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ABSTRACT

We explore the statistical foundations of conditional diffusion transformers (DiTs)
with classifier-free guidance. Through a comprehensive analysis of “in-context”
conditional DiTs under four data assumptions, we demonstrate that both conditional
DiTs and their latent variants achieve minimax optimality for unconditional DiTs.
By discretizing input domains into infinitesimal grids and performing term-by-term
Taylor expansions on the conditional score function, we enable leveraging trans-
formers’ universal approximation capabilities through detailed piecewise constant
approximations, resulting in tighter bounds. Extending our analysis to the latent
setting under a linear latent subspace assumption, we show that latent conditional
DiTs achieve lower bounds than their counterparts in both approximation and
estimation. We also establish the minimax optimality of latent unconditional DiTs.
Our findings provide statistical limits for conditional and unconditional DiTs and
offer practical guidance for developing more efficient and accurate models.

1 INTRODUCTION
We investigate the approximation and estimation rates of conditional diffusion transformers (DiTs)
with classifier-free guidance. Specifically, we derive score approximation, score estimation, and
distribution estimation guarantees for both conditional DiTs and their latent variants under various
data conditions. We also demonstrate that both conditional DiTs and their latent variants lead to
the minimax optimality of unconditional DiTs under identified settings. This analysis is not only
practical but also timely. Transformer-based conditional diffusion models are leading advancements
in generative AI due to their success as scalable and flexible frameworks for image (Wu et al., 2024)
and video generation (Saharia et al., 2022). But our knowledge of the theory behind conditional DiTs
is still limited. While Hu et al. (2024b) analyze approximation and estimation rates using transformer
universality, their results are not tight and only focus on unconditional diffusion. Meanwhile, existing
theoretical studies on conditional diffusion models have primarily examined ReLU networks (Fu
et al., 2024a), model-free settings (Ye et al., 2024), or generative sampling processes (Dinh et al.,
2023), without addressing transformer architectures. This work fills the gap by examining the
statistical boundaries of conditional DiTs.

In this work, we provide a thorough analysis of conditional DiT and its latent variant under four
standard data assumptions and establish their minimax optimality through tight distribution estimation
bounds. Our approach employs two key techniques: discretizing input domains into infinitesimal grids
and performing term-by-term Taylor expansions of the conditional diffusion score function under
Hölder smoothness assumptions, motivated by the local diffused polynomial analysis (Fu et al., 2024a;
Oko et al., 2023). These methods leverage the regularity of the score function, enabling efficient use
of transformers’ universal approximation capabilities through detailed piecewise approximations.
Consequently, we achieve tighter bounds. We summarize the theoretical results in Table 1.

2 BACKGROUNDS AND PRELIMINARIES

Conditional Diffusion Model. The forward process adds noise to data x0 given condition y,
resulting in a noisy distribution Pt(xt|y) ∼ N(αtx0, σ

2
t Idx

). The backward process reverses this
using the score function ∇ log pt(·|y).

Classifier-Free Guidance. This method approximates conditional and unconditional score func-
tions using a neural network sW . The loss function is:

ℓ(x0, y; sW ) =

∫ T

t0

1

T − t0
Ext∼N(αtx0,σ2

t Idx )

[
∥sW (xt, τy, t)−∇xt log ϕt (xt|x0)∥

2
2

]
dt,
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Table 1: Summary of Theoretical Results. The initial data is dx-dimensional, and the condition is dy-
dimensional. For latent DiT, the latent variable is d0-dimensional. σ2

t = 1− e−t is the denoising scheduler. The
sample size is n, and 0 < ϵ < 1 represents the score approximation error. While we report asymptotics for large
dx, d0, we reintroduce the n dependence in the estimation results to emphasize sample complexity convergence.

Assumption Score
Approximation

Score
Estimation

Dist. Estimation
(Total Variation)

Minimax
Optimality

Generic Hölder Smooth O
((

log
(
1
ϵ

))dx
/σ4

t

)
n−o(1/dx) · (log n)O(dx) n−o(1/dx) · (log n)O(dx) é

Stronger Hölder Smooth (
log
(
1
ϵ

))O(1)
/σ2

t n−o(1) · (log n)O(1)
n−o(1) · (log n)O(1) Ë

Latent Subspace + Generic
Hölder Smooth O

((
log
(
1
ϵ

))d0
/σ4

t

)
n−o(1/d0) · (log n)O(d0) n−o(1/d0) · (log n)O(d0) é

Latent Subspace + Stronger
Hölder Smooth

(
log
(
1
ϵ

))O(1)
/σ2

t n−o(1) · (log n)O(1)
n−o(1) · (log n)O(1) Ë

R(·)

Reshape Layer

Embed

Concat fT ∈ T h,s,r

Transformer Network

R−1(·)

Reversed
Reshape Layer

x ∈ Rdx

Label y
Timestep t

Rd×L

Rd×2

Rd×(L+2) RdxRd×(L+2) Rd×L

Figure 1: Conditional DiT Network Architecture. The architecture includes a reshape layer R, its reverse
R−1, and embedding layers for label y and timestep t. The model concatenates the embeddings with input
sequences and processes them through a transformer network fT .

where τ denotes the conditional or unconditional version. The empirical loss is L̂(sW ) =
1
n

∑n
i=1 ℓ(x0,i, yi; sW ).

Conditional Diffusion Transformer Networks. We use a transformer network as a score estimator
sW , following notation from (Hu et al., 2024b). The transformer block consists of self-attention and
feed-forward layers. The self-attention layer is defined as:

f (SA) (Z) = Z +

h∑
i=1

W i
O(W

i
V Z) Softmax

[
(W i

KZ)
⊤(W i

QZ)
]
, (2.1)

where W i
V ,W

i
K ,W

i
Q ∈ Rs×d and W i

O ∈ Rd×s are weight matrices. The feed-forward layer is:

f (FF)(Z) = Z +W2ReLU(W1Z + b1) + b2, (2.2)

where W (1) ∈ Rr×d, W (2) ∈ Rd×r, b(1) ∈ Rr, and b(2) ∈ Rd are weights and biases.

Definition 2.1 (Transformer Block and Network Function Class). We define a transformer block of
h-head, s-hidden dimension, r-feedforward dimension, with positional encoding E ∈ Rd×L as the
function:

fh,s,r (Z) := f (FF)
(
f (SA) (Z + E)

)
: Rd×L 7→ Rd×L.

The transformer network function class T h,s,r consists of all functions that are compositions of one
or more such transformer blocks. Formally,

T h,s,r :=
{
τ : Rd×L 7→ Rd×L | τ = fh,s,r ◦ · · · ◦ fh,s,r

}
.

Conditional Diffusion Transformer (DiT). We consider a transformer network f in the class T h,s,r,
and we take an input data point (x, y, t) in Rdx×Rdy×[t0, T ]. We adopt the “in-context conditioning”
approach for conditional DiT networks as described in (Peebles & Xie, 2023) and shown in Figure 1.
We reshape a vector input x ∈ Rdx into a sequential matrix input format Z ∈ Rd×L, where dx = d ·L.
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Definition 2.2 (DiT Reshape Layer R(·)). Let R(·) : Rdx → Rd×L reshape a dx-dimensional input
into a d × L matrix. For an image input with dx = i × i, it transforms the input into a sequence
representation where feature dimension d = p2 and sequence length L = (i/p)

2. The reverse reshape
(flatten) layer is defined as R−1(·) : Rd×L → Rdx .

3 STATISTICAL LIMITS OF CONDITIONAL DITS
We first introduce the definition of Hölder space and Hölder ball following (Fu et al., 2024b).

Definition 3.1 (Hölder Space). Let α ∈ Zd
+ and β = k1 + γ with k1 = ⌊β⌋, γ ∈ [0, 1). The Hölder

space Hβ(Rd) consists of all α-differentiable functions f : Rd → R with finite Hölder norm:

∥f∥Hβ(Rd) := max
∥α∥1≤k1

sup
x

|∂αf(x)|+ max
∥α∥1=k1

sup
x̸=x′

|∂αf(x)− ∂αf(x′)|
∥x− x′∥γ∞

.

The Hölder ball of radius B is define as Hβ(Rd, B) :=
{
f : ∥f∥Hβ(Rd) < B

}
.

Let x0 ∈ Rdx denote the initial data, and y ∈ [0, 1]dy the conditional label. With Definition 3.1, we
state the generic and stronger Hölder assumption on the conditional distribution of initial data x0.

Assumption 3.1 (Hölder Smooth Data). The conditional density function p0(x0|y) is defined on the
domain Rdx × [0, 1]dy and belongs to Hölder ball of radius B > 0 for Hölder index β > 0, denoted
by p0(x0|y) ∈ Hβ(Rdx × [0, 1]dy , B). We consider two cases:

- (Generic) For any y ∈ [0, 1]dy , there exist positive constants C1, C2 such that p0(x0|y) ≤
C1 exp

(
−C2∥x0∥22/2

)
.

- (Stronger) Given a constant radius B, positive constants C and C2, we assume p(x0|y) =

exp
(
−C2∥x0∥22/2

)
· f(x0, y) where f ∈ Hβ(Rdx × [0, 1]dy , B) and f(x0, y) ≥ C for all

(x0, y) ∈ Rdx × [0, 1]dy .

We state our main result of score approximation using transformers under Assumption 3.1 as follows:

Theorem 3.1 (Conditional Score Approximation under Assumption 3.1). For any precision parameter
0 < ϵ < 1 and smoothness parameter β > 0, let ϵ ≤ O(N−β) for some N ∈ N. For some
positive constants Cα, Cσ > 0, for any y ∈ [0, 1]dy and t ∈ [N−Cσ , Cα logN ], there exists a
Tscore(x, y, t) ∈ T h,s,r

R such that:∫
Rdx

∥Tscore(x, y, t)−∇ log pt(x|y)∥22 pt(x|y) dx = O

(
B2

σζ
t

·N−ω · (logN)ϕ

)
,

where the parameters ζ, ω, and ϕ are defined as follows:

- (Generic) ζ = 4, ω = β
dx+dy

, and ϕ = dx + β
2 + 1.

- (Stronger) ζ = 2, ω = 2β
dx+dy

, and ϕ = β + 1.

Building on our approximation results from Theorem 3.1, next we evaluate the performance of the
score estimator ŝ trained with finite samples by optimizing the empirical loss. To quantify this, we
introduce the notion of score estimation risk and characterize its upper bound.

Definition 3.2 (Conditional Score Risk). Given a score estimator ŝ, we define the risk as:

R(ŝ) :=

∫ T

t0

1

T − t0
Ext,y

[
∥ŝ(xt, y, t)−∇ log pt(xt|y)∥22

]
dt.

Theorem 3.2 (Conditional Score Estimation with Transformer). Consider y ∈ [0, 1]dy and t ∈ [t0, T ]
with t0 = N−Cσ and T = Cα logN , where Cσ, Cα are positive constants such that t0 < 1 holds.

• Assume dx = Ω
(√

logN
log logN

)
and generic Assumption 3.1. By taking N = n

dx+dy
dx+dy+β , it holds

E{xi,yi}n
i=1

[R(ŝ)] = O
(

1

t0
n
−min (β,(1−ν1)(dx+dy)−3β)

(dx+dy+β) (log n)ν2+2

)
.

3
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W⊤
U

Latent
Encoder

WU

Latent
Decoder

R̃(·)

Reshape Layer

Embed

Concat gT ∈ T h,s,r

Transformer Network

R̃−1(·)

Reversed
Reshape Layer

⊕
x ∈ Rdx x ∈ Rd0

Label y
Timestep t

Rd̃×L̃

Rd̃×2 Rd̃×(L̃+2) Rd0 RdxRd×(L̃+2) Rd̃×L̃

−1/σ2
t

sW

Figure 2: Network Architecture of Latent Conditional DiT. The overall architecture consists of linear layer
of encoder and decoder, reshaping layer R̃(·) and R̃−1(·), embedding layer for label y and timestep t. The
embedding concatenates with input sequences and processes by the adapted transformer network.

where ν1 = 68β/(dx + dy) + 104Cσ and ν2 = 12dx + 12β + 2.

• Under stronger Assumption 3.1. For all x ∈ Rdx , by taking N = n
dx+dy

dx+dy+2β , it holds

E{xi,yi}n
i=1

[R(ŝ)] = O
(
log

1

t0
n
−min (2β,(1−ν3)(dx+dy)−2β)

(dx+dy+2β) (log n)max(12,β+1)

)
.

where ν3 = 4(12βdx + 31βd+ 6β)/d(dx + dy) + 12Cα(12dx + 25d+ 6)/d+ 72Cσ .

Theorem 3.2 provides a straightforward basis for deriving the distribution estimation theorem pre-
sented in Table 1. Furthermore, we show the minimax optimality of the unconditional DiT archi-
tecture under stronger Assumption 3.1. Specifically, we obtain the distribution estimation error
of unconditional DiTs by removing the condition y and let dy = 0. With the condition dx =

o
(√

log n/ log log n
)

, then the distribution estimation error becomes Õ(n−
min(β,(1−ν3)(dx+dy)/2−β)

dx+2β ).
Unconditional DiT is the minimax optimal distribution estimator under (1−ν3)(dx+dy)/2−β > β.

4 LATENT CONDITIONAL DITS

This section builds on Section 3 by exploring latent conditional DiTs. We consider raw data x ∈ Rdx

residing in a low-dimensional subspace under Assumption 4.1, represented by latent variables
h ∈ Rd0 with d0 ≤ dx. Adapting the approach from Peebles & Xie (2023), we employ a transformer
network to approximate score functions on these latents (see Figure 2). The network includes a
reshape layer converting vector inputs h into matrix form H ∈ Rd̃×L̃, with reshaping operations R̃
and its inverse, under constraints d0 ≤ dx, d̃ ≤ d, and L̃ ≤ L. Linear transformations W⊤

U and WU

encode raw data x into latents h such that x = Uh, satisfying the conditions of Assumption 4.1.

Assumption 4.1 (Low-Dimensional Linear Latent Space). The data x can be represented through a
latent variable h ∈ Rd0 such that x = Uh, where U ∈ Rdx×d0 is a matrix with orthonormal columns.
The latent variable h follows a distribution Ph characterized by the density function ph.

The approximation and estimation results closely follows Theorem 3.1, with differences highlighted
in low-dimensional data subspace assumption and Hölder smoothness on latent representation. We
arrive the results by replacing the input dimension d, L to d̃ and L̃, and the input dimension dx with
d0 in Theorem 3.1, and under the the β0-Hölder smoothness assumption.

5 DISCUSSION AND CONCLUSION

We examine the approximation and estimation rates of conditional DiT and its latent setting within
the “in-context” framework introduced by Peebles & Xie (2023), and conduct a comprehensive
analysis under various common data conditions. Notably, we establish the minimax optimality of
unconditional DiTs’ estimation by reducing our analysis from conditional to unconditional settings.
Our approach employs a refined score decomposition scheme that enhances transformers’ universal
approximation compared to earlier methods derived from the universal approximation results in (Yun
et al., 2020) by Hu et al. (2024b).

BOARDER IMPACT

This theoretical work explores the foundational aspects of generative diffusion models and is antici-
pated to have no adverse societal effects.
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A NOTATION

The index set {1, ..., I} is denoted by [I], where I ∈ N+. We denote (column) vectors by lower case
letters, and matrices by upper case letters. Let a[i] denote the i-th component of vector a. Let Aij

denotes the (i, j)-th entry of matrix A. ∥x∥, ∥x∥1 and ∥x∥∞ denote the Euclidean norm, 1-norm, and
infinite norm. ∥W∥2 and ∥W∥F denote the spectral norm and Frobenius norm, and ∥W∥p,q denotes
the (p, q)-norm where p-norm is over columns and q-norm is over rows. We summarize our notations
in the following table for easy reference.

