
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a DeLTa Workshop Paper at ICLR 2025

STATISTICAL FOUNDATIONS OF CONDITIONAL DIFFU-
SION TRANSFORMERS

Anonymous authors
Paper under double-blind review

ABSTRACT

We explore the statistical foundations of conditional diffusion transformers (DiTs)
with classifier-free guidance. Through a comprehensive analysis of “in-context”
conditional DiTs under four data assumptions, we demonstrate that both conditional
DiTs and their latent variants achieve minimax optimality for unconditional DiTs.
By discretizing input domains into infinitesimal grids and performing term-by-term
Taylor expansions on the conditional score function, we enable leveraging trans-
formers’ universal approximation capabilities through detailed piecewise constant
approximations, resulting in tighter bounds. Extending our analysis to the latent
setting under a linear latent subspace assumption, we show that latent conditional
DiTs achieve lower bounds than their counterparts in both approximation and
estimation. We also establish the minimax optimality of latent unconditional DiTs.
Our findings provide statistical limits for conditional and unconditional DiTs and
offer practical guidance for developing more efficient and accurate models.

1 INTRODUCTION
We investigate the approximation and estimation rates of conditional diffusion transformers (DiTs)
with classifier-free guidance. Specifically, we derive score approximation, score estimation, and
distribution estimation guarantees for both conditional DiTs and their latent variants under various
data conditions. We also demonstrate that both conditional DiTs and their latent variants lead to
the minimax optimality of unconditional DiTs under identified settings. This analysis is not only
practical but also timely. Transformer-based conditional diffusion models are leading advancements
in generative AI due to their success as scalable and flexible frameworks for image (Wu et al., 2024)
and video generation (Saharia et al., 2022). But our knowledge of the theory behind conditional DiTs
is still limited. While Hu et al. (2024b) analyze approximation and estimation rates using transformer
universality, their results are not tight and only focus on unconditional diffusion. Meanwhile, existing
theoretical studies on conditional diffusion models have primarily examined ReLU networks (Fu
et al., 2024a), model-free settings (Ye et al., 2024), or generative sampling processes (Dinh et al.,
2023), without addressing transformer architectures. This work fills the gap by examining the
statistical boundaries of conditional DiTs.

In this work, we provide a thorough analysis of conditional DiT and its latent variant under four
standard data assumptions and establish their minimax optimality through tight distribution estimation
bounds. Our approach employs two key techniques: discretizing input domains into infinitesimal grids
and performing term-by-term Taylor expansions of the conditional diffusion score function under
Hölder smoothness assumptions, motivated by the local diffused polynomial analysis (Fu et al., 2024a;
Oko et al., 2023). These methods leverage the regularity of the score function, enabling efficient use
of transformers’ universal approximation capabilities through detailed piecewise approximations.
Consequently, we achieve tighter bounds. We summarize the theoretical results in Table 1.

2 BACKGROUNDS AND PRELIMINARIES

Conditional Diffusion Model. The forward process adds noise to data x0 given condition y,
resulting in a noisy distribution Pt(xt|y) ∼ N(αtx0, σ

2
t Idx

). The backward process reverses this
using the score function ∇ log pt(·|y).

Classifier-Free Guidance. This method approximates conditional and unconditional score func-
tions using a neural network sW . The loss function is:

ℓ(x0, y; sW) =

∫ T

t0

1

T − t0
Ext∼N(αtx0,σ2

t Idx)

[
∥sW (xt, τy, t)−∇xt log ϕt (xt|x0)∥

2
2

]
dt,

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a DeLTa Workshop Paper at ICLR 2025

Table 1: Summary of Theoretical Results. The initial data is dx-dimensional, and the condition is dy-
dimensional. For latent DiT, the latent variable is d0-dimensional. σ2

t = 1− e−t is the denoising scheduler. The
sample size is n, and 0 < ϵ < 1 represents the score approximation error. While we report asymptotics for large
dx, d0, we reintroduce the n dependence in the estimation results to emphasize sample complexity convergence.

Assumption Score
Approximation

Score
Estimation

Dist. Estimation
(Total Variation)

Minimax
Optimality

Generic Hölder Smooth O
((

log
(
1
ϵ

))dx
/σ4

t

)
n−o(1/dx) · (log n)O(dx) n−o(1/dx) · (log n)O(dx) é

Stronger Hölder Smooth (
log
(
1
ϵ

))O(1)
/σ2

t n−o(1) · (log n)O(1)
n−o(1) · (log n)O(1) Ë

Latent Subspace + Generic
Hölder Smooth O

((
log
(
1
ϵ

))d0
/σ4

t

)
n−o(1/d0) · (log n)O(d0) n−o(1/d0) · (log n)O(d0) é

Latent Subspace + Stronger
Hölder Smooth

(
log
(
1
ϵ

))O(1)
/σ2

t n−o(1) · (log n)O(1)
n−o(1) · (log n)O(1) Ë

R(·)

Reshape Layer

Embed

Concat fT ∈ T h,s,r

Transformer Network

R−1(·)

Reversed
Reshape Layer

x ∈ Rdx

Label y
Timestep t

Rd×L

Rd×2

Rd×(L+2) RdxRd×(L+2) Rd×L

Figure 1: Conditional DiT Network Architecture. The architecture includes a reshape layer R, its reverse
R−1, and embedding layers for label y and timestep t. The model concatenates the embeddings with input
sequences and processes them through a transformer network fT .

where τ denotes the conditional or unconditional version. The empirical loss is L̂(sW) =
1
n

∑n
i=1 ℓ(x0,i, yi; sW).

Conditional Diffusion Transformer Networks. We use a transformer network as a score estimator
sW , following notation from (Hu et al., 2024b). The transformer block consists of self-attention and
feed-forward layers. The self-attention layer is defined as:

f (SA) (Z) = Z +

h∑
i=1

W i
O(W

i
V Z) Softmax

[
(W i

KZ)
⊤(W i

QZ)
]
, (2.1)

where W i
V ,W

i
K ,W

i
Q ∈ Rs×d and W i

O ∈ Rd×s are weight matrices. The feed-forward layer is:

f (FF)(Z) = Z +W2ReLU(W1Z + b1) + b2, (2.2)

where W (1) ∈ Rr×d, W (2) ∈ Rd×r, b(1) ∈ Rr, and b(2) ∈ Rd are weights and biases.

Definition 2.1 (Transformer Block and Network Function Class). We define a transformer block of
h-head, s-hidden dimension, r-feedforward dimension, with positional encoding E ∈ Rd×L as the
function:

fh,s,r (Z) := f (FF)
(
f (SA) (Z + E)

)
: Rd×L 7→ Rd×L.

The transformer network function class T h,s,r consists of all functions that are compositions of one
or more such transformer blocks. Formally,

T h,s,r :=
{
τ : Rd×L 7→ Rd×L | τ = fh,s,r ◦ · · · ◦ fh,s,r

}
.

Conditional Diffusion Transformer (DiT). We consider a transformer network f in the class T h,s,r,
and we take an input data point (x, y, t) in Rdx×Rdy×[t0, T]. We adopt the “in-context conditioning”
approach for conditional DiT networks as described in (Peebles & Xie, 2023) and shown in Figure 1.
We reshape a vector input x ∈ Rdx into a sequential matrix input format Z ∈ Rd×L, where dx = d ·L.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a DeLTa Workshop Paper at ICLR 2025

Definition 2.2 (DiT Reshape Layer R(·)). Let R(·) : Rdx → Rd×L reshape a dx-dimensional input
into a d × L matrix. For an image input with dx = i × i, it transforms the input into a sequence
representation where feature dimension d = p2 and sequence length L = (i/p)

2. The reverse reshape
(flatten) layer is defined as R−1(·) : Rd×L → Rdx .

3 STATISTICAL LIMITS OF CONDITIONAL DITS
We first introduce the definition of Hölder space and Hölder ball following (Fu et al., 2024b).

Definition 3.1 (Hölder Space). Let α ∈ Zd
+ and β = k1 + γ with k1 = ⌊β⌋, γ ∈ [0, 1). The Hölder

space Hβ(Rd) consists of all α-differentiable functions f : Rd → R with finite Hölder norm:

∥f∥Hβ(Rd) := max
∥α∥1≤k1

sup
x

|∂αf(x)|+ max
∥α∥1=k1

sup
x̸=x′

|∂αf(x)− ∂αf(x′)|
∥x− x′∥γ∞

.

The Hölder ball of radius B is define as Hβ(Rd, B) :=
{
f : ∥f∥Hβ(Rd) < B

}
.

Let x0 ∈ Rdx denote the initial data, and y ∈ [0, 1]dy the conditional label. With Definition 3.1, we
state the generic and stronger Hölder assumption on the conditional distribution of initial data x0.

Assumption 3.1 (Hölder Smooth Data). The conditional density function p0(x0|y) is defined on the
domain Rdx × [0, 1]dy and belongs to Hölder ball of radius B > 0 for Hölder index β > 0, denoted
by p0(x0|y) ∈ Hβ(Rdx × [0, 1]dy , B). We consider two cases:

- (Generic) For any y ∈ [0, 1]dy , there exist positive constants C1, C2 such that p0(x0|y) ≤
C1 exp

(
−C2∥x0∥22/2

)
.

- (Stronger) Given a constant radius B, positive constants C and C2, we assume p(x0|y) =

exp
(
−C2∥x0∥22/2

)
· f(x0, y) where f ∈ Hβ(Rdx × [0, 1]dy , B) and f(x0, y) ≥ C for all

(x0, y) ∈ Rdx × [0, 1]dy .

We state our main result of score approximation using transformers under Assumption 3.1 as follows:

Theorem 3.1 (Conditional Score Approximation under Assumption 3.1). For any precision parameter
0 < ϵ < 1 and smoothness parameter β > 0, let ϵ ≤ O(N−β) for some N ∈ N. For some
positive constants Cα, Cσ > 0, for any y ∈ [0, 1]dy and t ∈ [N−Cσ , Cα logN], there exists a
Tscore(x, y, t) ∈ T h,s,r

R such that:∫
Rdx

∥Tscore(x, y, t)−∇ log pt(x|y)∥22 pt(x|y) dx = O

(
B2

σζ
t

·N−ω · (logN)ϕ

)
,

where the parameters ζ, ω, and ϕ are defined as follows:

- (Generic) ζ = 4, ω = β
dx+dy

, and ϕ = dx + β
2 + 1.

- (Stronger) ζ = 2, ω = 2β
dx+dy

, and ϕ = β + 1.

Building on our approximation results from Theorem 3.1, next we evaluate the performance of the
score estimator ŝ trained with finite samples by optimizing the empirical loss. To quantify this, we
introduce the notion of score estimation risk and characterize its upper bound.

Definition 3.2 (Conditional Score Risk). Given a score estimator ŝ, we define the risk as:

R(ŝ) :=

∫ T

t0

1

T − t0
Ext,y

[
∥ŝ(xt, y, t)−∇ log pt(xt|y)∥22

]
dt.

Theorem 3.2 (Conditional Score Estimation with Transformer). Consider y ∈ [0, 1]dy and t ∈ [t0, T]
with t0 = N−Cσ and T = Cα logN , where Cσ, Cα are positive constants such that t0 < 1 holds.

• Assume dx = Ω
(√

logN
log logN

)
and generic Assumption 3.1. By taking N = n

dx+dy
dx+dy+β , it holds

E{xi,yi}n
i=1

[R(ŝ)] = O
(

1

t0
n
−min (β,(1−ν1)(dx+dy)−3β)

(dx+dy+β) (log n)ν2+2

)
.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a DeLTa Workshop Paper at ICLR 2025

W⊤
U

Latent
Encoder

WU

Latent
Decoder

R̃(·)

Reshape Layer

Embed

Concat gT ∈ T h,s,r

Transformer Network

R̃−1(·)

Reversed
Reshape Layer

⊕
x ∈ Rdx x ∈ Rd0

Label y
Timestep t

Rd̃×L̃

Rd̃×2 Rd̃×(L̃+2) Rd0 RdxRd×(L̃+2) Rd̃×L̃

−1/σ2
t

sW

Figure 2: Network Architecture of Latent Conditional DiT. The overall architecture consists of linear layer
of encoder and decoder, reshaping layer R̃(·) and R̃−1(·), embedding layer for label y and timestep t. The
embedding concatenates with input sequences and processes by the adapted transformer network.

where ν1 = 68β/(dx + dy) + 104Cσ and ν2 = 12dx + 12β + 2.

• Under stronger Assumption 3.1. For all x ∈ Rdx , by taking N = n
dx+dy

dx+dy+2β , it holds

E{xi,yi}n
i=1

[R(ŝ)] = O
(
log

1

t0
n
−min (2β,(1−ν3)(dx+dy)−2β)

(dx+dy+2β) (log n)max(12,β+1)

)
.

where ν3 = 4(12βdx + 31βd+ 6β)/d(dx + dy) + 12Cα(12dx + 25d+ 6)/d+ 72Cσ .

Theorem 3.2 provides a straightforward basis for deriving the distribution estimation theorem pre-
sented in Table 1. Furthermore, we show the minimax optimality of the unconditional DiT archi-
tecture under stronger Assumption 3.1. Specifically, we obtain the distribution estimation error
of unconditional DiTs by removing the condition y and let dy = 0. With the condition dx =

o
(√

log n/ log log n
)

, then the distribution estimation error becomes Õ(n−
min(β,(1−ν3)(dx+dy)/2−β)

dx+2β).
Unconditional DiT is the minimax optimal distribution estimator under (1−ν3)(dx+dy)/2−β > β.

4 LATENT CONDITIONAL DITS

This section builds on Section 3 by exploring latent conditional DiTs. We consider raw data x ∈ Rdx

residing in a low-dimensional subspace under Assumption 4.1, represented by latent variables
h ∈ Rd0 with d0 ≤ dx. Adapting the approach from Peebles & Xie (2023), we employ a transformer
network to approximate score functions on these latents (see Figure 2). The network includes a
reshape layer converting vector inputs h into matrix form H ∈ Rd̃×L̃, with reshaping operations R̃
and its inverse, under constraints d0 ≤ dx, d̃ ≤ d, and L̃ ≤ L. Linear transformations W⊤

U and WU

encode raw data x into latents h such that x = Uh, satisfying the conditions of Assumption 4.1.

Assumption 4.1 (Low-Dimensional Linear Latent Space). The data x can be represented through a
latent variable h ∈ Rd0 such that x = Uh, where U ∈ Rdx×d0 is a matrix with orthonormal columns.
The latent variable h follows a distribution Ph characterized by the density function ph.

The approximation and estimation results closely follows Theorem 3.1, with differences highlighted
in low-dimensional data subspace assumption and Hölder smoothness on latent representation. We
arrive the results by replacing the input dimension d, L to d̃ and L̃, and the input dimension dx with
d0 in Theorem 3.1, and under the the β0-Hölder smoothness assumption.

5 DISCUSSION AND CONCLUSION

We examine the approximation and estimation rates of conditional DiT and its latent setting within
the “in-context” framework introduced by Peebles & Xie (2023), and conduct a comprehensive
analysis under various common data conditions. Notably, we establish the minimax optimality of
unconditional DiTs’ estimation by reducing our analysis from conditional to unconditional settings.
Our approach employs a refined score decomposition scheme that enhances transformers’ universal
approximation compared to earlier methods derived from the universal approximation results in (Yun
et al., 2020) by Hu et al. (2024b).

BOARDER IMPACT

This theoretical work explores the foundational aspects of generative diffusion models and is antici-
pated to have no adverse societal effects.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a DeLTa Workshop Paper at ICLR 2025

REFERENCES

Anh-Dung Dinh, Daochang Liu, and Chang Xu. Rethinking conditional diffusion sampling with
progressive guidance. Advances in Neural Information Processing Systems, 36, 2023.

Benjamin L Edelman, Surbhi Goel, Sham Kakade, and Cyril Zhang. Inductive biases and variable
creation in self-attention mechanisms. In International Conference on Machine Learning (ICML),
pp. 5793–5831. PMLR, 2022.

Hengyu Fu, Zehao Dou, Jiawei Guo, Mengdi Wang, and Minshuo Chen. Diffusion transformer
captures spatial-temporal dependencies: A theory for gaussian process data. arXiv preprint
arXiv:2407.16134, 2024a.

Hengyu Fu, Zhuoran Yang, Mengdi Wang, and Minshuo Chen. Unveil conditional diffusion models
with classifier-free guidance: A sharp statistical theory. arXiv preprint arXiv:2403.11968, 2024b.

Jerry Yao-Chieh Hu, Wei-Po Wang, Ammar Gilani, Chenyang Li, Zhao Song, and Han Liu. Funda-
mental limits of prompt tuning transformers: Universality, capacity and efficiency. arXiv preprint
arXiv:2411.16525, 2024a.

