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ABSTRACT

We explore the statistical foundations of conditional diffusion transformers (DiTs)
with classifier-free guidance. Through a comprehensive analysis of “in-context”
conditional DiTs under four data assumptions, we demonstrate that both conditional
DiTs and their latent variants achieve minimax optimality for unconditional DiTs.
By discretizing input domains into infinitesimal grids and performing term-by-term
Taylor expansions on the conditional score function, we enable leveraging trans-
formers’ universal approximation capabilities through detailed piecewise constant
approximations, resulting in tighter bounds. Extending our analysis to the latent
setting under a linear latent subspace assumption, we show that latent conditional
DiTs achieve lower bounds than their counterparts in both approximation and
estimation. We also establish the minimax optimality of latent unconditional DiTs.
Our findings provide statistical limits for conditional and unconditional DiTs and
offer practical guidance for developing more efficient and accurate models.

1 INTRODUCTION

We investigate the approximation and estimation rates of conditional diffusion transformers (DiTs)
with classifier-free guidance. Specifically, we derive score approximation, score estimation, and
distribution estimation guarantees for both conditional DiTs and their latent variants under various
data conditions. We also demonstrate that both conditional DiTs and their latent variants lead to
the minimax optimality of unconditional DiTs under identified settings. This analysis is not only
practical but also timely. Transformer-based conditional diffusion models are leading advancements
in generative Al due to their success as scalable and flexible frameworks for image (Wu et al., 2024)
and video generation (Saharia et al., 2022). But our knowledge of the theory behind conditional DiTs
is still limited. While Hu et al. (2024b) analyze approximation and estimation rates using transformer
universality, their results are not tight and only focus on unconditional diffusion. Meanwhile, existing
theoretical studies on conditional diffusion models have primarily examined ReLU networks (Fu
et al., 2024a), model-free settings (Ye et al., 2024), or generative sampling processes (Dinh et al.,
2023), without addressing transformer architectures. This work fills the gap by examining the
statistical boundaries of conditional DiTs.

In this work, we provide a thorough analysis of conditional DiT and its latent variant under four
standard data assumptions and establish their minimax optimality through tight distribution estimation
bounds. Our approach employs two key techniques: discretizing input domains into infinitesimal grids
and performing term-by-term Taylor expansions of the conditional diffusion score function under
Holder smoothness assumptions, motivated by the local diffused polynomial analysis (Fu et al., 2024a;
Oko et al., 2023). These methods leverage the regularity of the score function, enabling efficient use
of transformers’ universal approximation capabilities through detailed piecewise approximations.
Consequently, we achieve tighter bounds. We summarize the theoretical results in Table 1.

2 BACKGROUNDS AND PRELIMINARIES

Conditional Diffusion Model. The forward process adds noise to data zy given condition y,
resulting in a noisy distribution P;(z¢|y) ~ N(ayz0,071,,). The backward process reverses this
using the score function V log p;(-|y).

Classifier-Free Guidance. This method approximates conditional and unconditional score func-
tions using a neural network syy. The loss function is:

T
1
f(x()’y; SW) = /t T _ to ]EthN(ata:o,o'fIdm) |:||5W(1'ta Tyat) - vzf, log ¢t (xt‘IO)“g dta
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Table 1: Summary of Theoretical Results. The initial data is d-dimensional, and the condition is d-
dimensional. For latent DiT, the latent variable is do-dimensional. a? =1—e tisthe denoising scheduler. The
sample size is n, and 0 < € < 1 represents the score approximation error. While we report asymptotics for large
dz, do, we reintroduce the n dependence in the estimation results to emphasize sample complexity convergence.

Assumption Score Score Dist. Estimation Mipimgx
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Figure 1: Conditional DiT Network Architecture. The architecture includes a reshape layer R, its reverse
R™!, and embedding layers for label y and timestep ¢. The model concatenates the embeddings with input
sequences and processes them through a transformer network fr.

Transformer Network

where 7 denotes the conditional or unconditional version. The empirical loss is E(Sw) =
1
LY (o, i sw)-

Conditional Diffusion Transformer Networks. We use a transformer network as a score estimator
sw, following notation from (Hu et al., 2024b). The transformer block consists of self-attention and
feed-forward layers. The self-attention layer is defined as:

h
FON(Z) =2+ WH(Wi Z) Softmax (Wi 2) (W, Z)], (2.1)

i=1

where Wi, Wi, Wé € R**4 and W}, € R?*® are weight matrices. The feed-forward layer is:

FN(Z) = Z + WaReLU(W1Z + by) + by, (2.2)
where W) € Rr<d w2 ¢ RIx" p(1) ¢ R”, and b® € RY are weights and biases.

Definition 2.1 (Transformer Block and Network Function Class). We define a transformer block of
h-head, s-hidden dimension, r-feedforward dimension, with positional encoding F € RI*L a5 the
function:

s (Z) = f(FF) (f(SA) (Z + E)) . RIXL y RIXL

The transformer network function class 7" consists of all functions that are compositions of one
or more such transformer blocks. Formally,

Th,s,'r — {7_ 0 RdXL — RdXL | T fh,s,r © o000 ® fh,s,'r} )

Conditional Diffusion Transformer (DiT). We consider a transformer network f in the class Thsor,
and we take an input data point (z, y, ) in R% x R% x [to, T]. We adopt the “in-context conditioning”
approach for conditional DiT networks as described in (Peebles & Xie, 2023) and shown in Figure 1.
We reshape a vector input z € R% into a sequential matrix input format Z € R?*%, where d,, = d- L.
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Definition 2.2 (DiT Reshape Layer R(-)). Let R(-) : R% — R¥L reshape a d,-dimensional input
into a d X L matrix. For an image input with d, = ¢ X ¢, it transforms the input into a sequence

representation where feature dimension d = p? and sequence length L = (i/ p)2. The reverse reshape
(flatten) layer is defined as R~1(-) : R¥*L — R,

3 STATISTICAL LIMITS OF CONDITIONAL DITS
We first introduce the definition of Holder space and Holder ball following (Fu et al., 2024b).

Definition 3.1 (Holder Space). Let o € Z4 and 8 = ky +~ with k; = | 3], v € [0,1). The Holder
space H?(R?) consists of all a-differentiable functions f : R? — R with finite Holder norm:

0% f(x) — 0*f ()|
fllasmaey = max sup|0®f(x)|+ max sup .
£ 11346 ) e, 0% f ()] T W, A e

The Holder ball of radius B is define as H” (R, B) := {f : || fll3s®e) < B}.

Let 7o € R% denote the initial data, and y € [0, 1]% the conditional label. With Definition 3.1, we
state the generic and stronger Holder assumption on the conditional distribution of initial data z.

Assumption 3.1 (Holder Smooth Data). The conditional density function po(zo|y) is defined on the
domain R% x [0, 1]9 and belongs to Holder ball of radius B > 0 for Hélder index 3 > 0, denoted
by po(zoly) € HP (R4 x [0,1]%, B). We consider two cases:

- (Generic) For any y € [0,1]%, there exist positive constants C;,Cy such that po(xoly) <
Crexp(~Callzoll3/2)-

- (Stronger) Given a constant radius B, positive constants C' and C5, we assume p(zoly) =
exp(—02||$0||§/2) - f(xo,y) where f € HP(R% x [0,1]%, B) and f(xo,y) > C for all
(zg,y) € R%= x [0,1]%.

We state our main result of score approximation using transformers under Assumption 3.1 as follows:

Theorem 3.1 (Conditional Score Approximation under Assumption 3.1). For any precision parameter
0 < € < 1 and smoothness parameter § > 0, let ¢ < O(N‘ﬁ) for some N € N. For some
positive constants Cy,Cy > 0, for any y € [0,1]% and t € [N~%, C, log N], there exists a
Tscore (T, Y, t) € TIQ’S’T such that:
B? _
/d | Tscore (%, y, t) — Vlogpt(x|y)||§pt(a?|y) dz =0 (C "NT¥- (logN)d)) )
Réz lop:
where the parameters (, w, and ¢ are defined as follows:

- (Generic) ¢ =4,w = ;Ao and ¢ = dy + 5 + 1.
- (Stronger) ¢ = 2, w = %,andqﬁ —B+1.

Building on our approximation results from Theorem 3.1, next we evaluate the performance of the
score estimator S trained with finite samples by optimizing the empirical loss. To quantify this, we
introduce the notion of score estimation risk and characterize its upper bound.

Definition 3.2 (Conditional Score Risk). Given a score estimator s, we define the risk as:

T
5 1 ~
R(S) = / T _ tOEmt,y |:||S(mt,y7t) - VIngt(fEtkl/)”%] dt.

to

Theorem 3.2 (Conditional Score Estimation with Transformer). Consider y € [0, 1]% and ¢ € [to, T']
with tg = N=¢ and T = C,, log N, where C,,, C,, are positive constants such that ¢, < 1 holds.

dotdy
* Assume d, = () ( 10:{502[1\,) and generic Assumption 3.1. By taking N = nd=+dv+7 it holds
1 min (8,(1—v1)(dg +dy)—38)

oo, ROI=0 (™ R o2
= 0
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Figure 2: Network Architecture of Latent Conditional DiT. The overall architecture consists of linear layer

of encoder and decoder, reshaping layer }N{() and R~* (+), embedding layer for label y and timestep ¢. The
embedding concatenates with input sequences and processes by the adapted transformer network.

where vy = 683/(d, + dy) + 104C, and vy = 12d, + 125 + 2.
dg+d
« Under stronger Assumption 3.1. For all z € R%, by taking N = ndﬁdv*yzﬂ, it holds
min (26, (1=v3)(da+dy)—26)

1 _
E{xi,yi}? ) [R(§)] =0 (log ?n (do+dy+2B) (log n)max(lQ,ﬁJrl) .
= 0
where 13 = 4(128d,, + 318d + 68)/d(d, + dy)) + 12C4 (12dy + 25d + 6)/d + 72C.,.

Theorem 3.2 provides a straightforward basis for deriving the distribution estimation theorem pre-
sented in Table 1. Furthermore, we show the minimax optimality of the unconditional DiT archi-
tecture under stronger Assumption 3.1. Specifically, we obtain the distribution estimation error

of unconditional DiTs by removing the condition y and let d, = 0. With the condition d, =
min(8,(1-vg)(dx+dy)/2—6)

0 (w /log n/loglog n) , then the distribution estimation error becomes O (n~ do+28
Unconditional DiT is the minimax optimal distribution estimator under (1 —v3)(d, +dy)/2— 8 > S.

4 LATENT CONDITIONAL DITS

This section builds on Section 3 by exploring latent conditional DiTs. We consider raw data 2 € R%=
residing in a low-dimensional subspace under Assumption 4.1, represented by latent variables
h € R% with dy < d,.. Adapting the approach from Peebles & Xie (2023), we employ a transformer
network to approximate score functions on these latents (see Figure 2). The network includes a

reshape layer converting vector inputs h into matrix form H € R%* % with reshaping operations R

and its inverse, under constraints dg < d, d < d, and L < L. Linear transformations WJ and Wy
encode raw data z into latents  such that x = Uh, satisfying the conditions of Assumption 4.1.

Assumption 4.1 (Low-Dimensional Linear Latent Space). The data « can be represented through a
latent variable i € R% such that z = Uh, where U € R% *do ig a matrix with orthonormal columns.
The latent variable h follows a distribution P, characterized by the density function py,.

The approximation and estimation results closely follows Theorem 3.1, with differences highlighted
in low-dimensional data subspace assumption and Holder smoothness on latent representation. We
arrive the results by replacing the input dimension d, L to d and L, and the input dimension d, with
dpy in Theorem 3.1, and under the the 8y-Ho6lder smoothness assumption.

5 DISCUSSION AND CONCLUSION

We examine the approximation and estimation rates of conditional DiT and its latent setting within
the “in-context” framework introduced by Peebles & Xie (2023), and conduct a comprehensive
analysis under various common data conditions. Notably, we establish the minimax optimality of
unconditional DiTs’ estimation by reducing our analysis from conditional to unconditional settings.
Our approach employs a refined score decomposition scheme that enhances transformers’ universal
approximation compared to earlier methods derived from the universal approximation results in (Yun
et al., 2020) by Hu et al. (2024b).

BOARDER IMPACT

This theoretical work explores the foundational aspects of generative diffusion models and is antici-
pated to have no adverse societal effects.
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A NOTATION

The index set {1, ...,

infinite norm. [|[W{|, and [|W{|  denote the spectral norm and Frobenius norm, and |[W{|, ,

the (p, ¢)-norm where p-norm is over columns and g-norm is over rows. We summarize our notations

in the following table for easy reference.