Table 2: Mathematical Notations and Symbols

Symbol Description

[I] The index set {1, ..., I}, where I ∈ N+

a[i] The i-th component of vector a
Aij The (i, j)-th entry of matrix A
∥x∥ Euclidean norm of vector x
∥x∥1 1-norm of vector x
∥x∥2 2-norm of vector x
∥x∥∞ Infinite norm of vector x
∥W∥2 Spectral norm of matrix W
∥W∥F Frobenius norm of matrix W
∥W∥p,q (p, q)-norm of matrix W , where p-norm is over columns and q-norm is over rows
∥f(x)∥L2 L2-norm, where f is a function
∥f(x)∥L2(P ) L2(P )-norm, where f is a function and P is a distribution
∥f(·)∥Lip Lipschitz-norm, where f is a function

dp(f, g) p-norm of the difference between functions f and g defined as dp(f, g) =
(∫

|f(x)− g(x)|p dx
)1/p

f♯P Pushforward measure, where f is a function and P is a distribution
KL(P,Q) Kullback-Leibler (KL) divergence between distributions P and Q
TV(P,Q) Total variation (TV) distance between distributions P and Q
N(µ, σ2) Normal distribution with mean µ and variance σ2

a ≲ b There exist constants C > 0 such that a ≤ Cb

n Sample size
x Data point in original data space, x ∈ Rdx

y Conditioning Label, x ∈ Rdy

h Latent variable in low-dimensional subspace, h ∈ Rd0

h h = U⊤x
ph The density function of h
U The matrix with orthonormal columns to transform h to x, where U ∈ Rd×d0

B Radius of Hölder ball for conditional density function p(x|y)
B0 Radius of Hölder ball for latent conditional density function p(h|y)
β Hölder index for conditional density function p(x|y)
β0 Hölder index for latent conditional density function p(h|y)
D Granularity in the construction of the transformer universal approximation
N Resolution of the discretization of the input domain
R Score risk (expectation of squared ℓ2 difference between score estimator and ground truth)
N (ϵ,F , ∥·∥) Covering number of collection F
T Stopping time in the forward process of diffusion model
t0 Stopping time in the backward process of diffusion model
µ Discretized step size in backward process
pt(·) The density function of x at time t
pht (·) The density function of h at time t
ψ (Conditional) Gaussian density function

T h,s,r Transformer network function class
fh,s,r Transformer block of h-head, s-hidden size, r-MLP dimension
d Input dimension of each token in the transformer network of DiT
L Token length in the transformer network of DiT
d̃ Latent data input dimension of each token in the transformer network of DiT
L̃ Latent data token length in the transformer network of DiT
X Sequence input of transformer network in DiT, where X ∈ Rd×L

H Sequence latent data input of transformer network in DiT, where X ∈ Rd×L

E Position encoding, where E ∈ Rd×L

R(·) Reshape layer in DiT, R(·) : Rdx → Rd×L

R̃(·) Reshape layer in DiT, R̃(·) : Rd0 → Rd̃×L̃

R−1(·) Reverse reshape layer in DiT, R−1(·) : Rd×L → Rdx

R̃−1(·) Reverse reshape layer in DiT, R̃−1(·) : Rd̃×L̃ → Rd0

WU The orthonormal matrix to approximate U , where WU ∈ Rdx×d0

7
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B UNIVERSAL APPROXIMATION OF TRANSFORMERS

In this section, we discuss the universal approximation theory of transformers.

In Appendix B.1, we present the universal approximation results of transformers for score approxi-
mation. We emphasize that most of the material in Appendix B.1 is not original and is drawn from
(Hu et al., 2024a; Kajitsuka & Sato, 2024; Yun et al., 2020).

In Appendix B.2, we compute the parameter norm bounds of the transformers used for score
approximation. These bounds are crucial for calculating the covering number of the transformers and
are essential for score and distribution estimation.

B.1 TRANSFORMERS AS UNIVERSAL APPROXIMATORS

Theorem B.1 (Transformers with 1-Layer Self-Attention are Universal Approximators, Modified
from Proposition 1 of (Kajitsuka & Sato, 2024)). Let 0 ≤ p <∞ and f (FF), f (SA) be feed-forward
neural network layers and a single-head self-attention layer with softmax function respectively. Then,
for any permutation equivariant, continuous function f with compact support and ϵ > 0, there exists
f ′ ∈ T h,s,r

R such that dp(f, f ′) < ϵ holds

Lastly, we provide the next corollary stating that the required transformer configuration (h, s, r) for
universal approximation.

Corollary B.1.1 (Universal Approximation of Transformers). From Theorem B.1, for any permu-
tation equivariant, continuous function f with compact support and ϵ > 0, a transformer network
f ′ ∈ T 1,1,4

R with MLP dimension (width) r = 4 and = O((1/ϵ)dL) FFN layers is sufficient to
approximate f such that dp(f, f ′) < ϵ.

Remark B.1. We remark that T 1,1,4
R belongs to the considered transformer network function class

Definition 2.1.

We establish in Corollary B.1.1 the minimal transformer configuration required to achieve universal
approximation for compactly supported functions. We remark that this configuration is minimally
sufficient but not necessary. More complex configurations can also achieve transformer universality,
as reported in (Hu et al., 2024b; Kajitsuka & Sato, 2024; Yun et al., 2020).

Throughout this paper, unless otherwise specified, we use the transformer class T 1,1,4
R to construct

score function approximations.

B.2 PARAMETER NORM BOUNDS FOR TRANSFORMER APPROXIMATION

In the analysis of the approximation ability of transformers in (Kajitsuka & Sato, 2024), universal
approximation is ensured by using a sufficiently large granularity D, a sufficiently small δ in f (FF)

1 ,
and an appropriate scaling factor R in f (FF)

2 . Here, we provide a detailed discussion on parameter
bounds for matrices in T h,r,s

R , focusing on the choice of granularity and scaling factor.

Lemma B.1 (Order of Granularity and Scaling Factor). Consider the universal approximation
theorem for transformers in Theorem B.1. The order for the granularity and the scaling factor
follows D = O(ϵ−1/d) and R = O(D), and the parameter δ for the first feed-forward layer follows
δ = o(D−1).

Building upon Lemma B.1, we extend the results to derive explicit parameter bounds for matrices
regarding the transformer-based universal approximation framework. That is, we ensure a more
precise quantification of parameter constraints across the architecture.

Lemma B.2 (Transformer Matrices Bounds). Consider an input sequence Z ∈ [0, 1]d×L. Let
f(Z) : [0, 1]d×L → Rd×L be any permutation equivariant and continuous sequence-to-sequence
function on compact support [0, 1]d×L. For the transformer network f ′ ∈ T r,h,s

R to approximate
f within ϵ precision, i.e., dp(f, f ′) < ϵ, the following parameter bounds must hold for d ≥ 1 and

8
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L ≥ 2:

∥WQ∥2 = ∥WK∥2 = O(d · ϵ−( 2dL+1
d ))(logL)

1
2 );

∥WQ∥2,∞ = ∥WK∥2,∞ = O(d
3
2 · ϵ−( 2dL+1

d )(logL)
1
2 );

∥WO∥2 = O
(√

dϵ
1
d

)
; ∥WO∥2,∞ = O

(
ϵ

1
d

)
;

∥WV ∥2 = O(
√
d); ∥WV ∥2,∞ = O(d);

∥W1∥2 = O
(
dϵ−

1
d

)
, ∥W1∥2,∞ = O

(√
dϵ−

1
d

)
;

∥W2∥2 = O
(
dϵ−

1
d

)
; ∥W2∥2,∞ = O

(√
dϵ−

1
d

)
;∥∥E⊤∥∥

2,∞ = O
(
d

1
2L

3
2

)
.

For the case L = 1, the parameter bounds remain valid with the substitution of logL with 1.

9
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C PROOF OF THEOREM 3.1 UNDER GENERIC ASSUMPTION

Our proof builds on the local smoothness properties of functions within Hölder spaces and the
universal approximation of transformers. While the universal approximation theory of transformers
ensures arbitrarily small errors, it does not account for the smoothness of functions in the result. To
incorporate the smoothness assumptions of interest, we propose the following three steps to integrate
function smoothness into approximation theory of transformer architectures.

• Step 1. Consider the integral form of pt(xt|y) in (C.1). We clip the input domain Rdx into
closed and bounded region Bx,N . This facilitates the error analysis for the Taylor expansion
approximation in the next step. The clipping error arises from the integral over the region
outside Bx,N . We specify the clipping error in Lemma C.1.

pt(xt|y) =
∫
Rdx

dx0

σdx
t (2π)dx/2

· p0(x0|y)︸ ︷︷ ︸
≈k1-order Taylor polynomial

· exp

(
−∥αtx0 − xt∥2

2σ2
t

)
︸ ︷︷ ︸

≈k2-order Taylor polynomial

. (C.1)

• Step 2. We employ k1-order and k2-order Taylor expansion for p(x0|y) and exp(·) in
(C.1). We construct the diffused local polynomial in Lemma C.2 based on the Taylor
expansion. We approximate pt and ∇pt with the diffused local polynomial f1(x, y, t) ∈ R
and f2(x, y, t) ∈ Rdx in Lemma C.3 and Lemma C.4.

• Step 3. We approximate f1(x, y, t), f2(x, y, t) with transformers in Lemmas C.5 and C.6.
To construct the final score approximator with the transformer, we approximate necessary
algebraic operators in Lemmas C.7 to C.11. We provide the output bound of our transformer
model in Lemma C.12. We combine all components into Lemma C.13, and complete the
proof of Theorem 3.1.

Noe that the proof under latent subspace assumption in Table 1 closely follows the proof in this
section , with the input dimension d, L to d̃ and L̃, and the input dimension dx with d0 in Theorem 3.1,
and consider under the β0-Hölder smoothness assumption on latent data.

Organization. Appendix C.1 includes details regarding the three steps with auxiliary lemmas for
supporting our proof. Appendix C.2 includes the main proof of Theorem 3.1.

C.1 AUXILIARY LEMMAS

Step 1: Clip Rdx × [0, 1]dy for pt(x|y). We introduce a helper lemma on the clipping integral.

Lemma C.1 (Approximating Clipped Multi-Index Gaussian Integral, Lemma A.8 of (Fu et al.,
2024b)). Under generic Assumption 3.1. Consider any integer vector κ ∈ Zdx

+ with ∥κ∥1 ≤ n. There
exists a constant C(n, dx) ≥ 1, such that for any x ∈ Rdx and 0 < ϵ ≤ 1/e, it holds∫

Rdx\Bx

∣∣∣∣(αtx0 − x

σt

)κ∣∣∣∣ · p(x0|y) · 1

σd
t (2π)

d/2
exp

(
−∥αtx0 − x∥2

2σ2
t

)
dx0 ≤ ϵ, (C.2)

where
(

αtx0−x
σt

)κ
:= ((αtx0[1]1−x[1]

σt
)κ[1], (αtx0[2]−x[2]

σt
)κ[2], . . . , (αtx0[dx]−x[dx]

σt
)κ[dx]) is a multi-

indexed vector and

Bx :=
[x− σtC(n, dx)

√
log (1/ϵ)

αt
,
x+ σtC(n, dx)

√
log (1/ϵ)

αt

]
⋂[

− C(n, dx)
√

log (1/ϵ), C(n, dx)
√
log (1/ϵ)

]dx

.

Remark C.1. Bx is a bounded domain. Lemma C.1 provides the difference between integrals of the
form (C.2) on Rdx and on Bx. The difference becomes arbitrarily small with precision ϵ = 1/N .

Step 2: Approximate pt(x|y) and ∇pt(x|y) with Taylor Expansion. We begin with the definition.

10
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Definition C.1 (Normalization of Bx,N ). Consider the clipping in Lemma C.1 and the initial
conditional distribution p(x0|y) with closed and bounded support Bx,N × [0, 1]dy . We define RB :=
(2C(0, d)

√
β logN) and x′0 := x0/RB+1/2. Moreover, we defineM(x′0, y) := p(RB(x

′
0−1/2)|y).

Remark C.2. The purpose of Definition C.1 is to simplify the process of discretizing Bx,N × [0, 1]dy

into Ndx+dy hypercubes. In particular, M(x′0, y) has compact support on [0, 1]dx+dy , where RB

denotes the length of each coordinate of Bx,N , and x′0 ∈ [0, 1]dx represents x0 normalized on Bx,N .

Remark C.3. The only difference between M(x′0, y) and p(x0|y) lies in their respective domains,
leading to the difference in the size of the Hölder ball radius. Recall that under generic Assumption 3.1,
we have p(x0|y) ∈ Hβ(Rdx × [0, 1]dy , B). Here we have M(x′0, y) ∈ H([0, 1]dx+dy , BRk1

B ). This
follows from the fact that p(·|y) is k1-time differentiable so that the radius scale by a factor of Rk1

B .

Lemma C.2 (Diffused Local Polynomial, Modified from (Fu et al., 2024a)). Under generic Assump-
tion 3.1. We write pt(x|y) into the product of p(x0|y) and exp(·):

pt(x|y) =
∫
Rdx

p(x0|y)pt(x|x0)dx0 =

∫
Rdx

1

σdx
t (2π)dx/2

p(x0|y)exp

(
−∥αtx0 − x∥2

2σ2
t

)
dx0.

Then we approximate p(x0|y) and exp
(
−∥αtx0−x∥2

2σ2
t

)
with k1-order Taylor polynomial and k2-order

Taylor polynomial within Bx,N respectively. Altogether, we approximate pt(x|y) with the following
diffused local polynomial with the bounded domain Bx,N around x:

f1(x, y, t) =
∑

v∈[N ]d,w∈[N ]dy

∑
∥nx∥1+∥ny∥1≤k1

R
∥nx∥
B

nx!ny!

∂nx+nyp

∂xnx∂yny

∣∣∣∣∣
x=RB( v

N − 1
2 ),y=

w
N

Φnx,ny,v,w(x, y, t),

(C.3)

where
• ϕ(·) is the trapezoid function.

• g(x, nx, v, k2) := 1
σt

√
2π

∫ (
x0

R + 1
2 − v

N

)nx 1
k2!

(
−|x−σtx

2
0|

2σ2
t

)k2

dx0.

• Φnx,ny,v,w(x, y, t) :=
(
y − w

N

)ny ∏dy

j=1 ϕ
(
3N(y[j]− w

N )
)∏dx

i=1

∑
k2<p g(x[i], nx[i], v[i], k2).

Remark C.4. The form of the diffused local polynomial arises from the Taylor expansion approxi-
mation applied on each grid point within [0, 1]dx+dy , with v ∈ [N ]dx and w ∈ [N ]dy denoting the
specific grid point undergoing approximation.

Remark C.5. The Hölder space assumption in generic Assumption 3.1 establishes an upper bound
on the error arising from the remainder term in the Taylor expansion. This ensures the approximation
accuracy is well-controlled.

We specifies the error from the approximation of pt and ∇pt with f1 and f2 in Lemmas C.3 and C.4.

Lemma C.3 (Approximation of pt(x|y) by Polynomials, Lemma A.4 of (Fu et al., 2024b)). Under
generic Assumption 3.1. For any x ∈ Rdx , y ∈ [0, 1]dy , t > 0, and a sufficiently larger N > 0, there
exists a diffused local polynomial f1(x, y, t) with at most Ndx+dy (dx + dy)

k1 monomials such that

|f1(x, y, t)− pt(x|y)| ≲ BN−β log
dx+k1

2 N.

Lemma C.4 (Approximation of ∇ log pt(x|y) by Polynomials, Lemma A.6 of (Fu et al., 2024b)).
Under generic Assumption 3.1. For any x ∈ Rdx , y ∈ [0, 1]dy , t > 0, and a sufficiently larger N > 0,
there exists f2 := (f2[1], . . . , f2[dx])

⊤ ∈ Rdx with local diffused polynomial f2[i] such that

|f2(x, y, t)[i]− σt∇pt(x|y)[i]| ≲ BN−β log
dx+k1+1

2 N,

11
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where each f2[i] contains at most Ndx+dy (dx + dy)
k1 monomials.