Jerry Yao-Chieh Hu, Weimin Wu, Zhuoru Li, Sophia Pi, , Zhao Song, and Han Liu. On statistical rates
and provably efficient criteria of latent diffusion transformers (dits). In Thirty-eighth Conference
on Neural Information Processing Systems (NeurIPS), 2024b.

Tokio Kajitsuka and Issei Sato. Are transformers with one layer self-attention using low-rank
weight matrices universal approximators? In The Twelfth International Conference on Learning
Representations (ICLR), 2024.

Kazusato Oko, Shunta Akiyama, and Taiji Suzuki. Diffusion models are minimax optimal distribution
estimators. In International Conference on Machine Learning, pp. 26517–26582. PMLR, 2023.

William Peebles and Saining Xie. Scalable diffusion models with transformers. In Proceedings of
the IEEE/CVF International Conference on Computer Vision (ICCV), pp. 4195–4205, 2023.

Chitwan Saharia, William Chan, Saurabh Saxena, Lala Li, Jay Whang, Emily L Denton, Kamyar
Ghasemipour, Raphael Gontijo Lopes, Burcu Karagol Ayan, Tim Salimans, et al. Photorealistic
text-to-image diffusion models with deep language understanding. Advances in neural information
processing systems, 35:36479–36494, 2022.

Johannes Schmidt-Hieber. Nonparametric regression using deep neural networks with relu activation
function. The Annals of Statistics, 2020, 2020.

Matus Telgarsky. Neural networks and rational functions. In International Conference on Machine
Learning, pp. 3387–3393. PMLR, 2017.

Pascal Vincent. A connection between score matching and denoising autoencoders. Neural computa-
tion, 23(7):1661–1674, 2011.

Junde Wu, Wei Ji, Huazhu Fu, Min Xu, Yueming Jin, and Yanwu Xu. Medsegdiff-v2: Diffusion-based
medical image segmentation with transformer. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 38, pp. 6030–6038, 2024.

Haotian Ye, Haowei Lin, Jiaqi Han, Minkai Xu, Sheng Liu, Yitao Liang, Jianzhu Ma, James Zou,
and Stefano Ermon. Tfg: Unified training-free guidance for diffusion models. arXiv preprint
arXiv:2409.15761, 2024.

Chulhee Yun, Srinadh Bhojanapalli, Ankit Singh Rawat, Sashank Reddi, and Sanjiv Kumar. Are trans-
formers universal approximators of sequence-to-sequence functions? In International Conference
on Learning Representations (ICLR), 2020.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a DeLTa Workshop Paper at ICLR 2025

Appendix

A Notation 7

B Universal Approximation of Transformers 8
B.1 Transformers as Universal Approximators . 8
B.2 Parameter Norm Bounds for Transformer Approximation 8

C Proof of Theorem 3.1 under Generic Assumption 10
C.1 Auxiliary Lemmas . 10
C.2 Main Proof of Theorem 3.1 under Generic Assumption 22

D Proof of Theorem 3.1 under Stronger Assumption 26
D.1 Auxiliary Lemmas . 26
D.2 Main Proof of Theorem 3.1 under Stronger Assumption 36

E Proof of Theorem 3.2 38
E.1 Auxiliary Lemmas for Theorem 3.2 . 38
E.2 Proof of Theorem 3.2 . 41

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a DeLTa Workshop Paper at ICLR 2025

A NOTATION

The index set {1, ..., I} is denoted by [I], where I ∈ N+. We denote (column) vectors by lower case
letters, and matrices by upper case letters. Let a[i] denote the i-th component of vector a. Let Aij

denotes the (i, j)-th entry of matrix A. ∥x∥, ∥x∥1 and ∥x∥∞ denote the Euclidean norm, 1-norm, and
infinite norm. ∥W∥2 and ∥W∥F denote the spectral norm and Frobenius norm, and ∥W∥p,q denotes
the (p, q)-norm where p-norm is over columns and q-norm is over rows. We summarize our notations
in the following table for easy reference.

Table 2: Mathematical Notations and Symbols

Symbol Description

[I] The index set {1, ..., I}, where I ∈ N+

a[i] The i-th component of vector a
Aij The (i, j)-th entry of matrix A
∥x∥ Euclidean norm of vector x
∥x∥1 1-norm of vector x
∥x∥2 2-norm of vector x
∥x∥∞ Infinite norm of vector x
∥W∥2 Spectral norm of matrix W
∥W∥F Frobenius norm of matrix W
∥W∥p,q (p, q)-norm of matrix W , where p-norm is over columns and q-norm is over rows
∥f(x)∥L2 L2-norm, where f is a function
∥f(x)∥L2(P) L2(P)-norm, where f is a function and P is a distribution
∥f(·)∥Lip Lipschitz-norm, where f is a function

dp(f, g) p-norm of the difference between functions f and g defined as dp(f, g) =
(∫

|f(x)− g(x)|p dx
)1/p

f♯P Pushforward measure, where f is a function and P is a distribution
KL(P,Q) Kullback-Leibler (KL) divergence between distributions P and Q
TV(P,Q) Total variation (TV) distance between distributions P and Q
N(µ, σ2) Normal distribution with mean µ and variance σ2

a ≲ b There exist constants C > 0 such that a ≤ Cb

n Sample size
x Data point in original data space, x ∈ Rdx

y Conditioning Label, x ∈ Rdy

h Latent variable in low-dimensional subspace, h ∈ Rd0

h h = U⊤x
ph The density function of h
U The matrix with orthonormal columns to transform h to x, where U ∈ Rd×d0

B Radius of Hölder ball for conditional density function p(x|y)
B0 Radius of Hölder ball for latent conditional density function p(h|y)
β Hölder index for conditional density function p(x|y)
β0 Hölder index for latent conditional density function p(h|y)
D Granularity in the construction of the transformer universal approximation
N Resolution of the discretization of the input domain
R Score risk (expectation of squared ℓ2 difference between score estimator and ground truth)
N (ϵ,F , ∥·∥) Covering number of collection F
T Stopping time in the forward process of diffusion model
t0 Stopping time in the backward process of diffusion model
µ Discretized step size in backward process
pt(·) The density function of x at time t
pht (·) The density function of h at time t
ψ (Conditional) Gaussian density function

T h,s,r Transformer network function class
fh,s,r Transformer block of h-head, s-hidden size, r-MLP dimension
d Input dimension of each token in the transformer network of DiT
L Token length in the transformer network of DiT
d̃ Latent data input dimension of each token in the transformer network of DiT
L̃ Latent data token length in the transformer network of DiT
X Sequence input of transformer network in DiT, where X ∈ Rd×L

H Sequence latent data input of transformer network in DiT, where X ∈ Rd×L

E Position encoding, where E ∈ Rd×L

R(·) Reshape layer in DiT, R(·) : Rdx → Rd×L

R̃(·) Reshape layer in DiT, R̃(·) : Rd0 → Rd̃×L̃

R−1(·) Reverse reshape layer in DiT, R−1(·) : Rd×L → Rdx

R̃−1(·) Reverse reshape layer in DiT, R̃−1(·) : Rd̃×L̃ → Rd0

WU The orthonormal matrix to approximate U , where WU ∈ Rdx×d0

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a DeLTa Workshop Paper at ICLR 2025

B UNIVERSAL APPROXIMATION OF TRANSFORMERS

In this section, we discuss the universal approximation theory of transformers.

In Appendix B.1, we present the universal approximation results of transformers for score approxi-
mation. We emphasize that most of the material in Appendix B.1 is not original and is drawn from
(Hu et al., 2024a; Kajitsuka & Sato, 2024; Yun et al., 2020).

In Appendix B.2, we compute the parameter norm bounds of the transformers used for score
approximation. These bounds are crucial for calculating the covering number of the transformers and
are essential for score and distribution estimation.

B.1 TRANSFORMERS AS UNIVERSAL APPROXIMATORS

Theorem B.1 (Transformers with 1-Layer Self-Attention are Universal Approximators, Modified
from Proposition 1 of (Kajitsuka & Sato, 2024)). Let 0 ≤ p <∞ and f (FF), f (SA) be feed-forward
neural network layers and a single-head self-attention layer with softmax function respectively. Then,
for any permutation equivariant, continuous function f with compact support and ϵ > 0, there exists
f ′ ∈ T h,s,r

R such that dp(f, f ′) < ϵ holds

Lastly, we provide the next corollary stating that the required transformer configuration (h, s, r) for
universal approximation.

Corollary B.1.1 (Universal Approximation of Transformers). From Theorem B.1, for any permu-
tation equivariant, continuous function f with compact support and ϵ > 0, a transformer network
f ′ ∈ T 1,1,4

R with MLP dimension (width) r = 4 and = O((1/ϵ)dL) FFN layers is sufficient to
approximate f such that dp(f, f ′) < ϵ.

Remark B.1. We remark that T 1,1,4
R belongs to the considered transformer network function class

Definition 2.1.

We establish in Corollary B.1.1 the minimal transformer configuration required to achieve universal
approximation for compactly supported functions. We remark that this configuration is minimally
sufficient but not necessary. More complex configurations can also achieve transformer universality,
as reported in (Hu et al., 2024b; Kajitsuka & Sato, 2024; Yun et al., 2020).

Throughout this paper, unless otherwise specified, we use the transformer class T 1,1,4
R to construct

score function approximations.

B.2 PARAMETER NORM BOUNDS FOR TRANSFORMER APPROXIMATION

In the analysis of the approximation ability of transformers in (Kajitsuka & Sato, 2024), universal
approximation is ensured by using a sufficiently large granularity D, a sufficiently small δ in f (FF)

1 ,
and an appropriate scaling factor R in f (FF)

2 . Here, we provide a detailed discussion on parameter
bounds for matrices in T h,r,s

R , focusing on the choice of granularity and scaling factor.

Lemma B.1 (Order of Granularity and Scaling Factor). Consider the universal approximation
theorem for transformers in Theorem B.1. The order for the granularity and the scaling factor
follows D = O(ϵ−1/d) and R = O(D), and the parameter δ for the first feed-forward layer follows
δ = o(D−1).

Building upon Lemma B.1, we extend the results to derive explicit parameter bounds for matrices
regarding the transformer-based universal approximation framework. That is, we ensure a more
precise quantification of parameter constraints across the architecture.

Lemma B.2 (Transformer Matrices Bounds). Consider an input sequence Z ∈ [0, 1]d×L. Let
f(Z) : [0, 1]d×L → Rd×L be any permutation equivariant and continuous sequence-to-sequence
function on compact support [0, 1]d×L. For the transformer network f ′ ∈ T r,h,s

R to approximate
f within ϵ precision, i.e., dp(f, f ′) < ϵ, the following parameter bounds must hold for d ≥ 1 and

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a DeLTa Workshop Paper at ICLR 2025

L ≥ 2:

∥WQ∥2 = ∥WK∥2 = O(d · ϵ−(2dL+1
d))(logL)

1
2);

∥WQ∥2,∞ = ∥WK∥2,∞ = O(d
3
2 · ϵ−(2dL+1

d)(logL)
1
2);

∥WO∥2 = O
(√

dϵ
1
d

)
; ∥WO∥2,∞ = O

(
ϵ

1
d

)
;

∥WV ∥2 = O(
√
d); ∥WV ∥2,∞ = O(d);

∥W1∥2 = O
(
dϵ−

1
d

)
, ∥W1∥2,∞ = O

(√
dϵ−

1
d

)
;

∥W2∥2 = O
(
dϵ−

1
d

)
; ∥W2∥2,∞ = O

(√
dϵ−

1
d

)
;∥∥E⊤∥∥

2,∞ = O
(
d

1
2L

3
2

)
.

For the case L = 1, the parameter bounds remain valid with the substitution of logL with 1.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a DeLTa Workshop Paper at ICLR 2025

C PROOF OF THEOREM 3.1 UNDER GENERIC ASSUMPTION

Our proof builds on the local smoothness properties of functions within Hölder spaces and the
universal approximation of transformers. While the universal approximation theory of transformers
ensures arbitrarily small errors, it does not account for the smoothness of functions in the result. To
incorporate the smoothness assumptions of interest, we propose the following three steps to integrate
function smoothness into approximation theory of transformer architectures.

• Step 1. Consider the integral form of pt(xt|y) in (C.1). We clip the input domain Rdx into
closed and bounded region Bx,N . This facilitates the error analysis for the Taylor expansion
approximation in the next step. The clipping error arises from the integral over the region
outside Bx,N . We specify the clipping error in Lemma C.1.

pt(xt|y) =
∫
Rdx

dx0

σdx
t (2π)dx/2

· p0(x0|y)︸ ︷︷ ︸
≈k1-order Taylor polynomial

· exp

(
−∥αtx0 − xt∥2

2σ2
t

)
︸ ︷︷ ︸

≈k2-order Taylor polynomial

. (C.1)

• Step 2. We employ k1-order and k2-order Taylor expansion for p(x0|y) and exp(·) in
(C.1). We construct the diffused local polynomial in Lemma C.2 based on the Taylor
expansion. We approximate pt and ∇pt with the diffused local polynomial f1(x, y, t) ∈ R
and f2(x, y, t) ∈ Rdx in Lemma C.3 and Lemma C.4.

• Step 3. We approximate f1(x, y, t), f2(x, y, t) with transformers in Lemmas C.5 and C.6.
To construct the final score approximator with the transformer, we approximate necessary
algebraic operators in Lemmas C.7 to C.11. We provide the output bound of our transformer
model in Lemma C.12. We combine all components into Lemma C.13, and complete the
proof of Theorem 3.1.

Noe that the proof under latent subspace assumption in Table 1 closely follows the proof in this
section , with the input dimension d, L to d̃ and L̃, and the input dimension dx with d0 in Theorem 3.1,
and consider under the β0-Hölder smoothness assumption on latent data.

Organization. Appendix C.1 includes details regarding the three steps with auxiliary lemmas for
supporting our proof. Appendix C.2 includes the main proof of Theorem 3.1.

C.1 AUXILIARY LEMMAS

Step 1: Clip Rdx × [0, 1]dy for pt(x|y). We introduce a helper lemma on the clipping integral.

Lemma C.1 (Approximating Clipped Multi-Index Gaussian Integral, Lemma A.8 of (Fu et al.,
2024b)). Under generic Assumption 3.1. Consider any integer vector κ ∈ Zdx

+ with ∥κ∥1 ≤ n. There
exists a constant C(n, dx) ≥ 1, such that for any x ∈ Rdx and 0 < ϵ ≤ 1/e, it holds∫

Rdx\Bx

∣∣∣∣(αtx0 − x

σt

)κ∣∣∣∣ · p(x0|y) · 1

σd
t (2π)

d/2
exp

(
−∥αtx0 − x∥2

2σ2
t

)
dx0 ≤ ϵ, (C.2)

where
(

αtx0−x
σt

)κ
:= ((αtx0[1]1−x[1]

σt
)κ[1], (αtx0[2]−x[2]

σt
)κ[2], . . . , (αtx0[dx]−x[dx]

σt
)κ[dx]) is a multi-

indexed vector and

Bx :=
[x− σtC(n, dx)

√
log (1/ϵ)

αt
,
x+ σtC(n, dx)

√
log (1/ϵ)

αt

]
⋂[

− C(n, dx)
√

log (1/ϵ), C(n, dx)
√
log (1/ϵ)

]dx

.

Remark C.1. Bx is a bounded domain. Lemma C.1 provides the difference between integrals of the
form (C.2) on Rdx and on Bx. The difference becomes arbitrarily small with precision ϵ = 1/N .

Step 2: Approximate pt(x|y) and ∇pt(x|y) with Taylor Expansion. We begin with the definition.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a DeLTa Workshop Paper at ICLR 2025

Definition C.1 (Normalization of Bx,N). Consider the clipping in Lemma C.1 and the initial
conditional distribution p(x0|y) with closed and bounded support Bx,N × [0, 1]dy . We define RB :=
(2C(0, d)

√
β logN) and x′0 := x0/RB+1/2. Moreover, we defineM(x′0, y) := p(RB(x

′
0−1/2)|y).

Remark C.2. The purpose of Definition C.1 is to simplify the process of discretizing Bx,N × [0, 1]dy

into Ndx+dy hypercubes. In particular, M(x′0, y) has compact support on [0, 1]dx+dy , where RB

denotes the length of each coordinate of Bx,N , and x′0 ∈ [0, 1]dx represents x0 normalized on Bx,N .

