., 2019) as text encoders in the experiments. For image classification, we use
ImageNet (Russakovsky et al., 2015) and CIFAR-10 (Krizhevsky & Hinton, 2009), which are two
most popularly studied datasets for image classification. We adopt ResNet50 (He et al., 2016) as
image encoder for ImageNet and VGG16 (Simonyan & Zisserman, 2014) for CIFAR-10. More
details of the use of datasets and configurations of instance encoders are given in Appendix A.

For text classification datasets with both validation and test sets provided, we tune hyper-parameters
on the validation set and report results on the test set. For ImageNet and CIFAR-10, we tune hyper-
parameters and report the performance on the validation and test set respectively, which is the norm
in the literature. More details on experimental settings such as data processing and hyper-parameter
tuning are included in Appendix B. We use Top-1 Accuracy (equivalent to NDCG@1), Top-5 Ac-
curacy, and NDCG@5 for evaluation of the MCC performance.

In Section 5.1, we introduce different configurations of the Rank4Class framework with respect to
loss functions and interaction patterns, and summarize its overall performance in MCC tasks. In
Section 5.2, we study different ranking losses in optimizing MCC tasks with respect to different
evaluation metrics. In Section 5.3, we examine the effect of different interaction patterns between
the instance and class embeddings with fixed loss functions. We discuss the application of different
metrics in evaluating MCC performance in both sections according to the results.

5.1 OVERALL PERFORMANCE OF RANK4CLASS

Besides SoftmaxCE, PairLogLoss, and ApproxNDCG discussed in Section 4.1, we also include
Gumbel-ApproxNDCG (Bruch et al., 2020) loss and mean squared error (MSE) in experiments. We
study different combinations between these five losses and the two interaction patterns introduced
in Section 4.2 in the Rank4Class framework. In Table 2, we report the best performance of different
configurations for Rank4Class under each metric in comparison to the baseline MCC models. As
shown in the table, Rank4Class can improve the MCC performance in virtually all tasks through
specific combinations of losses and interaction patterns. This shows the increased headroom from
Rank4Class on MCC tasks on different evaluation metrics by adding more flexible design options
in different components from LTR perspectives. The complete results of all combinations of losses
and interactions are included in Appendix C, where we use ∗ to mark the combinations that achieve
the best performance in each task under each metric.
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Table 2: Results from classical MCC models and Rank4Class. Bold font indicates the best value in
each row.

Dataset Encoder Metrics Classical MCC Rank4Class

GoEmotions

BERT
Top-1 Accuracy 0.5900 0.5935
Top-5 Accuracy 0.8665 0.8815

NDCG@5 0.7390 0.7462

ELECTRA
Top-1 Accuracy 0.6155 0.6264
Top-5 Accuracy 0.8955 0.9135

NDCG@5 0.7696 0.7830

MIND

BERT
Top-1 Accuracy 0.6910 0.6980
Top-5 Accuracy 0.9385 0.9475

NDCG@5 0.8278 0.8356

ELECTRA
Top-1 Accuracy 0.7291 0.7360
Top-5 Accuracy 0.9575 0.9630

NDCG@5 0.8573 0.8613

ImageNet ResNet50
Top-1 Accuracy 0.7626 0.7642
Top-5 Accuracy 0.9310 0.9325

NDCG@5 0.8574 0.8585

CIFAR-10 VGG16
Top-1 Accuracy 0.9344 0.9360
Top-5 Accuracy 0.9980 0.9985

NDCG@5 0.9719 0.9723

5.2 EFFECT OF RANKING LOSSES

In this section, we study the use of ranking losses for optimizing MCC performance. In particular,
we use PairLogLoss and ApproxNDCG as two most representative ranking losses in comparison
to the SoftmaxCE. The results on other losses can be find in Appendix C. We only vary the loss
function in the base Rank4Class structure in Figure 2 (Middle), so the “SoftmaxCE” method is the
baseline that is equivalent to classical MCC models.