We have finished the approximation of pt and ∇pt with diffused local polynomial f1 and f2.

Step 3. Approximate Diffused Local Polynomials and Algebraic Operators with Transformers.
First, we utilize universal approximation capabilities of transformers to deal with f1, f2 established
in previous step. Second, we employ similar scheme to approximate several algebraic operators
necessary in final score approximation. Lastly, we present the incorporation of these components in
Lemma C.13 with a unified transformer architecture and corresponding parameter configuration.

• Step 3.1: Approximate the Diffused Local Polynomials f1 and f2.
We invoke the universal approximation theorem of transformer (Theorem B.1). We utilize
network consisting of one transformer block and one feed-forward layer.

Lemma C.5 (Approximate Scalar Polynomials with Transformers). Under generic Assump-
tion 3.1. Consider the diffused local polynomial f1 in Lemma C.3. For any ϵ > 0, there exists
a transformer Tf1 ∈ T h,s,r

R , such that for any x ∈ [−Cx

√
logN,Cx

√
logN ]dx , y ∈ [0, 1]dy

and t ∈ [N−Cσ , Cα logN ] it holds

|f1(x, y, t)− Tf1(x, y, t)[dx]| ≤ ϵ.

The parameter bounds in the Transformer network class satisfy

∥WQ∥2, ∥WK∥2 = O
(
dϵ−

2dL+4d+1
d (logL)

1
2

)
;

∥WQ∥2,∞, ∥WK∥2,∞ = O
(
d

3
2 ϵ−

2dL+4d+1
d (logL)

1
2

)
;

∥WV ∥2 = O(
√
d); ∥WV ∥2,∞ = O(d);

∥WO∥2 = O
(√

dϵ
1
d

)
; ∥WO∥2,∞ = O

(
ϵ

1
d

)
;

∥W1∥2 = O
(
dϵ−

1
d · logN

)
; ∥W1∥2,∞ = O

(√
dϵ−

1
d · logN

)
;

∥W2∥2 = O
(
dϵ−

1
d

)
; ∥W2∥2,∞ = O

(√
dϵ−

1
d

)
;
∥∥E⊤∥∥

2,∞ = O
(
d

1
2L

3
2

)
.

Similarly, we have the corresponding Tf2 ∈ T h,s,r
R for the approximation of f2(x, y, t).

Lemma C.6 (Approximate Vector-Valued Polynomials with Transformers). Under generic
Assumption 3.1 and consider f2(x, y, t) ∈ Rdx with every entry f2[1], . . . , f2[dx] is a local
diffused polynomial defined in Lemma C.2. For any ϵ > 0, there exists a transformer
Tf2 ∈ T h,s,r

R such that

∥f2(x, y, t)− Tf2∥∞ ≤ ϵ,

for any x ∈ [−Cx

√
logN,Cx

√
logN ]dx , y ∈ [0, 1]dy and t ∈ [N−Cσ , Cα logN ]. The

parameter bounds in the transformer network class follows Lemma C.5.

So far, we have obtained approximation results for f1 and f2. To complete the full approxi-
mation of the score decomposition ∇ log p = ∇p

p , we still need to approximate several key
algebraic operators, including the product (Lemma C.8), inverse (Lemma C.9)...etc.
We establish their approximations as follows.

• Step 3.2: Approximate Algebraic Operators with Transformers.
We give transformer approximation theory for the clipping operator, the inverse operator,
the product operator, and functions that evolve with time t:

– Clipping operation (Lemma C.7)
– Product operation (Lemma C.8)
– Inverse operation (Lemma C.9)
– Mean αt = exp(−t/2) (Lemma C.10)

12
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– Standard deviation σt =
√
1− e−t (Lemma C.11)

The approximations for these operators are common with the network structure consisting
of ReLU activation function and fully connected feed-forward layers, such as the product
approximation by Schmidt-Hieber (2020) and the inverse approximation by Telgarsky
(2017).

The following lemma provides a network that executes the clipping operation.

Lemma C.7 (Clipping Operation, Lemma F.4 of (Oko et al., 2023)). For any a, b ∈ Rd

with a[i] ≤ b[i] for all i ∈ [d], there exist a neural network ϕclip(x; a, b) ∈ Φ(L,W, S,B)
such that for all i ∈ [d], it holds

ϕclip(x; a, b)[i] = min(b[i],max(x[i], a[i])),

with

L = 2, W = (d, 2d, d)⊤, S = 7d, B = max
1≤i≤d

max(|a[i]|, b[i]). (C.4)

Moreover, suppose a[i] = c and b[i] = C for all i ∈ [d] with c and C being some constant,
ϕclip(x; a, b) is denoted as ϕclip(x; c, C).

Next, we deal with the approximation of products with Transformer.

Lemma C.8 (Approximation of the Product Operator with Transformer.). Let m ≥ 2 and
C ≥ 1. For any 0 < ϵmult < 1, there exists Tmult(·) ∈ T h,s,r

R such that for all x ∈ [−C,C]m,
x′ ∈ Rm with ∥x− x′∥∞ ≤ ϵerror, it holds∣∣∣∣∣Tmult(x

′)−
m∏
i=1

xi

∣∣∣∣∣ ≤ ϵmult +mCm−1ϵerror.

The parameter bounds in the transformer network class T h,s,r
R satisfy

∥WQ∥2, ∥WK∥2, ∥WQ∥2,∞, ∥WK∥2,∞ = O
(
ϵ
−(2m+1)
mult (logm)

1
2

)
;

∥WO∥2, ∥WO∥2,∞ = O (ϵmmult) ; ∥WV ∥2, ∥WV ∥2,∞ = O(1);

∥W1∥2, ∥W1∥2,∞ = O
(
Cϵ−m

mult

)
; ∥W2∥2, ∥W2∥2,∞ = O

(
ϵ−m

mult

)
.

Next, we introduce the next lemma to approximate the inverse operator.

Lemma C.9 (Approximation of the Reciprocal Function with Transformer.). For any
0 < ϵrec < 1 there exists a Trec(·) ∈ T h,s,r

R such that for all x ∈ [ϵrec, ϵ
−1
rec ] and x′ ∈ R. It

holds that ∣∣∣∣Trec(x
′)− 1

x

∣∣∣∣ ≤ ϵrec +
|x− x′|
ϵ2rec

.

The parameter bounds in the Transformer network class satisfy

∥WQ∥2, ∥WQ∥2,∞, ∥WK∥2, ∥WK∥2,∞ = O
(
ϵ−3

rec

)
;

∥WO∥2, ∥WO∥2,∞ = O (ϵrec) ; ∥WV ∥2, ∥WV ∥2,∞ = O(1);

∥W1∥2, ∥W1∥2,∞ = O
(
ϵ−2

rec

)
; ∥W2∥2, ∥W2∥2,∞ = O

(
ϵ−1

rec

)
.

Next, we state approximation results using Transformer for αt and σt. Note that we have
αt = exp(−t/2) and σt =

√
1− α2

t .

13
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Lemma C.10 (Approximation of αt = exp(−t/2) with Transformer.). For any ϵα ∈ (0, 1),

there exists Transformer Tα(t) ∈ T h,s,r
R such that for all t ≥ 0, we have

|Tα(t)− αt| ≤ ϵα.

The parameter bounds in the Transformer network class satisfy

∥WQ∥2, ∥WQ∥2,∞, ∥WK∥2, ∥WK∥2,∞ = O
(
ϵ−3
α

)
;

∥WO∥2, ∥WO∥2,∞ = O
(
ϵ−1
α

)
; ∥WV ∥2, ∥WV ∥2,∞ = O(1);

∥W1∥2, ∥W1∥2,∞ = O
(
(log ϵ−1

α )ϵ−1
α

)
; ∥W2∥2, ∥W2∥2,∞ = O

(
ϵ−1
α

)
.

Lemma C.11 (Approximation of σt =
√
1− e−t with transformer). For any σσ ∈ (0, 1),

there exists a transformer Tσ(t) ∈ T h,s,r
R such that for any t ∈ [t0, T ] with t0 < 1 we have

|Tσ(t)− σt| ≤ ϵσ.

The parameter bounds in the transformer network class satisfy

∥WQ∥2, ∥WQ∥2,∞, ∥WK∥2, ∥WK∥2,∞ = O
(
ϵ−3
σ

)
;

∥WO∥2, ∥WO∥2,∞ = O (ϵσ) ; ∥WV ∥2, ∥WV ∥2,∞ = O(1);

∥W1∥2 = O
(
Tϵ−1

σ

)
; ∥W1∥2,∞ = O

(
Tϵ−1

σ

)
;

∥W2∥2 = O
(
ϵ−1
σ

)
; ∥W2∥2,∞ = O

(
ϵ−1
σ

)
.

We have finished the approximation of every key component for the proof of Theorem 3.1.
We now proceed to the detailed assembly and integration of these components to finalize the
proof.

• Step 3.3: Unified Transformer-Based Score Function Approximation.
First, we establish a theoretical upper bound for transformer model output by analyzing the
upper bound of the score function in ℓ∞ distance under generic Assumption 3.1 as follows.

– Bound on pt(x|y):
Recall that the conditional distribution at time t has the form:

pt(x|y) =
1

σd
t (2π)

d
2

∫
p(x0|y) exp

(
−∥x− αtx0∥2

2σ2
t

)
dx0.

Applying the light tail property in generic Assumption 3.1, the upper bound follows:

pt(x|y) ≤
C1

σd
t (2π)

d
2

∫
exp

(
−C2∥x0∥2

2

)
exp

(
−∥x− αtx0∥2

2σ2
t

)
dx0. (C.5)

On the other hand, the lower bound follows:

pt(x|y) ≥
1

σd
t (2π)

d
2

∫
∥x0∥≤1

p(x0|y) exp

(
−∥x− αtx0∥2

2σ2
t

)
dx0. (C.6)

– Bound on ∇pt(x|y): The first element of the gradient has the form:

|(∇pt)[1]| =
1

σ2
t (2π)

d
2

·

∣∣∣∣∣
∫ (

x[1]− αtx0[1]

σ2
t

)
p(x0|y) exp

(
−∥x− αtx0∥2

2σ2
t

)
dx0

∣∣∣∣∣.
(C.7)

The ℓ∞ bound on ∇pt follows by applying light tail property to each coordinate as in
(C.5).
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Combining (C.5), (C.6) and (C.7), we provide the ℓ∞ bounds on the score.

Lemma C.12 (Bounds on Score, Lemma A.10 of (Fu et al., 2024b)). Assume generic
Assumption 3.1. There exists a constant K such that

∥∇ log pt(x|y)∥∞ ≤ K

σ2
t

(∥x∥+ 1).

Further details regarding the derivation are in Appendix A.7 of (Fu et al., 2024b).
Next lemma incorporates previous approximation results into an unified transformer archi-
tecture.
Lemma C.13 (Approximation Score Function with Transformer on Supported Domain).
Under generic Assumption 3.1. Consider t ∈ [N−Cσ , Cα logN ], for constant Cσ, Cα,
and (x, y) ∈ −[Cx

√
logN,Cx

√
logN ]dx × [0, 1]dy , where N ∈ N and Cx depends on

d, β,B,C1, C2. There exist a transformer network Tscore(x, y, t) ∈ T h,s,r
R such that

pt(x|y)∥∇ log pt(x|y)− Tscore(x, y, t)∥∞ ≲
B

σ2
t

N−β(logN)
dx+k1+1

2 .

The parameter bounds in the Transformer network class satisfy

∥WQ∥2, ∥WK∥2, ∥WQ∥2,∞, ∥WK∥2,∞ = O
(
N (7β+6Cσ)

)
;

∥WO∥2, ∥WO∥2,∞ = O
(
N−(3β+6Cσ)(logN)3(dx+β)

)
;

∥WV ∥2 = O(
√
d); ∥WV ∥2,∞ = O(d);

∥∥E⊤∥∥
2,∞ = O

(
d

1
2L

3
2

)
;

∥W1∥2, ∥W1∥2,∞ = O
(
N (2β+4Cσ)

)
;CT = O

(√
logN/σ2

t

)
;

∥W2∥2, ∥W2∥2,∞ = O
(
N (3β+2Cσ)

)
.

Proof of Lemma C.13. Our poof follows the structure of Fu et al. (2024b, Proposition A.3).
Recall that from Lemma C.12, we have ∥∇ log pt(x|y)∥∞ ≤ K(Cx

√
dx logN + 1)/σ2

t ,
along with the diffused local polynomial f1 and f2, we define first-step score approximator
f3(x, y, t) as

f3(x, y, t) = min

(
f2

σtf1,clip
,
K

σ2
t

(Cx

√
dx logN + 1)

)
,

where we set f1,clip = {f1, ϵlow} to prevent score from blowing up and we set ϵlow later.
We proceed with the following three steps:

– Step A. Approximate Score Function with f3.
Without loss of generality, we first derive error bound on the difference between the
first component in f3 and the score.

|(∇ log pt)[1]− f3[1]| ≤
∣∣∣∣(∇ log pt)[1]−

f2[1]

σtf1,clip

∣∣∣∣
≤
∣∣∣∣ (∇pt)[1]pt

− (∇pt)[1]]
f1,clip

∣∣∣∣+ ∣∣∣∣ (∇pt)[1]f1,clip
− f2[1]

σtf1,clip

∣∣∣∣.
From Lemma C.12, the bound on the score implies (∇pt)[1] ≤ K(

√
dx logN +

1)pt/σ
2
t .

Therefore,

|(∇ log pt)[1]− f3[1]|

≤ K

σ2
t

(
√
d logN + 1)pt

∣∣∣∣ 1pt − 1

f1,clip

∣∣∣∣+ 1

f1,clip

∣∣∣∣ (∇σtpt)[1]− f2[1]

σt

∣∣∣∣
15
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≲
1

f1,clip

(
1

σ2
t

√
logN |pt − f1,clip|+

(∇σtpt)[1]− f2[1]

σt

)
.(

By dropping Constant Terms
)

From Lemma C.5, we have

|f1 − pt| ≤ BN−β log
dx+k1

2 N.

We set ϵlow = C3N
−β log(dx+k1)/2N ≤ pt such that f1 ≥ pt/2 by the choice of

constant C3.
We further write

|(∇ log pt)[1]− f3[1]|

≲
1

pt

(
1

σ2
t

√
logN |pt − f1,clip|+

(∇σtpt)[1]− f2[1]

σt

) (
By the choice of ϵlow

)
≲

B

σ2
t pt

N−β(logN)
dx+k1+1

2 .
(
By Lemma C.3 and Lemma C.4

)
By the symmetry of each coordinate, the infinity bound for the score holds as well:

∥∇ log pt − f3∥∞ ≲
B

σ2
t pt

N−β(logN)
dx+k1+1

2 . (C.8)

– Step B: Approximate f3 with Transformer Tscore.
In this step, we utilize transformers to approximate f3 to an accuracy of order N−β

such that it aligns with the error order in (C.8).
Since f3 is the minimum between two components, we approximate each of them as
follows.