Remark C.3. The only difference between M(x′0, y) and p(x0|y) lies in their respective domains,
leading to the difference in the size of the Hölder ball radius. Recall that under generic Assumption 3.1,
we have p(x0|y) ∈ Hβ(Rdx × [0, 1]dy , B). Here we have M(x′0, y) ∈ H([0, 1]dx+dy , BRk1

B). This
follows from the fact that p(·|y) is k1-time differentiable so that the radius scale by a factor of Rk1

B .

Lemma C.2 (Diffused Local Polynomial, Modified from (Fu et al., 2024a)). Under generic Assump-
tion 3.1. We write pt(x|y) into the product of p(x0|y) and exp(·):

pt(x|y) =
∫
Rdx

p(x0|y)pt(x|x0)dx0 =

∫
Rdx

1

σdx
t (2π)dx/2

p(x0|y)exp

(
−∥αtx0 − x∥2

2σ2
t

)
dx0.

Then we approximate p(x0|y) and exp
(
−∥αtx0−x∥2

2σ2
t

)
with k1-order Taylor polynomial and k2-order

Taylor polynomial within Bx,N respectively. Altogether, we approximate pt(x|y) with the following
diffused local polynomial with the bounded domain Bx,N around x:

f1(x, y, t) =
∑

v∈[N]d,w∈[N]dy

∑
∥nx∥1+∥ny∥1≤k1

R
∥nx∥
B

nx!ny!

∂nx+nyp

∂xnx∂yny

∣∣∣∣∣
x=RB(v

N − 1
2),y=

w
N

Φnx,ny,v,w(x, y, t),

(C.3)

where
• ϕ(·) is the trapezoid function.

• g(x, nx, v, k2) := 1
σt

√
2π

∫ (
x0

R + 1
2 − v

N

)nx 1
k2!

(
−|x−σtx

2
0|

2σ2
t

)k2

dx0.

• Φnx,ny,v,w(x, y, t) :=
(
y − w

N

)ny ∏dy

j=1 ϕ
(
3N(y[j]− w

N)
)∏dx

i=1

∑
k2<p g(x[i], nx[i], v[i], k2).

Remark C.4. The form of the diffused local polynomial arises from the Taylor expansion approxi-
mation applied on each grid point within [0, 1]dx+dy , with v ∈ [N]dx and w ∈ [N]dy denoting the
specific grid point undergoing approximation.

Remark C.5. The Hölder space assumption in generic Assumption 3.1 establishes an upper bound
on the error arising from the remainder term in the Taylor expansion. This ensures the approximation
accuracy is well-controlled.

We specifies the error from the approximation of pt and ∇pt with f1 and f2 in Lemmas C.3 and C.4.

Lemma C.3 (Approximation of pt(x|y) by Polynomials, Lemma A.4 of (Fu et al., 2024b)). Under
generic Assumption 3.1. For any x ∈ Rdx , y ∈ [0, 1]dy , t > 0, and a sufficiently larger N > 0, there
exists a diffused local polynomial f1(x, y, t) with at most Ndx+dy (dx + dy)

k1 monomials such that

|f1(x, y, t)− pt(x|y)| ≲ BN−β log
dx+k1

2 N.

Lemma C.4 (Approximation of ∇ log pt(x|y) by Polynomials, Lemma A.6 of (Fu et al., 2024b)).
Under generic Assumption 3.1. For any x ∈ Rdx , y ∈ [0, 1]dy , t > 0, and a sufficiently larger N > 0,
there exists f2 := (f2[1], . . . , f2[dx])

⊤ ∈ Rdx with local diffused polynomial f2[i] such that

|f2(x, y, t)[i]− σt∇pt(x|y)[i]| ≲ BN−β log
dx+k1+1

2 N,

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a DeLTa Workshop Paper at ICLR 2025

where each f2[i] contains at most Ndx+dy (dx + dy)
k1 monomials.

We have finished the approximation of pt and ∇pt with diffused local polynomial f1 and f2.

Step 3. Approximate Diffused Local Polynomials and Algebraic Operators with Transformers.
First, we utilize universal approximation capabilities of transformers to deal with f1, f2 established
in previous step. Second, we employ similar scheme to approximate several algebraic operators
necessary in final score approximation. Lastly, we present the incorporation of these components in
Lemma C.13 with a unified transformer architecture and corresponding parameter configuration.

• Step 3.1: Approximate the Diffused Local Polynomials f1 and f2.
We invoke the universal approximation theorem of transformer (Theorem B.1). We utilize
network consisting of one transformer block and one feed-forward layer.

Lemma C.5 (Approximate Scalar Polynomials with Transformers). Under generic Assump-
tion 3.1. Consider the diffused local polynomial f1 in Lemma C.3. For any ϵ > 0, there exists
a transformer Tf1 ∈ T h,s,r

R , such that for any x ∈ [−Cx

√
logN,Cx

√
logN]dx , y ∈ [0, 1]dy

and t ∈ [N−Cσ , Cα logN] it holds

|f1(x, y, t)− Tf1(x, y, t)[dx]| ≤ ϵ.

The parameter bounds in the Transformer network class satisfy

∥WQ∥2, ∥WK∥2 = O
(
dϵ−

2dL+4d+1
d (logL)

1
2

)
;

∥WQ∥2,∞, ∥WK∥2,∞ = O
(
d

3
2 ϵ−

2dL+4d+1
d (logL)

1
2

)
;

∥WV ∥2 = O(
√
d); ∥WV ∥2,∞ = O(d);

∥WO∥2 = O
(√

dϵ
1
d

)
; ∥WO∥2,∞ = O

(
ϵ

1
d

)
;

∥W1∥2 = O
(
dϵ−

1
d · logN

)
; ∥W1∥2,∞ = O

(√
dϵ−

1
d · logN

)
;

∥W2∥2 = O
(
dϵ−

1
d

)
; ∥W2∥2,∞ = O

(√
dϵ−

1
d

)
;
∥∥E⊤∥∥

2,∞ = O
(
d

1
2L

3
2

)
.

Similarly, we have the corresponding Tf2 ∈ T h,s,r
R for the approximation of f2(x, y, t).

Lemma C.6 (Approximate Vector-Valued Polynomials with Transformers). Under generic
Assumption 3.1 and consider f2(x, y, t) ∈ Rdx with every entry f2[1], . . . , f2[dx] is a local
diffused polynomial defined in Lemma C.2. For any ϵ > 0, there exists a transformer
Tf2 ∈ T h,s,r

R such that

∥f2(x, y, t)− Tf2∥∞ ≤ ϵ,

for any x ∈ [−Cx

√
logN,Cx

√
logN]dx , y ∈ [0, 1]dy and t ∈ [N−Cσ , Cα logN]. The

parameter bounds in the transformer network class follows Lemma C.5.

So far, we have obtained approximation results for f1 and f2. To complete the full approxi-
mation of the score decomposition ∇ log p = ∇p

p , we still need to approximate several key
algebraic operators, including the product (Lemma C.8), inverse (Lemma C.9)...etc.
We establish their approximations as follows.

• Step 3.2: Approximate Algebraic Operators with Transformers.
We give transformer approximation theory for the clipping operator, the inverse operator,
the product operator, and functions that evolve with time t:

– Clipping operation (Lemma C.7)
– Product operation (Lemma C.8)
– Inverse operation (Lemma C.9)
– Mean αt = exp(−t/2) (Lemma C.10)

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a DeLTa Workshop Paper at ICLR 2025

– Standard deviation σt =
√
1− e−t (Lemma C.11)

The approximations for these operators are common with the network structure consisting
of ReLU activation function and fully connected feed-forward layers, such as the product
approximation by Schmidt-Hieber (2020) and the inverse approximation by Telgarsky
(2017).

The following lemma provides a network that executes the clipping operation.

Lemma C.7 (Clipping Operation, Lemma F.4 of (Oko et al., 2023)). For any a, b ∈ Rd

with a[i] ≤ b[i] for all i ∈ [d], there exist a neural network ϕclip(x; a, b) ∈ Φ(L,W, S,B)
such that for all i ∈ [d], it holds

ϕclip(x; a, b)[i] = min(b[i],max(x[i], a[i])),

with

L = 2, W = (d, 2d, d)⊤, S = 7d, B = max
1≤i≤d

max(|a[i]|, b[i]). (C.4)

Moreover, suppose a[i] = c and b[i] = C for all i ∈ [d] with c and C being some constant,
ϕclip(x; a, b) is denoted as ϕclip(x; c, C).

Next, we deal with the approximation of products with Transformer.

Lemma C.8 (Approximation of the Product Operator with Transformer.). Let m ≥ 2 and
C ≥ 1. For any 0 < ϵmult < 1, there exists Tmult(·) ∈ T h,s,r

R such that for all x ∈ [−C,C]m,
x′ ∈ Rm with ∥x− x′∥∞ ≤ ϵerror, it holds∣∣∣∣∣Tmult(x

′)−
m∏
i=1

xi

∣∣∣∣∣ ≤ ϵmult +mCm−1ϵerror.

The parameter bounds in the transformer network class T h,s,r
R satisfy

∥WQ∥2, ∥WK∥2, ∥WQ∥2,∞, ∥WK∥2,∞ = O
(
ϵ
−(2m+1)
mult (logm)

1
2

)
;

∥WO∥2, ∥WO∥2,∞ = O (ϵmmult) ; ∥WV ∥2, ∥WV ∥2,∞ = O(1);

∥W1∥2, ∥W1∥2,∞ = O
(
Cϵ−m

mult

)
; ∥W2∥2, ∥W2∥2,∞ = O

(
ϵ−m

mult

)
.

Next, we introduce the next lemma to approximate the inverse operator.

Lemma C.9 (Approximation of the Reciprocal Function with Transformer.). For any
0 < ϵrec < 1 there exists a Trec(·) ∈ T h,s,r

R such that for all x ∈ [ϵrec, ϵ
−1
rec] and x′ ∈ R. It

holds that ∣∣∣∣Trec(x
′)− 1

x

∣∣∣∣ ≤ ϵrec +
|x− x′|
ϵ2rec

.

The parameter bounds in the Transformer network class satisfy

∥WQ∥2, ∥WQ∥2,∞, ∥WK∥2, ∥WK∥2,∞ = O
(
ϵ−3

rec

)
;

∥WO∥2, ∥WO∥2,∞ = O (ϵrec) ; ∥WV ∥2, ∥WV ∥2,∞ = O(1);

∥W1∥2, ∥W1∥2,∞ = O
(
ϵ−2

rec

)
; ∥W2∥2, ∥W2∥2,∞ = O

(
ϵ−1

rec

)
.

Next, we state approximation results using Transformer for αt and σt. Note that we have
αt = exp(−t/2) and σt =

√
1− α2

t .

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a DeLTa Workshop Paper at ICLR 2025

Lemma C.10 (Approximation of αt = exp(−t/2) with Transformer.). For any ϵα ∈ (0, 1),

there exists Transformer Tα(t) ∈ T h,s,r
R such that for all t ≥ 0, we have

|Tα(t)− αt| ≤ ϵα.

The parameter bounds in the Transformer network class satisfy

∥WQ∥2, ∥WQ∥2,∞, ∥WK∥2, ∥WK∥2,∞ = O
(
ϵ−3
α

)
;

∥WO∥2, ∥WO∥2,∞ = O
(
ϵ−1
α

)
; ∥WV ∥2, ∥WV ∥2,∞ = O(1);

∥W1∥2, ∥W1∥2,∞ = O
(
(log ϵ−1

α)ϵ−1
α

)
; ∥W2∥2, ∥W2∥2,∞ = O

(
ϵ−1
α

)
.

Lemma C.11 (Approximation of σt =
√
1− e−t with transformer). For any σσ ∈ (0, 1),

there exists a transformer Tσ(t) ∈ T h,s,r
R such that for any t ∈ [t0, T] with t0 < 1 we have

|Tσ(t)− σt| ≤ ϵσ.

The parameter bounds in the transformer network class satisfy

∥WQ∥2, ∥WQ∥2,∞, ∥WK∥2, ∥WK∥2,∞ = O
(
ϵ−3
σ

)
;

∥WO∥2, ∥WO∥2,∞ = O (ϵσ) ; ∥WV ∥2, ∥WV ∥2,∞ = O(1);

∥W1∥2 = O
(
Tϵ−1

σ

)
; ∥W1∥2,∞ = O

(
Tϵ−1

σ

)
;

∥W2∥2 = O
(
ϵ−1
σ

)
; ∥W2∥2,∞ = O

(
ϵ−1
σ

)
.

We have finished the approximation of every key component for the proof of Theorem 3.1.
We now proceed to the detailed assembly and integration of these components to finalize the
proof.

• Step 3.3: Unified Transformer-Based Score Function Approximation.
First, we establish a theoretical upper bound for transformer model output by analyzing the
upper bound of the score function in ℓ∞ distance under generic Assumption 3.1 as follows.

– Bound on pt(x|y):
Recall that the conditional distribution at time t has the form:

pt(x|y) =
1

σd
t (2π)

d
2

∫
p(x0|y) exp

(
−∥x− αtx0∥2

2σ2
t

)
dx0.

Applying the light tail property in generic Assumption 3.1, the upper bound follows:

pt(x|y) ≤
C1

σd
t (2π)

d
2

∫
exp

(
−C2∥x0∥2

2

)
exp

(
−∥x− αtx0∥2

2σ2
t

)
dx0. (C.5)

On the other hand, the lower bound follows:

pt(x|y) ≥
1

σd
t (2π)

d
2

∫
∥x0∥≤1

p(x0|y) exp

(
−∥x− αtx0∥2

2σ2
t

)
dx0. (C.6)

– Bound on ∇pt(x|y): The first element of the gradient has the form:

|(∇pt)[1]| =
1

σ2
t (2π)

d
2

·

∣∣∣∣∣
∫ (

x[1]− αtx0[1]

σ2
t

)
p(x0|y) exp

(
−∥x− αtx0∥2

2σ2
t

)
dx0

∣∣∣∣∣.
(C.7)

The ℓ∞ bound on ∇pt follows by applying light tail property to each coordinate as in
(C.5).

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a DeLTa Workshop Paper at ICLR 2025

Combining (C.5), (C.6) and (C.7), we provide the ℓ∞ bounds on the score.

Lemma C.12 (Bounds on Score, Lemma A.10 of (Fu et al., 2024b)). Assume generic
Assumption 3.1. There exists a constant K such that

∥∇ log pt(x|y)∥∞ ≤ K

σ2
t

(∥x∥+ 1).

Further details regarding the derivation are in Appendix A.7 of (Fu et al., 2024b).
Next lemma incorporates previous approximation results into an unified transformer archi-
tecture.
Lemma C.13 (Approximation Score Function with Transformer on Supported Domain).
Under generic Assumption 3.1. Consider t ∈ [N−Cσ , Cα logN], for constant Cσ, Cα,
and (x, y) ∈ −[Cx

√
logN,Cx

√
logN]dx × [0, 1]dy , where N ∈ N and Cx depends on

d, β,B,C1, C2. There exist a transformer network Tscore(x, y, t) ∈ T h,s,r
R such that

pt(x|y)∥∇ log pt(x|y)− Tscore(x, y, t)∥∞ ≲
B

σ2
t

N−β(logN)
dx+k1+1

2 .

The parameter bounds in the Transformer network class satisfy

∥WQ∥2, ∥WK∥2, ∥WQ∥2,∞, ∥WK∥2,∞ = O
(
N (7β+6Cσ)

)
;

∥WO∥2, ∥WO∥2,∞ = O
(
N−(3β+6Cσ)(logN)3(dx+β)

)
;

∥WV ∥2 = O(
√
d); ∥WV ∥2,∞ = O(d);

∥∥E⊤∥∥
2,∞ = O

(
d

1
2L

3
2

)
;

∥W1∥2, ∥W1∥2,∞ = O
(
N (2β+4Cσ)

)
;CT = O

(√
logN/σ2

t

)
;

∥W2∥2, ∥W2∥2,∞ = O
(
N (3β+2Cσ)

)
.

Proof of Lemma C.13. Our poof follows the structure of Fu et al. (2024b, Proposition A.3).
Recall that from Lemma C.12, we have ∥∇ log pt(x|y)∥∞ ≤ K(Cx

√
dx logN + 1)/σ2

t ,
along with the diffused local polynomial f1 and f2, we define first-step score approximator
f3(x, y, t) as

f3(x, y, t) = min

(
f2

σtf1,clip
,
K

σ2
t

(Cx

√
dx logN + 1)

)
,

where we set f1,clip = {f1, ϵlow} to prevent score from blowing up and we set ϵlow later.
We proceed with the following three steps:

– Step A. Approximate Score Function with f3.
Without loss of generality, we first derive error bound on the difference between the
first component in f3 and the score.

|(∇ log pt)[1]− f3[1]| ≤
∣∣∣∣(∇ log pt)[1]−

f2[1]

σtf1,clip

∣∣∣∣
≤
∣∣∣∣ (∇pt)[1]pt

− (∇pt)[1]]
f1,clip

∣∣∣∣+ ∣∣∣∣ (∇pt)[1]f1,clip
− f2[1]

σtf1,clip

∣∣∣∣.
From Lemma C.12, the bound on the score implies (∇pt)[1] ≤ K(

√
dx logN +

1)pt/σ
2
t .