Table 2: Mathematical Notations and Symbols

Symbol Description
1] The index set {1, ..., I}, where ] € NT
ali] The i-th component of vector a
Ajj The (i, j)-th entry of matrix A
|| Euclidean norm of vector =
[l 1-norm of vector z
[l 2-norm of vector x
Il Infinite norm of vector x
(W71l Spectral norm of matrix W
W g Frobenius norm of matrix W
WI,, (p, g)-norm of matrix W, where p-norm is over columns and g-norm is over rows
1f ()]l .2 L2-norm, where f is a function
ILf (@) L2y L?(P)-norm, where f is a function and P is a distribution
1) H LLP Lipschitz-norm, where f is a function
dp(f, p-norm of the difference between functions f and g defined as d,(f, g) ([ |f(z z)|P dz) ip

f Pushforward measure, where f is a function and P is a dlsmbullon

KL(P, Q) Kullback-Leibler (KL) divergence between distributions P and )

TV(P,Q) Total variation (TV) distance between distributions P and @

N(p,0?) Normal distribution with mean j and variance o

a< b There exist constants C' > 0 such that a < Cb
n Sample size
T Data point in original data space, z € R%
y Conditioning Label, x € Rv
h Latent variable in low-dimensional subspace, h € R%
h h=U"z
Ph The density function of i
U The matrix with orthonormal columns to transform % to x, where U € R¢*do
B Radius of Holder ball for conditional density function p(z|y)
By Radius of Holder ball for latent conditional density function p(h|y)
B Holder index for conditional density function p(z|y)
Bo Holder index for latent conditional density function p(h|y)
D Granularity in the construction of the transformer universal approximation
N Resolution of the discretization of the input domain
R Score risk (expectation of squared ¢? difference between score estimator and ground truth)
N(e, F,|-|) Covering number of collection F
T Stopping time in the forward process of diffusion model
to Stopping time in the backward process of diffusion model
iz Discretized step size in backward process
pe(*) The density function of z at time ¢
pr(-) The density function of 7 at time ¢
P (Conditional) Gaussian density function
Thes Transformer network function class
flosr Transformer block of h-head, s-hidden size, r-MLP dimension
d Input dimension of each token in the transformer network of DiT
L Token length in the transformer network of DiT
d Latent data input dimension of each token in the transformer network of DiT
L Latent data token length in the transformer network of DiT
X Sequence input of transformer network in DiT, where X € R4*L
H Sequence latent data input of transformer network in DiT, where X € R?*L
E Position encoding, where E ]R‘“L
R(") Reshape layer in DiT, R(-) : Rd= — R4*E
R(") Reshape layer in DiT, R(-) : Rd” — RIXL
R7L() Reverse reshape layer in DiT, R (-) : R4*L — Ré=
R1() Reverse reshape layer in DiT, R=1(-) : R&L — Rdo
Wy The orthonormal matrix to approximate U, where Wy, € R *do

I'} is denoted by [I], where I € NT. We denote (column) vectors by lower case
letters, and matrices by upper case letters. Let a[i| denote the i-th component of vector a. Let A;;

denotes the (i, j)-th entry of matrix A. ||z||, ||z||; and ||z|| , denote the Euclidean norm, 1-norm, and
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B UNIVERSAL APPROXIMATION OF TRANSFORMERS

In this section, we discuss the universal approximation theory of transformers.

In Appendix B.1, we present the universal approximation results of transformers for score approxi-
mation. We emphasize that most of the material in Appendix B.1 is not original and is drawn from
(Hu et al., 2024a; Kajitsuka & Sato, 2024; Yun et al., 2020).

In Appendix B.2, we compute the parameter norm bounds of the transformers used for score
approximation. These bounds are crucial for calculating the covering number of the transformers and
are essential for score and distribution estimation.

B.1 TRANSFORMERS AS UNIVERSAL APPROXIMATORS

Theorem B.1 (Transformers with 1-Layer Self-Attention are Universal Approximators, Modified
from Proposition 1 of (Kajitsuka & Sato, 2024)). Let 0 < p < oo and fFF), f54) be feed-forward
neural network layers and a single-head self-attention layer with softmax function respectively. Then,
for any permutation equivariant, continuous function f with compact support and € > 0, there exists

fle T,Q’S”" such that d,,(f, f') < e holds

Lastly, we provide the next corollary stating that the required transformer configuration (h, s, r) for
universal approximation.

Corollary B.1.1 (Universal Approximation of Transformers). From Theorem B.1, for any permu-
tation equivariant, continuous function f with compact support and € > 0, a transformer network
f/ € Tp'"* with MLP dimension (width) 7 = 4 and = O((1/€)*") FEN layers is sufficient to
approximate f such that d,(f, ') <.

Remark B.1. We remark that 7}%’1’4 belongs to the considered transformer network function class
Definition 2.1.

We establish in Corollary B.1.1 the minimal transformer configuration required to achieve universal
approximation for compactly supported functions. We remark that this configuration is minimally
sufficient but not necessary. More complex configurations can also achieve transformer universality,
as reported in (Hu et al., 2024b; Kajitsuka & Sato, 2024; Yun et al., 2020).

Throughout this paper, unless otherwise specified, we use the transformer class ’T]%’M to construct
score function approximations.

B.2 PARAMETER NORM BOUNDS FOR TRANSFORMER APPROXIMATION

In the analysis of the approximation ability of transformers in (Kajitsuka & Sato, 2024), universal

approximation is ensured by using a sufficiently large granularity D, a sufficiently small § in fl(FF),

and an appropriate scaling factor R in fQ(FF). Here, we provide a detailed discussion on parameter
bounds for matrices in Tlg "% focusing on the choice of granularity and scaling factor.

Lemma B.1 (Order of Granularity and Scaling Factor). Consider the universal approximation
theorem for transformers in Theorem B.1. The order for the granularity and the scaling factor
follows D = O(e~ /%) and R = O(D), and the parameter ¢ for the first feed-forward layer follows
§=o(D71).

Building upon Lemma B. 1, we extend the results to derive explicit parameter bounds for matrices
regarding the transformer-based universal approximation framework. That is, we ensure a more
precise quantification of parameter constraints across the architecture.

Lemma B.2 (Transformer Matrices Bounds). Consider an input sequence Z € [0, 1]dXL. Let
f(Z) . [0,1]9*E — RI*L be any permutation equivariant and continuous sequence-to-sequence
function on compact support [0, 1]~ For the transformer network f’ € ’T];’h’s to approximate
f within € precision, i.e., d,(f, f') < e, the following parameter bounds must hold for d > 1 and
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dL+1

)(log L)%);
~H D (log L)%);

IWoll, = IWill, = O(d- e
1Wally oo = Wikl o = O}
IWoll, = © (Vet ) s [Wolly o = 0 (¢4
Wy lly = O(Va); Wil o = O(d);

IWilly = © (de™# ), 1Willy o = O (Vade™

S

( );
IWally = © (de™#) 5 Wally o = O (Ve )5
BT, = 0 (2 L3).

For the case L = 1, the parameter bounds remain valid with the substitution of log L with 1.
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C PROOF OF THEOREM 3.1 UNDER GENERIC ASSUMPTION

Our proof builds on the local smoothness properties of functions within Holder spaces and the
universal approximation of transformers. While the universal approximation theory of transformers
ensures arbitrarily small errors, it does not account for the smoothness of functions in the result. To
incorporate the smoothness assumptions of interest, we propose the following three steps to integrate
function smoothness into approximation theory of transformer architectures.

* Step 1. Consider the integral form of p;(z¢|y) in (C.1). We clip the input domain R% into
closed and bounded region B, n. This facilitates the error analysis for the Taylor expansion
approximation in the next step. The clipping error arises from the integral over the region
outside B, n. We specify the clipping error in Lemma C.1.

dzg oo — a4
_ [ __dwm . _Morro = Tl ) e
pe(zely) /Rdm o (27)de /2 M eXp( 207 0

~2 k1 -order Taylor polynomial

~kq-order Taylor polynomial

 Step 2. We employ kj-order and kq-order Taylor expansion for p(zg|y) and exp(-) in
(C.1). We construct the diffused local polynomial in Lemma C.2 based on the Taylor
expansion. We approximate p; and Vyp; with the diffused local polynomial fi(x,y,t) € R
and fy(z,y,t) € R% in Lemma C.3 and Lemma C.4.

* Step 3. We approximate f;(z,y,t), fo(x,y,t) with transformers in Lemmas C.5 and C.6.
To construct the final score approximator with the transformer, we approximate necessary
algebraic operators in Lemmas C.7 to C.11. We provide the output bound of our transformer
model in Lemma C.12. We combine all components into Lemma C.13, and complete the
proof of Theorem 3.1.

Noe that the proof under latent subspace assumption in Table | closely follows the proof in this

section , with the input dimension d, L to d and E, and the input dimension d,, with dy in Theorem 3.1,
and consider under the By-Holder smoothness assumption on latent data.

Organization. Appendix C.1 includes details regarding the three steps with auxiliary lemmas for
supporting our proof. Appendix C.2 includes the main proof of Theorem 3.1.

C.1 AUXILIARY LEMMAS

Step 1: Clip R x [0, 1]4v for p,(x|y). We introduce a helper lemma on the clipping integral.

Lemma C.1 (Approximating Clipped Multi-Index Gaussian Integral, Lemma A.8 of (Fu et al.,
2024b)). Under generic Assumption 3.1. Consider any integer vector x € Z‘j_” with [|&||; < n. There
exists a constant C(n, d,) > 1, such that for any x € R% and 0 < ¢ < 1/e, it holds

it i) ! o — o
T ) " doNdj2 ———— |dzo < Cc2
/]Rdm \B, ( o ) ’ p(zoly) o2 (2m) 32 exp( 207 zo < €, (C.2)
where (2:0=2)" i ((2ezollhzelllyol, (oumolzallyal | (aesoldalosllel \lde)) s o mudti-

indexed vector and

x — 01C(n,d;)+/log (1/e) =+ 0:C(n,d,) log(l/e)}

Qi (e

B, = |

N[ - Cmn.do)VIog (170). O, ) Iog (170

Remark C.1. B, is a bounded domain. Lemma C.1 provides the difference between integrals of the
form (C.2) on R% and on B,. The difference becomes arbitrarily small with precision ¢ = 1/N.

Step 2: Approximate p;(z|y) and Vp,(z|y) with Taylor Expansion. We begin with the definition.

10
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Definition C.1 (Normalization of B, n). Consider the clipping in Lemma C.1 and the initial
conditional distribution p(o|y) with closed and bounded support B, x x [0, 1]%. We define Rp =
(2C(0,d)v/Blog N) and x(, := zo/Rp+1/2. Moreover, we define M (zg, y) = p(Rp(z;—1/2)|y).

Remark C.2. The purpose of Definition C.1 is to simplify the process of discretizing B, n x [0, 1)

into N%+dy hypercubes. In particular, M (z{,y) has compact support on [0, 1]%+4v_ where Rp
denotes the length of each coordinate of B, y, and zj, € [0, 1]d1 represents xo normalized on B, n.

Remark C.3. The only difference between M (x, y) and p(zo|y) lies in their respective domains,
leading to the difference in the size of the Holder ball radius. Recall that under generic Assumption 3.1,
we have p(zoly) € HP(R% x [0,1]%, B). Here we have M(zh, y) € H([0, 1]+, BRE ). This

follows from the fact that p(-|y) is k1 -time differentiable so that the radius scale by a factor of R’E.

Lemma C.2 (Diffused Local Polynomial, Modified from (Fu et al., 2024a)). Under generic Assump-
tion 3.1. We write p;(x|y) into the product of p(z|y) and exp(-):

1 Ty — T 2
pe(zly) Z/d P(»’Uo|y)pt($|$o)d$0=/ S SN ($0|y)exp<—” : 2002 ! )dxo
Rd=

p
R O‘tdm (2m)de/2 i

llewzo—=?