* Step B.1: Approximate 1
σt

· f2
f1,clip

.
First, we utilize Tf1 , Tf2 and Tσ,1 in Lemma C.5, Lemma C.6, and Lemma C.11
for f1, f2, and σt respectively. This gives error ϵf1 , ϵf2 and ϵσ,1, and we address
the clipping of f1 in later paragraph.
Next, We utilize Trec,1 and Trec,2 in Lemma C.9 for the approximation of the inverse
of f1 and σt.
This gives error∣∣∣∣Trec,1 −

1

f1

∣∣∣∣ ≤ ϵrec,1 +
|Tf1 − f1|
ϵ2rec,1

≤ ϵrec,1 +
ϵf1
ϵ2rec,1

,

and ∣∣∣∣Trec,2 −
1

σt

∣∣∣∣ ≤ ϵrec,2 +
|Tσ,1 − σt|
ϵ2rec,2

≤ ϵrec,2 +
ϵσ,1
ϵ2rec,2

.

Note that all the approximation error propagates to the next approximation.
Next, we utilize Tmult,1 in Lemma C.8 for the approximation of the product of f−1

1 ,
f2 and σ−1

t .
This gives error of∣∣∣∣Tmult,1 −

f2
σtf1

∣∣∣∣ ≤ ϵmult,1 + 3K2
2 max

(
ϵrec,1 +

ϵf1
ϵ2rec,1

, ϵf2 , ϵrec,2 +
ϵσ,1
ϵ2rec,2

)
︸ ︷︷ ︸

:=ϵ1

= ϵmult,1 + 3K2
2ϵ1,

and K2 is a positive constant. From Lemma C.8 we require that [−K2,K2] covers
the domain for all of f−1

1 , f2 and f−1
σ .
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To be more specific, we reiterate three facts that determines the choice of K2.
· Recall that in the Step A., we set f1,clip = {f1, ϵlow}.
· Lemma C.12 states K(Cx

√
dx logN + 1)/σ2

t is the ℓ∞ bound on the score.
· The maximum value of σ−1

t happens at t = t0.
As a result, we set K2 as

K2 = max

(
1

ϵlow
,
K

σt0
(Cx

√
dx logN + 1),

1

σt0

)
.

By the earlier choice of ϵlow, we have ϵ−1
low = O(Nβ logN−(dx+k1)/2), and next

we expand σt0 .

σt0 =
√
1− exp(N−Cσ ) = 1−

(
1−O(N−Cσ )

)
.

Therefore we have σ−1
t0 = O(NCσ ). Putting all together, we have

K2 = O
(
Nβ+Cσ log−

dx+β
2 N

)
, (C.9)

where we use k1 ≤ β.

* Step B.2 : Approximate K(Cx

√
dx logN + 1)/σ2

t .
We invoke Tσ,2 in Lemma C.11 for the approximation of σt, and this gives error
ϵσ,2.
Next, we utilize Trec,3 in Lemma C.8 for the approximation of the inverse of σt.
This gives error∣∣∣∣Trec,3 −

1

σt

∣∣∣∣ ≤ ϵrec,3 +
|Tσ,3 − σt|
ϵ2rec,3

≤ ϵrec,3 +
ϵσ,2
ϵ2rec,3

.

Next, we utilize Tmult,2 for the approximation of the square of σ−1
t .

This gives error of∣∣∣∣∣Tmult,2 −
(

1

σt

)2
∣∣∣∣∣ ≤ ϵmult,2 + 2K1

(
ϵrec,3 +

ϵσ,2
ϵ2rec,3

)
,

and K1 is constant to be chosen such that σt ∈ [−K1,K1].
With the same argument for K2, it suffices to take O(σ−1

t ):

K1 = O
(
NCσ

)
. (C.10)

* Step B.3: Error Bound on Every Approximation Combined.
Combining Step B.1 and Step B.2, the total error is bounded by

ϵscore ≤ max

(
ϵmult,2 + 2K1

(
ϵrec,3 +

ϵσ,2
ϵ2rec,3

)
, ϵmult,1 + 3K2

2ϵ1

)
.

The goal is to guarantee the final error ϵscore ≤ N−β such that it matches the order
of the approximation error in Step A. We list all the error choice to achieve the
goal.1

· For the Error of the First Two Inverse Operators:

ϵrec,1, ϵrec,2 = O
(
N−(3β+2Cσ)(logN)(dx+β)

)
.

1Further details regarding the choice of each one of ϵ are in Appendix F.4 of (Fu et al., 2024b).
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· For the Error of the Last Inverse Operator:

ϵrec,3 = O
(
N−(β+2Cσ)

)
.

· For the Error of f1:

ϵf1 = O
(
N−(9β+6Cσ)(logN)3(dx+β)

)
.

· For the Error of f2:

ϵf2 = O
(
N−(3β+2Cσ)(logN)(dx+β)

)
.

· For the Error of the First Variance:

ϵσ,1 = O
(
N−(9β+6Cσ)(logN)3(dx+β)

)
.

· For the Error of the Second Variance:

ϵσ,2 = O
(
N−(7β+5Cσ)(logN)2(dx+β)

)
.

· For the Error of the Two Product Operators:

ϵmult,1, ϵmult,2 = O(N−β).

The above error choice renders ϵscore ≤ N−β .
Therefore we conclude that there exist a transformer Tscore ∈ T h,s,r

R such that

∥Tscore(x, y, t)− f3(x, y, t)∥∞ ≤ N−β . (C.11)

Combining (C.8) and (C.11) we obtain

∥∇ log pt − Tscore(x, y, t)∥∞ ≲
1

pt

B

σ2
t

N−β(logN)
dx+k1+1

2 .

We have completed the first part of the proof. We next give the norm bounds for the
transformer parameters. Specifically, we select the parameter bounds that are consistent
across all operations. including Lemma C.5, Lemma C.6, Lemma C.8, Lemma C.9 and
Lemma C.11.

– Step C: Transformer Parameter Bound.
Our result highlights the influence of N under varying dx. Therefore, for the trans-
former parameter bounds, we keep terms with dx, d, L appearing in the exponent of N
and logN .

Note that the following parameter selection is based on high-dimensional case where
logN term dominates N term.

* Parameter Bound on WQ and WK .
Given error ϵ, the bound on each operation follows:

· For ϵf1 : By Lemma C.5, we have

∥WQ∥2, ∥WK∥2, ∥WQ∥2,∞, ∥WK∥2,∞ = O
(
N (9β+6Cσ)· 2dL+4d+1

d · (logN)−3(dx+β)· 2dL+4d+1
d

)
.

· For ϵf2 : By Lemma C.6, we have

∥WQ∥2, ∥WK∥2, ∥WQ∥2,∞, ∥WK∥2,∞ = O
(
N (3β+2Cσ)· 2dL+4d+1

d · (logN)−(dx+β)· 2dL+4d+1
d

)
.
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· For ϵmult,1: By Lemma C.8 with m = 3, we have

∥WQ∥2, ∥WK∥2, ∥WQ∥2,∞, ∥WK∥2,∞ = O
(
N7β

)
.

· For ϵmult,2: By Lemma C.8 with m = 2, we have

∥WQ∥2, ∥WK∥2, ∥WQ∥2,∞, ∥WK∥2,∞ = O
(
N5β

)
.

· For ϵrec,1, ϵrec,2: By Lemma C.9, we have

∥WQ∥2, ∥WK∥2, ∥WQ∥2,∞, ∥WK∥2,∞ = O
(
N (9β+6Cσ)(logN)−3(dx+β)

)
.

· For ϵrec,3: By Lemma C.9, we have

∥WQ∥2, ∥WK∥2, ∥WQ∥2,∞, ∥WK∥2,∞ = O
(
N (3β+6Cσ)

)
.

· For ϵσ1 : By Lemma C.11, we have

∥WQ∥2, ∥WK∥2, ∥WQ∥2,∞, ∥WQ∥2,∞ = O
(
N (27β+18Cσ)(logN)−9(dx+β)

)
.

· For ϵσ2
: By Lemma C.11, we have

∥WQ∥2, ∥WK∥2, ∥WQ∥2,∞, ∥WQ∥2,∞ = O
(
N (21β+15Cσ)(logN)−6(dx+β)

)
.

We select the largest parameter bound from ϵmult,1 and ϵrec,3 that remains valid
across all other approximations. That is, we take N (7β+6Cσ ) as the upper-bound.

* Parameter Bound on WO and WV .
Given error ϵ, the bound on each operation follows:

· For ϵf1 : By Lemma C.5, we have

∥WO∥2, ∥WO∥2,∞ = O
(
N− (9β+6Cσ)

d (logN)
3(dx+β)

d

)
.

· For ϵf2 : By Lemma C.6, we have

∥WO∥2, ∥WO∥2,∞ = O
(
N− (3β+2Cσ)

d (logN)
(dx+β)

d

)
.

· For ϵmult,1: By Lemma C.8 with m = 3, we have

∥WO∥2, ∥WO∥2,∞ = O
(
N−3β

)
.

· For ϵmult,2: By Lemma C.8 with m = 2, we have

∥WO∥2, ∥WO∥2,∞ = O
(
N−2β

)
.

· For ϵrec,1, ϵrec,2: By Lemma C.9, we have

∥WO∥2, ∥WO∥2,∞ = O
(
N−(3β+Cσ)(logN)dx+β

)
.

· For ϵrec,3: By Lemma C.9, we have

∥WO∥2, ∥WO∥2,∞ = O
(
N−(β+2Cσ)

)
.
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· For ϵσ1
: By Lemma C.11, we have

∥WO∥2, ∥WO∥2,∞ = O
(
N−(9β+6Cσ)(logN)3(dx+β)

)
.

· For ϵσ2
: By Lemma C.11, we have

∥WO∥2, ∥WO∥2,∞ = O
(
N−(7β+5Cσ)(logN)2(dx+β)

)
.

Note that only ϵf1 and ϵf2 involve the reshape operation. From Lemma B.2, we take
O(

√
d) and O(d) ∥WV ∥2 and ∥WV ∥2,∞. Moreover, We select the largest param-

eter bound from ϵrec,1 and ϵσ1 that remains valid across all other approximations.
That is, we take N−(3β+6Cσ)(logN)3(dx+β) as the upper-bound.

* Parameter Bound on W1.
Given error ϵ, the bound on each operation follows:

· For ϵf1 : By Lemma C.5, we have

∥W1∥2, ∥W1∥2,∞ = O
(
N

(9β+6Cσ)
d (logN)−

3(dx+β)
d · (logN)

)
.

· For ϵf2 : By Lemma C.6, we have

∥W1∥2, ∥W1∥2,∞ = O
(
N

(3β+2Cσ)
d (logN)−

(dx+β)
d · (logN)

)
.

· For ϵmult,1: By Lemma C.8 with m = 3 and C = K2 in (C.9), we have

∥W1∥2, ∥W1∥2,∞ = O
(
K2 ·N3β

)
= O

(
N (4β+Cσ)(logN)−

1
2 (dx+β)

)
.

· For ϵmult,2: By Lemma C.8 with m = 2 and C = K1 in (C.10), we have

∥W1∥2, ∥W1∥2,∞ = O
(
K1 ·N2β

)
= O

(
N (2β+Cσ)

)
.

· For ϵrec,1 , ϵrec,2: By Lemma C.9, we have

∥W1∥2, ∥W1∥2,∞ = O
(
N (6β+4Cσ)(logN)−2(dx+β)

)
.

· For ϵrec,3: By Lemma C.9, we have

∥W1∥2, ∥W1∥2,∞ = O
(
N (2β+4Cσ)

)
.

· For ϵσ1
: By Lemma C.11, we have

∥W1∥2, ∥W1∥2,∞ = O
(
N (9β+6Cσ)(logN)−3(dx+β) · logN

)
.

· For ϵσ2
: By Lemma C.11, we have

∥W1∥2, ∥W1∥2,∞ = O
(
N (7β+5Cσ)(logN)−2(dx+β) · logN

)
.

We select the largest parameter bound from ϵrec,3 that remains valid across all other
approximations. That is, we take N (2β+4Cσ) as the upper-bound.

* Parameter Bound for W2.
Given error ϵ, the bound on each operation follows:
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· For ϵf1 : By Lemma C.5, we have

∥W2∥2, ∥W2∥2,∞ = O
(
N

(9β+6Cσ)
d (logN)−3

(dx+β)
d

)
.

· For ϵf2 : By Lemma C.6, we have For ϵf1 : By Lemma C.5, we have

∥W2∥2, ∥W2∥2,∞ = O
(
N

(3β+2Cσ)
d (logN)−

(dx+β)
d

)
.

· For ϵmult,1: By Lemma C.8 with m = 3, we have

∥W2∥2, ∥W2∥2,∞ = O
(
N3β

)
.

· For ϵmult,2: By Lemma C.8 with m = 2, we have

∥W2∥2, ∥W2∥2,∞ = O
(
N2β

)
.

· For ϵrec,1, ϵrec,2: By Lemma C.9, we have

∥W2∥2, ∥W2∥2,∞ = O
(
N (3β+2Cσ)(logN)−(dx+β)

)
.

· For ϵrec,3: By Lemma C.9, we have

∥W2∥2, ∥W2∥2,∞ = O
(
N (β+2Cσ)

)
.

· For ϵσ1
: By Lemma C.11, we have

∥W2∥2, ∥W2∥2,∞ = O
(
N (9β+6Cσ)(logN)−3(dx+β)

)
.

· For ϵσ2 : By Lemma C.11, we have

∥W2∥2, ∥W2∥2,∞ = O
(
N (7β+5Cσ)(logN)−2(dx+β)

)
.

We select the largest parameter bound from ϵmult,1 and ϵrec,3 that remains valid
across all other approximations. That is, we take N (3β+2Cσ) as the upper-bound.

* Parameter Bound for E.
Since only ϵf1 and ϵf2 involve the reshape operation. From Lemma B.2, we take
O(d

1
2L

3
2 ) for

∥∥E⊤
∥∥
2,∞.

By integrating results above, we derive the following parameter bounds for the trans-
former network, ensuring valid approximation across all nine approximations.

∥WQ∥2, ∥WK∥2, ∥WQ∥2,∞, ∥WK∥2,∞ = O
(
N (7β+6Cσ)

)
;

∥WO∥2, ∥WO∥2,∞ = O
(
N−(3β+6Cσ)(logN)3(dx+β)

)
;

∥WV ∥2 = O(
√
d); ∥WV ∥2,∞ = O(d);

∥∥E⊤∥∥
2,∞ = O

(
d

1
2L

3
2

)
;

∥W1∥2, ∥W1∥2,∞ = O
(
N (2β+4Cσ)

)
;CT = O

(√
logN/σ2

t

)
;

∥W2∥2, ∥W2∥2,∞ = O
(
N (3β+2Cσ)

)
.

The last network output bound CT = O(
√
dx logN/σ

2
t ) follows the entry-wise mini-

mum bounds K(Cx

√
d logN + 1)/σ2

t in ℓ∞ distance by Lemma C.12.

This completes the proof.
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C.2 MAIN PROOF OF THEOREM 3.1 UNDER GENERIC ASSUMPTION

In Lemma C.13, we establish the score approximation with transformer that incorporates every
essential components and encodes the Hölder smoothness in the final result. However, it is only valid
within the input domain [Cx

√
logN,Cx

√
logN ]dx × [0, 1]dy , and we also excludes region pt < ϵlow

where the problem of score explosion remains unaddressed.

To combat this, we introduce two additional lemmas. The first lemma gives us the error caused by
the truncation of Rdx within a radius R1 in ℓ2 distance.

Lemma C.14 (Truncate x for Score Function, Lemma A.1 of (Fu et al., 2024b)). Under generic
Assumption 3.1. For any R1 > 1, y, t > 0 we have∫

∥x∥∞≥R1

pt(x|y)dx ≤ R1 exp
(
−C ′

2R
2
1

)
,∫

∥x∥∞≥R1

∥∇ log pt(x|y)∥22pt(x|y)dx ≤ R3
1

σ4
t

exp
(
−C ′

2R
2
1

)
,

where C ′
2 = C2/(2max(C2, 1)).

Remark C.6. Because we only impose assumption on the light tail property of the conditional
distribution in generic Assumption 3.1, the unboundedness of x necessitates a truncation for integrals
regarding x, or else the result would diverge.