Therefore,

|(∇ log pt)[1]− f3[1]|

≤ K

σ2
t

(
√
d logN + 1)pt

∣∣∣∣ 1pt − 1

f1,clip

∣∣∣∣+ 1

f1,clip

∣∣∣∣ (∇σtpt)[1]− f2[1]

σt

∣∣∣∣
15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a DeLTa Workshop Paper at ICLR 2025

≲
1

f1,clip

(
1

σ2
t

√
logN |pt − f1,clip|+

(∇σtpt)[1]− f2[1]

σt

)
.(

By dropping Constant Terms
)

From Lemma C.5, we have

|f1 − pt| ≤ BN−β log
dx+k1

2 N.

We set ϵlow = C3N
−β log(dx+k1)/2N ≤ pt such that f1 ≥ pt/2 by the choice of

constant C3.
We further write

|(∇ log pt)[1]− f3[1]|

≲
1

pt

(
1

σ2
t

√
logN |pt − f1,clip|+

(∇σtpt)[1]− f2[1]

σt

) (
By the choice of ϵlow

)
≲

B

σ2
t pt

N−β(logN)
dx+k1+1

2 .
(
By Lemma C.3 and Lemma C.4

)
By the symmetry of each coordinate, the infinity bound for the score holds as well:

∥∇ log pt − f3∥∞ ≲
B

σ2
t pt

N−β(logN)
dx+k1+1

2 . (C.8)

– Step B: Approximate f3 with Transformer Tscore.
In this step, we utilize transformers to approximate f3 to an accuracy of order N−β

such that it aligns with the error order in (C.8).
Since f3 is the minimum between two components, we approximate each of them as
follows.

* Step B.1: Approximate 1
σt

· f2
f1,clip

.
First, we utilize Tf1 , Tf2 and Tσ,1 in Lemma C.5, Lemma C.6, and Lemma C.11
for f1, f2, and σt respectively. This gives error ϵf1 , ϵf2 and ϵσ,1, and we address
the clipping of f1 in later paragraph.
Next, We utilize Trec,1 and Trec,2 in Lemma C.9 for the approximation of the inverse
of f1 and σt.
This gives error∣∣∣∣Trec,1 −

1

f1

∣∣∣∣ ≤ ϵrec,1 +
|Tf1 − f1|
ϵ2rec,1

≤ ϵrec,1 +
ϵf1
ϵ2rec,1

,

and ∣∣∣∣Trec,2 −
1

σt

∣∣∣∣ ≤ ϵrec,2 +
|Tσ,1 − σt|
ϵ2rec,2

≤ ϵrec,2 +
ϵσ,1
ϵ2rec,2

.

Note that all the approximation error propagates to the next approximation.
Next, we utilize Tmult,1 in Lemma C.8 for the approximation of the product of f−1

1 ,
f2 and σ−1

t .
This gives error of∣∣∣∣Tmult,1 −

f2
σtf1

∣∣∣∣ ≤ ϵmult,1 + 3K2
2 max

(
ϵrec,1 +

ϵf1
ϵ2rec,1

, ϵf2 , ϵrec,2 +
ϵσ,1
ϵ2rec,2

)
︸ ︷︷ ︸

:=ϵ1

= ϵmult,1 + 3K2
2ϵ1,

and K2 is a positive constant. From Lemma C.8 we require that [−K2,K2] covers
the domain for all of f−1

1 , f2 and f−1
σ .

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a DeLTa Workshop Paper at ICLR 2025

To be more specific, we reiterate three facts that determines the choice of K2.
· Recall that in the Step A., we set f1,clip = {f1, ϵlow}.
· Lemma C.12 states K(Cx

√
dx logN + 1)/σ2

t is the ℓ∞ bound on the score.
· The maximum value of σ−1

t happens at t = t0.
As a result, we set K2 as

K2 = max

(
1

ϵlow
,
K

σt0
(Cx

√
dx logN + 1),

1

σt0

)
.

By the earlier choice of ϵlow, we have ϵ−1
low = O(Nβ logN−(dx+k1)/2), and next

we expand σt0 .

σt0 =
√
1− exp(N−Cσ) = 1−

(
1−O(N−Cσ)

)
.

Therefore we have σ−1
t0 = O(NCσ). Putting all together, we have

K2 = O
(
Nβ+Cσ log−

dx+β
2 N

)
, (C.9)

where we use k1 ≤ β.

* Step B.2 : Approximate K(Cx

√
dx logN + 1)/σ2

t .
We invoke Tσ,2 in Lemma C.11 for the approximation of σt, and this gives error
ϵσ,2.
Next, we utilize Trec,3 in Lemma C.8 for the approximation of the inverse of σt.
This gives error∣∣∣∣Trec,3 −

1

σt

∣∣∣∣ ≤ ϵrec,3 +
|Tσ,3 − σt|
ϵ2rec,3

≤ ϵrec,3 +
ϵσ,2
ϵ2rec,3

.

Next, we utilize Tmult,2 for the approximation of the square of σ−1
t .

This gives error of∣∣∣∣∣Tmult,2 −
(

1

σt

)2
∣∣∣∣∣ ≤ ϵmult,2 + 2K1

(
ϵrec,3 +

ϵσ,2
ϵ2rec,3

)
,

and K1 is constant to be chosen such that σt ∈ [−K1,K1].
With the same argument for K2, it suffices to take O(σ−1

t):

K1 = O
(
NCσ

)
. (C.10)

* Step B.3: Error Bound on Every Approximation Combined.
Combining Step B.1 and Step B.2, the total error is bounded by

ϵscore ≤ max

(
ϵmult,2 + 2K1

(
ϵrec,3 +

ϵσ,2
ϵ2rec,3

)
, ϵmult,1 + 3K2

2ϵ1

)
.

The goal is to guarantee the final error ϵscore ≤ N−β such that it matches the order
of the approximation error in Step A. We list all the error choice to achieve the
goal.1

· For the Error of the First Two Inverse Operators:

ϵrec,1, ϵrec,2 = O
(
N−(3β+2Cσ)(logN)(dx+β)

)
.

1Further details regarding the choice of each one of ϵ are in Appendix F.4 of (Fu et al., 2024b).

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a DeLTa Workshop Paper at ICLR 2025

· For the Error of the Last Inverse Operator:

ϵrec,3 = O
(
N−(β+2Cσ)

)
.

· For the Error of f1:

ϵf1 = O
(
N−(9β+6Cσ)(logN)3(dx+β)

)
.

· For the Error of f2:

ϵf2 = O
(
N−(3β+2Cσ)(logN)(dx+β)

)
.

· For the Error of the First Variance:

ϵσ,1 = O
(
N−(9β+6Cσ)(logN)3(dx+β)

)
.

· For the Error of the Second Variance:

ϵσ,2 = O
(
N−(7β+5Cσ)(logN)2(dx+β)

)
.

· For the Error of the Two Product Operators:

ϵmult,1, ϵmult,2 = O(N−β).

The above error choice renders ϵscore ≤ N−β .
Therefore we conclude that there exist a transformer Tscore ∈ T h,s,r

R such that

∥Tscore(x, y, t)− f3(x, y, t)∥∞ ≤ N−β . (C.11)

Combining (C.8) and (C.11) we obtain

∥∇ log pt − Tscore(x, y, t)∥∞ ≲
1

pt

B

σ2
t

N−β(logN)
dx+k1+1

2 .

We have completed the first part of the proof. We next give the norm bounds for the
transformer parameters. Specifically, we select the parameter bounds that are consistent
across all operations. including Lemma C.5, Lemma C.6, Lemma C.8, Lemma C.9 and
Lemma C.11.

– Step C: Transformer Parameter Bound.
Our result highlights the influence of N under varying dx. Therefore, for the trans-
former parameter bounds, we keep terms with dx, d, L appearing in the exponent of N
and logN .

Note that the following parameter selection is based on high-dimensional case where
logN term dominates N term.

* Parameter Bound on WQ and WK .
Given error ϵ, the bound on each operation follows:

· For ϵf1 : By Lemma C.5, we have

∥WQ∥2, ∥WK∥2, ∥WQ∥2,∞, ∥WK∥2,∞ = O
(
N (9β+6Cσ)· 2dL+4d+1

d · (logN)−3(dx+β)· 2dL+4d+1
d

)
.

· For ϵf2 : By Lemma C.6, we have

∥WQ∥2, ∥WK∥2, ∥WQ∥2,∞, ∥WK∥2,∞ = O
(
N (3β+2Cσ)· 2dL+4d+1

d · (logN)−(dx+β)· 2dL+4d+1
d

)
.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a DeLTa Workshop Paper at ICLR 2025

· For ϵmult,1: By Lemma C.8 with m = 3, we have

∥WQ∥2, ∥WK∥2, ∥WQ∥2,∞, ∥WK∥2,∞ = O
(
N7β

)
.

· For ϵmult,2: By Lemma C.8 with m = 2, we have

∥WQ∥2, ∥WK∥2, ∥WQ∥2,∞, ∥WK∥2,∞ = O
(
N5β

)
.

· For ϵrec,1, ϵrec,2: By Lemma C.9, we have

∥WQ∥2, ∥WK∥2, ∥WQ∥2,∞, ∥WK∥2,∞ = O
(
N (9β+6Cσ)(logN)−3(dx+β)

)
.

· For ϵrec,3: By Lemma C.9, we have

∥WQ∥2, ∥WK∥2, ∥WQ∥2,∞, ∥WK∥2,∞ = O
(
N (3β+6Cσ)

)
.

· For ϵσ1 : By Lemma C.11, we have

∥WQ∥2, ∥WK∥2, ∥WQ∥2,∞, ∥WQ∥2,∞ = O
(
N (27β+18Cσ)(logN)−9(dx+β)

)
.

· For ϵσ2
: By Lemma C.11, we have

∥WQ∥2, ∥WK∥2, ∥WQ∥2,∞, ∥WQ∥2,∞ = O
(
N (21β+15Cσ)(logN)−6(dx+β)

)
.

We select the largest parameter bound from ϵmult,1 and ϵrec,3 that remains valid
across all other approximations. That is, we take N (7β+6Cσ) as the upper-bound.

* Parameter Bound on WO and WV .
Given error ϵ, the bound on each operation follows:

· For ϵf1 : By Lemma C.5, we have

∥WO∥2, ∥WO∥2,∞ = O
(
N− (9β+6Cσ)

d (logN)
3(dx+β)

d

)
.

· For ϵf2 : By Lemma C.6, we have

∥WO∥2, ∥WO∥2,∞ = O
(
N− (3β+2Cσ)

d (logN)
(dx+β)

d

)
.

· For ϵmult,1: By Lemma C.8 with m = 3, we have

∥WO∥2, ∥WO∥2,∞ = O
(
N−3β

)
.

· For ϵmult,2: By Lemma C.8 with m = 2, we have

∥WO∥2, ∥WO∥2,∞ = O
(
N−2β

)
.

· For ϵrec,1, ϵrec,2: By Lemma C.9, we have

∥WO∥2, ∥WO∥2,∞ = O
(
N−(3β+Cσ)(logN)dx+β

)
.

· For ϵrec,3: By Lemma C.9, we have

∥WO∥2, ∥WO∥2,∞ = O
(
N−(β+2Cσ)

)
.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a DeLTa Workshop Paper at ICLR 2025

· For ϵσ1
: By Lemma C.11, we have

∥WO∥2, ∥WO∥2,∞ = O
(
N−(9β+6Cσ)(logN)3(dx+β)

)
.

· For ϵσ2
: By Lemma C.11, we have

∥WO∥2, ∥WO∥2,∞ = O
(
N−(7β+5Cσ)(logN)2(dx+β)

)
.

Note that only ϵf1 and ϵf2 involve the reshape operation. From Lemma B.2, we take
O(

√
d) and O(d) ∥WV ∥2 and ∥WV ∥2,∞. Moreover, We select the largest param-

eter bound from ϵrec,1 and ϵσ1 that remains valid across all other approximations.
That is, we take N−(3β+6Cσ)(logN)3(dx+β) as the upper-bound.

* Parameter Bound on W1.
Given error ϵ, the bound on each operation follows:

· For ϵf1 : By Lemma C.5, we have

∥W1∥2, ∥W1∥2,∞ = O
(
N

(9β+6Cσ)
d (logN)−

3(dx+β)
d · (logN)

)
.

· For ϵf2 : By Lemma C.6, we have

∥W1∥2, ∥W1∥2,∞ = O
(
N

(3β+2Cσ)
d (logN)−

(dx+β)
d · (logN)

)
.

· For ϵmult,1: By Lemma C.8 with m = 3 and C = K2 in (C.9), we have

∥W1∥2, ∥W1∥2,∞ = O
(
K2 ·N3β

)
= O

(
N (4β+Cσ)(logN)−

1
2 (dx+β)

)
.

· For ϵmult,2: By Lemma C.8 with m = 2 and C = K1 in (C.10), we have

∥W1∥2, ∥W1∥2,∞ = O
(
K1 ·N2β

)
= O

(
N (2β+Cσ)

)
.

· For ϵrec,1 , ϵrec,2: By Lemma C.9, we have

∥W1∥2, ∥W1∥2,∞ = O
(
N (6β+4Cσ)(logN)−2(dx+β)

)
.

· For ϵrec,3: By Lemma C.9, we have

∥W1∥2, ∥W1∥2,∞ = O
(
N (2β+4Cσ)

)
.

· For ϵσ1
: By Lemma C.11, we have

∥W1∥2, ∥W1∥2,∞ = O
(
N (9β+6Cσ)(logN)−3(dx+β) · logN

)
.

· For ϵσ2
: By Lemma C.11, we have

∥W1∥2, ∥W1∥2,∞ = O
(
N (7β+5Cσ)(logN)−2(dx+β) · logN

)
.

We select the largest parameter bound from ϵrec,3 that remains valid across all other
approximations. That is, we take N (2β+4Cσ) as the upper-bound.

* Parameter Bound for W2.
Given error ϵ, the bound on each operation follows:

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a DeLTa Workshop Paper at ICLR 2025

· For ϵf1 : By Lemma C.5, we have

∥W2∥2, ∥W2∥2,∞ = O
(
N

(9β+6Cσ)
d (logN)−3

(dx+β)
d

)
.

· For ϵf2 : By Lemma C.6, we have For ϵf1 : By Lemma C.5, we have

∥W2∥2, ∥W2∥2,∞ = O
(
N

(3β+2Cσ)
d (logN)−

(dx+β)
d

)
.

· For ϵmult,1: By Lemma C.8 with m = 3, we have

∥W2∥2, ∥W2∥2,∞ = O
(
N3β

)
.

· For ϵmult,2: By Lemma C.8 with m = 2, we have

∥W2∥2, ∥W2∥2,∞ = O
(
N2β

)
.

· For ϵrec,1, ϵrec,2: By Lemma C.9, we have

∥W2∥2, ∥W2∥2,∞ = O
(
N (3β+2Cσ)(logN)−(dx+β)

)
.

· For ϵrec,3: By Lemma C.9, we have

∥W2∥2, ∥W2∥2,∞ = O
(
N (β+2Cσ)

)
.

· For ϵσ1
: By Lemma C.11, we have

∥W2∥2, ∥W2∥2,∞ = O
(
N (9β+6Cσ)(logN)−3(dx+β)

)
.

· For ϵσ2 : By Lemma C.11, we have

∥W2∥2, ∥W2∥2,∞ = O
(
N (7β+5Cσ)(logN)−2(dx+β)

)
.

We select the largest parameter bound from ϵmult,1 and ϵrec,3 that remains valid
across all other approximations. That is, we take N (3β+2Cσ) as the upper-bound.

* Parameter Bound for E.
Since only ϵf1 and ϵf2 involve the reshape operation. From Lemma B.2, we take
O(d

1
2L

3
2) for

∥∥E⊤
∥∥
2,∞.

By integrating results above, we derive the following parameter bounds for the trans-
former network, ensuring valid approximation across all nine approximations.