ZUt2
Taylor polynomial within B, n respectively. Altogether, we approximate p;(x|y) with the following
diffused local polynomial with the bounded domain B, n around z:

Then we approximate p(zo|y) and exp ( — ) with k1 -order Taylor polynomial and ko-order

hwyh= 3 O it

'f'l/a;"l'b | aanﬁyny (I)nz,ny,u,w(m,y,t),
vE[N]E,we[N] |||y +lInyll, <k1 2

w=Rp(%—3)v=%

(C.3)

where

* ¢(-) is the trapezoid function.
r—o Zl:z k2
° g(-T,TLI,U,k'Q) = Ut\l/ﬂf(%—’_%_%) zklz'<_| 20’12 0|> de-
w \ "y d, . w dy - . -
* Py (@5 t) = (y— §) 7 T2 ¢ BNl — %)) 121 Xk, <p 9(2li], nali], 0[], K2).
Remark C.4. The form of the diffused local polynomial arises from the Taylor expansion approxi-

mation applied on each grid point within [0, 1]4: v, with v € [N]% and w € [N]% denoting the
specific grid point undergoing approximation.

Remark C.5. The Holder space assumption in generic Assumption 3.1 establishes an upper bound
on the error arising from the remainder term in the Taylor expansion. This ensures the approximation
accuracy is well-controlled.

We specifies the error from the approximation of p; and Vp; with f; and f5 in Lemmas C.3 and C.4.

Lemma C.3 (Approximation of p;(z|y) by Polynomials, Lemma A.4 of (Fu et al., 2024b)). Under
generic Assumption 3.1. For any x € R% y € [0,1]%, ¢t > 0, and a sufficiently larger N' > 0, there
exists a diffused local polynomial fi(z,y,t) with at most N4+ (d,, + d,)* monomials such that

do+kq

|f1(m,y,t)—pt(x|y)\,SBN_ﬁlog 2 N.

Lemma C.4 (Approximation of V log p;(z|y) by Polynomials, Lemma A.6 of (Fu et al., 2024b)).
Under generic Assumption 3.1. For any z € R% y € [0,1]%, ¢ > 0, and a sufficiently larger N > 0,
there exists fo = (f2[1], ..., f2[dz]) " € R% with local diffused polynomial f5[i] such that

dgtky+1

|f2(1',y,t)[l] _UtVPt(x|y)[l]| S/BN_IBIOg 2 Na

11
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where each f5]i] contains at most N4 % (d,, + d,,)* monomials.

We have finished the approximation of p; and Vp; with diffused local polynomial f; and fs.

Step 3. Approximate Diffused Local Polynomials and Algebraic Operators with Transformers.
First, we utilize universal approximation capabilities of transformers to deal with f;, f> established
in previous step. Second, we employ similar scheme to approximate several algebraic operators
necessary in final score approximation. Lastly, we present the incorporation of these components in
Lemma C.13 with a unified transformer architecture and corresponding parameter configuration.

 Step 3.1: Approximate the Diffused Local Polynomials f; and f5.

We invoke the universal approximation theorem of transformer (Theorem B.1). We utilize
network consisting of one transformer block and one feed-forward layer.

Lemma C.5 (Approximate Scalar Polynomials with Transformers). Under generic Assump-
tion 3.1. Consider the diffused local polynomial f; in Lemma C.3. For any € > 0, there exists

a transformer 7y, € Tlg’s’r, such that for any = € [~C,+/log N, C,+/log N|%=,y € [0, 1]%
andt € [N~ C,log N] it holds

[fi(@,y:8) = Tp (@, y,1)[da]| < e.

The parameter bounds in the Transformer network class satisfy

2dL+44d+1

IWallys [Wiklly = O (de= ™8 tog L)? )

_ 2dL+44d+1

[Wally o [Wiclly o0 = O (e 25 10g L)})
Wi lly = OV); [W |y, o, = Od);

IWoll, = O (Vdet ) [Wolly, ., = O (e#)
IWill, = O (de log N ) ; [ Wil o = O (Ve -log N)

IWall, = O (de™# ) ;[ Wally o = O (Ve ) ;

B, =0 (aiL}).

Similarly, we have the corresponding 77, € Tlf{ " for the approximation of fa(z, v, 1).

Lemma C.6 (Approximate Vector-Valued Polynomials with Transformers). Under generic
Assumption 3.1 and consider fo(x,y,t) € R% with every entry fo[1], ..., f2[d.] is a local
diffused polynomial defined in Lemma C.2. For any € > 0, there exists a transformer
T;, € Toy®" such that

||f2(x,y,t) - 7df2||oo <€

for any x € [~Cy+v/log N, Cp\/Iog N]|%=,y € [0,1]% and t € [N~ ,C,log N]. The
parameter bounds in the transformer network class follows Lemma C.5.

So far, we have obtained approximation results for f; and f,. To complete the full approxi-
mation of the score decomposition V logp = %, we still need to approximate several key
algebraic operators, including the product (Lemma C.8), inverse (Lemma C.9)...etc.

We establish their approximations as follows.
* Step 3.2: Approximate Algebraic Operators with Transformers.
We give transformer approximation theory for the clipping operator, the inverse operator,
the product operator, and functions that evolve with time ¢:
— Clipping operation (Lemma C.7)
— Product operation (Lemma C.8)
— Inverse operation (Lemma C.9)
- Mean o = exp(—t/2) (Lemma C.10)

12
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— Standard deviation o0; = /1 — e~* (Lemma C.11)

The approximations for these operators are common with the network structure consisting
of ReLLU activation function and fully connected feed-forward layers, such as the product
approximation by Schmidt-Hieber (2020) and the inverse approximation by Telgarsky
(2017).

The following lemma provides a network that executes the clipping operation.

Lemma C.7 (Clipping Operation, Lemma F.4 of (Oko et al., 2023)). For any a,b € RY
with a[i] < b[¢] for all ¢ € [d], there exist a neural network ¢gip(; a,b) € ®(L, W, S, B)
such that for all 7 € [d], it holds

Paip (3 @, 0)[i] = min(b[i], max(z[i], ali])),
with
L=2 W=(d2dd", S=17d, B= max max(lali]], bli]).  (C4)
Moreover, suppose a[i] = ¢ and b[i] = C for all i € [d] with ¢ and C' being some constant,
¢etip(; a, b) is denoted as ¢gip(; ¢, C').
Next, we deal with the approximation of products with Transformer.

Lemma C.8 (Approximation of the Product Operator with Transformer.). Let m > 2 and

C > 1. Forany 0 < €mu < 1, there exists Tpui(-) € Tlg’s’r such that for all z € [-C, C]™,
z’ € R™ with ||z — 2’| ., < €error, it holds

m—1
< émut + mC €error -

Toun(2') = [ z:

=l

The parameter bounds in the transformer network class 7,1*" satisfy

— 1
IWally, Wl 1Welly o [Witllz,00 = O (™ (logm)? ) ;
IWollz, [Wol oo = O (s I s W 3,00 = O(L);
IWallas [Willy o0 = © (o) s [Wally, [Waly oo = O (e)

mult mult
Next, we introduce the next lemma to approximate the inverse operator.

Lemma C.9 (Approximation of the Reciprocal Function with Transformer.). For any
0 < €rec < 1 there exists a Trec(+) € T£’87T such that for all 7 € [€rec, €oa] and 2’ € R. Tt
holds that

1 r—x
ﬂec(x/) - l" < €rec + ‘ 5 |

rec

The parameter bounds in the Transformer network class satisfy

Wolla, IWally, oo Willy [Willy,00 = O (6) 5
Wolly: [Wollzoo = O (€ree) ; Wy [l Wy |5 00 = O1);
Wil 1Willg oo = O (€22) s [Wallys Wl 00 = O (€rc ) -

Next, we state approximation results using Transformer for o, and o;. Note that we have

a; = exp(—t/2) and oy = /1 — 2.

13
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Lemma C.10 (Approximation of oy = exp(—t/2) with Transformer.). For any ¢, € (0, 1),
there exists Transformer 7o, (t) € 75" such that for all £ > 0, we have

|Ta(t) — | < eq
The parameter bounds in the Transformer network class satisfy
Wollo: IWelly, o0 Willa (Willy 0o = O (€3°) 5
Wolly: Wollz,ee = O (€a7) s WV [l W 15,00 = O(1);
Willy, [Willyoo = O ((logegMez) s 1Wally, [Wally oo = O (57) -

Lemma C.11 (Approximation of oy = v/1 — e~ with transformer). For any o, € (0, 1),
there exists a transformer 7, (t) € Tlg **" such that for any ¢ € [tg,T] with o < 1 we have

|T5(t) — 0] < €.
The parameter bounds in the transformer network class satisfy
IWollg, IWally oo Willa Wiy, 00 = O (€5°) 5
IWolly; [[Wollye0 = O (€6) s W 25 W ll2,00 = O1);
Will, = O (Tez?) ;5 IWillyoo = O (Tez) 5
IWall, =0 (') Wallyeo = O (&,1) -

We have finished the approximation of every key component for the proof of Theorem 3.1.
We now proceed to the detailed assembly and integration of these components to finalize the
proof.

* Step 3.3: Unified Transformer-Based Score Function Approximation.

First, we establish a theoretical upper bound for transformer model output by analyzing the
upper bound of the score function in /., distance under generic Assumption 3.1 as follows.

— Bound on p;(x|y):
Recall that the conditional distribution at time ¢ has the form:

1 / \|w—atx0|\2
z|ly) = ——— T exp| —————— |dzo.
pe(zly) iam) p(woly) p( 207 0

t

Applying the light tail property in generic Assumption 3.1, the upper bound follows:

(x| )<7C1 /ex —LQH%OW ex —7”30_%360”2 dx (C.5)
Dt Yy) = 05(27{')% P 9 p 20_152 0- .

On the other hand, the lower bound follows:

1 T — Q4T 2
plaly) > —— / plaoly)esp [ 2=l ) qp (e
2 Jlzoll L1

ol (2m) 207
— Bound on Vp;(x|y): The first element of the gradient has the form:

B S S P2 LR PO (N 1 o W
|(th)[1]|—a_t2(2ﬂ_)% ‘/< p )p( 0ly) p( 207 )do
(C.7)

The ¢, bound on Vp; follows by applying light tail property to each coordinate as in
(C.5).

14
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Combining (C.5), (C.6) and (C.7), we provide the ¢, bounds on the score.

Lemma C.12 (Bounds on Score, Lemma A.10 of (Fu et al., 2024b)). Assume generic
Assumption 3.1. There exists a constant K such that

K
IV log pe(2[y)lloe < —5(llz]| +1).
t

Further details regarding the derivation are in Appendix A.7 of (Fu et al., 2024b).
Next lemma incorporates previous approximation results into an unified transformer archi-
tecture.

Lemma C.13 (Approximation Score Function with Transformer on Supported Domain).
Under generic Assumption 3.1. Consider ¢ € [N -C O, log N ], for constant C,, C,,
and (z,y) € —[C.v/log N, C,+/log N]% x [0,1]%v, where N € N and C, depends on

h,s,r

d, 3, B, C1, Cs. There exist a transformer network Tsore(, Y, t) € Tp*>" such that

da+ky+1
2

p(ly) |V 10g pe(ly) — Trcore (2,9, 1) | oo < ;;Nmog N)
The parameter bounds in the Transformer network class satisfy
IWallo: Wk ll2: IWally a0 IWKl5 00 = O (N(w*ﬁcd)) :
IWollas [Wolly e = O (N=CH+6C) (log N)2(E+2))
Wy ll, = O/ Wyl = O [ BT, = 0 (a2L)

IWilly, Wil o = © (NCEHC) O = 0 (Viog N /0})

[Wall, [1Welly o0 = © (NGF+262))

|27

Proof of Lemma C.13. Our poof follows the structure of Fu et al. (2024b, Proposition A.3).

Recall that from Lemma C.12, we have ||V logp:(z|y)|, < K(Cyv/dylogN +1)/02,
along with the diffused local polynomial f; and fs, we define first-step score approximator

fS(xvy7t) as

BK
Utfl,clip’ 0752

fa(z,y,t) = min ( Czv/dyglog N + 1)) ,
where we set f1 ciip = {f1, €1ow } to prevent score from blowing up and we set €0, later.
We proceed with the following three steps:

— Step A. Approximate Score Function with f3.

Without loss of generality, we first derive error bound on the difference between the
first component in f3 and the score.

1
|(Viogpe)[1] — f5[1]] < ‘(Vlogpt)[ll A ],
O'tfl,chp
< ‘(th)[l] _ (V]| ‘ (Ve)lt] (1 |
- Dt fl,clip fl,clip gt fl,clip
From Lemma C.12, the bound on the score implies (Vp;)[1] < K(y/d,log N +
1)pt/0t2
Therefore,

|(V1ogp:)[1] — f3[1]]

K
< U—g(\/dlog]\f + 1)p:

1 1

Dt f 1,clip

Lt
fl ,clip

(Votpt)[l] - fz[l] ‘

Ot

15
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< 1 (;\/logNlpt — fictip| + (Vo) 1] - f2[1}> .