The results are shown in Table 3 and 4 for text and image classification tasks respectively. Overall,
PairLogLoss or ApproxNDCG can outperform SoftmaxCE in nearly all tasks and metrics except
for the Top-1 Accuracy on GoEmotions with BERT and MIND with BERT. Besides, PairLogLoss
is generally good at Top-5 Accuracy than SoftmaxCE and ApproxNDCG, achieving the best Top-
5 Accuracy in all tasks. ApproxNDCG performs well on both Top-1 Accuracy and NDCG@5
(achieves the top in four out of six tasks), which shows its effectiveness in directly optimizing
NDCG metrics. Moreover, we see that the improvements from PairLogLoss and ApproxNDCG are
more significant on text classification tasks than that on image classification tasks. Our observation
is similar to that in (Hui & Belkin, 2021), which hypothesized the reason being that popular image
encoders are all heavily tuned with the SoftmaxCE.

Finally, we observe that different metrics are not always consistent in evaluating MCC tasks. For
example, on GoEmotions with ELECTRA, PairLogLoss performs better than ApproxNDCG on
Top-5 Accuracy, while ApproxNDCG outperforms PairLogLoss on NDCG@5. This means that the
PairLogLoss tends to rank the correct class in top 5 positions in more instances than ApproxNDCG,
but ApproxNDCG can put the correct class relatively higher in the rankings. Furthermore, on MIND
with BERT, Top-5 Accuracy can not tell if PairLogLoss or ApproxNDCG is better. But NDCG@5
can successfully differentiate them since it also takes in absolute rank of the correct class in top 5
positions into account and thus is more informative.

5.3 EFFECT OF INTERACTIONS BETWEEN INSTANCE AND CLASSES

In this section, we study the effect of different interaction patterns between instance and class embed-
dings for producing ranking scores. Specifically, we use the two interaction patterns in section 4.2
with 2-layer MLPs.
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Table 3: Results on text classification tasks trained with different losses.

Dataset Encoder Metrics SoftmaxCE PairLogLoss ApproxNDCG

GoEmotions

BERT
Top-1 Accuracy 0.5900 0.5821 0.5858
Top-5 Accuracy 0.8665 0.8800 0.8700

NDCG@5 0.7390 0.7427 0.7402

ELECTRA
Top-1 Accuracy 0.6155 0.6022 0.6233
Top-5 Accuracy 0.8955 0.9120 0.9075

NDCG@5 0.7696 0.7717 0.7803

MIND

BERT
Top-1 Accuracy 0.6910 0.6879 0.6903
Top-5 Accuracy 0.9385 0.9475 0.9475

NDCG@5 0.8278 0.8325 0.8336

ELECTRA
Top-1 Accuracy 0.7291 0.7228 0.7335
Top-5 Accuracy 0.9575 0.9625 0.9570

NDCG@5 0.8573 0.8574 0.8589

Table 4: Results on image classification tasks trained with different losses.

Dataset Encoder Metrics SoftmaxCE PairLogLoss ApproxNDCG

ImageNet ResNet50
Top-1 Accuracy 0.7626 0.7636 0.7638
Top-5 Accuracy 0.9310 0.9320 0.9315

NDCG@5 0.8574 0.8582 0.8580

CIFAR-10 VGG16
Top-1 Accuracy 0.9344 0.9357 0.9359
Top-5 Accuracy 0.9980 0.9985 0.9985

NDCG@5 0.9719 0.9721 0.9723

We compare these two types of interactions with the dot-product baseline between the instance and
class embeddings by fixing the loss function. In particular, we use ApproxNDCG in text classi-
fication tasks and SoftmaxCE in image classification tasks. The study of different interactions on
other losses are included in Appendix C. The results are shown in Table 5 and 6 for text and im-
age classification tasks. The results demonstrate that the two added interactions can outperform or
achieve competitive performance than simple dot-product in all tasks and metrics. This shows the
effectiveness of adding enhanced interactions based on the Rank4Class framework. In particular,
latent-cross embedding tends to perform better than the concatenation of instance and class embed-
dings, achieving top performance in four out of six on Top-1 Accuracy and five out of six tasks
on NDCG@5. Again, we see that different evaluation metrics are not always consistent with each
other, and NDCG@5 can be more informative than Top-5 Accuracy, as observed in Section 5.2.