∥WQ∥2, ∥WK∥2, ∥WQ∥2,∞, ∥WK∥2,∞ = O
(
N (7β+6Cσ)

)
;

∥WO∥2, ∥WO∥2,∞ = O
(
N−(3β+6Cσ)(logN)3(dx+β)

)
;

∥WV ∥2 = O(
√
d); ∥WV ∥2,∞ = O(d);

∥∥E⊤∥∥
2,∞ = O

(
d

1
2L

3
2

)
;

∥W1∥2, ∥W1∥2,∞ = O
(
N (2β+4Cσ)

)
;CT = O

(√
logN/σ2

t

)
;

∥W2∥2, ∥W2∥2,∞ = O
(
N (3β+2Cσ)

)
.

The last network output bound CT = O(
√
dx logN/σ

2
t) follows the entry-wise mini-

mum bounds K(Cx

√
d logN + 1)/σ2

t in ℓ∞ distance by Lemma C.12.

This completes the proof.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a DeLTa Workshop Paper at ICLR 2025

C.2 MAIN PROOF OF THEOREM 3.1 UNDER GENERIC ASSUMPTION

In Lemma C.13, we establish the score approximation with transformer that incorporates every
essential components and encodes the Hölder smoothness in the final result. However, it is only valid
within the input domain [Cx

√
logN,Cx

√
logN]dx × [0, 1]dy , and we also excludes region pt < ϵlow

where the problem of score explosion remains unaddressed.

To combat this, we introduce two additional lemmas. The first lemma gives us the error caused by
the truncation of Rdx within a radius R1 in ℓ2 distance.

Lemma C.14 (Truncate x for Score Function, Lemma A.1 of (Fu et al., 2024b)). Under generic
Assumption 3.1. For any R1 > 1, y, t > 0 we have∫

∥x∥∞≥R1

pt(x|y)dx ≤ R1 exp
(
−C ′

2R
2
1

)
,∫

∥x∥∞≥R1

∥∇ log pt(x|y)∥22pt(x|y)dx ≤ R3
1

σ4
t

exp
(
−C ′

2R
2
1

)
,

where C ′
2 = C2/(2max(C2, 1)).

Remark C.6. Because we only impose assumption on the light tail property of the conditional
distribution in generic Assumption 3.1, the unboundedness of x necessitates a truncation for integrals
regarding x, or else the result would diverge.

Furthermore, we address the explosion of score function with the second lemma.

Lemma C.15 (Lemma A.2 of (Fu et al., 2024b)). Under generic Assumption 3.1. For any
R2, y, ϵlow > 0 we have∫

∥x∥∞≤R2

1{|pt(x|y)| < ϵlow} · pt(x|y)dx ≤ Rdx
2 ϵlow,∫

∥x∥∞≤R2

1{|pt(x|y)| < ϵlow} · ∥∇ log pt(x|y)∥22pt(x|y)dx ≤ 1

σ4
t

Rdx+2
2 ϵlow.

Remark C.7. Recall that the score function has the form ∇ log pt(x|y) = ∇pt(x|y)/pt(x|y). It is
essential to set a threshold for pt(x|y) prevents the explosion of the score function.

We begin the proof of Theorem 3.1.

Proof Sketch of Theorem 3.1. In the following proof, we give error bound for the three terms:

• (A.1): The approximation for ∥x∥∞ > R1.

This step controls the error from truncation of Rdx with radius R1 in ℓ2 distance. We
approximate the error with Lemma C.14

• (A.2): The approximation for 1{pt(x|y) < ϵlow} and {∥x∥∞ ≤ R1}.
This step controls the error from setting a threshold to prevent score explosion within the
bounded domain ∥x∥∞ ≤ R1. We approximate the error with Lemma C.15.

• (A.3) The approximation for 1{pt(x|y) ≥ ϵlow} and {∥x∥∞ ≤ R1}.
With previous two steps ensuring the bounded domain and preventing the divergence of
score function, we approximate with Lemma C.13.

Proof of Theorem 3.1. We apply N = N1/(dx+dy) in Lemma C.13. Throughout the proof, we use
N as a notational simplification, with the understanding that N represents N1/(dx+dy) in full form.
At the end of of the proof we replace N by N1/(dx+dy).

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a DeLTa Workshop Paper at ICLR 2025

To begin with, we set R1 = R2 =
√
2β logN/C ′

2 in Lemma C.14 and Lemma C.15, and we expand
the target into three parts (A1), (A2), and (A3):∫

Rdx

∥s(x, y, t)−∇ log pt(x|y)∥22 · pt(x|y)dx

=

∫
∥x∥∞>

√
2β

C′
2
logN

∥s(x, y, t)−∇ log pt(x|y)∥22 · pt(x|y)dx︸ ︷︷ ︸
(A1)

,

+

∫
∥x∥∞≤

√
2β

C′
2
logN

1{|pt(x|y)| < ϵlow}∥s(x, y, t)−∇ log pt(x|y)∥22 · pt(x|y)dx︸ ︷︷ ︸
(A2)

+

∫
∥x∥∞≤

√
2β

C′
2
logN

1{|pt(x|y)| ≥ ϵlow}∥s(x, y, t)−∇ log pt(x|y)∥22 · pt(x|y)dx︸ ︷︷ ︸
(A3)

.

We derive the bound for (A1), (A2), (A3) and combine these results.

• Bounding (A1). We apply Lemma C.14. Note that we have ∥s(x, y, t)∥∞ ≲
√
logN/σ2

t
from the construction of the score estimator in Lemma C.13.∫

∥x∥∞>

√
2β

C′
2
logN

∥s(x, y, t)−∇ log pt(x|y)∥22 · pt(x|y)dx (
By expanding the ℓ2 norm

)
≤ 2

∫
∥x∥∞>

√
2β

C′
2
logN

∥s(x, y, t)∥22 · pt(x|y)dx+ 2

∫
∥x∥∞>

√
2β

C′
2
logN

∥∇ log pt(x|y)∥22 · pt(x|y)dx(
By ∥·∥22 ≤ dx∥·∥2∞

)
≤ 2dx

∫
∥x∥∞>

√
2β

C′
2
logN

∥s(x, y, t)∥2∞ · pt(x|y)dx+ 2

∫
∥x∥∞>

√
2β

C′
2
logN

∥∇ log pt(x|y)∥22 · pt(x|y)dx(
By the ℓ∞ bound on the score function

)
≲ 2dx

(√
logN

σ2
t

)2 ∫
∥x∥∞>

√
2β

C′
2
logN

pt(x|y)dx+ 2

∫
∥x∥∞>

√
2β

C′
2
logN

∥∇ log pt(x|y)∥22 · pt(x|y)dx(
By Lemma C.14 and dropping constant

)
≲ 2dx

(√
logN

σ2
t

)2
(√

2β

C ′
2

logNN−2β

)
+

2

σ4
t

(
2β

C ′
2

logN

) 3
2

N−2β

(
By dropping constant and lower order term

)
≲

1

σ4
t

N−2β(logN)
3
2 .

• Bounding (A2). We apply Lemma C.15. Note that we set ϵlow = C3N
−β(logN)(dx+k1)/2

in Lemma C.13.∫
∥x∥∞≤

√
2β

C′
2
logN

1{|pt(x|y)| < ϵlow}∥s(x, y, t)−∇ log pt(x|y)∥22 · pt(x|y)dx(
By expanding the ℓ2 norm

)
23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a DeLTa Workshop Paper at ICLR 2025

≤
∫
∥x∥∞≤

√
2β

C′
2
logN

21{|pt(x|y)| < ϵlow}
(
∥s(x, y, t)∥22 + ∥∇ log pt(x|y)∥22

)
· pt(x|y)dx

(
By ∥·∥22 ≤ dx∥·∥2∞

)
≤
∫
∥x∥∞≤

√
2β

C′
2
logN

1{|pt(x|y)| < ϵlow}
(
dx∥s(x, y, t)∥2∞ + ∥∇ log pt(x|y)∥22

)
· pt(x|y)dx(

By the ℓ∞ bound on the score function
)

≲
∫
∥x∥∞≤

√
2β

C′
2
logN

1{|pt(x|y)| < ϵlow}

(
dx

(√
logN

σ2
t

)2

+ ∥∇ log pt(x|y)∥22

)
· pt(x|y)dx(

By Lemma C.15 and dropping constant
)

≲ dx

(√
logN

σ2
t

)2(
2β

C ′
2

logN

) dx
2

ϵlow +

(
2β

C ′
2

logN

) dx+2
2 ϵlow

σ4
t(

By dropping constant and lower order term
)

≲
1

σ4
t

(logN)
dx+2

2 ϵlow.

• Bounding (A3). We apply Lemma C.13.∫
∥x∥∞≤

√
2β

C′
2
logN

1{|pt(x|y)| ≥ ϵlow}∥s(x, y, t)−∇ log pt(x|y)∥22 · pt(x|y)dx(
By ∥·∥22 ≤ dx∥·∥2∞

)
≤
∫
∥x∥∞≤

√
2β

C′
2
logN

1{|pt(x|y)| ≥ ϵlow}dx∥s(x, y, t)−∇ log pt(x|y)∥2∞ · pt(x|y)dx(
Multiply with pt/pt

)
=

∫
∥x∥∞≤

√
2β

C′
2
logN

1{|pt(x|y)| ≥ ϵlow}
pt(x|y)

dx∥s(x, y, t)−∇ log pt(x|y)∥2∞ · p2t (x|y)dx(
By Lemma C.13

)
≲
B2dx
σ2
t

N−2β(logN)dx+k1+1

∫
∥x∥∞≤

√
2β

C′
2
logN

1{|pt(x|y)| ≥ ϵlow}pt(x|y)dx(
Multiply with ϵlow/ϵlow

)
=
B2dx
σ2
t ϵlow

N−2β(logN)dx+k1+1

∫
∥x∥∞≤

√
2β

C′
2
logN

1{|pt(x|y)| ≥ ϵlow}
ϵlow

pt(x|y)
dx

(
By Lemma C.15

)
≲
B2dx
σ2
t ϵlow

N−2β(logN)dx+k1+1 ·
(
2β

C ′
2

logN

) dx
2

(
By the choice of ϵlow and dropping lower order term

)
≲
B2dx
σ4
t ϵlow

N−2β(logN)
3dx
2 +k1+1.

• Combining the Results.
Combining (A1), (A2) and (A3), we have∫

Rd

∥s(x, y, t)−∇ log pt(x|y)∥22pt(x|y)dx

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a DeLTa Workshop Paper at ICLR 2025

≲
N−2β(logN)

3
2

σ4
t︸ ︷︷ ︸

(A1)

+
ϵlow(logN)

dx+2
2

σ4
t︸ ︷︷ ︸

(A2)

+
B2dx
σ4
t ϵlow

N−2β(logN)
3dx
2 +k1+1︸ ︷︷ ︸

(A3)

.

By replacing ϵlow with C3N
−β(logN)dx+k1/2 and using the relation k1 ≤ β,2 we obtain∫

Rd

∥s(x, y, t)−∇ log pt(x|y)∥22pt(x|y)dx = O
(
B2

σ4
t

N−β(logN)dx+
β
2 +1

)
.

Replacing N with N1/(dx+dy) completes the first part of the proof.

The transformer parameter norm bounds follow Lemma C.13, with the replacement of N with
N1/(dx+dy) as well. Note that this results in t ∈ [N−Cα/(dx+dy), Cσ/((dx + dy)) logN]. For better
interpretation of the cutoff and early stopping time parameter, we reset Cα as (dx + dy)Cα and Cσ

as (dx + dy)Cσ such that t ∈ [N−Cα , Cσ logN].

This completes the proof.

2Recall the definition of the Hölder smoothness from Definition 3.1.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a DeLTa Workshop Paper at ICLR 2025

D PROOF OF THEOREM 3.1 UNDER STRONGER ASSUMPTION

We state the proof of Theorem 3.1 under stronger Hölder assumption as follows.

• Step 0. We decompose the density function and the score function under stronger Assump-
tion 3.1. In Lemma D.1, we provide details regarding the decomposed form of the score
function. We specify the upper and lower bound on h and ∇h in Lemma D.2.

• Step 1. Similar to the domain discretization in the proof of previous main result, we
discretize the input domain of the decomposed density function in Lemma D.3.

• Step 2. We construct polynomial approximation based on Taylor expansion of h and ∇h in
Lemmas D.4 and D.5. The approximation result captures the local Hölder smoothness, with
improved precision relative to the analogous step in Lemma C.3 and Lemma C.4.

• Step 3. We approximate h and ∇h with transformer in Lemmas D.6 and D.7. In order
to construct the score approximator with transformer, we approximate several additional
algebraic operators with transformer in Lemma D.8, Lemma D.9 and Lemma D.10. We
incorporate these results into a unified transformer architecture in Lemma D.11.

Organization. Appendix D.1 includes the four steps and auxiliary lemmas supporting our proof.
Appendix D.2 includes the formal version and main proof of Theorem 3.1.

D.1 AUXILIARY LEMMAS

Step 0: Decompose the Score with Stronger Hölder Smoothness Assumption. We utilize the
condition assumed in stronger Assumption 3.1 to achieve the decomposition.

Lemma D.1 (Lemma B.1 of Fu et al. (2024b)). Under stronger Assumption 3.1. The conditional
distribution at time t has the following expression:

pt(x|y) =
1

(α2
t + C2σ2

t)
dx/2

exp

(
−

C2∥x∥22
2(α2

t + C2σ2
t)

)
h(x, y, t).

Moreover, the score function has the following expression:

∇ log pt(x|y) =
−C2x

α2
t + C2σ2

t

+
∇h(x, y, t)
h(x, y, t)

,

where h(x, y, t) =
∫ f(x0,y)

σ̂d
t (2π)

d/2 exp
(
−∥x0−α̂tx∥2

2σ̂2
t

)
dx0, σ̂t = σt

(α2
t+C2σ2

t)
1/2 , and α̂t =

αt

α2
t+C2σ2

t
.

Next, we provide lemma that provides bound on h(x, y, t) and ∇h(x, y, t) in Lemma D.1

Lemma D.2 (Lemma B.8 of (Fu et al., 2024b)). Under stronger Assumption 3.1, we have the
following bounds for h(x, y, t) and σ̂t

α̂t
∇h(x, y, t)

C1 ≤ h(x, y, t) ≤ B,

∥∥∥∥ σ̂tα̂t
∇h(x, y, t)

∥∥∥∥
∞

≤
√

2

π
B,

where C1 and B are the hyperparameters of Hβ(Rdx × [0, 1]dy , B) in stronger Assumption 3.1.

Remark D.1 (Bound on h and ∇h). We reiterate that Lemma D.2 drives the key distinction be-
tween the analyses in Theorem 3.1 and Theorem 3.1 under stronger assumption. Specifically, in
Appendix C.2, the decomposed term containing the threshold ϵlow results in lower approximation rate,
while bounds on h and ∇h eliminate the need of the threshold with h’s lower bound C1, rendering
faster approximation rate.

Step 1: Discretize Rdx × [0, 1]dy for h(x, y, t). This step parallels Lemma C.1; however, the
discretization differs due to the structure of h.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a DeLTa Workshop Paper at ICLR 2025

Lemma D.3 (Clipping Integral, Lemma B.10 of Fu et al. (2024b)). Under stronger Assumption 3.1.
Consider any integer vector κ ∈ Zdx

+ with ∥κ∥1 ≤ n. There exists a constant C(n, dx), such that for
any x ∈ Rdx and 0 < ϵ ≤ 0.99, it holds∫

Rdx\Bx

∣∣∣∣(α̂tx0 − x

σ̂t

)κ∣∣∣∣ · p(x0|y) · 1

σ̂d
t (2π)

d/2
exp

(
−∥α̂tx0 − x∥2

2σ̂2
t

)
dx0 ≤ ϵ, (D.1)

where
(

α̂tx0−x
σ̂t

)κ
:= ((α̂tx0[1]1−x[1]

σ̂t
)κ[1], (α̂tx0[2]−x[2]

σ̂t
)κ[2], . . . , (α̂tx0[dx]−x[dx]

σ̂t
)κ[dx]) and

Bx :=
[
α̂tx− C(n, d)σ̂t

√
log ϵ−1, α̂tx+ C(n, d)σ̂t

√
log ϵ−1

]dx

.

Step 2: Approximate h and ∇h with Polynomials. Similar to the construction of the diffused
local polynomials in Lemma C.5 and Lemma C.6, the following two lemmas render the first step
approximation for h(x, y, t) and ∇h(x, y, t) that captures the local smoothness.

Lemma D.4 (Approximation with Diffused Local Polynomials, Lemma B.4 of (Fu et al., 2024b)).
Under stronger Assumption 3.1. For sufficiently larger N > 0 and constant C2, there exists a diffused
local polynomial f1(x, y, t) with at most Nd+dy (d+ dy)

k1 monomials such that

|f1(x, y, t)− h(x, y, t)| ≲ BN−β log
k1
2 N,

for any x ∈ [−Cx

√
logN,Cx

√
logN]dx , y ∈ [0, 1]dy and t > 0.