Furthermore, we address the explosion of score function with the second lemma.

Lemma C.15 (Lemma A.2 of (Fu et al., 2024b)). Under generic Assumption 3.1. For any
R2, y, ϵlow > 0 we have∫

∥x∥∞≤R2

1{|pt(x|y)| < ϵlow} · pt(x|y)dx ≤ Rdx
2 ϵlow,∫

∥x∥∞≤R2

1{|pt(x|y)| < ϵlow} · ∥∇ log pt(x|y)∥22pt(x|y)dx ≤ 1

σ4
t

Rdx+2
2 ϵlow.

Remark C.7. Recall that the score function has the form ∇ log pt(x|y) = ∇pt(x|y)/pt(x|y). It is
essential to set a threshold for pt(x|y) prevents the explosion of the score function.

We begin the proof of Theorem 3.1.

Proof Sketch of Theorem 3.1. In the following proof, we give error bound for the three terms:

• (A.1): The approximation for ∥x∥∞ > R1.

This step controls the error from truncation of Rdx with radius R1 in ℓ2 distance. We
approximate the error with Lemma C.14

• (A.2): The approximation for 1{pt(x|y) < ϵlow} and {∥x∥∞ ≤ R1}.
This step controls the error from setting a threshold to prevent score explosion within the
bounded domain ∥x∥∞ ≤ R1. We approximate the error with Lemma C.15.

• (A.3) The approximation for 1{pt(x|y) ≥ ϵlow} and {∥x∥∞ ≤ R1}.
With previous two steps ensuring the bounded domain and preventing the divergence of
score function, we approximate with Lemma C.13.

Proof of Theorem 3.1. We apply N = N1/(dx+dy) in Lemma C.13. Throughout the proof, we use
N as a notational simplification, with the understanding that N represents N1/(dx+dy) in full form.
At the end of of the proof we replace N by N1/(dx+dy).
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To begin with, we set R1 = R2 =
√
2β logN/C ′

2 in Lemma C.14 and Lemma C.15, and we expand
the target into three parts (A1), (A2), and (A3):∫

Rdx

∥s(x, y, t)−∇ log pt(x|y)∥22 · pt(x|y)dx

=

∫
∥x∥∞>

√
2β

C′
2
logN

∥s(x, y, t)−∇ log pt(x|y)∥22 · pt(x|y)dx︸ ︷︷ ︸
(A1)

,

+

∫
∥x∥∞≤

√
2β

C′
2
logN

1{|pt(x|y)| < ϵlow}∥s(x, y, t)−∇ log pt(x|y)∥22 · pt(x|y)dx︸ ︷︷ ︸
(A2)

+

∫
∥x∥∞≤

√
2β

C′
2
logN

1{|pt(x|y)| ≥ ϵlow}∥s(x, y, t)−∇ log pt(x|y)∥22 · pt(x|y)dx︸ ︷︷ ︸
(A3)

.

We derive the bound for (A1), (A2), (A3) and combine these results.

• Bounding (A1). We apply Lemma C.14. Note that we have ∥s(x, y, t)∥∞ ≲
√
logN/σ2

t
from the construction of the score estimator in Lemma C.13.∫

∥x∥∞>

√
2β

C′
2
logN

∥s(x, y, t)−∇ log pt(x|y)∥22 · pt(x|y)dx (
By expanding the ℓ2 norm

)
≤ 2

∫
∥x∥∞>

√
2β

C′
2
logN

∥s(x, y, t)∥22 · pt(x|y)dx+ 2

∫
∥x∥∞>

√
2β

C′
2
logN

∥∇ log pt(x|y)∥22 · pt(x|y)dx(
By ∥·∥22 ≤ dx∥·∥2∞

)
≤ 2dx

∫
∥x∥∞>

√
2β

C′
2
logN

∥s(x, y, t)∥2∞ · pt(x|y)dx+ 2

∫
∥x∥∞>

√
2β

C′
2
logN

∥∇ log pt(x|y)∥22 · pt(x|y)dx(
By the ℓ∞ bound on the score function

)
≲ 2dx

(√
logN

σ2
t

)2 ∫
∥x∥∞>

√
2β

C′
2
logN

pt(x|y)dx+ 2

∫
∥x∥∞>

√
2β

C′
2
logN

∥∇ log pt(x|y)∥22 · pt(x|y)dx(
By Lemma C.14 and dropping constant

)
≲ 2dx

(√
logN

σ2
t

)2
(√

2β

C ′
2

logNN−2β

)
+

2

σ4
t

(
2β

C ′
2

logN

) 3
2

N−2β

(
By dropping constant and lower order term

)
≲

1

σ4
t

N−2β(logN)
3
2 .

• Bounding (A2). We apply Lemma C.15. Note that we set ϵlow = C3N
−β(logN)(dx+k1)/2

in Lemma C.13.∫
∥x∥∞≤

√
2β

C′
2
logN

1{|pt(x|y)| < ϵlow}∥s(x, y, t)−∇ log pt(x|y)∥22 · pt(x|y)dx(
By expanding the ℓ2 norm

)
23
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≤
∫
∥x∥∞≤

√
2β

C′
2
logN

21{|pt(x|y)| < ϵlow}
(
∥s(x, y, t)∥22 + ∥∇ log pt(x|y)∥22

)
· pt(x|y)dx

(
By ∥·∥22 ≤ dx∥·∥2∞

)
≤
∫
∥x∥∞≤

√
2β

C′
2
logN

1{|pt(x|y)| < ϵlow}
(
dx∥s(x, y, t)∥2∞ + ∥∇ log pt(x|y)∥22

)
· pt(x|y)dx(

By the ℓ∞ bound on the score function
)

≲
∫
∥x∥∞≤

√
2β

C′
2
logN

1{|pt(x|y)| < ϵlow}

(
dx

(√
logN

σ2
t

)2

+ ∥∇ log pt(x|y)∥22

)
· pt(x|y)dx(

By Lemma C.15 and dropping constant
)

≲ dx

(√
logN

σ2
t

)2(
2β

C ′
2

logN

) dx
2

ϵlow +

(
2β

C ′
2

logN

) dx+2
2 ϵlow

σ4
t(

By dropping constant and lower order term
)

≲
1

σ4
t

(logN)
dx+2

2 ϵlow.

• Bounding (A3). We apply Lemma C.13.∫
∥x∥∞≤

√
2β

C′
2
logN

1{|pt(x|y)| ≥ ϵlow}∥s(x, y, t)−∇ log pt(x|y)∥22 · pt(x|y)dx(
By ∥·∥22 ≤ dx∥·∥2∞

)
≤
∫
∥x∥∞≤

√
2β

C′
2
logN

1{|pt(x|y)| ≥ ϵlow}dx∥s(x, y, t)−∇ log pt(x|y)∥2∞ · pt(x|y)dx(
Multiply with pt/pt

)
=

∫
∥x∥∞≤

√
2β

C′
2
logN

1{|pt(x|y)| ≥ ϵlow}
pt(x|y)

dx∥s(x, y, t)−∇ log pt(x|y)∥2∞ · p2t (x|y)dx(
By Lemma C.13

)
≲
B2dx
σ2
t

N−2β(logN)dx+k1+1

∫
∥x∥∞≤

√
2β

C′
2
logN

1{|pt(x|y)| ≥ ϵlow}pt(x|y)dx(
Multiply with ϵlow/ϵlow

)
=
B2dx
σ2
t ϵlow

N−2β(logN)dx+k1+1

∫
∥x∥∞≤

√
2β

C′
2
logN

1{|pt(x|y)| ≥ ϵlow}
ϵlow

pt(x|y)
dx

(
By Lemma C.15

)
≲
B2dx
σ2
t ϵlow

N−2β(logN)dx+k1+1 ·
(
2β

C ′
2

logN

) dx
2

(
By the choice of ϵlow and dropping lower order term

)
≲
B2dx
σ4
t ϵlow

N−2β(logN)
3dx
2 +k1+1.

• Combining the Results.
Combining (A1), (A2) and (A3), we have∫

Rd

∥s(x, y, t)−∇ log pt(x|y)∥22pt(x|y)dx
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≲
N−2β(logN)

3
2

σ4
t︸ ︷︷ ︸

(A1)

+
ϵlow(logN)

dx+2
2

σ4
t︸ ︷︷ ︸

(A2)

+
B2dx
σ4
t ϵlow

N−2β(logN)
3dx
2 +k1+1︸ ︷︷ ︸

(A3)

.

By replacing ϵlow with C3N
−β(logN)dx+k1/2 and using the relation k1 ≤ β,2 we obtain∫

Rd

∥s(x, y, t)−∇ log pt(x|y)∥22pt(x|y)dx = O
(
B2

σ4
t

N−β(logN)dx+
β
2 +1

)
.

Replacing N with N1/(dx+dy) completes the first part of the proof.

The transformer parameter norm bounds follow Lemma C.13, with the replacement of N with
N1/(dx+dy ) as well. Note that this results in t ∈ [N−Cα/(dx+dy), Cσ/((dx + dy)) logN ]. For better
interpretation of the cutoff and early stopping time parameter, we reset Cα as (dx + dy)Cα and Cσ

as (dx + dy)Cσ such that t ∈ [N−Cα , Cσ logN ].

This completes the proof.

2Recall the definition of the Hölder smoothness from Definition 3.1.
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D PROOF OF THEOREM 3.1 UNDER STRONGER ASSUMPTION

We state the proof of Theorem 3.1 under stronger Hölder assumption as follows.

• Step 0. We decompose the density function and the score function under stronger Assump-
tion 3.1. In Lemma D.1, we provide details regarding the decomposed form of the score
function. We specify the upper and lower bound on h and ∇h in Lemma D.2.

• Step 1. Similar to the domain discretization in the proof of previous main result, we
discretize the input domain of the decomposed density function in Lemma D.3.

• Step 2. We construct polynomial approximation based on Taylor expansion of h and ∇h in
Lemmas D.4 and D.5. The approximation result captures the local Hölder smoothness, with
improved precision relative to the analogous step in Lemma C.3 and Lemma C.4.

• Step 3. We approximate h and ∇h with transformer in Lemmas D.6 and D.7. In order
to construct the score approximator with transformer, we approximate several additional
algebraic operators with transformer in Lemma D.8, Lemma D.9 and Lemma D.10. We
incorporate these results into a unified transformer architecture in Lemma D.11.

Organization. Appendix D.1 includes the four steps and auxiliary lemmas supporting our proof.
Appendix D.2 includes the formal version and main proof of Theorem 3.1.

D.1 AUXILIARY LEMMAS

Step 0: Decompose the Score with Stronger Hölder Smoothness Assumption. We utilize the
condition assumed in stronger Assumption 3.1 to achieve the decomposition.

Lemma D.1 (Lemma B.1 of Fu et al. (2024b)). Under stronger Assumption 3.1. The conditional
distribution at time t has the following expression:

pt(x|y) =
1

(α2
t + C2σ2

t )
dx/2

exp

(
−

C2∥x∥22
2(α2

t + C2σ2
t )

)
h(x, y, t).

Moreover, the score function has the following expression:

∇ log pt(x|y) =
−C2x

α2
t + C2σ2

t

+
∇h(x, y, t)
h(x, y, t)

,

where h(x, y, t) =
∫ f(x0,y)

σ̂d
t (2π)

d/2 exp
(
−∥x0−α̂tx∥2

2σ̂2
t

)
dx0, σ̂t = σt

(α2
t+C2σ2

t )
1/2 , and α̂t =

αt

α2
t+C2σ2

t
.

Next, we provide lemma that provides bound on h(x, y, t) and ∇h(x, y, t) in Lemma D.1

Lemma D.2 (Lemma B.8 of (Fu et al., 2024b)). Under stronger Assumption 3.1, we have the
following bounds for h(x, y, t) and σ̂t

α̂t
∇h(x, y, t)

C1 ≤ h(x, y, t) ≤ B,

∥∥∥∥ σ̂tα̂t
∇h(x, y, t)

∥∥∥∥
∞

≤
√

2

π
B,

where C1 and B are the hyperparameters of Hβ(Rdx × [0, 1]dy , B) in stronger Assumption 3.1.

Remark D.1 (Bound on h and ∇h). We reiterate that Lemma D.2 drives the key distinction be-
tween the analyses in Theorem 3.1 and Theorem 3.1 under stronger assumption. Specifically, in
Appendix C.2, the decomposed term containing the threshold ϵlow results in lower approximation rate,
while bounds on h and ∇h eliminate the need of the threshold with h’s lower bound C1, rendering
faster approximation rate.

Step 1: Discretize Rdx × [0, 1]dy for h(x, y, t). This step parallels Lemma C.1; however, the
discretization differs due to the structure of h.
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Lemma D.3 (Clipping Integral, Lemma B.10 of Fu et al. (2024b)). Under stronger Assumption 3.1.
Consider any integer vector κ ∈ Zdx

+ with ∥κ∥1 ≤ n. There exists a constant C(n, dx), such that for
any x ∈ Rdx and 0 < ϵ ≤ 0.99, it holds∫

Rdx\Bx

∣∣∣∣( α̂tx0 − x

σ̂t

)κ∣∣∣∣ · p(x0|y) · 1

σ̂d
t (2π)

d/2
exp

(
−∥α̂tx0 − x∥2

2σ̂2
t

)
dx0 ≤ ϵ, (D.1)

where
(

α̂tx0−x
σ̂t

)κ
:= (( α̂tx0[1]1−x[1]

σ̂t
)κ[1], ( α̂tx0[2]−x[2]

σ̂t
)κ[2], . . . , ( α̂tx0[dx]−x[dx]

σ̂t
)κ[dx]) and

Bx :=
[
α̂tx− C(n, d)σ̂t

√
log ϵ−1, α̂tx+ C(n, d)σ̂t

√
log ϵ−1

]dx

.

Step 2: Approximate h and ∇h with Polynomials. Similar to the construction of the diffused
local polynomials in Lemma C.5 and Lemma C.6, the following two lemmas render the first step
approximation for h(x, y, t) and ∇h(x, y, t) that captures the local smoothness.

Lemma D.4 (Approximation with Diffused Local Polynomials, Lemma B.4 of (Fu et al., 2024b)).
Under stronger Assumption 3.1. For sufficiently larger N > 0 and constant C2, there exists a diffused
local polynomial f1(x, y, t) with at most Nd+dy (d+ dy)

k1 monomials such that

|f1(x, y, t)− h(x, y, t)| ≲ BN−β log
k1
2 N,

for any x ∈ [−Cx

√
logN,Cx

√
logN ]dx , y ∈ [0, 1]dy and t > 0.

Lemma D.5 (Counterpart of Lemma D.4, Lemma B.6 of (Fu et al., 2024b)). Under stronger
Assumption 3.1. For sufficiently larger N > 0 and constant C2, there exists a diffused local
polynomial f2(x, y, t) ∈ T h,s,r

R with at most Ndx+dy (dx + dy)
k1 monomials f2[i](x, y, t) such that∣∣∣∣f2[i](x, y, t)− ( σ̂tα̂t

∇h(x, y, t)
)
[i]

∣∣∣∣ ≲ BN−β log
k1+1

2 N,

for any x ∈ Rdx , y ∈ [0, 1]dy and t > 0.

Step 3: Approximate Diffused Local Polynomials and Algebraic Operators with Transformers.
First, we apply the universal approximation theory of transformers to f1 and f2. Second, we adopt a
comparable approach to approximate the algebraic operators essential for the final score computation.
Last, we introduce Lemma D.11 that outlines how these components fit into a single transformer
architecture with a specified parameter configuration.

• Step 3.1: Approximate the Diffused Local Polynomials f1 and f2.
We invoke the universal approximation theorem of transformer Theorem B.1. We utilize
network consisting of one transformer block and one feed-forward layer.