6 RELATED WORK

Modern deep neural networks for MCC converge to the same recipe: given an input instance, a
neural encoder is learned to output scores for a set of classes. The vast research literature focus on
developing more effective encoders in diverse domains, such as computer vision (He et al., 2016;
Krizhevsky et al., 2012; Huang et al., 2017; Dosovitskiy et al., 2021), natural language process-
ing (Sun et al., 2019; Minaee et al., 2021), and automatic speech recognition (Moritz et al., 2019),
among others. The softmax cross entropy loss is virtually the dominant loss function discussed in
these papers. Only very recently, Hui & Belkin (2021) study the mean squared error as another loss
for MCC. Our work is orthogonal to the extensive research on neural encoders in that we provide a
new formulation from the LTR perspective. Such a perspective inspires more diverse loss functions
and model architectures that can model interactions between inputs and classes more effectively.

Learning to rank (LTR) is a long-established interdisciplinary research area at the intersection of
machine learning and information retrieval (Liu, 2009). Neural rankers are dominating in ranking
virtually all modalities recently, including text ranking (Lin et al., 2020), image retrieval (Gordo
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Table 5: Results on text classification tasks of different interactions trained with ApproxNDCG.

Dataset Encoder Metrics dot product LC+MLP Concat+MLP

GoEmotions

BERT
Top-1 Accuracy 0.5858 0.5935 0.5908
Top-5 Accuracy 0.8700 0.8760 0.8780

NDCG@5 0.7402 0.7462 0.7461

ELECTRA
Top-1 Accuracy 0.6233 0.6233 0.6220
Top-5 Accuracy 0.9075 0.9135 0.9085

NDCG@5 0.7803 0.7830 0.7797

MIND

BERT
Top-1 Accuracy 0.6903 0.6919 0.6923
Top-5 Accuracy 0.9475 0.9475 0.9495

NDCG@5 0.8336 0.8343 0.8335

ELECTRA
Top-1 Accuracy 0.7335 0.7326 0.7360
Top-5 Accuracy 0.9570 0.9630 0.9570

NDCG@5 0.8589 0.8613 0.8605

Table 6: Results on image classification tasks of different interactions trained with SoftmaxCE.

Dataset Encoder Metrics dot product LC+MLP Concat+MLP

ImageNet ResNet50
Top-1 Accuracy 0.7626 0.7638 0.7634
Top-5 Accuracy 0.9310 0.9320 0.9325

NDCG@5 0.8574 0.8584 0.8583

CIFAR-10 VGG16
Top-1 Accuracy 0.9344 0.9360 0.9357
Top-5 Accuracy 0.9980 0.9980 0.9980

NDCG@5 0.9719 0.9722 0.9723

et al., 2016), and tabular data ranking (Qin et al., 2021). Many LTR papers focus on more effective
loss functions (Qin et al., 2010; Bruch et al., 2020) to rank items with respect to a query. The focus
of this paper is to introduce new techniques stemmed from LTR to solve MCC problems.

Multi-label classification (MLC) differs from MCC in that there are more than one labels for each
instance. MLC is generally treated as a different problem from classical MCC: the number of labels
assigned to an instance could be arbitrary and one research focus is to decide the threshold to cutoff
the prediction list. Its recently popular sub-field, extreme multi-label classification (Zhang et al.,
2018), also has a different and specific setting (e.g., the number of labels is huge) and research focus
(e.g., efficiency to rank in the huge label space). LTR techniques have been proposed for MLC in
the past (Yang & Gopal, 2012). While the perspective is similar to ours, the work is not in the deep
learning setting and thus does not have the equivalence view of MCC in LTR. Our work makes the
connection and also proposes extensions for MCC in the deep learning setting.

7 CONCLUSION

In this paper we examine the classical MCC problem through the lens of learning to rank. Such a
perspective brings benefits to MCC from three aspects: ranking metrics, ranking losses, and ranking
architectures. We first show that ranking metrics can be more informative for MCC evaluations.
Then, in the deep learning setting, we show an equivalent view of MCC in LTR setting. Such a con-
nection provides new perspectives for MCC with respect to loss functions and model architectures.
We studies these new formulations of MCC on various datasets and observe promising results.