Lemma D.5 (Counterpart of Lemma D.4, Lemma B.6 of (Fu et al., 2024b)). Under stronger
Assumption 3.1. For sufficiently larger N > 0 and constant C2, there exists a diffused local
polynomial f2(x, y, t) ∈ T h,s,r

R with at most Ndx+dy (dx + dy)
k1 monomials f2[i](x, y, t) such that∣∣∣∣f2[i](x, y, t)− (σ̂tα̂t

∇h(x, y, t)
)
[i]

∣∣∣∣ ≲ BN−β log
k1+1

2 N,

for any x ∈ Rdx , y ∈ [0, 1]dy and t > 0.

Step 3: Approximate Diffused Local Polynomials and Algebraic Operators with Transformers.
First, we apply the universal approximation theory of transformers to f1 and f2. Second, we adopt a
comparable approach to approximate the algebraic operators essential for the final score computation.
Last, we introduce Lemma D.11 that outlines how these components fit into a single transformer
architecture with a specified parameter configuration.

• Step 3.1: Approximate the Diffused Local Polynomials f1 and f2.
We invoke the universal approximation theorem of transformer Theorem B.1. We utilize
network consisting of one transformer block and one feed-forward layer.

Lemma D.6 (Approximate Scalar Polynomials with Transformers). Under stronger Assump-
tion 3.1. Consider the diffused local polynomial f1 in Lemma D.4. For any ϵ > 0, there exists
a transformer Tf1 ∈ T h,s,r

R , such that for any x ∈ [−Cx

√
logN,Cx

√
logN]dx , y ∈ [0, 1]dy

and t ∈ [N−Cσ , Cα logN], it holds

|f1(x, y, t)− Tf1(x, y, t)[dx]| ≤ ϵ,

The parameter bounds in the transformer network class follows Lemma C.5.

Lemma D.7 (Approximate Vector-Valued Polynomials with Transformers). Under stronger
Assumption 3.1 and consider f2(x, y, t) ∈ Rdx in Lemma D.5. For any ϵ > 0, there exists a

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a DeLTa Workshop Paper at ICLR 2025

transformer Tf2 ∈ T h,s,r
R such that

∥f2(x, y, t)− Tf2∥∞ ≤ ϵ,

for any x ∈ [−Cx

√
logN,Cx

√
logN]dx , y ∈ [0, 1]dy and t ∈ [N−Cσ , Cα logN]. The

parameter bounds in the transformer network class follows Lemma C.5.

• Step 3.2: Approximate Algebraic Operators with Transformers.
Next, we introduce lemmas regarding the function of time. These are also key components
to the proof of Theorem D.1.

Lemma D.8 (Approximation of α2 with Transformer). For t ∈ [t0, T] with t0 < 1, there
exists Transformer Tα2(t) ∈ T h,s,r

R such that∣∣Tα2 − α2
∣∣ ≤ ϵα̂.

The parameter bounds in the Transformer network class follow Lemma C.11.

Also, we approximate α̂ and σ̂t as well.

Lemma D.9 (Approximation of α̂ with Transformer). Consider α̂t =
αt

α2
t+C2σ2

t
, for t ∈

[t0, T] with t0 < 1, there exists Transformer Tα̂(t) ∈ T h,s,r
R such that

|Tα̂ − α̂| ≤ ϵα̂.

The parameter bounds in the transformer network class follow Lemma C.11.

Lemma D.10 (Approximation of σ̂ with Transformer). Consider σ̂t = σt

(α2
t+C2σ2

t)
1/2 , for

t ∈ [t0, T] with t0 < 1, there exists Transformer Tσ̂(t) ∈ T h,s,r
R such that

|Tσ̂ − σ̂| ≤ ϵσ̂.

The parameter bounds in the transformer network class follow Lemma C.11.

We have finished establishing the approximation with transformer for every key component
for the proof of Theorem 3.1.

• Step 3.3: Unified Transformer-Based Score Function Approximation.
We introduce the counterpart of Lemma C.13. It is the core of the proof for Theorem 3.1.

Lemma D.11 (Score Approximation with Transformer). Under stronger Assumption 3.1.
For sufficiently large integer N , there exists a mapping from transformer Tscore ∈ T h,s,r

R
such that ∥∥∥∥Tscore −∇ log h(x, y, t) +

C2x

α2
t + C2σ2

t

∥∥∥∥
∞

≤ B

σt
N−β(logN)

k1+1
2 ,

for any x ∈ [−Cx

√
logN,Cx

√
logN]dx , y ∈ [0, 1]dy and t ∈ [N−Cσ , Cα logN].

The parameter bounds in the transformer network class satisfy

∥WQ∥2, ∥WK∥2, ∥WQ∥2,∞, ∥WK∥2,∞ = O
(
N (3β+9Cσ)

2dL+4d+1
d

)
;

∥WV ∥2 = O(
√
d); ∥WV ∥2,∞ = O(d); ∥WO∥2, ∥WO∥2,∞ = O

(
N−β

)
;

∥W1∥2, ∥W1∥2,∞ = O
(
N4β+9Cσ+

3Cα
2 · logN

)
;
∥∥E⊤∥∥

2,∞ = O
(
d

1
2L

3
2

)
;

∥W2∥2, ∥W2∥2,∞ = O
(
N4β+9Cσ+

3Cα
2

)
;CT = O

(√
logN/σt

)
.

Proof. Our proof follows the proof structure of (Fu et al., 2024b, Proposition B.3).

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a DeLTa Workshop Paper at ICLR 2025

Recall the decomposed score function presented in Step 0, we establish the the first-step
approximator f3 with the form:

f3(x, y, t) :=
α̂t

σ̂t
· f2(x, y, t)
f1(x, y, t)

− C2x

α2
t + C2σ2

t

.

We derive the error bound on the approximation of the first term containing Taylor poly-
nomials in f3. We incorporate second term containing the linear function in x into the the
transformer architecture.
We proceed as follows:

1. Step A: Approximate ∇ log pt(x|y) with f3.

2. Step B: Approximate f3 with Tscore ∈ T h,s,r
R .

3. Step C: Derive the final Parameter Configuration

– Step A. Approximate Scroe Function with f3.
We first construct f1(x, y, t) and f2(x, y, t) from Lemma D.4 and Lemma D.5 to
approximate h(x, y, t) and ∇h(x, y, t) respectively.

From Lemma D.2, we have C1 ≤ h ≤ B and
∥∥∥ σ̂t∇h

α̂t

∥∥∥
∞

≤
√

2
πB.

Next, by Lemma D.4 and Lemma D.5, we select a sufficiently large N such that
C1

2 ≤ f1 ≤ 2B and f2 ≤ B.
Without loss of generality, we begin by bounding the first coordinate of ∇h, denoted
as ∇h[1]:∣∣∣∣∇h[1]h

− α̂t

σ̂t

f2[1]

f1

∣∣∣∣ ≤ ∣∣∣∣∇h[1]h
− ∇h[1]]

f1

∣∣∣∣+ ∣∣∣∣∇h[1]f1
− α̂t

σ̂t

f2[1]]

f1

∣∣∣∣,
≤
∣∣∣∣∇h[1]]h · f1

∣∣∣∣|f1 − h|+ α̂t

σ̂t

∣∣∣∣ 1f1
∣∣∣∣∣∣∣∣f2 − σ̂t

α̂t
∇h[1]]

∣∣∣∣,
≲
α̂t

σ̂t

(
|f1 − h|+

∣∣∣∣f2 − σ̂t
α̂t

∇h[1]
∣∣∣∣) ,(

By bounds on h, ∇h, f1, f2
)

≲
α̂t

σ̂t

(
BN−β(logN

k1
2 +BN−β(logN

k1+1
2)
)
,(

By Lemma D.4 and Lemma D.5
)

≲
1

σt

(
BN−β(logN

k1+1
2)
)
.

Note that in the last line, we utilize

α̂t

σ̂t
=
αt

σt

1√
α2
t + C2σ2

t

=
1

σt

1√
1 + C2 (σt/αt)

2
=

1

σt

1√
1 + C2

σ2
t

1−σ2
t

= O(σ−1
t).

By the symmetry of each coordinate in ∇h, we obtain the ℓ∞ bounds:∥∥∥∥∇h(x, y, t)h(x, y, t)
− α̂t

σ̂t

f2(x, y, t)

f1(x, y, t)

∥∥∥∥
∞

≲
B

σt
N−β(logN)

k1+1
2 . (D.2)

– Step B. Approximate f3 with Transformer Tscore.
Next, we prove that there exist Transformer networks Tscore ∈ T h,s,r

R that approximates
f3(x, y, t) with error of order N−β .
In the following, we construct a transformer approximating the two terms in f3, and
incorporate the result into a unified network architecture.

* Step B.1: Approximation for α̂tf2
σ̂tf1

.

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a DeLTa Workshop Paper at ICLR 2025

We utilize Tf1 , Tf2 , Tα̂ and Tσ̂ in Lemma C.5, Lemma C.6, Lemma D.9 and
Lemma D.10 to approximate each one of the component. This gives error ϵf1 , ϵf2 ,
ϵα̂ and ϵσ̂ respectively.
Next we utilize Trec,2 and Trec,3 in Lemma C.9 for the approximation of the inverse
of f1 and σ̂t. This gives error∣∣∣∣Trec,2 −

1

f1

∣∣∣∣ ≤ ϵrec,2 +
|Tf1 − f1|
ϵ2rec,2

≤ ϵrec,2 +
ϵf1
ϵ2rec,2

,

and ∣∣∣∣Trec,3 −
1

σ̂t

∣∣∣∣ ≤ ϵrec,3 +
|Tσ̂ − σ̂t|
ϵ2rec,2

≤ ϵrec,3 +
ϵσ̂
ϵ2rec,3

.

Next we utilize Tmult,1 in Lemma C.8 for the approximation of the product of f−1
1 ,

f2, α̂t and σ̂−1
t . This gives error∣∣∣∣Tmult,1 −
α̂tf2
σ̂tf1

∣∣∣∣
≤ ϵmult,1 + 4K3

4 max

(
ϵrec,2 +

ϵf1
ϵ2rec,2

, ϵf2 , ϵα̂, ϵrec,3 +
ϵσ̂
ϵ2rec,3

)
︸ ︷︷ ︸

:=ϵ2

:= ϵmult,1 + 4K3
4ϵ2,

and K3 is a positive constant.
From Lemma C.8, we require [−K4,K4] to cover the domain of f−1

1 , f2, α̂, and
σ̂t. Recall that we give the upper and lower bounds for f−1

1 and f2 in the beginning
of Step 1. Thus, we set K4 = max

(
σ̂−1
t , α̂t

)
.

To derive the asymptotic behavior of K4, we set the positive constant C2 = 2
without loss of generality and note that the maximum occurs at t = t0. We then
expand σ̂t0 and α̂−1

t0 :

σ̂t0 =

(
1− exp(−t0)
2− exp(−t0)

) 1
2

=

(
1− 1

2− exp(−t0)

) 1
2

= O
(
N−Cσ

)
.

and

α̂−1
t0 =

(
2− exp(−t0)
exp
(
− t0

2

))
= 2 exp

(
t0
2

)
− exp

(
− t0

2

)
= O

(
N−Cσ

)
.

So we take K4 = O(NCσ).

* Step B.2: Approximation for −C2x/(α
2
t + C2σ

2
t).

We use α2
t + σ2

t = 1 to rewrite (α2
t + C2σ

2
t)

−1 as (C2 + (1− C2)α
2
t)

−1.
We first utilize Tα2 in Lemma D.8 for the approximation of α2

t . This gives error
ϵα2 .
Next, we utilize Trec,1 in Lemma C.8 for the approximation of the inverse of α2

t .
This gives error

∣∣∣∣Trec,1 −
1

α2
t

∣∣∣∣ ≤ ϵrec,1 +

∣∣∣Tα2
t
− α2

t

∣∣∣
ϵ2rec,1

≤ ϵrec,1 +
ϵα2

ϵ2rec,1
.

Next, we utilize Tmult,2 for the approximation of the product of (C2+(1−C2)α
2
t)

−1

and x.

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a DeLTa Workshop Paper at ICLR 2025

This gives error∣∣∣∣Tmult,2 −
(

x

C2 + (1− C2)α2
t

)∣∣∣∣ ≤ ϵmult,2 + 2K3

(
ϵrec,1 +

ϵα2

ϵ2rec,1

)
,

and from Lemma C.8, K3 is positive constant such that x ∈ [−K3,K3]
and α−1

t ∈ [−K3,K3]. Since x ∈ [−Cx

√
logN,Cx

√
logN] and α−1

T =

(exp(−Cα logN/2))−1 = NCα/2, we take K3 = NCα/2.

* Step B.3: Error Bound on Every Approximation Combined.
Combining Step B.1 and Step B.2, we obtain the total network with error bounded
by

ϵscore ≤ ϵmult,2 + 2K3

(
ϵrec,1 +

ϵα2

ϵ2rec,1

)
+ ϵmult,1 + 4K3

4ϵ2.

Next, we specify on the choice of ϵ in each approximation to attain a final approxi-
mation error of order N−β .

· For the Error of the First Inverse Operator:

ϵrec,1 = O
(
N−(β+ 1

2Cα)
)
.

· For the Error of the Second and Third Inverse Operator:

ϵrec,2, ϵrec,3 = O
(
N−(β+3Cσ)

)
.

· For the Error of f1:

ϵf1 = O
(
N−(3β+9Cσ)

)
.

· For the Error of f2:

ϵf2 = O
(
N−(β+3Cσ)

)
.

· For the Error of σ̂:

ϵσ̂ = O
(
N−(3β+9Cσ)

)
.

· For the Error of α̂:

ϵα̂ = O
(
N−(β+3Cσ)

)
.

· For the Error of α2:

ϵα2 = O
(
N−(3β+ 3

2Cα)
)
.

· For the Error of the Two Product Operators:

ϵmult,1, ϵmult,2 = O(N−β).

With above error choice, we have

|Tscore(x, y, t)− f3(x, y, t)| ≤ N−β . (D.3)

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a DeLTa Workshop Paper at ICLR 2025

Combining (D.2), (D.3) and dropping lower order term, we obtain

∥Tscore −∇ log pt(x|y)∥∞ ≲
B

σt
N−β(logN)

k1+1
2 .

We have completed the first part of the proof. Next, we select the parameter bounds
based on all the above approximations.

Step C: Transformer Parameter Bound.
Our result highlights the influence of N under varying dx. Therefore, for the transformer
parameter bounds, we keep terms with dx, d, L appearing in the exponent of N and logN .

– Parameter Bound on WQ and WK .
Given error ϵ, the bound on each operation follows:

* For ϵf1 : By Lemma C.5, we have

∥WQ∥2, ∥WK∥2, ∥WQ∥2,∞, ∥WK∥2,∞ = O
(
N (3β+9Cσ)

2dL+4d+1
d

)
.

* For ϵf2 : By Lemma C.6, we have

∥WQ∥2, ∥WK∥2, ∥WQ∥2,∞, ∥WK∥2,∞ = O
(
N (β+3Cσ)

2dL+4d+1
d

)
.

* For ϵmult,1: By Lemma C.8 with m = 4, we have

∥WQ∥2, ∥WK∥2, ∥WQ∥2,∞, ∥WK∥2,∞ = O
(
N9β

)
.

* For ϵmult,2: By Lemma C.8 with m = 2, we have

∥WQ∥2, ∥WK∥2, ∥WQ∥2,∞, ∥WK∥2,∞ = O
(
N5β

)
.

* For ϵrec,1: By Lemma C.9, we have

∥WQ∥2, ∥WK∥2, ∥WQ∥2,∞, ∥WK∥2,∞ = O
(
N3β+ 3Cα

2

)
.

* For ϵrec,2 and ϵrec,3: By Lemma C.9, we have

∥WQ∥2, ∥WK∥2, ∥WQ∥2,∞, ∥WK∥2,∞ = O
(
N3β+9Cσ

)
.

* For ϵα̂: By Lemma C.11, we have

∥WQ∥2, ∥WK∥2, ∥WQ∥2,∞, ∥WQ∥2,∞ = O
(
N3β+9Cσ

)
.

* For ϵα2 : By Lemma C.11, we have

∥WQ∥2, ∥WK∥2, ∥WQ∥2,∞, ∥WQ∥2,∞ = O
(
N9β+ 9Cα

2

)
.

