
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

P-SPIKESSM: HARNESSING PROBABILISTIC SPIKING
STATE SPACE MODELS FOR LONG-RANGE DEPEN-
DENCY TASKS

Anonymous authors
Paper under double-blind review

ABSTRACT

Spiking neural networks (SNNs) are posited as a computationally efficient and
biologically plausible alternative to conventional neural architectures, with their
core computational framework primarily using the leaky integrate-and-fire (LIF)
neuron model. However, the limited hidden state representation of LIF neurons,
characterized by a scalar membrane potential, and sequential spike generation
process, poses challenges for effectively developing scalable spiking models to
address long-range dependencies in sequence learning tasks. In this study, we
develop a scalable probabilistic spiking learning framework for long-range de-
pendency tasks leveraging the fundamentals of state space models. Unlike LIF
neurons that rely on the deterministic Heaviside function for a sequential pro-
cess of spike generation, we introduce a SpikeSampler layer that samples spikes
stochastically based on an SSM-based neuronal model while allowing parallel
computations. To address non-differentiability of the spiking operation and enable
effective training, we also propose a surrogate function tailored for the stochastic
nature of the SpikeSampler layer. To enhance inter-neuron communication, we
introduce the SpikeMixer block, which integrates spikes from neuron populations
in each layer. This is followed by a ClampFuse layer, incorporating a residual
connection to capture complex dependencies, enabling scalability of the model.
Our models attain state-of-the-art performance among SNN models across diverse
long-range dependency tasks, encompassing the Long Range Arena benchmark,
permuted sequential MNIST, and the Speech Command dataset and demonstrate
sparse spiking pattern highlighting its computational efficiency.

1 INTRODUCTION

Spiking neural networks (SNNs) (Ghosh-Dastidar & Adeli, 2009) have garnered attention as a bio-
plausible substitute for traditional artificial neural networks (ANNs). Their appeal stems from their
utilization of spike-based communication among neurons, a feature that closely mimics biological
processes. The inherent stateful nature of SNNs enables them to adeptly handle temporal informa-
tion (Neftci et al., 2019), further enhancing their suitability for various applications (Yamazaki et al.,
2022). The sparse spike-based information flow characteristic of SNNs allow event-driven compu-
tation and communication in neuromorphic hardware, leading to energy savings (Sengupta et al.,
2019). SNN-based models, ideal for edge computing, have undergone rigorous testing on neuro-
morphic hardware platforms such as Intel Loihi 2 (Davies et al., 2021), IBM TrueNorth (Merolla
et al., 2014), among others, showcasing orders of magnitude improvements in energy efficiency.

In the progression of SNN-based architecture advancements, research has predominantly focused
on employing leaky-integrate-and-fire (LIF) neurons (Burkitt, 2006). While the dynamics modeled
by LIF neurons are deemed biologically plausible, the actual operations within the brain entail ad-
ditional layers of complexity (Hodgkin & Huxley, 1990) and stochasticity (Harrison et al., 2005)
that are not fully captured by the simplified LIF neuron model. Moreover, the sequential state up-
dates and spike generation using a deterministic Heaviside function complicate the training of LIF-
based SNN architectures, often requiring computationally expensive methods like backpropagation
through time (BPTT) (Neftci et al., 2019). This fundamental challenge has significantly limited the
adoption of SNN models, particularly for complicated sequence learning tasks involving long-range

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

dependencies. Efficient algorithmic alternative to conventional BPTT training (Bauer et al., 2023;
Shrestha & Orchard, 2018; Xiao et al., 2021) for LIF-based spiking architectures are also being
proposed, but remain unexplored for long context tasks. However, in this paper, we move beyond
traditional LIF-based spike generation models to develop a computationally efficient probabilistic
SNN architecture, designed to effectively tackle long-range dependency tasks in the spiking domain.

State Space Models (SSMs) have been recently employed to effectively model sequence learning
tasks (Gu et al., 2021a; Gu & Dao, 2023). SSMs serve as fundamental scientific models utilized
across various disciplines, notably in control theory, to articulate the behavior of dynamic systems.
They offer a streamlined and robust framework, facilitating a comprehensive analysis and deep un-
derstanding of the dynamics of complex systems as they unfold over time. In this work, we employ
SSMs to capture temporal dependencies within sequences of input spikes, rather than conventional
real-valued data. This approach not only enables computational efficiency but also underscores the
remarkable capability of SSMs in analyzing long-term temporal dependencies in spike-based data.