~Y
fl,clip t Ot ‘
(By dropping Constant Terms )
From Lemma C.5, we have

dptkq

|fi —pel < BN Plog 2z N.

We set €oy = C3 N5 log(dﬁ’“)/2 N < p; such that f; > p;/2 by the choice of
constant Cs3.
We further write

[(Vlogp:)[1] = f[1]]
< l (;2 \/@M% — f17clip| + (Vo) 1] - f2[1]> (By the choice of (hm)
t

D Ot

B do+ky+1
< N~(log N) N (By Lemma C.3 and Lemma C.4)
~ oipe

By the symmetry of each coordinate, the infinity bound for the score holds as well:

B N8 (log N) dothyt1

||VIngt - f3||oo /S 2
0Pt

(C.8)

— Step B: Approximate f3; with Transformer 7s¢re.

In this step, we utilize transformers to approximate f3 to an accuracy of order N —?

such that it aligns with the error order in (C.8).

Since f3 is the minimum between two components, we approximate each of them as

follows.

+ Step B.1: Approximate _- - flf—zlp

First, we utilize 7y, , Ty, and 7;,1 in Lemma C.5, Lemma C.6, and Lemma C.11
for fi, f2, and o respectively. This gives error €y, , €, and €, 1, and we address
the clipping of f; in later paragraph.
Next, We utilize Trec,1 and Trec 2 in Lemma C.9 for the approximation of the inverse
of f1 and o.
This gives error

1 Ty, — [l €
1 f1
7;ec,1 - —1 < €rec,1 T — 5 < €rec,1 T 5
fl rec,1 rec,1
and
1 |To1 — 04 €g,1
7;ec,2 - § €rec,2 + ,27 S €rec,2 + 2 —.
Ot rec,2 rec,2

Note that all the approximation error propagates to the next approximation.

Next, we utilize Tryy,1 in Lemma C.8 for the approximation of the product of f; 1
foand o; t.

This gives error of

fe 2 €f €o,1
7:nult,1 - < €mult, 1 + 3K2 max | €rec,1 + P} y €fay €rec,2 + p)
ot f1 rec,1 rec,2

=€

2
= €mult, 1 + 3K2 €1,

and K is a positive constant. From Lemma C.8 we require that [— K3, K] covers
the domain for all of f;*, f and f;'.

16
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To be more specific, we reiterate three facts that determines the choice of Ko.
- Recall that in the Step A., we set f1 cip = {f1, €low}-
- Lemma C.12 states K (Cy+/d, log N + 1) /07 is the £, bound on the score.
- The maximum value of o, ! happens at t = t.

As aresult, we set K5 as

1 K 1
ngmax( ,(Cx\/dxlogN—i—l),) )
Uto

€low Otg

By the earlier choice of €joy, We have €0 = O(N?log N~ (4=+k1)/2) "and next
we expand oy,,.

0ty = /1 —exp(N=Cr) =1~ (1 - O(N~)).

Therefore we have ai}l = O(N%). Putting all together, we have

Ky =0 (Nﬁ+cv log~ 7~ N) , (C.9)

where we use k1 < 3.

x Step B.2 : Approximate K (C.\/d,log N + 1)/o?.
We invoke 7, 2 in Lemma C.11 for the approximation of o, and this gives error
€0,2-
Next, we utilize 7y 3 in Lemma C.8 for the approximation of the inverse of oy.
This gives error

1 [To.3 — 04l €0,2
7;60,3 - — < €rec,3 T 3 < €rec,3 T 5 -
Ot €rec,3 €rec,3

Next, we utilize Tu,2 for the approximation of the square of o, L
This gives error of

1 2
7:nult,2 - <>
Ot

and K is constant to be chosen such that o, € [— K, K1].
With the same argument for K>, it suffices to take O(c;, *):

€5,2
< €mult,2 + 21(1 <€rec,3 + 2) )

€rec ,3

K1 =0 (N%). (C.10)

# Step B.3: Error Bound on Every Approximation Combined.
Combining Step B.1 and Step B.2, the total error is bounded by

€5,2 2
€score S max (Emult,Z + 2]:{1 <€rec,3 + 2) 5 €mult, 1 + 3K2 €1 ] .

rec,3

The goal is to guarantee the final error egcore < N —P such that it matches the order

of the approximation error in Step A. We list all the error choice to achieve the
I

goal.

- For the Error of the First Two Inverse Operators:

6rec,17 6rec,2 - O (N7(35+2C°)(10g N)(dﬂmLﬁ)) .

"Further details regarding the choice of each one of € are in Appendix F.4 of (Fu et al., 2024b).
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- For the Error of the Last Inverse Operator:
brecs = O ( N—(B—s—zca)) _
- For the Error of f;:
¢ =0 ( N—(B+6C2) (1og N)3(dm+ﬁ)) _
- For the Error of fs:
¢f, =0 (N—(szca)(log N)(dm+l3)) _
- For the Error of the First Variance:
(g1 =0 (N—(9B+6Ca)(10g N)3(dz+l3)> _
- For the Error of the Second Variance:
o2 = O (N7 774500 (1gg )20 40
- For the Error of the Two Product Operators:
€mult, 15 €mult,2 = O(N_B)'

The above error choice renders €oe < N 5.
Therefore we conclude that there exist a transformer Teore € Tlg " such that

[ Trcore (9, 8) = fal,y,0)[|oo < N7 (C.11)
Combining (C.8) and (C.11) we obtain

1 B___ dp+ky+1
HVIngt_'Y;core(x7y7t)Hoo 5 ;UQN ﬁ(lOgN) 21
t Ut

We have completed the first part of the proof. We next give the norm bounds for the
transformer parameters. Specifically, we select the parameter bounds that are consistent
across all operations. including Lemma C.5, Lemma C.6, Lemma C.8, Lemma C.9 and
Lemma C.11.

— Step C: Transformer Parameter Bound.

Our result highlights the influence of N under varying d,. Therefore, for the trans-
former parameter bounds, we keep terms with d, d, L appearing in the exponent of N
and log N.

Note that the following parameter selection is based on high-dimensional case where
log N term dominates N term.

* Parameter Bound on W and Wi.
Given error ¢, the bound on each operation follows:

- For €7, : By Lemma C.5, we have
||WQ||2, ||WK||2; ||I/VQ||2 o ||I/VK||2’00 =0 (N(95+6cg)‘2dL+d4d+l ) (10g N)—S(dm+ﬁ)~2sti4d+1) .
- For €7,: By Lemma C.6, we have

2dL+4d+1 )

< d d
IWallys Wi ll2 (Welly s Wkl 00 = O (N(35+ZC°)'27L54 . (log N)~ (e +0) 2555

18
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- For emuit,1: By Lemma C.8 with m = 3, we have

IWally: 1Willas Wally, ao Wk la o = O (N77).
- For equit,2: By Lemma C.8 with m = 2, we have

IWallys Wi llgs Welly aor Wl oo = O (N
« FOT €rec,15 €rec,2: By Lemma C.9, we have

IWallys Wik las [Wally o [Wiclly o = © (N©O7+06) (log N) =30+ ).
- For €rec,3: By Lemma C.9, we have
IWllas IWK s W g o Wikl o0 = © (NG00

- For €,,: By Lemma C.11, we have

IWally Wkl [We

000 IWally o = O (NETFHISC) (10g Ny =004
- For €,,: By Lemma C.11, we have

IWally Wkl [We

e Wl o = O (N6 (log N) =004

We select the largest parameter bound from €pyy,1 and € 3 that remains valid
across all other approximations. That is, we take N(7#+6C<) as the upper-bound.

+ Parameter Bound on Wy and Wy,.
Given error ¢, the bound on each operation follows:

- For €f,: By Lemma C.5, we have

_ (9B8+6C¢) 3(dz+8)
d d

IWolls, [Woll.. = O (N (log V) 5.

- For €f,: By Lemma C.6, we have

(38+2Cs) (dg+8) )

[Wollas [Wolla,o = © (N~ log ) 55
- For emuit,1: By Lemma C.8 with m = 3, we have
IWolly: [Wolly o = O (N727).
- For €qui,2: By Lemma C.8 with m = 2, we have
IWolly, [Wolly o = O (N727).
« FOT €rec,15 €rec,2: By Lemma C.9, we have
[Wollas [Wolly,o, = © (N=39+€) (log N)%+7)
- For €rec,3: By Lemma C.9, we have

Wolly, ||WOH2,OO =0 (N*(Mzco)) .
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- For €,,: By Lemma C.11, we have

[Wolly, [Wolly o = O (N—(95+6Ca>(10g N)B(dﬁﬁ)) .
- For ¢,,: By Lemma C.11, we have

[Wolly; [Wolly o = O (N—(75+5Cv>(10g N)2(dz+6)) .

Note that only €7, and €y, involve the reshape operation. From Lemma B.2, we take
O(Vd) and O(d) |[Wy||, and ||Wy |2~ Moreover, We select the largest param-
eter bound from e; and €,, that remains valid across all other approximations.
That is, we take N ~(3#+6C) (1og N)3(d=+5) a5 the upper-bound.

+ Parameter Bound on W;.
Given error ¢, the bound on each operation follows:

- For ¢f,: By Lemma C.5, we have

Wiy, ||V[/'1H2,OO -0 (N (98+6Cs) (log N)*B(dfiw) - (log N)) '
- For €,: By Lemma C.6, we have
Wil Wil o0 = © (N5 (log N) =5 - (log V).

- For equi,1: By Lemma C.8 with m = 3 and C = K in (C.9), we have
Wil [ W], = O (Ko N) = O (NO4€2) (log N) =2 (4 59))
- For €qui,2: By Lemma C.8 withm = 2 and C = K, in (C.10), we have
[Willy: (Wil = O (K- N) = O (NGF+C0)).
- FOr €rec,1 5 €rec,2: By Lemma C.9, we have
[Willy, (Wil o = O (NOT+4C) (10g N)=2(0+2))
- FOr €rec,3: By Lemma C.9, we have

[Wally, [[Wh

|2,oo =

o ( N(25+4ca>) .
- For €,,: By Lemma C.11, we have

[Willy, [ Wil o0 = © (NO246) (log N)~300+5) Jog )
- For ¢,,: By Lemma C.11, we have

Wil Wy o0 = © (NT#476) (log N) =20+ . 1og N )

We select the largest parameter bound from € 3 that remains valid across all other
approximations. That is, we take N (26+4C=) a5 the upper-bound.

+ Parameter Bound for 1W5.
Given error ¢, the bound on each operation follows:
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- For €f,: By Lemma C.5, we have
IWally, [Wally o = O (NLL?C“(IOgN)%w) .

- For ¢7,: By Lemma C.6, we have For ¢, : By Lemma C.5, we have

(38+2Cs)

IWallys [Wally o0 = O (N5 (10g ) =557 )
- For emuit,1: By Lemma C.8 with m = 3, we have
IWally, [[Wally o = O (N?7)..
- For equit,2: By Lemma C.8 with m = 2, we have
[Wally, [[Wally o = O (N?7) .

« FOT €rec,15 €rec,2: By Lemma C.9, we have

W2y, [[Wa =0 (N(3ﬂ+20<’)(logN)_(dw+ﬁ)) .

H2,oo

- For €rec,3: By Lemma C.9, we have
[Wally: [Well, o, = © (NP+26).
- For €,,: By Lemma C.11, we have
[Wally, [Wall o, = © (NO546) (1og Ny =50+
- For €,,: By Lemma C.11, we have
[Wally, [Wall o, = O (NTP+500) (10g N2+

We select the largest parameter bound from €pyy,1 and € 3 that remains valid

across all other approximations. That is, we take N (38+2C=) ag the upper-bound.
+ Parameter Bound for F.

Since only €7, and €y, involve the reshape operation. From Lemma B.2, we take

1.3 T
O(dzL2) for ||E Hz,oo‘
By integrating results above, we derive the following parameter bounds for the trans-
former network, ensuring valid approximation across all nine approximations.