* For ϵσ̂: By Lemma C.11, we have

∥WQ∥2, ∥WK∥2, ∥WQ∥2,∞, ∥WQ∥2,∞ = O
(
N9β+27Cσ

)
.

We select the largest parameter bound from ϵf1 that remains valid across all other
approximations.

– Parameter Bound on WO and WV .
Given error ϵ, the bound on each operation follows:

* For ϵf1 : By Lemma C.5, we have

∥WO∥2, ∥WO∥2,∞ = O
(
N− (3β+9Cσ)

d

)
.

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a DeLTa Workshop Paper at ICLR 2025

* For ϵf2 : By Lemma C.6, we have

∥WO∥2, ∥WO∥2,∞ = O
(
N− (β+3Cσ)

d

)
.

* For ϵmult,1: By Lemma C.8 with m = 4, we have

∥WO∥2, ∥WO∥2,∞ = O
(
N−4β

)
.

* For ϵmult,2: By Lemma C.8 with m = 2, we have

∥WO∥2, ∥WO∥2,∞ = O
(
N−2β

)
.

* For ϵrec,1: By Lemma C.9, we have

∥WO∥2, ∥WO∥2,∞ = O
(
N−(β+Cα

2)
)
.

* For ϵrec,2 and ϵrec,3: By Lemma C.9, we have

∥WO∥2, ∥WO∥2,∞ = O
(
N−(β+3Cσ)

)
.

* For ϵα̂: By Lemma C.11, we have

∥WO∥2, ∥WO∥2,∞ = O
(
N−(β+3Cσ)

)
.

* For ϵα2 : By Lemma C.11, we have

∥WO∥2, ∥WO∥2,∞ = O
(
N−(3β+ 3Cα

2)
)
.

* For ϵσ̂: By Lemma C.11, we have

∥WO∥2, ∥WO∥2,∞ = O
(
N−(3β+9Cσ)

)
.

Since we do not impose any relation on Cσ, Cα and β, we simply take looser bound
∥WO∥2, ∥WO∥2,∞ = N−β . Moreover, since only ϵf1 and ϵf2 involve the reshape
operation. From Lemma B.2, we take O(

√
d) and O(d) ∥WV ∥2 and ∥WV ∥2,∞.

– Parameter Bound for W1.
Given error ϵ, the bound on each operation follows:

* For ϵf1 : By Lemma C.5, we have

∥W1∥2, ∥W1∥2,∞ = O
(
N

(3β+9Cσ)
d · logN

)
.

* For ϵf2 : By Lemma C.6, we have

∥W1∥2, ∥W1∥2,∞ = O
(
N

(β+3Cσ)
d · logN

)
.

* For ϵmult,1: By Lemma C.8 with m = 4 and C = K4 in (C.9), we have

∥W1∥2, ∥W1∥2,∞ = O
(
K4 ·N4β

)
= O

(
N (4β+Cσ)

)
.

* For ϵmult,2: By Lemma C.8 with m = 2 and C = K3 in (C.10), we have

∥W1∥2, ∥W1∥2,∞ = O
(
K3 ·N2β

)
= O

(
N (2β+Cα

2)
)
.

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a DeLTa Workshop Paper at ICLR 2025

* For ϵrec,1: By Lemma C.9, we have

∥W1∥2, ∥W1∥2,∞ = O
(
N2β+Cα

)
.

* For ϵrec,2 and ϵrec,3: By Lemma C.9, we have

∥W1∥2, ∥W1∥2,∞ = O
(
N (2β+6Cσ)

)
.

* For ϵα̂: By Lemma C.11, we have

∥W1∥2, ∥W1∥2,∞ = O
(
N (β+3Cσ) · logN

)
.

* For ϵα2 : By Lemma C.11, we have

∥W1∥2, ∥W1∥2,∞ = O
(
N (3β+ 3Cα

2) · logN
)
.

* For ϵσ̂: By Lemma C.11, we have

∥W1∥2, ∥W1∥2,∞ = O
(
N (3β+9Cσ) · logN

)
.

We select the largest parameter bound from ϵf1 that remains valid across all other
approximations.

– Parameter Bound for W2.

Given error ϵ, the bound on each operation follows:

* For ϵf1 : By Lemma C.5, we have

∥W2∥2, ∥W2∥2,∞ = O
(
N

(3β+9Cσ)
d

)
.

* For ϵf2 : By Lemma C.6, we have

∥W2∥2, ∥W2∥2,∞ = O
(
N

(β+3Cσ)
d

)
.

* For ϵmult,1: By Lemma C.8 with m = 4, we have

∥W2∥2, ∥W2∥2,∞ = O
(
N4β

)
.

* For ϵmult,2: By Lemma C.8 with m = 2, we have

∥W2∥2, ∥W2∥2,∞ = O
(
N2β

)
.

* For ϵrec,1: By Lemma C.9, we have

∥W2∥2, ∥W2∥2,∞ = O
(
N (β+Cα

2)
)
.

* For ϵrec,2 and ϵrec,3: By Lemma C.9, we have

∥W2∥2, ∥W2∥2,∞ = O
(
N (β+3Cσ)

)
.

* For ϵα̂: By Lemma C.11, we have

∥W2∥2, ∥W2∥2,∞ = O
(
N (β+3Cσ)

)
.

34

1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a DeLTa Workshop Paper at ICLR 2025

* For ϵα2 : By Lemma C.11, we have

∥W2∥2, ∥W2∥2,∞ = O
(
N (3β+ 3Cα

2)
)
.

* For ϵσ̂: By Lemma C.11, we have

∥W2∥2, ∥W2∥2,∞ = O
(
N (3β+9Cσ)

)
.

We select the largest parameter bound from ϵf1 that remains valid across all other
approximations.

– Parameter Bound for E.
Since only ϵf1 and ϵf2 involve the reshape operation. From Lemma B.2, we take
O(d1/2L3/2).

By integrating results above, we derive the following parameter bounds for the transformer
network, ensuring valid approximation across all ten approximations.

∥WQ∥2, ∥WK∥2, ∥WQ∥2,∞, ∥WK∥2,∞ = O
(
N (3β+9Cσ)

2dL+4d+1
d

)
;

∥WV ∥2 = O(
√
d); ∥WV ∥2,∞ = O(d); ∥WO∥2, ∥WO∥2,∞ = O

(
N−β

)
;

∥W1∥2, ∥W1∥2,∞ = O
(
N4β+9Cσ+

3Cα
2 · logN

)
;
∥∥E⊤∥∥

2,∞ = O
(
d

1
2L

3
2

)
;

∥W2∥2, ∥W2∥2,∞ = O
(
N4β+9Cσ+

3Cα
2

)
;CT = O

(√
logN/σt

)
.

This completes the proof.

35

1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a DeLTa Workshop Paper at ICLR 2025

D.2 MAIN PROOF OF THEOREM 3.1 UNDER STRONGER ASSUMPTION

We state the formal version of Theorem 3.1 under stronger assumption.

Next, similar to the proof of Theorem 3.1, we need the truncation of x due to the unboundedness as
well.
Lemma D.12 (Truncate x, Lemma B.2 of (Fu et al., 2024b).). Under stronger Assumption 3.1. For
any R3 > 1, we have: ∫

∥x∥∞≥R3

pt(x|y)dx ≲ R3 exp
(
−C ′

2R
2
2

)
.

∫
∥x∥∞≥R3

∥∇ log pt(x|y)∥22pt(x|y)dx ≲ R3 exp
(
−C ′

2R
2
3

)
≲

1

σ2
t

R3
3 exp

(
−C ′

2R
2
3

)
,

where C ′
2 = C2/(2max(1, C2)).

Again, unlike result under generic Assumption 3.1, the explicit form of pt(x|y) and the upper and the
lower bound of the joint distribution Lemma D.2 automatically allow us to skip the threshold ϵlow as
in Lemma C.15.
Theorem D.1 (Approximation Score Function with Transformer under Stronger Hölder Assumption
(Formal Version of Theorem 3.1)). Under stronger Assumption 3.1 and dx = Ω(logN

log logN). For any
precision parameter 0 < ϵ < 1 and smoothness parameter β > 0, let ϵ ≤ O(N−β) for some N ∈ N.
For some positive constants Cα, Cσ > 0, for any y ∈ [0, 1]dy and t ∈ [N−Cσ , Cα logN], there exists
a Tscore(x, y, t) ∈ T h,s,r

R such that the conditional score approximation satisfies∫
Rdx

∥Tscore(x, y, t)−∇ log pt(x|y)∥22 · pt(x|y)dx = O
(
B2

σ2
t

·N− 2β
dx+dy · (logN)β+1

)
.

Notably, for ϵ = O(N−β), the approximation error has the upper bound Õ(ϵ2/(dx+dy)/σ2
t).

The parameter bounds in the transformer network class satisfy

∥WQ∥2, ∥WK∥2, ∥WQ∥2,∞, ∥WK∥2,∞ = O
(
N

3β(2dx+4d+1)
d(dx+dy)

+
9Cα(2dx+4d+1)

d

)
;

∥WV ∥2 = O(
√
d); ∥WV ∥2,∞ = O(d); ∥WO∥2, ∥WO∥2,∞ = O

(
N

− β
dx+dy

)
;

∥W1∥2, ∥W1∥2,∞ = O
(
N

4β
dx+dy

+9Cσ+
3Cα

2 · logN
)
;
∥∥E⊤∥∥

2,∞ = O
(
d

1
2L

3
2

)
;

∥W2∥2, ∥W2∥2,∞ = O
(
N

4β
dx+dy

+9Cσ+
3Cα

2

)
;CT = O

(√
logN/σt

)
.

Proof of Theorem 3.1 under Stronger Assumption. For simplicity, we change the variable N to
N

1
dx+dy in the following subsection. We put the original form back at the end of the proof.

We take Cx =
√

2β
C′

2
in Lemma D.11 and R3 = Cx

√
logN in Lemma D.12.

With the transformer parameter bounds in Lemma D.11, we have ∥Tscore∥2 ≤
√
logN/σt for any

x ∈ Rdx , y ∈ Rdy and t > 0. We start with the truncation on x∫
Rdx

∥Tscore −∇ log pt∥22ptdx

≤
∫
∥x∥∞>

√
2β

C′
2
logN

(
2∥Tscore∥22 + 2∥∇ log pt∥22

)
ptdx

︸ ︷︷ ︸
(A.1)

+

∫
∥x∥∞≤

√
2β

C′
2
logN

(
∥Tscore −∇ log pt∥22

)
ptdx

︸ ︷︷ ︸
A.2(

By expanding ℓ2 norm
)

36

1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

Under review as a DeLTa Workshop Paper at ICLR 2025

≲
∫
∥x∥∞>

√
2β

C′
2
logN

(
2

(√
logN

σt

)2

+ 2∥∇ log pt∥22

)
ptdx+

B2

σ2
t

N−2β(logN)k1+1

(
By ℓ2 bound on Tscore and Lemma D.11

)
≲ 2dx

√
logN

σ2
t

(
2β

C ′
2

logN

) 1
2

N−2β +
2

σ2
t

(
2β

C ′
2

logN

) 3
2

N−2β +
B2

σ2
t

N−2β(logN)k1+1(
By Lemma D.12

)
≲
B2

σ2
t

N−2β(logN)β+1.
(
By dropping lower order term

)
The transformer parameter norm bounds follow Lemma D.11, with the replacement of N with
N1/dx+dy . This gives in t ∈ [N−Cα/(dx+dy), Cσ(logN)1/(dx+dy)]. For a better interpretation of the
cutoff and early stopping time parameter, we reset Cα = (dx + dy)Cα and Cσ = (dx + dy)Cσ such
that t ∈ [N−Cα , Cσ logN].

This completes the proof.

37

1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051

Under review as a DeLTa Workshop Paper at ICLR 2025

E PROOF OF THEOREM 3.2

Overview of Our Proof Strategy of Theorem 3.2.

Step 0. Preliminaries. We introduce the mixed risk that accounts for risk with the distribution of the
mask signal in Definition E.1. We restate the loss function and the score matching technique
in Definition E.2.

Step 1. Truncate the Domain of the Risk. We truncate the domain of the loss function in order
to obtain finite covering number of transformer network class. Precise definition of the
truncated loss function class is in Definition E.4. We bound the error from the truncation
from the assumed light tail condition in Lemma E.1.

Step 2. Derive the Covering Number of Transformer Network. We introduce the covering number
of a given function class in Definition E.5. We provide lemma detailing the calculation of
the covering number for transformer architecture in Lemma E.2. We derive the covering
numbers under the respective parameter configurations for our two previous main results in
Lemma E.3.

Step 3. Bound the True Risk on Truncated Domain. With the previous steps, we present the
upper-bound of the mixed risk in Lemma E.4.

Organization. Appendix E.1 includes auxiliary lemmas for supporting our proof of Theorem 3.2.
Appendix E.2 includes the main proof of Theorem 3.2.

E.1 AUXILIARY LEMMAS FOR THEOREM 3.2

Step 0: Preliminary Framework. We evaluate the quality of the estimator sW through the risk:

R(sW) :=

∫ T

t0

1

T − t0
Ext,y∥sW (xt, y, t)−∇ log pt(xt|y)∥22dt. (E.1)

Definition E.1 (Mixed Risk). The risk (E.1) considers guidance y throughout whole the diffusion
process. We refer to it as the conditional score risk. In contrast, we have the mixed risk Rm that
accounts for the distribution of the mask signal τ = {∅, id} with P (τ = ∅) = P (τ = id) = 0.5:

Rm(sW) :=

∫ T

t0

1

T − t0
E(xt,y,τ)

[
∥sW (xt, τy, t)−∇ log pt(xt|τy)∥22

]
dt, (E.2)

Remark E.1. Given the score estimator ŝ trained from the empirical loss, the conditional score risk
is upper-bounded by twice of the mixed risk. That is, we have R(ŝ) ≤ 2Rm(ŝ). This follows from
direct calculation:

Rm(ŝ) =
1

2

∫ T

t0

1

T − t0
Ext

[
∥ŝ(xt, ∅, t)−∇ log pt(xt)∥22

]
dt+

1

2
R(ŝ).

Definition E.2 (Loss Function and Score Matching). Let x = xt|x0 denote the random variable
following Gaussian distribution N(αtx0, σ

2
t Idx

), we define loss function and score matching loss:

ℓ(x, y; sW) :=

∫ T

T0

1

T − T0
Eτ,x

[
∥sW (xt, τy, t)−∇ log pt (xt|x0)∥22

]
dt,

L(sW) :=

∫ T

t0

1

T − t0
Ex0,y

[
Eτ,x

[
∥sW (xt, τy, t)−∇ log pt(xt|x0)∥22

]]
dt.

Remark E.2. Given i.i.d samples {x0,i, yi}ni=1, we write ℓ(xi, yi; sW) with the understanding that
xi = xt|x0,i. When context is clear, we use ℓ(xi, yi; sW) and ℓ(x0,i, yi; sW); {x0,i, yi}ni=1 and
{xi, yi}ni=1 interchangeably.

38

2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105

Under review as a DeLTa Workshop Paper at ICLR 2025

Remark E.3. By (Vincent, 2011), L(sW) and Rm(sW) differ by a constant that is inconsequential
to the minimization. Therefore, minimizing the mixed risk is equivalent to minimizing the score
matching loss

Definition E.3 (Empirical Risk). Consider a score estimator sW ∈ T h,s,r
R . Recall the definition of

empirical loss: L̂(sW) =
∑n

i=1
1
nℓ(xi, yi; sW). Let s◦ := ∇ log pt(x|y), we define empirical risk:

R̂m(sW) := L̂(sW)− L̂(s◦) =
n∑

i=1

1

n
ℓ(xi, yi; sW)−

n∑
i=1

1

n
ℓ(xi, yi; s

◦).

Remark E.4. The key distinction between Rm and L lies in their formulations. Specifically, Rm

measures the expected difference between sW and the ground truth ∇ log pt(x|y) with respect to
(xt, y, τ). In contrast, the score matching loss L provides an explicit calculation based on the sample
{x0,i, yi}ni=1. With the tower property of conditional expectation, L measures the expected difference
between sW and ∇ log pt(x|x0) first with respect to (xt|x0, τ), and then with respect to x0.
Remark E.5. Observe (I): s◦ = ∇ log pt(x|y) is the ground truth of score function with Rm(s◦) = 0,
and (II): By (Vincent, 2011), Rm and L differ by a constant. Based on (I) and (II), we define the
empirical risk R̂m using the score matching loss as an intermediary: Rm(sW) = Rm(sW) −
Rm(s◦) = L(sW) − L(s◦). This leads to the definition of the empirical risk R̂m as a practical
approximation of the true risk difference Rm(sW)−Rm(s◦).