Lemma D.6 (Approximate Scalar Polynomials with Transformers). Under stronger Assump-
tion 3.1. Consider the diffused local polynomial f1 in Lemma D.4. For any ϵ > 0, there exists
a transformer Tf1 ∈ T h,s,r

R , such that for any x ∈ [−Cx

√
logN,Cx

√
logN ]dx , y ∈ [0, 1]dy

and t ∈ [N−Cσ , Cα logN ], it holds

|f1(x, y, t)− Tf1(x, y, t)[dx]| ≤ ϵ,

The parameter bounds in the transformer network class follows Lemma C.5.

Lemma D.7 (Approximate Vector-Valued Polynomials with Transformers). Under stronger
Assumption 3.1 and consider f2(x, y, t) ∈ Rdx in Lemma D.5. For any ϵ > 0, there exists a
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transformer Tf2 ∈ T h,s,r
R such that

∥f2(x, y, t)− Tf2∥∞ ≤ ϵ,

for any x ∈ [−Cx

√
logN,Cx

√
logN ]dx , y ∈ [0, 1]dy and t ∈ [N−Cσ , Cα logN ]. The

parameter bounds in the transformer network class follows Lemma C.5.

• Step 3.2: Approximate Algebraic Operators with Transformers.
Next, we introduce lemmas regarding the function of time. These are also key components
to the proof of Theorem D.1.

Lemma D.8 (Approximation of α2 with Transformer). For t ∈ [t0, T ] with t0 < 1, there
exists Transformer Tα2(t) ∈ T h,s,r

R such that∣∣Tα2 − α2
∣∣ ≤ ϵα̂.

The parameter bounds in the Transformer network class follow Lemma C.11.

Also, we approximate α̂ and σ̂t as well.

Lemma D.9 (Approximation of α̂ with Transformer). Consider α̂t =
αt

α2
t+C2σ2

t
, for t ∈

[t0, T ] with t0 < 1, there exists Transformer Tα̂(t) ∈ T h,s,r
R such that

|Tα̂ − α̂| ≤ ϵα̂.

The parameter bounds in the transformer network class follow Lemma C.11.

Lemma D.10 (Approximation of σ̂ with Transformer). Consider σ̂t = σt

(α2
t+C2σ2

t )
1/2 , for

t ∈ [t0, T ] with t0 < 1, there exists Transformer Tσ̂(t) ∈ T h,s,r
R such that

|Tσ̂ − σ̂| ≤ ϵσ̂.

The parameter bounds in the transformer network class follow Lemma C.11.

We have finished establishing the approximation with transformer for every key component
for the proof of Theorem 3.1.

• Step 3.3: Unified Transformer-Based Score Function Approximation.
We introduce the counterpart of Lemma C.13. It is the core of the proof for Theorem 3.1.

Lemma D.11 (Score Approximation with Transformer). Under stronger Assumption 3.1.
For sufficiently large integer N , there exists a mapping from transformer Tscore ∈ T h,s,r

R
such that ∥∥∥∥Tscore −∇ log h(x, y, t) +

C2x

α2
t + C2σ2

t

∥∥∥∥
∞

≤ B

σt
N−β(logN)

k1+1
2 ,

for any x ∈ [−Cx

√
logN,Cx

√
logN ]dx , y ∈ [0, 1]dy and t ∈ [N−Cσ , Cα logN ].

The parameter bounds in the transformer network class satisfy

∥WQ∥2, ∥WK∥2, ∥WQ∥2,∞, ∥WK∥2,∞ = O
(
N (3β+9Cσ)

2dL+4d+1
d

)
;

∥WV ∥2 = O(
√
d); ∥WV ∥2,∞ = O(d); ∥WO∥2, ∥WO∥2,∞ = O

(
N−β

)
;

∥W1∥2, ∥W1∥2,∞ = O
(
N4β+9Cσ+

3Cα
2 · logN

)
;
∥∥E⊤∥∥

2,∞ = O
(
d

1
2L

3
2

)
;

∥W2∥2, ∥W2∥2,∞ = O
(
N4β+9Cσ+

3Cα
2

)
;CT = O

(√
logN/σt

)
.

Proof. Our proof follows the proof structure of (Fu et al., 2024b, Proposition B.3).
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Recall the decomposed score function presented in Step 0, we establish the the first-step
approximator f3 with the form:

f3(x, y, t) :=
α̂t

σ̂t
· f2(x, y, t)
f1(x, y, t)

− C2x

α2
t + C2σ2

t

.

We derive the error bound on the approximation of the first term containing Taylor poly-
nomials in f3. We incorporate second term containing the linear function in x into the the
transformer architecture.
We proceed as follows:

1. Step A: Approximate ∇ log pt(x|y) with f3.

2. Step B: Approximate f3 with Tscore ∈ T h,s,r
R .

3. Step C: Derive the final Parameter Configuration

– Step A. Approximate Scroe Function with f3.
We first construct f1(x, y, t) and f2(x, y, t) from Lemma D.4 and Lemma D.5 to
approximate h(x, y, t) and ∇h(x, y, t) respectively.

From Lemma D.2, we have C1 ≤ h ≤ B and
∥∥∥ σ̂t∇h

α̂t

∥∥∥
∞

≤
√

2
πB.

Next, by Lemma D.4 and Lemma D.5, we select a sufficiently large N such that
C1

2 ≤ f1 ≤ 2B and f2 ≤ B.
Without loss of generality, we begin by bounding the first coordinate of ∇h, denoted
as ∇h[1]:∣∣∣∣∇h[1]h

− α̂t

σ̂t

f2[1]

f1

∣∣∣∣ ≤ ∣∣∣∣∇h[1]h
− ∇h[1]]

f1

∣∣∣∣+ ∣∣∣∣∇h[1]f1
− α̂t

σ̂t

f2[1]]

f1

∣∣∣∣,
≤
∣∣∣∣∇h[1]]h · f1

∣∣∣∣|f1 − h|+ α̂t

σ̂t

∣∣∣∣ 1f1
∣∣∣∣∣∣∣∣f2 − σ̂t

α̂t
∇h[1]]

∣∣∣∣,
≲
α̂t

σ̂t

(
|f1 − h|+

∣∣∣∣f2 − σ̂t
α̂t

∇h[1]
∣∣∣∣) ,(

By bounds on h, ∇h, f1, f2
)

≲
α̂t

σ̂t

(
BN−β(logN

k1
2 +BN−β(logN

k1+1
2 )
)
,(

By Lemma D.4 and Lemma D.5
)

≲
1

σt

(
BN−β(logN

k1+1
2 )
)
.

Note that in the last line, we utilize

α̂t

σ̂t
=
αt

σt

1√
α2
t + C2σ2

t

=
1

σt

1√
1 + C2 (σt/αt)

2
=

1

σt

1√
1 + C2

σ2
t

1−σ2
t

= O(σ−1
t ).

By the symmetry of each coordinate in ∇h, we obtain the ℓ∞ bounds:∥∥∥∥∇h(x, y, t)h(x, y, t)
− α̂t

σ̂t

f2(x, y, t)

f1(x, y, t)

∥∥∥∥
∞

≲
B

σt
N−β(logN)

k1+1
2 . (D.2)

– Step B. Approximate f3 with Transformer Tscore.
Next, we prove that there exist Transformer networks Tscore ∈ T h,s,r

R that approximates
f3(x, y, t) with error of order N−β .
In the following, we construct a transformer approximating the two terms in f3, and
incorporate the result into a unified network architecture.

* Step B.1: Approximation for α̂tf2
σ̂tf1

.

29



1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a DeLTa Workshop Paper at ICLR 2025

We utilize Tf1 , Tf2 , Tα̂ and Tσ̂ in Lemma C.5, Lemma C.6, Lemma D.9 and
Lemma D.10 to approximate each one of the component. This gives error ϵf1 , ϵf2 ,
ϵα̂ and ϵσ̂ respectively.
Next we utilize Trec,2 and Trec,3 in Lemma C.9 for the approximation of the inverse
of f1 and σ̂t. This gives error∣∣∣∣Trec,2 −

1

f1

∣∣∣∣ ≤ ϵrec,2 +
|Tf1 − f1|
ϵ2rec,2

≤ ϵrec,2 +
ϵf1
ϵ2rec,2

,

and ∣∣∣∣Trec,3 −
1

σ̂t

∣∣∣∣ ≤ ϵrec,3 +
|Tσ̂ − σ̂t|
ϵ2rec,2

≤ ϵrec,3 +
ϵσ̂
ϵ2rec,3

.

Next we utilize Tmult,1 in Lemma C.8 for the approximation of the product of f−1
1 ,

f2, α̂t and σ̂−1
t . This gives error∣∣∣∣Tmult,1 −
α̂tf2
σ̂tf1

∣∣∣∣
≤ ϵmult,1 + 4K3

4 max

(
ϵrec,2 +

ϵf1
ϵ2rec,2

, ϵf2 , ϵα̂, ϵrec,3 +
ϵσ̂
ϵ2rec,3

)
︸ ︷︷ ︸

:=ϵ2

:= ϵmult,1 + 4K3
4ϵ2,

and K3 is a positive constant.
From Lemma C.8, we require [−K4,K4] to cover the domain of f−1

1 , f2, α̂, and
σ̂t. Recall that we give the upper and lower bounds for f−1

1 and f2 in the beginning
of Step 1. Thus, we set K4 = max

(
σ̂−1
t , α̂t

)
.

To derive the asymptotic behavior of K4, we set the positive constant C2 = 2
without loss of generality and note that the maximum occurs at t = t0. We then
expand σ̂t0 and α̂−1

t0 :

σ̂t0 =

(
1− exp(−t0)
2− exp(−t0)

) 1
2

=

(
1− 1

2− exp(−t0)

) 1
2

= O
(
N−Cσ

)
.

and

α̂−1
t0 =

(
2− exp(−t0)
exp
(
− t0

2

) )
= 2 exp

(
t0
2

)
− exp

(
− t0

2

)
= O

(
N−Cσ

)
.

So we take K4 = O(NCσ ).

* Step B.2: Approximation for −C2x/(α
2
t + C2σ

2
t ).

We use α2
t + σ2

t = 1 to rewrite (α2
t + C2σ

2
t )

−1 as (C2 + (1− C2)α
2
t )

−1.
We first utilize Tα2 in Lemma D.8 for the approximation of α2

t . This gives error
ϵα2 .
Next, we utilize Trec,1 in Lemma C.8 for the approximation of the inverse of α2

t .
This gives error

∣∣∣∣Trec,1 −
1

α2
t

∣∣∣∣ ≤ ϵrec,1 +

∣∣∣Tα2
t
− α2

t

∣∣∣
ϵ2rec,1

≤ ϵrec,1 +
ϵα2

ϵ2rec,1
.

Next, we utilize Tmult,2 for the approximation of the product of (C2+(1−C2)α
2
t )

−1

and x.
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This gives error∣∣∣∣Tmult,2 −
(

x

C2 + (1− C2)α2
t

)∣∣∣∣ ≤ ϵmult,2 + 2K3

(
ϵrec,1 +

ϵα2

ϵ2rec,1

)
,

and from Lemma C.8, K3 is positive constant such that x ∈ [−K3,K3]
and α−1

t ∈ [−K3,K3]. Since x ∈ [−Cx

√
logN,Cx

√
logN ] and α−1

T =

(exp(−Cα logN/2))−1 = NCα/2, we take K3 = NCα/2.

* Step B.3: Error Bound on Every Approximation Combined.
Combining Step B.1 and Step B.2, we obtain the total network with error bounded
by

ϵscore ≤ ϵmult,2 + 2K3

(
ϵrec,1 +

ϵα2

ϵ2rec,1

)
+ ϵmult,1 + 4K3

4ϵ2.

Next, we specify on the choice of ϵ in each approximation to attain a final approxi-
mation error of order N−β .

· For the Error of the First Inverse Operator:

ϵrec,1 = O
(
N−(β+ 1

2Cα)
)
.

· For the Error of the Second and Third Inverse Operator:

ϵrec,2, ϵrec,3 = O
(
N−(β+3Cσ)

)
.

· For the Error of f1:

ϵf1 = O
(
N−(3β+9Cσ)

)
.

· For the Error of f2:

ϵf2 = O
(
N−(β+3Cσ)

)
.

· For the Error of σ̂:

ϵσ̂ = O
(
N−(3β+9Cσ)

)
.

· For the Error of α̂:

ϵα̂ = O
(
N−(β+3Cσ)

)
.

· For the Error of α2:

ϵα2 = O
(
N−(3β+ 3

2Cα)
)
.

· For the Error of the Two Product Operators:

ϵmult,1, ϵmult,2 = O(N−β).

With above error choice, we have

|Tscore(x, y, t)− f3(x, y, t)| ≤ N−β . (D.3)
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Combining (D.2), (D.3) and dropping lower order term, we obtain

∥Tscore −∇ log pt(x|y)∥∞ ≲
B

σt
N−β(logN)

k1+1
2 .

We have completed the first part of the proof. Next, we select the parameter bounds
based on all the above approximations.

Step C: Transformer Parameter Bound.
Our result highlights the influence of N under varying dx. Therefore, for the transformer
parameter bounds, we keep terms with dx, d, L appearing in the exponent of N and logN .

– Parameter Bound on WQ and WK .
Given error ϵ, the bound on each operation follows:

* For ϵf1 : By Lemma C.5, we have

∥WQ∥2, ∥WK∥2, ∥WQ∥2,∞, ∥WK∥2,∞ = O
(
N (3β+9Cσ)

2dL+4d+1
d

)
.

* For ϵf2 : By Lemma C.6, we have

∥WQ∥2, ∥WK∥2, ∥WQ∥2,∞, ∥WK∥2,∞ = O
(
N (β+3Cσ)

2dL+4d+1
d

)
.

* For ϵmult,1: By Lemma C.8 with m = 4, we have

∥WQ∥2, ∥WK∥2, ∥WQ∥2,∞, ∥WK∥2,∞ = O
(
N9β

)
.

* For ϵmult,2: By Lemma C.8 with m = 2, we have

∥WQ∥2, ∥WK∥2, ∥WQ∥2,∞, ∥WK∥2,∞ = O
(
N5β

)
.

* For ϵrec,1: By Lemma C.9, we have

∥WQ∥2, ∥WK∥2, ∥WQ∥2,∞, ∥WK∥2,∞ = O
(
N3β+ 3Cα

2

)
.

* For ϵrec,2 and ϵrec,3: By Lemma C.9, we have

∥WQ∥2, ∥WK∥2, ∥WQ∥2,∞, ∥WK∥2,∞ = O
(
N3β+9Cσ

)
.

* For ϵα̂: By Lemma C.11, we have

∥WQ∥2, ∥WK∥2, ∥WQ∥2,∞, ∥WQ∥2,∞ = O
(
N3β+9Cσ

)
.

* For ϵα2 : By Lemma C.11, we have

∥WQ∥2, ∥WK∥2, ∥WQ∥2,∞, ∥WQ∥2,∞ = O
(
N9β+ 9Cα

2

)
.

* For ϵσ̂: By Lemma C.11, we have

∥WQ∥2, ∥WK∥2, ∥WQ∥2,∞, ∥WQ∥2,∞ = O
(
N9β+27Cσ

)
.

We select the largest parameter bound from ϵf1 that remains valid across all other
approximations.

– Parameter Bound on WO and WV .
Given error ϵ, the bound on each operation follows:

* For ϵf1 : By Lemma C.5, we have

∥WO∥2, ∥WO∥2,∞ = O
(
N− (3β+9Cσ)

d

)
.
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* For ϵf2 : By Lemma C.6, we have

∥WO∥2, ∥WO∥2,∞ = O
(
N− (β+3Cσ)

d

)
.