IWellos 1Wicllos Welly oo WKl 00 = O (N(wwcg)) ;
[Wollg: [Wolly,o = O (N—(35+6Ca)(10g N)3(dm+5)) :
Wy, = OVa); [Wyly oo = OW@); | ET]], . = O (d%Lg) ;
[Wallg Wil . = © (N@#+49) s — 0 (1log N2 s
[Wally, [Wall, o, = O (NEF+262))
The last network output bound C'1 = O(v/d,, log N /0—t2) follows the entry-wise mini-

mum bounds K (C+/dlog N + 1)/02 in {+, distance by Lemma C.12.
This completes the proof. O
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C.2 MAIN PROOF OF THEOREM 3.1 UNDER GENERIC ASSUMPTION

In Lemma C.13, we establish the score approximation with transformer that incorporates every
essential components and encodes the Holder smoothness in the final result. However, it is only valid
within the input domain [C,+v/log N, C,.+/log N|% x [0, 1]%, and we also excludes region p; < €jow
where the problem of score explosion remains unaddressed.

To combat this, we introduce two additional lemmas. The first lemma gives us the error caused by
the truncation of R% within a radius R; in ¢ distance.

Lemma C.14 (Truncate x for Score Function, Lemma A.1 of (Fu et al., 2024b)). Under generic
Assumption 3.1. For any R; > 1, y,t > 0 we have

/ po(ely)dz < Ry exp(—CLR2),
HmeZRl

R3
Z|| oo = F1

t

where C} = C5/(2max(Ch, 1)).

Remark C.6. Because we only impose assumption on the light tail property of the conditional
distribution in generic Assumption 3.1, the unboundedness of = necessitates a truncation for integrals
regarding z, or else the result would diverge.

Furthermore, we address the explosion of score function with the second lemma.

Lemma C.15 (Lemma A.2 of (Fu et al.,, 2024b)). Under generic Assumption 3.1. For any
R, y, €ow > 0 we have

/ 1{[p: (el)] < etow]} - Pr(aly)dz < R con,
|z]| o <R

1
/‘ L{|pe(z[y)| < etow} - ||V log pe(@]y)[3p¢ (z]y)dz < — R 2eion.
[ o

Remark C.7. Recall that the score function has the form V log p:(x|y) = Vpi(z|y)/pe(z|y). Itis
essential to set a threshold for p; (z|y) prevents the explosion of the score function.

We begin the proof of Theorem 3.1.
Proof Sketch of Theorem 3.1. In the following proof, we give error bound for the three terms:

* (A.1): The approximation for ||z| _ > R;.

This step controls the error from truncation of R¢% with radius R; in {5 distance. We
approximate the error with Lemma C.14

* (A.2): The approximation for 1{p;(z|y) < eow} and {||z|, < Ri}.

This step controls the error from setting a threshold to prevent score explosion within the
bounded domain ||z|| , < Ri. We approximate the error with Lemma C.15.

* (A.3) The approximation for 1{p;(z|y) > €ow} and {||z|| < R;}.

With previous two steps ensuring the bounded domain and preventing the divergence of
score function, we approximate with Lemma C.13.

O
Proof of Theorem 3.1. We apply N = N'/(d=+d) in Lemma C.13. Throughout the proof, we use

N as a notational simplification, with the understanding that N represents N'/(4=+dv) in full form.
At the end of of the proof we replace N by N1/ (d=+dy),
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To begin with, we set Ry = Ry = /281og N/C in Lemma C.14 and Lemma C.15, and we expand
the target into three parts (A;), (Az), and (A3):

[ ste96) = Tdogualy) 13 - ilely)da
Rdax

:/|| || (xay,t)—Vlogpt(x‘y)ug.pt(x|y)dm

2[3 log N

(A1)

1{|p.(z]y)| < eiow}Is(2,y. 1) — Viogpi(z[y)|l3 - pe(z]y)da

/le ,/25 log N
(A2)

/| " Hpe(ly)| = eou}s(w.y,1) — Viog pi(ly)ll3 - pe(aly)de

log

(As)

We derive the bound for (A1), (As), (A3) and combine these results.

* Bounding (A;). We apply Lemma C.14. Note that we have ||s(z,y,t)|| ., < Iog N/o?
from the construction of the score estimator in Lemma C.13.

2
/ ls(2,9,t) — Vlog pe(aly) |2 - pe(aly)de
j#lloc> /2 10 N
(Bv expanding the ¢ norm)
<2 / (&5 DI - pe(aly)de +2 / IV logpr(al)|I? - pe(aly)dz
ol o> /22 logN 2 Il > 2 108 N 2

(By I3 < dall-I1%,)

< 2d, (s, )12 - prlaly)de + 2 / IV log pr (aly) |2 - pe(aly)dz

2l o> é—ilogN =]l %ZlogN

(By the /- bound on the score lllnclion)

Viog N
<o, (VN )/| i platpa 2 [ Vo 12 pelaly)d
IE3 og x og N

(By Lemma C.14 and dropping const: ml)

2 3
< 2d, (Vk’%N) <, /Zflogzvzv—w) n 34 (Cﬂ logN) N-28
Ot 2 Oy 2

(B} dropping constant and lower order lcrm)

+ Bounding (A3). We apply Lemma C.15. Note that we set €4, = C3 N~ (log N)(d=tk1)/2
in Lemma C.13.

/lmo,/ 2} log N

L{|pe(z]y)| < @on}s(@, y.t) = Viogpe(z[y)ll5 - pe(z]y)de

(By expanding the {2 norm)
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= /I | —— 2H{[pu(ly)] < ton} (HS(Z’,y,t)Hg—l—||V10gpt(x|y)“§)-pt(x‘y)dx
x og N

(By |12 < d||-|I%)

Hpu(ely)] < eton} (dalls(e, v, 1% + 1V 1og pi(ely) 3) - pe(aly)da

(By the /- bound on the score function)

/I$| S\ ez 27 log N
Vdiog N

2
5/ Hpe(z[y)| < €low} (dx< 3 ) +||Vlogpt(xy)||§>~pt(:c|y)dx
2]l o < g—glogzv o

t

(By Lemma C.15 and dropping conslam)
d dg+2

Vg N \? (23 E 28 = Clow
<d, < p C” log N €low + C” log N aof

(By dropping constant and lower order lcrm)

dw+2

1
S ) (log N) 2 €row-
O

* Bounding (A3). We apply Lemma C.13.

/xnm_\/ﬁ
/wnw\/m

— / 1{[p:(2]y)] > €iow}
lelws\/% pe(z|y)

B2
ﬂN—Qﬁ (log N

dy+k1+1 1 > d
. S i et 2 il
2

(Mulliply with €1ow /€tow )

L{[pe(x|y)| > etow}5(2, y,t) — Vlog p(z[y)ll3 - pe(a]y)dz
(By |I'll2 < da|]1%.)
L{[pe(2|y)| > €iow}de|s(z, y,t) — Viog pe(a|y) |12, - pe(zly)dz

(Multiply with p; /p:)

dy||s(z,y,t) — Viog py(2|y)|12, - p?(z]y)da

(By Lemma C.13)

A

2
_ B d, N~ QB(IOgN)d e+k1+1

2
T €low x|l o<,/ 2ﬂ log N

]]'{|pt x|y | = GIOW} ( |y)dl'

(By Lemma C.15)

Zx

B3d 2
5 %N—Qﬁ(log N)dm+k1+1 . C’Q/ logN
T €low
(By the choice of €jow and dropping lower order term)
Bzd -2 k 1
< e 5(1 og N) L4k
T4 €low

¢ Combining the Results.
Combining (A1), (A2) and (A3), we have

[ a.t) = Flog el el
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dyp+2

_ 3
< N Qﬁ(lzg N)2 4 €low (log i\]) 2 Bifdx N_Qﬁ(log N)%'H“'H _
(s (o O €low
(A1) (A2) (As)

By replacing €0y With CgN’B(log N)dr+k1/2 and using the relation & < 5,7 we obtain
2 B? -B de+L241
. [s(x,y,t) — Viog pi(z|y)|5pe (z]y)dz = O FN (log N)*=7=2 .
R t

Replacing N with N'1/(d=+dy) completes the first part of the proof.

The transformer parameter norm bounds follow Lemma C.13, with the replacement of N with
N1/(ds+dy) a5 well. Note that this results in ¢ € [N~Ca/(d=%d) C/((d, + d,))log N]. For better
interpretation of the cutoff and early stopping time parameter, we reset Cy, as (d, + d,)Cq and C,,
as (d; +d,)C, such that t € [N~ C, log N].

This completes the proof. O

Recall the definition of the Holder smoothness from Definition 3.1.
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D PROOF OF THEOREM 3.1 UNDER STRONGER ASSUMPTION
We state the proof of Theorem 3.1 under stronger Holder assumption as follows.

» Step 0. We decompose the density function and the score function under stronger Assump-
tion 3.1. In Lemma D.1, we provide details regarding the decomposed form of the score
function. We specify the upper and lower bound on . and VA in Lemma D.2.

* Step 1. Similar to the domain discretization in the proof of previous main result, we
discretize the input domain of the decomposed density function in Lemma D.3.

* Step 2. We construct polynomial approximation based on Taylor expansion of & and Vh in
Lemmas D.4 and D.5. The approximation result captures the local Holder smoothness, with
improved precision relative to the analogous step in Lemma C.3 and Lemma C.4.

* Step 3. We approximate h and Vh with transformer in Lemmas D.6 and D.7. In order
to construct the score approximator with transformer, we approximate several additional
algebraic operators with transformer in Lemma D.8, Lemma D.9 and Lemma D.10. We
incorporate these results into a unified transformer architecture in Lemma D.11.

Organization. Appendix D.1 includes the four steps and auxiliary lemmas supporting our proof.
Appendix D.2 includes the formal version and main proof of Theorem 3.1.

D.1 AUXILIARY LEMMAS

Step 0: Decompose the Score with Stronger Holder Smoothness Assumption. We utilize the
condition assumed in stronger Assumption 3.1 to achieve the decomposition.

Lemma D.1 (Lemma B.1 of Fu et al. (2024b)). Under stronger Assumption 3.1. The conditional
distribution at time ¢ has the following expression:

1 02||$||§
= —————=— |h(z,y,1).
pe(z]y) (7 1 Coo?) T2 exp( 303 + Cao?) (z,y,t)
Moreover, the score function has the following expression:

—Chx Vh(z,y,t)
ai + Cyo?  h(z,y,t)

Viogpi(zly) =

f(xo.y) _ llwo—asa|? = Qg
where h(z,y,t) = [ S7(an) 173 XD 557 dxo, 51 = 152 e e and a; = e B

Next, we provide lemma that provides bound on h(x, y,t) and Vh(z,y,t) in Lemma D.1

Lemma D.2 (Lemma B.8 of (Fu et al., 2024b)). Under stronger Assumption 3.1, we have the
following bounds for h(x, y,t) and gft Vh(z,y,t)
< fZs
T

where C; and B are the hyperparameters of H”(R% x [0, 1]%, B) in stronger Assumption 3.1.

Cy < h(z,y,t) < B,

0t
—Vh t
atv (xuyv )”

o0

Remark D.1 (Bound on i and Vh). We reiterate that Lemma D.2 drives the key distinction be-
tween the analyses in Theorem 3.1 and Theorem 3.1 under stronger assumption. Specifically, in
Appendix C.2, the decomposed term containing the threshold €y, results in lower approximation rate,
while bounds on & and Vh eliminate the need of the threshold with h’s lower bound C1, rendering
faster approximation rate.

Step 1: Discretize R% x [0,1]% for h(x,y,t). This step parallels Lemma C.1; however, the
discretization differs due to the structure of h.
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Lemma D.3 (Clipping Integral, Lemma B.10 of Fu et al. (2024b)). Under stronger Assumption 3.1.
Consider any integer vector & € Z%* with |||, < n. There exists a constant C(n, d.;), such that for
any z € R% and 0 < € < 0.99, it holds

Gizo — 2\ " 1 @z — x|
—_— : e~ VT ] ———— |dzo <€, D.1
/]R%\Bm ( % ) ’ p(x0|y) O’;j(2’fr)d/2 eXp( 20_? To = € ( )
winaTe (&t{o—x)n = ((atzo[ljl—x[l] )K[1]7 (atzo[z]—m[Q] )f~i[2]7 s (atfo[di]—f[dw] )I‘C[dz]) and

dy
B, = [atgc — C(n,d)oi\/1loge= 1, azx + C(n,d)os+/log e—l} .

Step 2: Approximate » and Vi with Polynomials. Similar to the construction of the diffused
local polynomials in Lemma C.5 and Lemma C.6, the following two lemmas render the first step
approximation for h(x,y,t) and Vh(z,y,t) that captures the local smoothness.