Probabilistic Spiking State-Space Model: In this paper, we propose an SNN architecture grounded
in a probabilistic state-space neuronal model, which we call P-SpikeSSM. We conceptualize the
n-dimensional hidden state of the underlying SSM as the membrane potential, providing richer rep-
resentations when compared to the scalar hidden state of an LIF neuron. Dynamics of each neuron is
governed by an independent set of parameters, allowing the model to flexibly learn diverse temporal
dependencies across neurons, thus enhancing its processing capacity. As outlined in the methodol-
ogy, instead of real-valued inputs, we feed sequence of spikes into the P-SpikeSSM neuronal model.
This enables developing a computationally efficient framework by applying convolution over the
sparse spikes, instead of real-valued data. The SpikeSampler layer samples spikes from each P-
SpikeSSM neuron, enabling parallel operation with minimal overhead. Moreover, to address the
challenge of non-differentiability inherent in the stochastic spiking function, we introduce a novel
surrogate in the form of E[St], where the discrete Bernoulli random variable St is associated with
the spiking event of each neuron at time t.

Scalable Architecture with SpikeSampler and SpikeMixer: Although individual P-SpikeSSM
neurons can process one input spike sequence, addressing tasks with complex long-range depen-
dencies demands a deeper, more scalable architecture capable of capturing diverse dependencies.
To address this, we introduce a robust architecture (Fig. 1) and training framework. We encode
the real-valued input sequence, associated with a sequence learning task, into N distinct spike trains,
which are fed to a layer consisting of N corresponding neurons (see Section 3.2). Each neuron gener-
ates spikes stochastically based on its individual input spike train, while the collective activity of the
neuron population allows for effectively capturing a diverse range of dependencies across the differ-
ent input spike sequences. The output spikes from each neuron population in a layer are processed
through a SpikeMixer layer, facilitating inter-neuron communication. Next, a FuseClamp layer
performs further aggregation and computes the probability necessary for generating the subsequent
spike sequences, which are then passed to the next layer of P-SpikeSSM based neuronal units. Fur-
thermore, because the model communicates and uses sparse spike trains for computation, it achieves
substantial computational efficiency by significantly reducing the number of floating-point multipli-
cation and accumulation (MAC) operations across all layers and using simpler accumulative (ACC)
operations instead. Furthermore, current state-of-the-art transformer-based spiking architectures,
like (Zhou et al., 2022; Bal & Sengupta, 2024), process input sequences in parallel but require ad-
ditional time steps to simulate network dynamics. In contrast, our proposed model eliminates this
overhead, substantially improving computational efficiency.

Application to Long-Range Dependency Tasks: We evaluate the performance of our proposed
spiking architecture on various datasets within the Long Range Arena (LRA) benchmark, along
with sequence-based datasets such as permuted sequential MNIST (psMNIST) and the raw inputs
of the SC10 subset of the Speech Command dataset. Our model outperforms traditional non-spiking
transformer-based architectures and, to the best of our knowledge, establishes a new benchmark for
spiking models in the domain of long-range arena tasks.

2 RELATED WORKS

The realm of sequence modeling is primarily dominated by transformer-based architectures. Effi-
cient implementations like LinFormer (Wang et al., 2020), Performer (Choromanski et al., 2020),

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

Input

P-Spike
SSM

Encoder

P-SpikeSSM Encoder
Layer 1

P-SpikeSSM Encoder
Layer 2

P-SpikeSSM Encoder
Layer K

Decoder

Output

P-Spike
SSM

N neurons

Input Spikes

SpikeSampler Layer

SpikeSampler Layer

SpikeMixing

ClampFuse Layer

Time Steps

Sp
ik

in
g

Pr
ob

ab
ili

ty
 (p

s[t
])

(a) (c)

(b)

Time Steps

A
ct

iv
e

N
eu

ro
n

R
at

io

Figure 1: (a) High-level overview of the P-SpikeSSM-based spiking architecture for LRA tasks.
(b) Graph depicting the sparsity of spiking events generated by a single P-SpikeSSM neuron over
input sequence length (for ListOps dataset). (c) Graph showing the layer-wise active neuron ratio
(i.e., the proportion of neurons generating spikes within a layer per time step) against operating time
steps, for randomly sampled input from ListOps dataset. The layer-wise spiking behavior illustrates
the model-wide sparsity in spiking activity, contributing to computational efficiency.

among others, have demonstrated scalability to long sequence lengths. Meanwhile, non-spiking ar-
chitectures based on SSMs, such as S4 and Mamba (Gu & Dao, 2023; Gu et al., 2021a; 2020a), have
also shown the capability to handle lengthy sequences. Sequence learning in SNN-based architec-
tures have primarily been applied to vision-based datasets (Zhou et al., 2022; Fang et al., 2024) and
NLP datasets (Bal & Sengupta, 2024; Zhu et al., 2023), typically with constrained sequence lengths.
However, within the domain of SNNs, frameworks based on Legendre Memory Units (LMUs) (Liu
et al., 2024; Voelker et al., 2020) has ventured into exploring long-range dependency tasks.