Our work opens up several research directions. First, the new ranking architectures allow to take
more class information such as class metadata into account and it is interesting to study how this ad-
ditional information can improve MCC. Second, it is also possible to apply the proposed framework
to binary classification. Third, classes are usually not independent and our framework can incorpo-
rate the relationship between classes into the MCC through attentions, which is worth studying.
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A DATASETS AND ENCODERS

A.1 DATASETS

• GoEmotions (Demszky et al., 2020) is the largest manually annotated dataset for fine-
grained emotion classification. It contains 58k English Reddit comments, labeled with 27
emotion categories and a default “Neutral” category. On top of the raw data, the authors
also provided a version that only includes comments with two or more raters agreeing
on at least one label, split into train/test/validation sets. In our experiments, we filter out
comments with more than 1 emotion labels in all three sets.

• MIND (Wu et al., 2020) is a large-scale dataset for news recommendation. MIND contains
about 130k English news articles. Every news article contains rich textual content including
title, abstract, body, category and entities. We use the concatenation of title and abstract as
the content of the news and use the category of the news as the classification label. We split
all news instances into train/test/validation sets by roughly 60/20/20 for experiments.

• ImageNet (Krizhevsky et al., 2012) is an image dataset with around 1.28 million images in
the training set and 50k images in the validation set. Each image is labeled by one of 1,000
classes. The images are cropped and resized to 224 × 224 × 3 pixels as the input follow-
ing the preprocessing in https://github.com/tensorflow/models/tree/
master/official/vision/image_classification/resnet. We follow the
common practices of using ImageNet and report the results on the validation set.

• CIFAR-10 (Krizhevsky & Hinton, 2009) contains 50k training images and 10k test images.
There are 10 classes and each class has 6k images. All images have the same size of
32× 32× 3.

A.2 INSTANCE ENCODERS

• BERT (Vaswani et al., 2017) is a model based on transformers pretrained on a large corpus
of English data. We use the BERT-Base-uncased model from https://github.com/
google-research/bert for finetuning in our experiments. The maximum sequence
length is set to 32 for GoEmotions and 128 for MIND.

• ELECTRA (Clark et al., 2020) is another pretrained transformer model.
We use the ELECTRA-Base-uncased model from https://github.com/
google-research/electra in our experiments. The maximum sequence length is
set in the same way as BERT.
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• ResNet50 (He et al., 2016) is a 50 layers deep convolutional neural network with resid-
ual connections. We use the implementation of ResNet50 from the tensorflow of-
ficial models at https://github.com/tensorflow/models/tree/master/
official/vision/image_classification/resnet. We adopt the pretrained
network on ImageNet and finetune it in our Rank4Class framework.
• VGG16 (Simonyan & Zisserman, 2014) is a convolutional neural network with 16 lay-

ers. We use the implementation of VGG16 from https://github.com/geifmany/
cifar-vgg with input size 32× 32 in our experiments on CIFAR-10.

B EXPERIMENTAL SETTINGS

We provide the implementation and hyper-parameter tuning details for reproducibility. For text
classification tasks, we tokenize the raw sentences into word ids based on BERT vocabulary, and
create the input masks and segment ids following standard BERT input formats. For MIND, we
concatenate the title and abstract of each news by adding a “[SEP]” token between them. ELECTRA
uses exactly the same input formats as BERT. The data processing of image datasets follow the
standard methods as given in the original papers. We implement the Rank4Class pipeline based on
TF-ranking (Pasumarthi et al., 2019). We adopt TF-ranking’s implementation of SoftmaxCE, MSE
and all the ranking losses.

For instance encoders, we use the default hyper-parameters suggested in the original implementa-
tions listed in Appendix A without further tuning. We use the same number of hidden units in the
two layers of MLP for interactions, and tune the number of hidden units in {64, 128, 256, 512}. For
all experiments, we use Adam (Kingma & Ba, 2014) and Adagrad (Duchi et al., 2011) as optimizers
for training models. We tune the initial learning rate for all experiments in the range of 1e−7 to 0.1
with a multiplicative step size of 3. Adam has a slight edge over Adagrad in most experiments and
the best learning rate for Adam are 3e−6 and 1e−5 for most experiments. We use a batch size of
32 for text classification tasks, and a batch size of 64 for image classification tasks. For all configu-
rations of the models and datasets, we train the model for 100,000 steps in text classification tasks,
and 50 epochs in image classification tasks. We pick the best checkpoint on the validation set (if
provided) for evaluation.