Lemma D.4 (Approximation with Diffused Local Polynomials, Lemma B.4 of (Fu et al., 2024b)).
Under stronger Assumption 3.1. For sufficiently larger NV > 0 and constant C5, there exists a diffused
local polynomial f;(z,y,t) with at most N4*%v(d + d,,)** monomials such that

k
|f1(x7yat) - h([l),y,t)‘ 5 BN?ﬁ long N7

for any z € [~Cy+/Iog N, Cyv/log N|% 5y € [0,1]% and t > 0.

Lemma D.5 (Counterpart of Lemma D.4, Lemma B.6 of (Fu et al., 2024b)). Under stronger
Assumption 3.1. For sufficiently larger N > 0 and constant C, there exists a diffused local
h,s,r

polynomial fo(z,y,t) € Tp"*" with at most N%+4v(d,, + d,)** monomials f5[i](z,y,t) such that

ky41

< BN Plog™2 N

)

ol ) = (Z9(@:0)) 1

for any x € R% y € [0,1]% and t > 0.

Step 3: Approximate Diffused Local Polynomials and Algebraic Operators with Transformers.
First, we apply the universal approximation theory of transformers to f; and f5. Second, we adopt a
comparable approach to approximate the algebraic operators essential for the final score computation.
Last, we introduce Lemma D.11 that outlines how these components fit into a single transformer
architecture with a specified parameter configuration.

* Step 3.1: Approximate the Diffused Local Polynomials f; and f>.

We invoke the universal approximation theorem of transformer Theorem B.1. We utilize
network consisting of one transformer block and one feed-forward layer.

Lemma D.6 (Approximate Scalar Polynomials with Transformers). Under stronger Assump-
tion 3.1. Consider the diffused local polynomial f; in Lemma D.4. For any € > 0, there exists

atransformer 77, € T1*", such that for any 2 € [—Cy\/Tog N, Cpy/log N]% y € [0, 1]%
andt € [N~% C,log N, it holds

|f1($’y7t) - 7}1(5177y,t)[dx]‘ L6

The parameter bounds in the transformer network class follows Lemma C.5.

Lemma D.7 (Approximate Vector-Valued Polynomials with Transformers). Under stronger
Assumption 3.1 and consider f5(z,y,t) € R% in Lemma D.5. For any € > 0, there exists a
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transformer 7T, € Tlg *#" such that
HfQ(xa y7t) _ 7}2“00 < €,

for any x € [~C,y/log N, C,y/log N|% y € [0,1]% and t € [N~ ,C,log N]. The
parameter bounds in the transformer network class follows Lemma C.5.

* Step 3.2: Approximate Algebraic Operators with Transformers.

Next, we introduce lemmas regarding the function of time. These are also key components
to the proof of Theorem D.1.

Lemma D.8 (Approximation of o? with Transformer). For ¢ € [to, T] with ¢y < 1, there
exists Transformer T2 (t) € TIQ **" such that

’7;2 — 042‘ ¥ o
The parameter bounds in the Transformer network class follow Lemma C.11.

Also, we approximate & and o as well.

Lemma D.9 (Approximation of & with Transformer). Consider a; = m, fort €
[to, T] with tg < 1, there exists Transformer 75 (¢) € T}g **" such that
|Ta — @l < ea-
The parameter bounds in the transformer network class follow Lemma C.11.
Lemma D.10 (Approximation of & with Transformer). Consider o; = W’W, for

t € [to, T] with ¢y < 1, there exists Transformer 75 (t) € Tlg *#" such that
75 — 0] < €5
The parameter bounds in the transformer network class follow Lemma C.11.

We have finished establishing the approximation with transformer for every key component
for the proof of Theorem 3.1.

* Step 3.3: Unified Transformer-Based Score Function Approximation.
We introduce the counterpart of Lemma C.13. It is the core of the proof for Theorem 3.1.

Lemma D.11 (Score Approximation with Transformer). Under stronger Assumption 3.1.

For sufficiently large integer IV, there exists a mapping from transformer Tscore € TIQ =5
such that

CQCE
OZ% =F CQU%

B 1
—N~#(log N) - ,

fo%e) t

Tscore — Vog h(z,y,t) +

for any x € [~Cyv/log N, Cyy/log N]%, y € [0,1]% and t € [N~ C, log N].
The parameter bounds in the transformer network class satisfy

2dL+44d+1
IWally, [Wicllas [Wally oo Wiclly o0 = O (NOF+9C 25252 )
Wy lly = OVa); Wy lly,0o = Od); IWolly, IWolly,00 = O (N7F) 5
a5 BT, =0 (atr});

Wil Wil = O (N4+9C-+5% - 1og )
[Walla: [Welly o, = © (N#4+29 82} ;07 = O (VIog N /o)

Proof. Our proof follows the proof structure of (Fu et al., 2024b, Proposition B.3).
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Recall the decomposed score function presented in Step 0, we establish the the first-step
approximator f3 with the form:

G folayt) G
a\—t fl (.’E, Y, t) a% + 020152 .

f3('73a y7t) =

We derive the error bound on the approximation of the first term containing Taylor poly-
nomials in f3. We incorporate second term containing the linear function in z into the the
transformer architecture.

We proceed as follows:
1. Step A: Approximate V log p;(z|y) with fs.

2. Step B: Approximate f3 with Tcore € TIQ’S”“.
3. Step C: Derive the final Parameter Configuration

— Step A. Approximate Scroe Function with f3.

We first construct fi(x,y,t) and fa(z,y,t) from Lemma D.4 and Lemma D.5 to
approximate h(x,y,t) and Vh(x,y, t) respectively.

= y2

Next, by Lemma D.4 and Lemma D.5, we select a sufficiently large N such that
S < fy <2Band f» < B.

Without loss of generality, we begin by bounding the first coordinate of Vh, denoted
as Vh[1]:

From Lemma D.2, we have C; < h < B and

Vh[1] o f2[1]‘ < ‘Vh[l} B Vh[l}]’Jr‘Vh[l] a; fa[l]]

h o h fr fi 5, fL |
Vh[1]] ’ a1 Gy ‘
< —h + =\ - A—Vh 1 s
< hﬁUI‘ 57112 3, 1]
<2t <fl —h|+ | f2 — ZEVA[1] ) ,
gt (673
(By bounds on h, Vh, fi, (/Q)
<& (BN‘/B(logNkT1 + BN—B(logN’“g“)) ’
Ot
(By Lemma D.4 and Lemma D.S)
1
S — (BN PogNT)) .
Ot

Note that in the last line, we utilize

a o 1 1 1 1 1 _ oo,

= = 5 5 = - P
ot Tty/ai + Caop Tt V14 Co (Jt/at)2 ot \/1"‘0217;?

By the symmetry of each coordinate in Vh, we obtain the ¢, bounds:

Vh@,y,t) & falz,y,t) H B k1
- < —NP(logN) 2. (D.2)
H w8 By S o o8N

— Step B. Approximate f; with Transformer 7.
Next, we prove that there exist Transformer networks 7score € Tlg **7 that approximates
f3(x,y,t) with error of order N 7.
In the following, we construct a transformer approximating the two terms in f3, and
incorporate the result into a unified network architecture.

aif2
ouf1”

+ Step B.1: Approximation for
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We utilize Ty,, Ty,, Ta and Tz in Lemma C.5, Lemma C.6, Lemma D.9 and
Lemma D.10 to approximate each one of the component. This gives error €y, , €y,,
€5 and €5 respectively.

Next we utilize Trec,2 and Trec,3 in Lemma C.9 for the approximation of the inverse
of fi and &;. This gives error

1 T, — £l €f
7;66,2 — 7| < €rec2 T 127 < €rec,2 + 271?
fl €rec,2 rec,2
and
1 [Tz — a4 €5
Tree3 — = | < €rec,3 + —5— S €rec3t 5
Ot rec,2 rec,3

Next we utilize Tryy,1 in Lemma C.8 for the approximation of the product of f; L
f2, Gy and 7, ! This gives error

ay fa
Toult,1 — =
aif1
- € €~
3 f1 o — 3
< €mult, 1 + 41(4 max <€rec,2 + ) y €f2y €A €rec,3 + D) ) = €mult,1 + 4[(4 €2,
rec,2 rec,3

=€y

and K3 is a positive constant.

From Lemma C.8, we require [— K4, K] to cover the domain of fl_l, f2, @, and
o¢. Recall that we give the upper and lower bounds for f; L'and f, in the beginning
of Step 1. Thus, we set K, = max (; ', a).

To derive the asymptotic behavior of K4, we set the positive constant Co = 2
without loss of generality and note that the maximum occurs at t = to. We then
expand Gy, and ay,':

Nl
Nl

_ (1_21> _ O (NC).

— exp(—to)

So we take Ky = O(N%).

and

x Step B.2: Approximation for —Cyz/(a? + Ca0?).
We use af + o7 = 1 to rewrite (o + Coo?) "t as (Cy + (1 — C2)a?) L.
We first utilize 7,2 in Lemma D.8 for the approximation of 7. This gives error
€a2-
Next, we utilize Trec,; in Lemma C.8 for the approximation of the inverse of af.
This gives error

_ A2
7;? o €q2
7;60,1 ) S €rec,1 + 2 S €rec,1 + 2 .
g 61'ec,1 rec,1

Next, we utilize Ty 2 for the approximation of the product of (Co+(1—Cs)a?) !

and x.
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This gives error

xT

€n2
mu - ~ , /1 N\ 92 < mu 2K rec . )
T It,2 (02 T (1 — 02>a%)‘ < €muit,2 + 3 (5 S 2 )

rec,1

and from Lemma C.8, K3 is positive constant such that x € [—Kj3, K3]
and oy ' € [-Kj3,K3). Since 2 € [~Cyy/IogN,C,\/IogN]| and o' =
(exp(—Cylog N/2))~' = NC/2 we take K3 = NC/2,

+ Step B.3: Error Bound on Every Approximation Combined.

Combining Step B.1 and Step B.2, we obtain the total network with error bounded
by

€n2 3
Escore < €mult,2 T 2K3 (Gec,l + 3 > + €muit,1 + 4K4 €2.

Erec, 1

Next, we specify on the choice of € in each approximation to attain a final approxi-
mation error of order N 7.

- For the Error of the First Inverse Operator:
€rec,1 = O (Ni(ﬁJr%Ca)) .
- For the Error of the Second and Third Inverse Operator:
€rec,2 €rec,3 = @) (Ni(ﬁJrBC”)) .
- For the Error of f:
ef =0 (Nf(3ﬁ+9co)) .
- For the Error of f5:
¢f =0 (Nf(BHCa)) _
- For the Error of 5:
=0 (N—(3ﬂ+9ca)) ,
- For the Error of a:
eg =0 <N7(5+3CU)) .
- For the Error of o%:
€2 =0 (N_(35+%C")) .
- For the Error of the Two Product Operators:

€mult,1, €mult,2 = O(Niﬁ)

With above error choice, we have

|7;core(xay>t) - f3(337y’t)| < N_ﬂ- (D.3)
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Combining (D.2), (D.3) and dropping lower order term, we obtain

ky41
2 .

B
||7;core - VIngt(x“J)”oo S UitNiﬂ(log N)

We have completed the first part of the proof. Next, we select the parameter bounds
based on all the above approximations.

Step C: Transformer Parameter Bound.
Our result highlights the influence of N under varying d,. Therefore, for the transformer
parameter bounds, we keep terms with d, d, L appearing in the exponent of N and log N.
— Parameter Bound on W and W.
Given error ¢, the bound on each operation follows:
* For ey : By Lemma C.5, we have

IWlly [Wlly [Wells, o0 Wi llg 00 = O (N(g‘”gcf’)

2dL+4d+1
d .

*

For ¢f,: By Lemma C.6, we have
2dL+4d+1
IWally, [Wicllys [Wally s [Wiclly o0 = O (N3O 2GS
% For emyi,1: By Lemma C.8 with m = 4, we have
IWally: Wil [Wally aor Wiy o = O (N) .
% For emui,2: By Lemma C.8 with m = 2, we have
W llo Wk llo, IWally o Wil oo = O (N).
% FOr €rec,1: By Lemma C.9, we have
8Ca
IWallo, Wk o, IWally s Wikl o = O (N5 .
% FOr €rec2 and €pec 3: By Lemma C.9, we have
IWally Wi lla: Wl aor Wiy o = O (N340 ).
* For ez: By Lemma C.11, we have

IWally: Wil Wally o Wally o = O (N2FFC7)

*

For ¢,2: By Lemma C.11, we have

9Cqo
Wl IWiclas [Weally s Waly o = O (N9F557).