* For ϵmult,1: By Lemma C.8 with m = 4, we have

∥WO∥2, ∥WO∥2,∞ = O
(
N−4β

)
.

* For ϵmult,2: By Lemma C.8 with m = 2, we have

∥WO∥2, ∥WO∥2,∞ = O
(
N−2β

)
.

* For ϵrec,1: By Lemma C.9, we have

∥WO∥2, ∥WO∥2,∞ = O
(
N−(β+Cα

2 )
)
.

* For ϵrec,2 and ϵrec,3: By Lemma C.9, we have

∥WO∥2, ∥WO∥2,∞ = O
(
N−(β+3Cσ)

)
.

* For ϵα̂: By Lemma C.11, we have

∥WO∥2, ∥WO∥2,∞ = O
(
N−(β+3Cσ)

)
.

* For ϵα2 : By Lemma C.11, we have

∥WO∥2, ∥WO∥2,∞ = O
(
N−(3β+ 3Cα

2 )
)
.

* For ϵσ̂: By Lemma C.11, we have

∥WO∥2, ∥WO∥2,∞ = O
(
N−(3β+9Cσ)

)
.

Since we do not impose any relation on Cσ, Cα and β, we simply take looser bound
∥WO∥2, ∥WO∥2,∞ = N−β . Moreover, since only ϵf1 and ϵf2 involve the reshape
operation. From Lemma B.2, we take O(

√
d) and O(d) ∥WV ∥2 and ∥WV ∥2,∞.

– Parameter Bound for W1.
Given error ϵ, the bound on each operation follows:

* For ϵf1 : By Lemma C.5, we have

∥W1∥2, ∥W1∥2,∞ = O
(
N

(3β+9Cσ)
d · logN

)
.

* For ϵf2 : By Lemma C.6, we have

∥W1∥2, ∥W1∥2,∞ = O
(
N

(β+3Cσ)
d · logN

)
.

* For ϵmult,1: By Lemma C.8 with m = 4 and C = K4 in (C.9), we have

∥W1∥2, ∥W1∥2,∞ = O
(
K4 ·N4β

)
= O

(
N (4β+Cσ)

)
.

* For ϵmult,2: By Lemma C.8 with m = 2 and C = K3 in (C.10), we have

∥W1∥2, ∥W1∥2,∞ = O
(
K3 ·N2β

)
= O

(
N (2β+Cα

2 )
)
.
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* For ϵrec,1: By Lemma C.9, we have

∥W1∥2, ∥W1∥2,∞ = O
(
N2β+Cα

)
.

* For ϵrec,2 and ϵrec,3: By Lemma C.9, we have

∥W1∥2, ∥W1∥2,∞ = O
(
N (2β+6Cσ)

)
.

* For ϵα̂: By Lemma C.11, we have

∥W1∥2, ∥W1∥2,∞ = O
(
N (β+3Cσ) · logN

)
.

* For ϵα2 : By Lemma C.11, we have

∥W1∥2, ∥W1∥2,∞ = O
(
N (3β+ 3Cα

2 ) · logN
)
.

* For ϵσ̂: By Lemma C.11, we have

∥W1∥2, ∥W1∥2,∞ = O
(
N (3β+9Cσ) · logN

)
.

We select the largest parameter bound from ϵf1 that remains valid across all other
approximations.

– Parameter Bound for W2.

Given error ϵ, the bound on each operation follows:

* For ϵf1 : By Lemma C.5, we have

∥W2∥2, ∥W2∥2,∞ = O
(
N

(3β+9Cσ)
d

)
.

* For ϵf2 : By Lemma C.6, we have

∥W2∥2, ∥W2∥2,∞ = O
(
N

(β+3Cσ)
d

)
.

* For ϵmult,1: By Lemma C.8 with m = 4, we have

∥W2∥2, ∥W2∥2,∞ = O
(
N4β

)
.

* For ϵmult,2: By Lemma C.8 with m = 2, we have

∥W2∥2, ∥W2∥2,∞ = O
(
N2β

)
.

* For ϵrec,1: By Lemma C.9, we have

∥W2∥2, ∥W2∥2,∞ = O
(
N (β+Cα

2 )
)
.

* For ϵrec,2 and ϵrec,3: By Lemma C.9, we have

∥W2∥2, ∥W2∥2,∞ = O
(
N (β+3Cσ)

)
.

* For ϵα̂: By Lemma C.11, we have

∥W2∥2, ∥W2∥2,∞ = O
(
N (β+3Cσ)

)
.
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* For ϵα2 : By Lemma C.11, we have

∥W2∥2, ∥W2∥2,∞ = O
(
N (3β+ 3Cα

2 )
)
.

* For ϵσ̂: By Lemma C.11, we have

∥W2∥2, ∥W2∥2,∞ = O
(
N (3β+9Cσ)

)
.

We select the largest parameter bound from ϵf1 that remains valid across all other
approximations.

– Parameter Bound for E.
Since only ϵf1 and ϵf2 involve the reshape operation. From Lemma B.2, we take
O(d1/2L3/2).

By integrating results above, we derive the following parameter bounds for the transformer
network, ensuring valid approximation across all ten approximations.

∥WQ∥2, ∥WK∥2, ∥WQ∥2,∞, ∥WK∥2,∞ = O
(
N (3β+9Cσ)

2dL+4d+1
d

)
;

∥WV ∥2 = O(
√
d); ∥WV ∥2,∞ = O(d); ∥WO∥2, ∥WO∥2,∞ = O

(
N−β

)
;

∥W1∥2, ∥W1∥2,∞ = O
(
N4β+9Cσ+

3Cα
2 · logN

)
;
∥∥E⊤∥∥

2,∞ = O
(
d

1
2L

3
2

)
;

∥W2∥2, ∥W2∥2,∞ = O
(
N4β+9Cσ+

3Cα
2

)
;CT = O

(√
logN/σt

)
.

This completes the proof.
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D.2 MAIN PROOF OF THEOREM 3.1 UNDER STRONGER ASSUMPTION

We state the formal version of Theorem 3.1 under stronger assumption.

Next, similar to the proof of Theorem 3.1, we need the truncation of x due to the unboundedness as
well.
Lemma D.12 (Truncate x, Lemma B.2 of (Fu et al., 2024b).). Under stronger Assumption 3.1. For
any R3 > 1, we have: ∫

∥x∥∞≥R3

pt(x|y)dx ≲ R3 exp
(
−C ′

2R
2
2

)
.

∫
∥x∥∞≥R3

∥∇ log pt(x|y)∥22pt(x|y)dx ≲ R3 exp
(
−C ′

2R
2
3

)
≲

1

σ2
t

R3
3 exp

(
−C ′

2R
2
3

)
,

where C ′
2 = C2/(2max(1, C2)).

Again, unlike result under generic Assumption 3.1, the explicit form of pt(x|y) and the upper and the
lower bound of the joint distribution Lemma D.2 automatically allow us to skip the threshold ϵlow as
in Lemma C.15.
Theorem D.1 (Approximation Score Function with Transformer under Stronger Hölder Assumption
(Formal Version of Theorem 3.1)). Under stronger Assumption 3.1 and dx = Ω( logN

log logN ). For any
precision parameter 0 < ϵ < 1 and smoothness parameter β > 0, let ϵ ≤ O(N−β) for some N ∈ N.
For some positive constants Cα, Cσ > 0, for any y ∈ [0, 1]dy and t ∈ [N−Cσ , Cα logN ], there exists
a Tscore(x, y, t) ∈ T h,s,r

R such that the conditional score approximation satisfies∫
Rdx

∥Tscore(x, y, t)−∇ log pt(x|y)∥22 · pt(x|y)dx = O
(
B2

σ2
t

·N− 2β
dx+dy · (logN)β+1

)
.

Notably, for ϵ = O(N−β), the approximation error has the upper bound Õ(ϵ2/(dx+dy)/σ2
t ).

The parameter bounds in the transformer network class satisfy

∥WQ∥2, ∥WK∥2, ∥WQ∥2,∞, ∥WK∥2,∞ = O
(
N

3β(2dx+4d+1)
d(dx+dy)

+
9Cα(2dx+4d+1)

d

)
;

∥WV ∥2 = O(
√
d); ∥WV ∥2,∞ = O(d); ∥WO∥2, ∥WO∥2,∞ = O

(
N

− β
dx+dy

)
;

∥W1∥2, ∥W1∥2,∞ = O
(
N

4β
dx+dy

+9Cσ+
3Cα

2 · logN
)
;
∥∥E⊤∥∥

2,∞ = O
(
d

1
2L

3
2

)
;

∥W2∥2, ∥W2∥2,∞ = O
(
N

4β
dx+dy

+9Cσ+
3Cα

2

)
;CT = O

(√
logN/σt

)
.

Proof of Theorem 3.1 under Stronger Assumption. For simplicity, we change the variable N to
N

1
dx+dy in the following subsection. We put the original form back at the end of the proof.

We take Cx =
√

2β
C′

2
in Lemma D.11 and R3 = Cx

√
logN in Lemma D.12.

With the transformer parameter bounds in Lemma D.11, we have ∥Tscore∥2 ≤
√
logN/σt for any

x ∈ Rdx , y ∈ Rdy and t > 0. We start with the truncation on x∫
Rdx

∥Tscore −∇ log pt∥22ptdx

≤
∫
∥x∥∞>

√
2β

C′
2
logN

(
2∥Tscore∥22 + 2∥∇ log pt∥22

)
ptdx

︸ ︷︷ ︸
(A.1)

+

∫
∥x∥∞≤

√
2β

C′
2
logN

(
∥Tscore −∇ log pt∥22

)
ptdx

︸ ︷︷ ︸
A.2(

By expanding ℓ2 norm
)
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≲
∫
∥x∥∞>

√
2β

C′
2
logN

(
2

(√
logN

σt

)2

+ 2∥∇ log pt∥22

)
ptdx+

B2

σ2
t

N−2β(logN)k1+1

(
By ℓ2 bound on Tscore and Lemma D.11

)
≲ 2dx

√
logN

σ2
t

(
2β

C ′
2

logN

) 1
2

N−2β +
2

σ2
t

(
2β

C ′
2

logN

) 3
2

N−2β +
B2

σ2
t

N−2β(logN)k1+1(
By Lemma D.12

)
≲
B2

σ2
t

N−2β(logN)β+1.
(
By dropping lower order term

)
The transformer parameter norm bounds follow Lemma D.11, with the replacement of N with
N1/dx+dy . This gives in t ∈ [N−Cα/(dx+dy), Cσ(logN)1/(dx+dy)]. For a better interpretation of the
cutoff and early stopping time parameter, we reset Cα = (dx + dy)Cα and Cσ = (dx + dy)Cσ such
that t ∈ [N−Cα , Cσ logN ].

This completes the proof.
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E PROOF OF THEOREM 3.2

Overview of Our Proof Strategy of Theorem 3.2.

Step 0. Preliminaries. We introduce the mixed risk that accounts for risk with the distribution of the
mask signal in Definition E.1. We restate the loss function and the score matching technique
in Definition E.2.

Step 1. Truncate the Domain of the Risk. We truncate the domain of the loss function in order
to obtain finite covering number of transformer network class. Precise definition of the
truncated loss function class is in Definition E.4. We bound the error from the truncation
from the assumed light tail condition in Lemma E.1.

Step 2. Derive the Covering Number of Transformer Network. We introduce the covering number
of a given function class in Definition E.5. We provide lemma detailing the calculation of
the covering number for transformer architecture in Lemma E.2. We derive the covering
numbers under the respective parameter configurations for our two previous main results in
Lemma E.3.

Step 3. Bound the True Risk on Truncated Domain. With the previous steps, we present the
upper-bound of the mixed risk in Lemma E.4.

Organization. Appendix E.1 includes auxiliary lemmas for supporting our proof of Theorem 3.2.
Appendix E.2 includes the main proof of Theorem 3.2.

E.1 AUXILIARY LEMMAS FOR THEOREM 3.2

Step 0: Preliminary Framework. We evaluate the quality of the estimator sW through the risk:

R(sW ) :=

∫ T

t0

1

T − t0
Ext,y∥sW (xt, y, t)−∇ log pt(xt|y)∥22dt. (E.1)

Definition E.1 (Mixed Risk). The risk (E.1) considers guidance y throughout whole the diffusion
process. We refer to it as the conditional score risk. In contrast, we have the mixed risk Rm that
accounts for the distribution of the mask signal τ = {∅, id} with P (τ = ∅) = P (τ = id) = 0.5:

Rm(sW ) :=

∫ T

t0

1

T − t0
E(xt,y,τ)

[
∥sW (xt, τy, t)−∇ log pt(xt|τy)∥22

]
dt, (E.2)

Remark E.1. Given the score estimator ŝ trained from the empirical loss, the conditional score risk
is upper-bounded by twice of the mixed risk. That is, we have R(ŝ) ≤ 2Rm(ŝ). This follows from
direct calculation:

Rm(ŝ) =
1

2

∫ T

t0

1

T − t0
Ext

[
∥ŝ(xt, ∅, t)−∇ log pt(xt)∥22

]
dt+

1

2
R(ŝ).

Definition E.2 (Loss Function and Score Matching). Let x = xt|x0 denote the random variable
following Gaussian distribution N(αtx0, σ

2
t Idx

), we define loss function and score matching loss:

ℓ(x, y; sW ) :=

∫ T

T0

1

T − T0
Eτ,x

[
∥sW (xt, τy, t)−∇ log pt (xt|x0)∥22

]
dt,

L(sW ) :=

∫ T

t0

1

T − t0
Ex0,y

[
Eτ,x

[
∥sW (xt, τy, t)−∇ log pt(xt|x0)∥22

]]
dt.

Remark E.2. Given i.i.d samples {x0,i, yi}ni=1, we write ℓ(xi, yi; sW ) with the understanding that
xi = xt|x0,i. When context is clear, we use ℓ(xi, yi; sW ) and ℓ(x0,i, yi; sW ); {x0,i, yi}ni=1 and
{xi, yi}ni=1 interchangeably.
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Remark E.3. By (Vincent, 2011), L(sW ) and Rm(sW ) differ by a constant that is inconsequential
to the minimization. Therefore, minimizing the mixed risk is equivalent to minimizing the score
matching loss

Definition E.3 (Empirical Risk). Consider a score estimator sW ∈ T h,s,r
R . Recall the definition of

empirical loss: L̂(sW ) =
∑n

i=1
1
nℓ(xi, yi; sW ). Let s◦ := ∇ log pt(x|y), we define empirical risk:

R̂m(sW ) := L̂(sW )− L̂(s◦) =
n∑

i=1

1

n
ℓ(xi, yi; sW )−

n∑
i=1

1

n
ℓ(xi, yi; s

◦).

Remark E.4. The key distinction between Rm and L lies in their formulations. Specifically, Rm

measures the expected difference between sW and the ground truth ∇ log pt(x|y) with respect to
(xt, y, τ). In contrast, the score matching loss L provides an explicit calculation based on the sample
{x0,i, yi}ni=1. With the tower property of conditional expectation, L measures the expected difference
between sW and ∇ log pt(x|x0) first with respect to (xt|x0, τ), and then with respect to x0.
Remark E.5. Observe (I): s◦ = ∇ log pt(x|y) is the ground truth of score function with Rm(s◦) = 0,
and (II): By (Vincent, 2011), Rm and L differ by a constant. Based on (I) and (II), we define the
empirical risk R̂m using the score matching loss as an intermediary: Rm(sW ) = Rm(sW ) −
Rm(s◦) = L(sW ) − L(s◦). This leads to the definition of the empirical risk R̂m as a practical
approximation of the true risk difference Rm(sW )−Rm(s◦).

Remark E.6. For any score estimator sW ∈ T h,s,r
R obtained from the training with i.i.d. samples

{xi, yi}ni=1, it holds E{xi,yi}n
i=1

[R̂m(sW )] = Rm(sW ). This follows from direct calculation with
Definition E.3 and the i.i.d. assumption.