C RESULTS ON DIFFERENT COMBINATIONS OF RANKING LOSSES AND
INTERACTION PATTERNS

Here we provide the experiment results on different combinations of loss functions and interaction
patterns. Besides PairLogLoss and ApproxNDCG included in Section 5, we also include results
from Gumbel-ApproxNDCG and MSE here. Note that we use the rescaled MSE as suggested in (Hui
& Belkin, 2021) on ImageNet dataset, since there is only 1 correct class in 1,000 classes, and regular
MSE performs poorly on such imbalanced data. In particular, as the number of combinations is
large, we display the results with respect to each dataset and instance encoder in each table for better
visualization and comparison. Then in each table, we group the results from different combinations
of loss functions and interaction patterns according to the three evaluation metrics. We underline the
top 3 combinations (ties are included) under each metric, and use ∗ to mark the best. The results of
all datasets and instance encoders are shown in Tables 7 - 12.

Firstly, the conclusions on loss functions, interactions and evaluation metrics from the tables are the
same as those in Sections 5.2 and 5.3. The Gumbel-ApproxNDCG performs well when more com-
plicated interactions such as latent cross and concatenating embeddings are applied. MSE achieves
the best top-1 accuracy in GoEmotions with BERT and CIFAR-10 with VGG16. It indicates that
MSE can be effective in optimizing top-1 metrics in certain tasks, which aligns with the observa-
tion in Hui & Belkin (2021). However, MSE is not suitable for direct application in problems with
highly imbalanced correct and incorrect classes as on the ImageNet classification task. A few rescal-
ing techniques with hyper-parameters need to be applied for MSE to perform properly, which also
increase the burden of hyper-parameters tuning. Besides, adding different combinations of losses
and interaction patterns can always improve the performance, as indicated by ∗ under each metric.
Note that we did not further tune the hyper-parameters of instance encoders for different architec-
tures of Rank4Class. It is possible that the hyper-parameters of encoders are more suitable for the
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Table 7: Results on GoEmotions with BERT as text encoder.

GoEmotions + BERT

Metric Interaction SoftmaxCE PairLogLoss ApproxNDCG Gumbel
ApproxNDCG MSE

Top-1 Accuracy
dot product 0.5900 0.5821 0.5858 0.5889 0.5880
LC+MLP 0.5865 0.5802 0.5935* 0.5930 0.5869

Concat+MLP 0.5898 0.5845 0.5908 0.5841 0.5837

Top-5 Accuracy
dot product 0.8665 0.8800 0.8700 0.8620 0.8500
LC+MLP 0.8715 0.8775 0.8760 0.8715 0.8570

Concat+MLP 0.8760 0.8815* 0.8780 0.8710 0.8615

NDCG@5
dot product 0.7390 0.7427 0.7402 0.7371 0.7300
LC+MLP 0.7411 0.7422 0.7462* 0.7453 0.7350

Concat+MLP 0.7436 0.7419 0.7461 0.7405 0.7355

Table 8: Results on GoEmotions with ELECTRA as text encoder.

GoEmotions + ELECTRA

Metric Interaction SoftmaxCE PairLogLoss ApproxNDCG Gumbel
ApproxNDCG MSE

Top-1 Accuracy
dot product 0.6155 0.6022 0.6233 0.6137 0.6203
LC+MLP 0.6131 0.6087 0.6233 0.6155 0.6264*

Concat+MLP 0.6100 0.6052 0.6220 0.6194 0.6185

Top-5 Accuracy
dot product 0.8955 0.9120 0.9075 0.8935 0.8970
LC+MLP 0.9070 0.9110 0.9135* 0.9000 0.8985

Concat+MLP 0.9025 0.9130 0.9085 0.9010 0.8960

NDCG@5
dot product 0.7696 0.7717 0.7803 0.7672 0.7737
LC+MLP 0.7745 0.7749 0.7830* 0.7741 0.7769

Concat+MLP 0.7706 0.7747 0.7797 0.7735 0.7724

classical MCC models, and fine-tuning may further boost the performance of Rank4Class. Last but
not least, we see that NDCG is more informative in evaluating MCC performance than Top-5 Accu-
racy which creates many ties. For example, In Table 9 for MIND with BERT, Top-5 Accuracy fails
to find the best performing model, while NDCG@5 can successfully differentiate them.