*

For e5: By Lemma C.11, we have
Wl Wkl IWally o, 1Wally oo = © (NPH27C) .

We select the largest parameter bound from ¢y, that remains valid across all other
approximations.
— Parameter Bound on Wy and Wy, .
Given error ¢, the bound on each operation follows:
* For €7, : By Lemma C.5, we have

[Wolla, [Wolly ., = © (N

_ (38+9Cs) )
d .
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* For €7,: By Lemma C.6, we have
IWolly: [Wolly,q, = O (N=555).
* For emyui,1: By Lemma C.8 with m = 4, we have
[Wolls: [Wolly o = O (N7*) .
% For emuie,2: By Lemma C.8 with m = 2, we have
IWolly: [Wolly o = O (N727).
% For €rec,1: By Lemma C.9, we have
IWolly: [Wolly,. = O (N=6+5).
% FOr €rec2 and €pec 3: By Lemma C.9, we have
IWollas [Wolly,o, = © (N=(+36).
% For ez: By Lemma C.11, we have
IWolly, IWolly o = O (N=(+30)).
* For e,2: By Lemma C.11, we have
[Wolla: [Wolly o = O (N=E55%))
* For ez: By Lemma C.11, we have

[Wolly, [[Wol

G (N—(3ﬁ+9cﬁ)> .

Since we do not impose any relation on C,, C,, and 3, we simply take looser bound
[Wollas [Wolle.o. = N=P. Moreover, since only €, and €y, involve the reshape

operation. From Lemma B.2, we take O(v/d) and O(d) ||Wy||, and W [l 00

— Parameter Bound for ;.
Given error ¢, the bound on each operation follows:

* For €7, : By Lemma C.5, we have

(38+9Cq)
d

Wi, ||W1||2700 =0 (N -logN) )

* For ez,: By Lemma C.6, we have

(B+3Cs)

IW1lly, [ Wally o = © (N5 log V)

* For emuy,1: By Lemma C.8 withm = 4 and C' = K4 in (C.9), we have

[Willy, [Willy,0o = O (Ky - N*¥) = O (N(45+ca)) .

H2,oo

* For emyie,2: By Lemma C.8 with m = 2 and C' = K3 in (C.10), we have

Caq
[Wally, Wiy 0 = O (K3 - N*) = O (N(2ﬁ+7)> .
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% FOr €rec,1: By Lemma C.9, we have
Wil [Willy oo = O (N?PFE2).

# FOr €prec,2 and erec,3: By Lemma C.9, we have

Wil [[Willy,00 = O (N(2ﬂ+6cg)) '

*

For ¢5: By Lemma C.11, we have
IWilly, [Wally o0 = © (N2 log N )
#* For €,2: By Lemma C.11, we have
[Willa: (W]l = © (NO75) - 1og ).
# For ez: By Lemma C.11, we have
Wil Wil = © (N@P#96) - 1og N)

We select the largest parameter bound from ey, that remains valid across all other
approximations.

— Parameter Bound for 5.

Given error ¢, the bound on each operation follows:

* For ey : By Lemma C.5, we have

IWala, [Wallz o = O (N

(38+49Co) )
d .

*

For ¢f,: By Lemma C.6, we have
(B+3Cq)
IWally, IWally o = © (N5,
# FOr emyi,1: By Lemma C.8 with m = 4, we have

IWelly, [Wally o = O (NP).

||2,oo

* For emui,2: By Lemma C.8 with m = 2, we have
W2l [Wally o = O (N*7) .
% FOr €rec,1: By Lemma C.9, we have
[Wally, [Wally o = O (NO+5).
% FOr €rec 2 and €pec 3: By Lemma C.9, we have
IWalls [Waly o = © (N30
% For ez: By Lemma C.11, we have

[Walla: [Wally o = O (NP+26).
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% For e,2: By Lemma C.11, we have

IWalla: [Wally o = O (NEH552)
* For ez: By Lemma C.11, we have

[Wolly. [Wal, o = O (NO#HC)).

We select the largest parameter bound from ey, that remains valid across all other
approximations.

— Parameter Bound for F.
Since only €f, and €y, involve the reshape operation. From Lemma B.2, we take
O(dl/ng/Q).

By integrating results above, we derive the following parameter bounds for the transformer
network, ensuring valid approximation across all ten approximations.

2dL+4d+1
IWallo Wk lla: IWally, aor [Wkllg 00 = O (N(3ﬁ+90(,) 7 ) :
||WV||2 = 0(\/&% HWVHQ’OO = O(d); HWO||27 HVVonC>O =0 (N—/i’) :
IWally, [Willy 0 = O (N‘*ﬁ*gcﬁ% -10gN> JET|,. =0 (d%Lg> ;
Wl Wl e = O (N1 )sC7 = 0 (VIog N or)

This completes the proof. O
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D.2 MAIN PROOF OF THEOREM 3.1 UNDER STRONGER ASSUMPTION

We state the formal version of Theorem 3.1 under stronger assumption.
Next, similar to the proof of Theorem 3.1, we need the truncation of x due to the unboundedness as
well.

Lemma D.12 (Truncate =, Lemma B.2 of (Fu et al., 2024b).). Under stronger Assumption 3.1. For
any Rs3 > 1, we have:

/ pi(z|y)de < Rs exp(—CéR%).
[lz]| oo = R3

1
/| o IV log pe (z]y)||5p¢ (z]y)dz < Ry exp(—C4R3) < — R exp(—C3Rj),
Zf| oo 2413 t

where C% = C5/(2max(1, Cs)).

Again, unlike result under generic Assumption 3.1, the explicit form of p;(z|y) and the upper and the
lower bound of the joint distribution Lemma D.2 automatically allow us to skip the threshold €y, as
in Lemma C.15.

Theorem D.1 (Approximation Score Function with Transformer under Stronger Holder Assumption
(Formal Version of Theorem 3.1)). Under stronger Assumption 3.1 and d, = Q( 102)53 ng + )- For any
precision parameter 0 < ¢ < 1 and smoothness parameter 3 > 0, let ¢ < O(N~#) for some N € N.
For some positive constants C,,, C,, > 0, forany y € [0,1]% and t € [N, C,, log N], there exists

a Tscore (T, Y, ) € Tlg '™ such that the conditional score approximation satisfies

B? 28
[ el 3:0) = T log el - (el = O (2 - N 7555 - log N)P41)
Réx

2
0%

Notably, for e = O(N~#), the approximation error has the upper bound O (2/ (4= +dy) /52).
The parameter bounds in the transformer network class satisfy

Welly, [Wklly, [Wel

88(2dy +4d+1) | 9Cq (2dq+4d+1) )
d .
)

2,00’ ||WK||27OO =0 <N d(dg+dy)

__B
Wy lly = O(Va); W |15 00 = OW@); [Wollas [Wolly,ee = O (N5 ) 5

Wil [Wh

H2,oo

= 0 (NTFG T 1og N BT, = O (a22));

3Cq

IWallp, [Wall, g = © (NTH 0 +5) ;07 = 0 (Viog N /o)

Proof of Theorem 3.1 under Stronger Assumption. For simplicity, we change the variable N to
1

N d4=Fdy in the following subsection. We put the original form back at the end of the proof.
We take C, = , /é—? in Lemma D.11 and R3 = C,+/log N in Lemma D.12.
2

With the transformer parameter bounds in Lemma D.11, we have || Tscore |, < v/Iog N /o for any
x € R, y € R% and t > 0. We start with the truncation on

/i ||7;core - VIngtH;ptdl‘
Réz

< / (
[zl o> /%logN

2||7;c0r€H§ + QHVIngtHE H’Ecore - VlngtHg) ptdx

|\x|\m§1/g—glog1v

(A1) A2
(By expanding /2 norm)
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2
Tog N B
g/ 2( o8 > +2||Viogpil|2 | prda + =5 N~28(log N)*1+!
lolloe >, /2 108 N a1 o

(By ¢2 bound on Ticore and Lemma D.1 1)

1 3
VIog N (2 B 2 /2 3 B2
<24, V2 (ﬁ,logzv> N2ﬁ+2(ﬂ,logN> N=28 4 Z_N~2B(log N)k+!
o; s o7 \C} o;

(By Lemma D.12)
B2
< N2 (log N)5+1. (By dropping lower order term)

~ 2

t

The transformer parameter norm bounds follow Lemma D.11, with the replacement of N with
N1/detdy This gives int € [N~Ca/(detdy) C_(log N')1/(d=+dy)], For a better interpretation of the
cutoff and early stopping time parameter, we reset Cy, = (d, + dyy)Cy and C, = (d + dyy)C, such
that t € [N~C= C, log N].

This completes the proof. O
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E PROOF OF THEOREM 3.2
Overview of Our Proof Strategy of Theorem 3.2.

Step 0. Preliminaries. We introduce the mixed risk that accounts for risk with the distribution of the
mask signal in Definition E.1. We restate the loss function and the score matching technique
in Definition E.2.

Step 1. Truncate the Domain of the Risk. We truncate the domain of the loss function in order
to obtain finite covering number of transformer network class. Precise definition of the
truncated loss function class is in Definition E.4. We bound the error from the truncation
from the assumed light tail condition in Lemma E.1.

Step 2. Derive the Covering Number of Transformer Network. We introduce the covering number
of a given function class in Definition E.5. We provide lemma detailing the calculation of
the covering number for transformer architecture in Lemma E.2. We derive the covering
numbers under the respective parameter configurations for our two previous main results in
Lemma E.3.

Step 3. Bound the True Risk on Truncated Domain. With the previous steps, we present the
upper-bound of the mixed risk in Lemma E.4.

Organization. Appendix E.I includes auxiliary lemmas for supporting our proof of Theorem 3.2.
Appendix E.2 includes the main proof of Theorem 3.2.

E.1 AUXILIARY LEMMAS FOR THEOREM 3.2

Step 0: Preliminary Framework. We evaluate the quality of the estimator sy through the risk:

T
1
R(sw) = / mEm,y [sw (e, y,t) — VIOgPt($t|y)H§dt- (E.D)

to

Definition E.1 (Mixed Risk). The risk (E.1) considers guidance y throughout whole the diffusion
process. We refer to it as the conditional score risk. In contrast, we have the mixed risk R, that
accounts for the distribution of the mask signal 7 = {0, id} with P(7 = 0)) = P(r = id) = 0.5:

7
1
Rom(sw) = /t T tOE(z“y’T) [st(mtﬁy,t) - Vlogpt(xt|7'y)||§ dt, (E.2)
0

Remark E.1. Given the score estimator S trained from the empirical loss, the conditional score risk
is upper-bounded by twice of the mixed risk. That is, we have R(5) < 2R, (5). This follows from
direct calculation:

1T N 1.
Rin(5) = */t mEzt [IIS(%M&)—Vlogpt(xt)lﬁ dt+§R(3)-

Definition E.2 (Loss Function and Score Matching). Let © = z|z¢ denote the random variable
following Gaussian distribution N (a2, 0214, ), we define loss function and score matching loss:

T

1

bosgiow) = [ B [lsw (o ry,t) = Vlog (mdeo) 3] dt,
To o L0

T
1
L(sw) ;:/ 7= Eeon [Er.o [llsw (21,79, ) = Vlog pu(weleo) 3] | dt.

to

Remark E.2. Given i.i.d samples {z¢ 4, y; }_;, we write £(z;, y;; sy ) with the understanding that
x; = x|To,;- When context is clear, we use £(z;, yi; sw) and €(xo, yi; sw); {0, ¥i}iy and
{z,y;}1, interchangeably.
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Remark E.3. By (Vincent, 2011), £L(sw ) and R, (sw ) differ by a constant that is inconsequential
to the minimization. Therefore, minimizing the mixed risk is equivalent to minimizing the score
matching loss

h,s,r

. Recall the definition of
empirical loss: L(syw) = >.7, L0(x;,yi; sw). Let s° == V log p;(z|y), we define empirical risk:

i=1n

Definition E.3 (Empirical Risk). Consider a score estimator sy € Tp’

~

~ ~ "1 |
R (sw) == L(sw) — L(s°) = Z gﬁ Ti, Yis SW) Z EE Ti, Yi; S
i=1 i=1

Remark E.4. The key distinction between R, and L lies in their formulations. Specifically, R,
measures the expected difference between sy and the ground truth V log p;(x|y) with respect to
(z¢,y, 7). In contrast, the score matching loss £ provides an explicit calculation based on the sample
{z0,:,y: }1_,. With the tower property of conditional expectation, £ measures the expected difference
between sy and V log p;(x|z¢) first with respect to (x|, 7), and then with respect to z.