Remark E.6. For any score estimator sW ∈ T h,s,r
R obtained from the training with i.i.d. samples

{xi, yi}ni=1, it holds E{xi,yi}n
i=1

[R̂m(sW)] = Rm(sW). This follows from direct calculation with
Definition E.3 and the i.i.d. assumption.

Step 1: Domain Truncation of the Risk. We define the loss function with truncated domain. This
is essential for obtaining finite covering number for transformer network class.

Definition E.4 (Truncated Loss). We define the truncated domain of the score function by D :=
[−RT , RT]

dx × [0, 1]dy ∪ ∅. Given loss function ℓ(x, y; sW), we define the truncated loss:

ℓtrunc(x, y; sW) := ℓ(x, y; sW)1{∥x∥∞ ≤ RT }. (E.3)

Similarly, we define Ltrunc(sW) := L(sW)1{∥x∥∞ ≤ RT } , Rtrunc
m (sW) := Rm(sW)1{∥x∥∞ ≤

RT } and R̂trunc
m (sW) := R̂m(sW)1{∥x∥∞ ≤ RT }. We define the function class of the truncated

loss by

S(RT) := {ℓ(·, ·; sW) : D → R | sW ∈ T h,s,r
R }. (E.4)

Next, we introduce the following lemma dealing with the error bound for the truncation of the loss.

Lemma E.1 (Truncation Error, Lemma D.1 of (Fu et al., 2024b)). Consider the truncated loss
ℓtrunc(x, y; sW) and t ∈ [n−O(1),O(log n)]. Under generic Assumption 3.1, we have |ℓ(x, y; sW)| ≲
1/t0. Consider the parameter configuration in Theorem 3.1, it holds:

Ex,y

[∣∣ℓ(x, y, t)− ℓtrunc(x, y, s)
∣∣] ≲ exp

(
−C2R

2
T
)
RT

(
1

t0

)
.

Moreover, under stronger Assumption 3.1, we have |ℓ(x, y; sW)| ≲ log(1/t0). Consider the parame-
ter configuration in Theorem D.1, it holds:

Ex,y

[∣∣ℓ(x, y, t)− ℓtrunc(x, y, s)
∣∣] ≲ exp

(
−C2R

2
T
)
RT log

(
1

t0

)
.

Step 2: Covering Number of Transformer Network Class. We begin with the definition.

Definition E.5 (Covering Number). Given a function class F and a data distribution P . Sample n
data points {Xi}ni=1 from P , then the covering number N (ϵ,F , {Xi}ni=1, ∥·∥) is the smallest size of

39

2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159

Under review as a DeLTa Workshop Paper at ICLR 2025

a collection (a cover) C ∈ F such that for any f ∈ F , there exist f̂ ∈ C satisfying

max
i

∥∥∥f(Xi)− f̂(Xi)
∥∥∥ ≤ ϵ.

Further, we define the covering number with respect to the data distribution as

N (ϵ,F , ∥·∥) = sup
{Xi}n

i=1∼P

N (ϵ,F , {Xi}ni=1, ∥·∥).

Next, we introduce the following lemma that provides results for the calculation of the covering
number for transformer networks.

Lemma E.2 (Modified from Theorem A.17 of Edelman et al. (2022)).

Let T h,s,r
R (CT , C

2,∞
Q , CQ, C

2,∞
K , CK , C

2,∞
V , CV , C

2,∞
O , CO, CE , C

2,∞
f1

, Cf1 , C
2,∞
f2

, Cf2 , LT)

represent the class of functions of one transformer block satisfying the norm bound for matrix and
Lipsichitz property for feed-forward layers. Then for all data point ∥X∥2,∞ ≤ RT we have

logN (ϵc, T h,s,r
R , ∥·∥2)

≤ log(nLT)

ϵ2c
·
(
α

2
3

(
d

2
3

(
C2,∞

F

) 4
3

+ d
2
3

(
2(CF)

2COV C
2,∞
KQ

) 2
3

+ 2
(
(CF)

2C2,∞
OV

) 2
3

))3

,

where α := (CF)
2COV (1 + 4CKQ)(RT + CE).

With Lemma E.2, we derive the covering number under transformer weights configuration in Theo-
rem 3.1 and Theorem D.1.

Lemma E.3 (Covering Number for S(RT)). Given ϵc > 0 and consider ∥x∥∞ ≤ RT . With
sample {xi, yi}ni=1, the ϵc-covering number for S(RT) with respect to ∥·∥L∞

under the network
configuration in Theorem 3.1 satisfies

logN (ϵc,S(RT), ∥·∥∞) ≲
log n

ϵ2c
Nν1(logN)ν2(RT)

2,

where ν1 = 172β/(dx + dy) + 104Cσ and ν2 = 12dx + 12β + 2. Moreover, under network
configuration in Theorem D.1, we have

logN (ϵc, S(RT), ∥·∥∞) ≲
log n

ϵ2c
Nν3(logN)10(RT)

2,

where ν3 = 48dβ(L+ 2)(dx + 2d+ 1)/(dx + dy) + 144dCσ(L+ 2)− 8β.

Step 3: Bound the True Risk on Truncated Domain. We begin with the definition.

Definition E.6. Let s◦ := ∇ log pt(x|y) denote the ground truth of score function for simplicity.
Given i.i.d samples {xi, yi}ni=1 and a score estimator sW ∈ T h,s,r

R , we define the difference function:

∆n(sW , s◦) :=
∣∣∣E{xi,yi}n

i=1

[
R̂trunc

m (sW)−Rtrunc
m (sW)

]∣∣∣.
Remark E.7. Note that the difference function ∆n(sW , s◦) measures the expected difference
between the truncated empirical risk and the truncated mixed risk with respect to the training sample.
Since the true risk is unattainable, we construct ∆n(sW , s◦) serving as an intermediate that allows us
to derive the upper-bound on the mixed risk. Surprisingly, we are able to handle the upper-bound of
the difference function, presented in Lemma E.4.

40

2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213

Under review as a DeLTa Workshop Paper at ICLR 2025

Definition E.7. Given the truncated loss function class S(RT), we define its ϵc-covering with the
minimum cardinality in the L∞ metric as LN := {ℓ1, ℓ2, . . . , ℓN }. Moreover, we define ℓJ ∈ LN
with random variable J . By definition, there exist ℓJ ∈ LN such that ∥ℓJ − ℓ(xi, yi; sW)∥∞ ≤ ϵc.

Note that Lemma E.3 provides the upper-bound on the ϵc-covering number of S(RT) for score
estimator trained from transformer network class. Next, we bound the difference function.

Lemma E.4 (Bound on Difference Function). Consider i.i.d training samples {x0,i, yi}ni=1 and score
estimator ŝ. Under generic Assumption 3.1 and parameter configuration in Theorem 3.1, it holds:

∆n(ŝ, s
◦) ≲ E{xi,yi}n

i=1

[
R̂m(ŝ)

]
+

1

t0

(
RT exp

(
−C2R

2
T
)
+

1

n
logN

)
+ 7ϵc,

where N (ϵc, T h,s,r
R , ∥·∥2) is the covering number of transformer network class. Moreover, Under

stronger Assumption 3.1 and parameter configuration in Theorem D.1, it holds:

∆n(ŝ, s
◦) ≲ E{xi,yi}n

i=1

[
R̂m(ŝ)

]
+ log

1

t0

(
RT exp

(
−C2R

2
T
)
+

1

n
logN

)
+ 7ϵc.

E.2 PROOF OF THEOREM 3.2

Proof of Theorem 3.2. For simplicity, we use κ = 1/t0 for the case in Theorem 3.1 and κ =
log(1/t0) for the case in Theorem D.1. The proof proceeds through the following three steps.

• Step A: Decompose the mixed risk.
We denote the ground truth by s◦(x, y, t) = ∇ log pt(x|y). Moreover, if y = ∅ we set
s◦(x, y, t) = ∇ log pt(x).

Recall Definition E.3 and Lemma E.4. By introducing a different set of i.i.d. samples
{x′i, y′i}ni=1 from the initial data distribution P0(x, y) independent of the training samples,
we rewrite the mixed risk:

Rm(ŝ) = E{x′
i,y

′
i}n

i=1

[
1

n

n∑
i=1

(ℓ(x′i, y
′
i, ŝ)− ℓ(x′i, y

′
i, s

◦))

]
= E{x′

i,y
′
i}n

i=1

[
R̂′

m(ŝ)
]
,

where we use R̂′
m(ŝ) to denote the empirical risk of the score estimator ŝ trained from the

i.i.d samples {x′i, y′i}ni=1 .

This allows us to do the decomposition of E{xi,yi}n
i=1

[Rm(ŝ)] as follows.

E{xi,yi}n
i=1

[Rm(ŝ)] = E{xi,yi}n
i=1

[
E{x′

i,y
′
i}n

i=1

[
R̂′

m(ŝ)− R̂′ trunc
m (ŝ)

]]
︸ ︷︷ ︸

(I)

+ E{xi,yi}n
i=1

[
E{x′

i,y
′
i}n

i=1

[
R̂′ trunc

m (ŝ)− R̂trunc
m (ŝ)

]]
︸ ︷︷ ︸

(II)

+ E{xi,yi}n
i=1

[
R̂trunc

m (ŝ)− R̂m(ŝ)
]

︸ ︷︷ ︸
(III)

+E{xi,yi}n
i=1

[
R̂m(ŝ)

]
︸ ︷︷ ︸

(IV)

• Step B: Derive the Upper Bound.

– Step B.1: Bound Each Term.

* By Lemma E.1, we have both (I), (III) ≲ κ exp
(
−C2R

2
T
)
RT .

* By Lemma E.4, we have (II) ≲ (IV) + κ
(
RT exp

(
−C2R

2
T
)
+ 1

n logN
)
+ 7ϵc,

41

2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267

Under review as a DeLTa Workshop Paper at ICLR 2025

* By the following, we have (IV)≤ minsW∈T h,s,r
R

Rm(s).

(IV) = E{zi}n
i=1

[
R̂(ŝ)

]
≤ E{zi}n

i=1

[
R̂m(s)

]
= Rm(s).

The inequality holds because ŝ is the minimizer of the empirical risk.
– Step B.2: Combine (I), (II), (III), (IV).

Combining these results we obtain

E{xi,yi}n
i=1

[Rm(ŝ)] ≤ 2 min
sW∈T h,s,r

R

∫ T

t0

1

T − t0
Ext,y,τ

[
∥s(xt, τy, t)−∇ log pt(xt|τy)∥22

]
dt

+O
(κ
n
logN

)
+O(exp

(
−C2R

2
T
)
κ) +O (ϵc) . (E.5)

By taking RT =
√

(Cσ+2β) logN
C2(dx+dy)

we have

E{xi,yi}n
i=1

[Rm(ŝ)] ≤ 2 min
s∈T h,s,r

R

∫ T

t0

1

T − t0
Eτ,xt,y

[
∥s(x, τy, t)−∇ log pt(x|y)∥22

]
dt

O
(κ
n
logN

)
+O

(
N

− 2β
dx+dy

)
+O (ϵc) . (E.6)

where we use κ ≲ 1
t0

= NCσ by Lemma E.1 to obtain the third term on the RHS.

Step C: Altogether.
To apply the previous approximation theorems (Theorem 3.1 and Theorem D.1) to the first
term on the RHS of (E.5), we rewrite the expectation as

Ext,y,τ

[
∥s(xt, τy, t)−∇ log pt(xt|τy)∥22

]
(E.7)

=
1

2

∫
Rdx

∥s(x, ∅, t)−∇ log pt(x|y)∥22pt(x)dx+
1

2
Ey

[∫
Rdx

∥s(x, y, t)−∇ log pt(x|y)∥22pt(x|y)dx
]
.

Since the marginal distribution pt(x) also satisfies the subgaussian property, the previous
result of the conditional score estimation applies to its unconditional counterpart by removing
the label throughout the whole process.

– Step C.1: Result under generic Assumption 3.1.
By Theorem 3.1, we rewrite (E.6) as

E{zi}n
i=1

[Rm(ŝ)] ≲ O
(
N

− β
dx+dy (logN)dx+

β
2 +1
)

︸ ︷︷ ︸
(i)

+O
(
N

− 2β
dx+dy

)
︸ ︷︷ ︸

(ii)

+O
(κ
n
logN

)
︸ ︷︷ ︸

(iii)

+O (ϵc)︸ ︷︷ ︸
(iv)

.

Moreover, from Lemma E.1 we have κ = O(1/t0) and from Lemma E.3 we have

logN (ϵc,S(RT), ∥·∥∞) ≲
log n

ϵ2c
N

68β
dx+dy

+104Cσ (logN)12dx+12β+2(RT)
2

:=
log n

ϵ2c
Nν1(logN)ν2(RT)

2,

where ν1 = 68β/(dx + dy) + 104Cσ and ν2 = 12dx + 12β + 2.

By taking N = n
dx+dy

(dx+dy+β) and ϵc = N
− 2β

(dx+dy) , we have error:

* (i) = O
(
(log n)dx+

β
2 +1n

− β
(dx+dy+β)

)
.

* (ii) = O
(
n
− 2β

(dx+dy+β)

)
42

2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321

Under review as a DeLTa Workshop Paper at ICLR 2025

* (iii) = O

κn−1 · n
4β

dx+dy+β︸ ︷︷ ︸
ϵ−2
c

·(log n) · n
ν1(dx+dy)

dx+dy+β︸ ︷︷ ︸
Nν1

· (log n)ν2︸ ︷︷ ︸
(logN)ν2

· (log n)︸ ︷︷ ︸
R2

T

 with κ =

1/t0.
Rearranging the expression, we have (iii) =

O
(

1
t0
n
− (1−ν1)(dx+dy)−3β

dx+dy+β (log n)ν2+2

)
* (iv) = O

(
n
− 2β

dx+dy+β

)
We take the mixture of (i) and (iii) as the final error bound:

E{xi,yi}n
i=1

[R(ŝ)] = O
(

1

t0
n
−min (β,(1−ν1)(dx+dy)−3β)

(dx+dy+β) (log n)ν2+2

)
.

– Step C.2: Result under stronger Assumption 3.1.
With Theorem D.1, we further write (E.6) as

E{zi}n
i=1

[Rm(ŝ)] ≲ O
(
N

− 2β
dx+dy (logN)β+1

)
︸ ︷︷ ︸

(i)

+O
(
N

− 2β
dx+dy

)
︸ ︷︷ ︸

(ii)

+O
(κ
n
logN

)
︸ ︷︷ ︸

((iii)

+O (ϵc)︸ ︷︷ ︸
(iv)

.

Moreover, by Lemma E.1 we have κ = O(log 1
t0
), and by Lemma E.3 we have:

logN (ϵc,S(RT), ∥·∥∞) ≲
log n

ϵ2c
Nν3(logN)10(RT)

2.

where ν3 = 4(12βdx+31βd+6β)
d(dx+dy)

+ 12(12Cαdx+25Cα·d+6Cα)
d + 72Cσ .

By taking N = n
(dx+dy)

(dx+dy+2β) and ϵc = N
− 2β

(dx+dy) , we have error:

* (i) = O
(
(log n)β+1n

− 2β
(dx+dy+2β)

)
.

* (ii) = O
(
n
− 2β

(dx+dy+2β)
)

.

* (iii) = O

κn−1 n
4β

dx+dy+2β︸ ︷︷ ︸
ϵ−2
c

·(log n) · n
ν3(dx+dy)

(dx+dy+2β)︸ ︷︷ ︸
Nν3

(log n)10 (log n)︸ ︷︷ ︸
R2

T

 with κ =

log (1/t0).
Rearranging the expression we have (iii) =

O
(
log 1

t0
n
− (1−ν3)(dx+dy)−2β

dx+dy+2β (log n)12
)

.

* (iv) = O
(
n
− 2β

dx+dy+2β

)
.

We take the mixture of (i) and (iii) as the final error bound:

E{xi,yi}n
i=1

[R(ŝ)] = O
(
log

1

t0
n
−min (2β,(1−ν3)(dx+dy)−2β)

(dx+dy+2β) (log n)max(12,β+1)

)
.

This completes the proof.

43

	Introduction
	Backgrounds and Preliminaries
	Statistical Limits of Conditional DiTs
	Latent Conditional DiTs
	Discussion and Conclusion
	Notation
	Universal Approximation of Transformers
	Transformers as Universal Approximators
	Parameter Norm Bounds for Transformer Approximation

	Proof of
	Auxiliary Lemmas
	Main Proof of

	Proof of
	Auxiliary Lemmas
	Main Proof of

	Proof of
	Auxiliary Lemmas for
	Proof of