Table 9: Results on MIND with BERT as text encoder.

MIND + BERT

Metric Interaction SoftmaxCE PairLogLoss ApproxNDCG Gumbel
ApproxNDCG MSE

Top-1 Accuracy
dot product 0.6910 0.6879 0.6903 0.6912 0.6929
LC+MLP 0.6980* 0.6949 0.6919 0.6921 0.6944

Concat+MLP 0.6949 0.6871 0.6923 0.6908 0.6929

Top-5 Accuracy
dot product 0.9385 0.9475* 0.9475* 0.9425 0.9305
LC+MLP 0.9465 0.9470 0.9475* 0.9455 0.9285

Concat+MLP 0.9445 0.9475* 0.9495 0.9435 0.9270

NDCG@5
dot product 0.8278 0.8325 0.8336 0.8311 0.8259
LC+MLP 0.8356* 0.8354 0.8343 0.8328 0.8248

Concat+MLP 0.8331 0.8327 0.8335 0.8316 0.8237
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Table 10: Results on MIND with ELECTRA as text encoder.

MIND + ELECTRA

Metric Interaction SoftmaxCE PairLogLoss ApproxNDCG Gumbel
ApproxNDCG MSE

Top-1 Accuracy
dot product 0.7291 0.7228 0.7335 0.7323 0.7301
LC+MLP 0.7311 0.7221 0.7326 0.7345 0.7308

Concat+MLP 0.7322 0.7247 0.7360* 0.7345 0.7335

Top-5 Accuracy
dot product 0.9575 0.9625 0.9570 0.9575 0.9465
LC+MLP 0.9596 0.9625 0.9630* 0.9610 0.9480

Concat+MLP 0.9575 0.9630* 0.9570 0.9605 0.9445

NDCG@5
dot product 0.8573 0.8574 0.8589 0.8589 0.8526
LC+MLP 0.8567 0.8571 0.8613* 0.8609 0.8531

Concat+MLP 0.8581 0.8585 0.8605 0.8599 0.8525

Table 11: Results on ImageNet with ResNet50 as image encoder.

ImageNet + ResNet50

Metric Interaction SoftmaxCE PairLogLoss ApproxNDCG Gumbel
ApproxNDCG

MSE
(rescaled)

Top-1 Accuracy
dot product 0.7626 0.7636 0.7638 0.7635 0.7354
LC+MLP 0.7638 0.7630 0.7635 0.7640 0.7582

Concat+MLP 0.7634 0.7621 0.7639 0.7642* 0.7617

Top-5 Accuracy
dot product 0.9310 0.9320 0.9315 0.9320 0.9105
LC+MLP 0.9320 0.9325* 0.9320 0.9320 0.9310

Concat+MLP 0.9325* 0.9325* 0.9320 0.9320 0.9320

NDCG@5
dot product 0.8574 0.8582 0.8580 0.8582 0.8324
LC+MLP 0.8584 0.8580 0.8582 0.8584 0.8544

Concat+MLP 0.8583 0.8577 0.8582 0.8585* 0.8572

Table 12: Results on CIFAR-10 with VGG16 as image encoder.

CIFAR-10 + VGG16

Metric Interaction SoftmaxCE PairLogLoss ApproxNDCG Gumbel
ApproxNDCG MSE

Top-1 Accuracy
dot product 0.9344 0.9357 0.9359 0.9355 0.9352
LC+MLP 0.9360* 0.9358 0.9354 0.9360* 0.9358

Concat+MLP 0.9357 0.9356 0.9356 0.9353 0.9360*

Top-5 Accuracy
dot product 0.9980 0.9985* 0.9985* 0.9980 0.9985*
LC+MLP 0.9980 0.9985* 0.9975 0.9980 0.9975

Concat+MLP 0.9980 0.9980 0.9975 0.9985 0.9965

NDCG@5
dot product 0.9719 0.9721 0.9723* 0.9721 0.9716
LC+MLP 0.9722 0.9721 0.9717 0.9717 0.9714

Concat+MLP 0.9723* 0.9721 0.9719 0.9722 0.9716
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