Remark E.5. Observe (I): s° = V log p;(x|y) is the ground truth of score function with R,,,(s°) = 0,
and (II): By (Vincent, 2011), R, and £ differ by a constant. Based on (I) and (II), we define the

empirical risk R, using the score matching loss as an intermediary: R,,(sw) = Rm(sw) —

Rm(s®) = L(sw) — L(s°). This leads to the definition of the empirical risk R, as a practical
approximation of the true risk difference R, (sw) — R (s°).

Remark E.6. For any score estimator sy € TIQ **" obtained from the training with i.i.d. samples

{zi,yi}ioy, itholds Egp, iy [Ron(sw)] = R (sw). This follows from direct calculation with
Definition E.3 and the i.i.d. assumption.

Step 1: Domain Truncation of the Risk. We define the loss function with truncated domain. This
is essential for obtaining finite covering number for transformer network class.

Definition E.4 (Truncated Loss). We define the truncated domain of the score function by D =
[~R7, R7]% x [0,1]% U (). Given loss function £(x, y; sy ), we define the truncated loss:

0 (2, y; sw) = Uz, ys sw) H|zll < R} {52

Similarly, we define L™ (sy) = L(sw)1{||z||.. < R7}, R (sw) = R (sw)1{]|z] <
Ry} and RIV™(sw) = Ry (sw)1{||z||,, < R7}. We define the function class of the truncated
loss by

S(Rr) = {l(,ssw) : D =R |sw € Tp>"}. (E.4)
Next, we introduce the following lemma dealing with the error bound for the truncation of the loss.

Lemma E.1 (Truncation Error, Lemma D.1 of (Fu et al., 2024b)). Consider the truncated loss
e (g, y; sw) and t € [n~©M) O(log n)]. Under generic Assumption 3.1, we have |£(x, y; sw)| <
1/to. Consider the parameter configuration in Theorem 3.1, it holds:

1
Eoy [0, 8) — 6% (2, y, 8)[] < exp(~CoRZ) Ry (to) .

Moreover, under stronger Assumption 3.1, we have |¢(z, y; sw)| < log(1/to). Consider the parame-
ter configuration in Theorem D.1, it holds:

1
Eoy [[0(z,y,t) — £7(2,y,5)|] < exp(—C2R7)Rrlog (to)

Step 2: Covering Number of Transformer Network Class. We begin with the definition.

Definition E.5 (Covering Number). Given a function class F and a data distribution P. Sample n
data points {X; }_, from P, then the covering number N (e, F, {X;}1_,, ||-||) is the smallest size of

39



Under review as a DeLTa Workshop Paper at ICLR 2025

a collection (a cover) C € F such that for any f € F, there exist fec satisfying

ma|| £(X,) — F(X0)

<e

Further, we define the covering number with respect to the data distribution as

N, F 1) = sup  N(e, F {X g, [

n
PP~
QS i=1

Next, we introduce the following lemma that provides results for the calculation of the covering
number for transformer networks.

Lemma E.2 (Modified from Theorem A.17 of Edelman et al. (2022)).
Let T£7S7r(c7'7 032700, CQ7 C?(’OO7 CK7 0\2/7007 CVa 03,007 COa CEa C?I,OO’ Cfl 3 C?;OO7 sz ) LT)

represent the class of functions of one transformer block satisfying the norm bound for matrix and
Lipsichitz property for feed-forward layers. Then for all data point || X ||, .. < R7 we have

log N (ec, T, II[l5)

< KA <a§ (d§ (%) +at (aerrcovez)’ +2 <(CF)20350)§)>3’

€
where o := (CF)QCov(l I 4CKQ)(RT + Cg).

With Lemma E.2, we derive the covering number under transformer weights configuration in Theo-
rem 3.1 and Theorem D.1.

Lemma E.3 (Covering Number for S(R7)). Given ¢, > 0 and consider |z|| ., < Ry. With
sample {z;,y;}i_,, the e.-covering number for S(R7) with respect to ||-[|,  under the network
configuration in Theorem 3.1 satisfies

logn
log ' (ec; S(Rr): [[1l.0) S =5 N (log N)* (Ry)?,

(6]

where 1y = 1723/(d, + dy) + 104C, and v» = 12d, + 1283 + 2. Moreover, under network
configuration in Theorem D.1, we have

logn
€

log N (€c, S(RT), Il o) S N"*(log N)'*(R7)?,

where v3 = 48dB(L + 2)(dy + 2d + 1)/(d, + dy) + 144dC, (L + 2) — 88.

Step 3: Bound the True Risk on Truncated Domain. We begin with the definition.

Definition E.6. Let s° := Vlogp;(x|y) denote the ground truth of score function for simplicity.
Given i.i.d samples {z;, y; }_; and a score estimator sy € T];L " we define the difference function:

An(sw,s°) = ‘E{mi’yi}?:l |:7/Q\,;rnunc(5W) - R%‘HC(SW)} ‘

Remark E.7. Note that the difference function A,,(sw,s°) measures the expected difference
between the truncated empirical risk and the truncated mixed risk with respect to the training sample.
Since the true risk is unattainable, we construct A, (sy, s°) serving as an intermediate that allows us
to derive the upper-bound on the mixed risk. Surprisingly, we are able to handle the upper-bound of
the difference function, presented in Lemma E.4.
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Definition E.7. Given the truncated loss function class S(Rr), we define its e.-covering with the
minimum cardinality in the L metric as L := {1, la, ..., lx }. Moreover, we define £; € L
with random variable J. By definition, there exist £; € L such that ||£; — £(z;, yi; sw)|| o < €c-

loo

Note that Lemma E.3 provides the upper-bound on the e.-covering number of S(R7) for score
estimator trained from transformer network class. Next, we bound the difference function.

Lemma E.4 (Bound on Difference Function). Consider i.i.d training samples {xg ;, y; }7~; and score
estimator . Under generic Assumption 3.1 and parameter configuration in Theorem 3.1, it holds:

~ . ~ 1 1
An(3,8°) SEgg iy, [Rm(s)} + & (RTexp(—CgRg—) + - logN> + Tee,

where N (eq, To'™", ||-||,,) is the covering number of transformer network class. Moreover, Under
stronger Assumption 3.1 and parameter configuration in Theorem D.1, it holds:

. ~ 1 1
An(3,8°) S Eqzymin {Rm(s)} + log & (Rrexp(—CgR%—) + nlog./\/) + Te,.

E.2 PROOF OF THEOREM 3.2

Proof of Theorem 3.2. For simplicity, we use k = 1/tq for the case in Theorem 3.1 and k =
log(1/tg) for the case in Theorem D.1. The proof proceeds through the following three steps.

* Step A: Decompose the mixed risk.

We denote the ground truth by s°(x,y,t) = Vlogpi(z|y). Moreover, if y = () we set
s°(,y,t) = Vlog pi().
Recall Definition E.3 and Lemma E.4. By introducing a different set of i.i.d. samples

{z},y:}™_, from the initial data distribution Py(z,y) independent of the training samples,
we rewrite the mixed risk:

n

< 1 < o =
Ron(3) = Egararyn, [n > (et io®) — Ul s >>] = Egane, R

=1

where we use ﬁ’m () to denote the empirical risk of the score estimator S trained from the
i.i.d samples {z}, yi }7 ; .

This allows us to do the decomposition of E(,, ,,,1»  [Rim(5)] as follows.

Efeini, R = Eoirr, [Btaann, R - Rom G|
@
B, B, R (6) - R (@) |
aIn
+ B, [REE) = Ron(9)] + By, [Rn(3)]

I1m av)

* Step B: Derive the Upper Bound.

— Step B.1: Bound Each Term.
# By Lemma E.1, we have both (I), (III) < x exp(—Ca2R%) Ry
# By Lemma E.4, we have (I) < (IV) + & (R7 exp(—C2R%) + Llog V) + Te.,
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% By the following, we have (IV)< minSWeTg,s,r Ron(s).

V) =By, [RO)| B, [Ru(s)] = Runls).

The inequality holds because 5 is the minimizer of the empirical risk.

— Step B.2: Combine (I), (II), (IIT), (IV).
Combining these results we obtain

T
~ . 1
Bl R @) <2 min [ oy (I 0) - Viegmi(alry)|] a
t

sweThnr

+0 (g log/\f> + O(exp(—CaR7) k) + O (e) - (E.S5)

(Co+2B)log N

Coldord,) W€ have

By taking Ry =

T

~ . 1

Bty R €2 min [ 2By (s, 0) - Vlogpu(aly)[3] a
s€ETR ™" Jto — Lo

0 (g 1ogN) o) (N*ﬁ) +O(e). (E.6)

where we use £ S i = N~ by Lemma E.1 to obtain the third term on the RHS.

Step C: Altogether.

To apply the previous approximation theorems (Theorem 3.1 and Theorem D.1) to the first
term on the RHS of (E.5), we rewrite the expectation as

Eopy,r [HS(% Ty, t) — Vlogpt(xtITy)Hi} (E.7)

1

=5 [, Is(0.0.0) = Viowpu(ely) )i+ 58, | [ Iston.) = Viowm (el lelyhae].

Since the marginal distribution p; () also satisfies the subgaussian property, the previous
result of the conditional score estimation applies to its unconditional counterpart by removing
the label throughout the whole process.

— Step C.1: Result under generic Assumption 3.1.
By Theorem 3.1, we rewrite (E.6) as

B
By, [Ru(3)] SO (N T (log N)det3 ) ro(NT df+dy)+o(21ogN)+%§z.

i (i) (i
Moreover, from Lemma E.1 we have k = O(1/t() and from Lemma E.3 we have

1og n

log A (0, S(RT), |lo0) S B N 7wty H104Cn (1o Ny 12412642 )2

C

1
— 22T N (log N)*2 (Ry)2,

C

where v = 683/(d, + dy) + 104C, and vy = 12d, + 125 + 2.

& __28
By taking N = n(d=+dy+% and e, = N (d=+dy)  we have error:
x (i) = ((log n)detg+in” “x*dwm).

28
« (i) = O (n (dm+dy+ﬁ>)
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48 vy (dz+dy) .
# (ii) = O [ kn™1 - n% T4 (logn) - n =777 . (logn)* - (logn) | with k =
—92 Nv1 v v
€c (log N)¥2 RZ
1/to.
Rearranging the expression, we have (iii) =

_ (A—v1)(da+dy)—38
O in dptdy+8 (log n)uz+2
_ 23
* (iv)= 0O (n dotdy+h

We take the mixture of (i) and (iii) as the final error bound:

1 _min(8.(1=v1)(do+dy)=38)
—n (do+dy+5) (logn)2™2 ) .
to

Eopr [RE)] = 0 <

— Step C.2: Result under stronger Assumption 3.1.
With Theorem D.1, we further write (E.6) as

~ __28_ __28
Egeyp, [Rm(3) S O (N755 (log N)H1) +.0 (N5 ) +.0 (g log V) +OH((5)_Z

@ (i) (i)
Moreover, by Lemma E.1 we have k = O(log %), and by Lemma E.3 we have:
logn

2
€

log NV (ec, S(R7), I o) < N"(log N)'*(Rr)*.

4(12B8d,+318d+68) | 12(12Cads+25C-d+6C4)
d(dp+dy) + d + 72C;.

) (de+dy) _ 28

By taking N = n(@=+4y+25) and e, = N (=+4w)  we have error:

* ()=0 ((log n)BHn*m)_

where v3 =

(i) = O (n T,

# (i) = O [ kn~n@ 74727 (logn) - oty 720) (logn)'® (logn) | with k =
—— —_——
e ? Nva RZ
log (1/to).
Rearranging the expression we have (iii) =
| —Q-ve)ntdy)-2p "
O | log ;-n dotdyT26 " (logm)t® ).
23
# (iv)= O (nfidwww .
We take the mixture of (i) and (iii) as the final error bound:
= 1 _ min (28,(1—v3)(dg+dy)—28)
E{wi,yi}" L [R(S)] =0 <1og rn (deg+dy+28) Y (IOg n)max(12,ﬁ+1)> )
= 0
This completes the proof. O
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