Step 1: Domain Truncation of the Risk. We define the loss function with truncated domain. This
is essential for obtaining finite covering number for transformer network class.

Definition E.4 (Truncated Loss). We define the truncated domain of the score function by D :=
[−RT , RT ]

dx × [0, 1]dy ∪ ∅. Given loss function ℓ(x, y; sW ), we define the truncated loss:

ℓtrunc(x, y; sW ) := ℓ(x, y; sW )1{∥x∥∞ ≤ RT }. (E.3)

Similarly, we define Ltrunc(sW ) := L(sW )1{∥x∥∞ ≤ RT } , Rtrunc
m (sW ) := Rm(sW )1{∥x∥∞ ≤

RT } and R̂trunc
m (sW ) := R̂m(sW )1{∥x∥∞ ≤ RT }. We define the function class of the truncated

loss by

S(RT ) := {ℓ(·, ·; sW ) : D → R | sW ∈ T h,s,r
R }. (E.4)

Next, we introduce the following lemma dealing with the error bound for the truncation of the loss.

Lemma E.1 (Truncation Error, Lemma D.1 of (Fu et al., 2024b)). Consider the truncated loss
ℓtrunc(x, y; sW ) and t ∈ [n−O(1),O(log n)]. Under generic Assumption 3.1, we have |ℓ(x, y; sW )| ≲
1/t0. Consider the parameter configuration in Theorem 3.1, it holds:

Ex,y

[∣∣ℓ(x, y, t)− ℓtrunc(x, y, s)
∣∣] ≲ exp

(
−C2R

2
T
)
RT

(
1

t0

)
.

Moreover, under stronger Assumption 3.1, we have |ℓ(x, y; sW )| ≲ log(1/t0). Consider the parame-
ter configuration in Theorem D.1, it holds:

Ex,y

[∣∣ℓ(x, y, t)− ℓtrunc(x, y, s)
∣∣] ≲ exp

(
−C2R

2
T
)
RT log

(
1

t0

)
.

Step 2: Covering Number of Transformer Network Class. We begin with the definition.

Definition E.5 (Covering Number). Given a function class F and a data distribution P . Sample n
data points {Xi}ni=1 from P , then the covering number N (ϵ,F , {Xi}ni=1, ∥·∥) is the smallest size of
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a collection (a cover) C ∈ F such that for any f ∈ F , there exist f̂ ∈ C satisfying

max
i

∥∥∥f(Xi)− f̂(Xi)
∥∥∥ ≤ ϵ.

Further, we define the covering number with respect to the data distribution as

N (ϵ,F , ∥·∥) = sup
{Xi}n

i=1∼P

N (ϵ,F , {Xi}ni=1, ∥·∥).

Next, we introduce the following lemma that provides results for the calculation of the covering
number for transformer networks.

Lemma E.2 (Modified from Theorem A.17 of Edelman et al. (2022)).

Let T h,s,r
R (CT , C

2,∞
Q , CQ, C

2,∞
K , CK , C

2,∞
V , CV , C

2,∞
O , CO, CE , C

2,∞
f1

, Cf1 , C
2,∞
f2

, Cf2 , LT )

represent the class of functions of one transformer block satisfying the norm bound for matrix and
Lipsichitz property for feed-forward layers. Then for all data point ∥X∥2,∞ ≤ RT we have

logN (ϵc, T h,s,r
R , ∥·∥2)

≤ log(nLT )

ϵ2c
·
(
α

2
3

(
d

2
3

(
C2,∞

F

) 4
3

+ d
2
3

(
2(CF )

2COV C
2,∞
KQ

) 2
3

+ 2
(
(CF )

2C2,∞
OV

) 2
3

))3

,

where α := (CF )
2COV (1 + 4CKQ)(RT + CE).

With Lemma E.2, we derive the covering number under transformer weights configuration in Theo-
rem 3.1 and Theorem D.1.

Lemma E.3 (Covering Number for S(RT )). Given ϵc > 0 and consider ∥x∥∞ ≤ RT . With
sample {xi, yi}ni=1, the ϵc-covering number for S(RT ) with respect to ∥·∥L∞

under the network
configuration in Theorem 3.1 satisfies

logN (ϵc,S(RT ), ∥·∥∞) ≲
log n

ϵ2c
Nν1(logN)ν2(RT )

2,

where ν1 = 172β/(dx + dy) + 104Cσ and ν2 = 12dx + 12β + 2. Moreover, under network
configuration in Theorem D.1, we have

logN (ϵc, S(RT ), ∥·∥∞) ≲
log n

ϵ2c
Nν3(logN)10(RT )

2,

where ν3 = 48dβ(L+ 2)(dx + 2d+ 1)/(dx + dy) + 144dCσ(L+ 2)− 8β.

Step 3: Bound the True Risk on Truncated Domain. We begin with the definition.

Definition E.6. Let s◦ := ∇ log pt(x|y) denote the ground truth of score function for simplicity.
Given i.i.d samples {xi, yi}ni=1 and a score estimator sW ∈ T h,s,r

R , we define the difference function:

∆n(sW , s◦) :=
∣∣∣E{xi,yi}n

i=1

[
R̂trunc

m (sW )−Rtrunc
m (sW )

]∣∣∣.
Remark E.7. Note that the difference function ∆n(sW , s◦) measures the expected difference
between the truncated empirical risk and the truncated mixed risk with respect to the training sample.
Since the true risk is unattainable, we construct ∆n(sW , s◦) serving as an intermediate that allows us
to derive the upper-bound on the mixed risk. Surprisingly, we are able to handle the upper-bound of
the difference function, presented in Lemma E.4.
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Definition E.7. Given the truncated loss function class S(RT ), we define its ϵc-covering with the
minimum cardinality in the L∞ metric as LN := {ℓ1, ℓ2, . . . , ℓN }. Moreover, we define ℓJ ∈ LN
with random variable J . By definition, there exist ℓJ ∈ LN such that ∥ℓJ − ℓ(xi, yi; sW )∥∞ ≤ ϵc.

Note that Lemma E.3 provides the upper-bound on the ϵc-covering number of S(RT ) for score
estimator trained from transformer network class. Next, we bound the difference function.

Lemma E.4 (Bound on Difference Function). Consider i.i.d training samples {x0,i, yi}ni=1 and score
estimator ŝ. Under generic Assumption 3.1 and parameter configuration in Theorem 3.1, it holds:

∆n(ŝ, s
◦) ≲ E{xi,yi}n

i=1

[
R̂m(ŝ)

]
+

1

t0

(
RT exp

(
−C2R

2
T
)
+

1

n
logN

)
+ 7ϵc,

where N (ϵc, T h,s,r
R , ∥·∥2) is the covering number of transformer network class. Moreover, Under

stronger Assumption 3.1 and parameter configuration in Theorem D.1, it holds:

∆n(ŝ, s
◦) ≲ E{xi,yi}n

i=1

[
R̂m(ŝ)

]
+ log

1

t0

(
RT exp

(
−C2R

2
T
)
+

1

n
logN

)
+ 7ϵc.

E.2 PROOF OF THEOREM 3.2

Proof of Theorem 3.2. For simplicity, we use κ = 1/t0 for the case in Theorem 3.1 and κ =
log(1/t0) for the case in Theorem D.1. The proof proceeds through the following three steps.

• Step A: Decompose the mixed risk.
We denote the ground truth by s◦(x, y, t) = ∇ log pt(x|y). Moreover, if y = ∅ we set
s◦(x, y, t) = ∇ log pt(x).

Recall Definition E.3 and Lemma E.4. By introducing a different set of i.i.d. samples
{x′i, y′i}ni=1 from the initial data distribution P0(x, y) independent of the training samples,
we rewrite the mixed risk:

Rm(ŝ) = E{x′
i,y

′
i}n

i=1

[
1

n

n∑
i=1

(ℓ(x′i, y
′
i, ŝ)− ℓ(x′i, y

′
i, s

◦))

]
= E{x′

i,y
′
i}n

i=1

[
R̂′

m(ŝ)
]
,

where we use R̂′
m(ŝ) to denote the empirical risk of the score estimator ŝ trained from the

i.i.d samples {x′i, y′i}ni=1 .

This allows us to do the decomposition of E{xi,yi}n
i=1

[Rm(ŝ)] as follows.

E{xi,yi}n
i=1

[Rm(ŝ)] = E{xi,yi}n
i=1

[
E{x′

i,y
′
i}n

i=1

[
R̂′

m(ŝ)− R̂′ trunc
m (ŝ)

]]
︸ ︷︷ ︸

(I)

+ E{xi,yi}n
i=1

[
E{x′

i,y
′
i}n

i=1

[
R̂′ trunc

m (ŝ)− R̂trunc
m (ŝ)

]]
︸ ︷︷ ︸

(II)

+ E{xi,yi}n
i=1

[
R̂trunc

m (ŝ)− R̂m(ŝ)
]

︸ ︷︷ ︸
(III)

+E{xi,yi}n
i=1

[
R̂m(ŝ)

]
︸ ︷︷ ︸

(IV)

• Step B: Derive the Upper Bound.

– Step B.1: Bound Each Term.

* By Lemma E.1, we have both (I), (III) ≲ κ exp
(
−C2R

2
T
)
RT .

* By Lemma E.4, we have (II) ≲ (IV) + κ
(
RT exp

(
−C2R

2
T
)
+ 1

n logN
)
+ 7ϵc,

41



2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267

Under review as a DeLTa Workshop Paper at ICLR 2025

* By the following, we have (IV)≤ minsW∈T h,s,r
R

Rm(s).

(IV) = E{zi}n
i=1

[
R̂(ŝ)

]
≤ E{zi}n

i=1

[
R̂m(s)

]
= Rm(s).

The inequality holds because ŝ is the minimizer of the empirical risk.
– Step B.2: Combine (I), (II), (III), (IV).

Combining these results we obtain

E{xi,yi}n
i=1

[Rm(ŝ)] ≤ 2 min
sW∈T h,s,r

R

∫ T

t0

1

T − t0
Ext,y,τ

[
∥s(xt, τy, t)−∇ log pt(xt|τy)∥22

]
dt

+O
(κ
n
logN

)
+O(exp

(
−C2R

2
T
)
κ) +O (ϵc) . (E.5)

By taking RT =
√

(Cσ+2β) logN
C2(dx+dy)

we have

E{xi,yi}n
i=1

[Rm(ŝ)] ≤ 2 min
s∈T h,s,r

R

∫ T

t0

1

T − t0
Eτ,xt,y

[
∥s(x, τy, t)−∇ log pt(x|y)∥22

]
dt

O
(κ
n
logN

)
+O

(
N

− 2β
dx+dy

)
+O (ϵc) . (E.6)

where we use κ ≲ 1
t0

= NCσ by Lemma E.1 to obtain the third term on the RHS.

Step C: Altogether.
To apply the previous approximation theorems (Theorem 3.1 and Theorem D.1) to the first
term on the RHS of (E.5), we rewrite the expectation as

Ext,y,τ

[
∥s(xt, τy, t)−∇ log pt(xt|τy)∥22

]
(E.7)

=
1

2

∫
Rdx

∥s(x, ∅, t)−∇ log pt(x|y)∥22pt(x)dx+
1

2
Ey

[∫
Rdx

∥s(x, y, t)−∇ log pt(x|y)∥22pt(x|y)dx
]
.

Since the marginal distribution pt(x) also satisfies the subgaussian property, the previous
result of the conditional score estimation applies to its unconditional counterpart by removing
the label throughout the whole process.

– Step C.1: Result under generic Assumption 3.1.
By Theorem 3.1, we rewrite (E.6) as

E{zi}n
i=1

[Rm(ŝ)] ≲ O
(
N

− β
dx+dy (logN)dx+

β
2 +1
)

︸ ︷︷ ︸
(i)

+O
(
N

− 2β
dx+dy

)
︸ ︷︷ ︸

(ii)

+O
(κ
n
logN

)
︸ ︷︷ ︸

(iii)

+O (ϵc)︸ ︷︷ ︸
(iv)

.

Moreover, from Lemma E.1 we have κ = O(1/t0) and from Lemma E.3 we have

logN (ϵc,S(RT ), ∥·∥∞) ≲
log n

ϵ2c
N

68β
dx+dy

+104Cσ (logN)12dx+12β+2(RT )
2

:=
log n

ϵ2c
Nν1(logN)ν2(RT )

2,

where ν1 = 68β/(dx + dy) + 104Cσ and ν2 = 12dx + 12β + 2.

By taking N = n
dx+dy

(dx+dy+β) and ϵc = N
− 2β

(dx+dy) , we have error:

* (i) = O
(
(log n)dx+

β
2 +1n

− β
(dx+dy+β)

)
.

* (ii) = O
(
n
− 2β

(dx+dy+β)

)
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* (iii) = O

κn−1 · n
4β

dx+dy+β︸ ︷︷ ︸
ϵ−2
c

·(log n) · n
ν1(dx+dy)

dx+dy+β︸ ︷︷ ︸
Nν1

· (log n)ν2︸ ︷︷ ︸
(logN)ν2

· (log n)︸ ︷︷ ︸
R2

T

 with κ =

1/t0.
Rearranging the expression, we have (iii) =

O
(

1
t0
n
− (1−ν1)(dx+dy)−3β

dx+dy+β (log n)ν2+2

)
* (iv) = O

(
n
− 2β

dx+dy+β

)
We take the mixture of (i) and (iii) as the final error bound:

E{xi,yi}n
i=1

[R(ŝ)] = O
(

1

t0
n
−min (β,(1−ν1)(dx+dy)−3β)

(dx+dy+β) (log n)ν2+2

)
.

– Step C.2: Result under stronger Assumption 3.1.
With Theorem D.1, we further write (E.6) as

E{zi}n
i=1

[Rm(ŝ)] ≲ O
(
N

− 2β
dx+dy (logN)β+1

)
︸ ︷︷ ︸

(i)

+O
(
N

− 2β
dx+dy

)
︸ ︷︷ ︸

(ii)

+O
(κ
n
logN

)
︸ ︷︷ ︸

((iii)

+O (ϵc)︸ ︷︷ ︸
(iv)

.

Moreover, by Lemma E.1 we have κ = O(log 1
t0
), and by Lemma E.3 we have:

logN (ϵc,S(RT ), ∥·∥∞) ≲
log n

ϵ2c
Nν3(logN)10(RT )

2.

where ν3 = 4(12βdx+31βd+6β)
d(dx+dy)

+ 12(12Cαdx+25Cα·d+6Cα)
d + 72Cσ .

By taking N = n
(dx+dy)

(dx+dy+2β) and ϵc = N
− 2β

(dx+dy) , we have error:

* (i) = O
(
(log n)β+1n

− 2β
(dx+dy+2β)

)
.

* (ii) = O
(
n
− 2β

(dx+dy+2β )
)

.

* (iii) = O

κn−1 n
4β

dx+dy+2β︸ ︷︷ ︸
ϵ−2
c

·(log n) · n
ν3(dx+dy)

(dx+dy+2β)︸ ︷︷ ︸
Nν3

(log n)10 (log n)︸ ︷︷ ︸
R2

T

 with κ =

log (1/t0).
Rearranging the expression we have (iii) =

O
(
log 1

t0
n
− (1−ν3)(dx+dy)−2β

dx+dy+2β (log n)12
)

.

* (iv) = O
(
n
− 2β

dx+dy+2β

)
.

We take the mixture of (i) and (iii) as the final error bound:

E{xi,yi}n
i=1

[R(ŝ)] = O
(
log

1

t0
n
−min (2β,(1−ν3)(dx+dy)−2β)

(dx+dy+2β) (log n)max(12,β+1)

)
.

This completes the proof.
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