Previous efforts integrating SSMs within spiking models (Stan & Rhodes, 2023; Du et al., 2024)
have primarily focused on passing the SSM output through a layer of LIF neurons to generate spikes.
Using non-linear LIF neurons negates the parallel training efficiency of SSMs, as LIF neurons pro-
cess information sequentially, introducing a bottleneck (see Section 3.1.4). Stan & Rhodes (2023)
seeks to enhance efficiency by linearizing LIF neurons. However, because the inputs to their SSM
model remain real-valued, leading to additional floating-point MAC operations, this approach fails
to leverage the energy-saving potential of SNNs. Moreover, the work lacks an analysis of computa-
tional efficiency and energy benefits, particularly concerning neuron firing activity, leaving a critical
aspect of model efficiency unaddressed. Furthermore, from a sequence processing standpoint, the
inherent ability and use of SSMs to capture temporal dependencies renders the addition of LIF neu-
rons superfluous, introducing unnecessary computational overhead without providing any functional
improvements beyond enabling spike generation.

3 METHODOLOGY

In this section, we first delve into the dynamics of the proposed Probabilistic Spiking State Space
Models (P-SpikeSSM). We then delve into the specifics of our proposed spiking architecture, high-
lighting the SpikeSampler, SpikeMixer, and FuseClamp layers. Additionally, we offer insights on
scaling the P-SpikeSSM-based spiking model for tackling complex long-range dependency tasks
and develop a computationally efficient parallel training framework.

3.1 P-SPIKESSM FORMULATION

We formulate the neuronal model as a time invariant system which takes in sequence of input spikes
given as xs(t) ∈ {0, 1}, at time t. Much like the membrane potential upholds the state of the

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

LIF neuron, we anchor our approach in SSMs (Gu & Dao, 2023; Gu et al., 2021a), crafting an n-
dimensional hidden state (h(t) ∈ Rn) at time t. Expanding the dimensionality of the hidden state
enables our neuronal model to achieve a more comprehensive state encoding of the underlying input
sequence, surpassing the limitations imposed by the scalar hidden state in LIF models. The event of
spike generation at time t is associated with a Bernoulli random variable St corresponding to each
neuron. The probability of spiking, i.e., ps(t) at time t, is modeled as a function of the output of the
neural model. The continuous time neuronal dynamics are expressed as,

ḣ(t) = Ah(t) +Bxs(t)

ps(t) = σ(Ch(t) +Dxs(t))

σ(z) = clamp(az + b)

(1)

where, ḣ(t) = dh
dt and clamp(y) =


0 if y < 0

y if 0 ≤ y ≤ 1

1 if y > 1

, a and b are parameters. Setting a = 1

and b = 0 allows using the output of the SSM directly as the probability of spiking event without
further scaling or translation. A is a matrix controlling the evolution of the hidden state over time
without any input spikes. B represents the influence of the input spikes (xs(t)). C describes the
mapping of the hidden state vector h(t) to the observed outputs, i.e., ps(t). D is the feedforward
parameter, representing any direct influence of the inputs spikes xs(t) on the observed output proba-
bility ps(t). For the purpose of simpler formulation, following previous works on SSMs (Gu & Dao,
2023), we will consider D = 0, since the term Dxs(t) can be viewed as a simple skip-connection.
Furthermore, σ is a function that clamps the output between [0, 1], since probability ps[t] ∈ [0, 1].
We utilize ps[t] to sample spikes from the underlying neuron, as discussed in Section 3.1.3. The
aforementioned formulation of our SSM-based neuronal model is presented in a continuous-time
setting. However, since our primary focus is on sequence modeling tasks in domains such as NLP
and vision tasks, we now proceed to formulate the dynamics of our neuronal model in discrete time.

3.1.1 P-SPIKESSM DISCRETE TIME DYNAMICS

In order to discretize our system, we sample a sequence of spikes of length L, given by Xs =
(xs[1], xs[2], ..., xs[L]) from the original continuous signal given by xs(t), with step size ∆ such as
xs[i] = xs(i∆). The P-SpikeSSM neuronal dynamics are subsequently discretized using bilinear
transformations (Tustin, 1947), whereby we approximate the parameters A,B,C as A,B,C which
is given as,

A = (I −∆/2 ·A)−1(I +∆/2 ·A)

B = (I −∆/2 ·A)−1∆B

C = C

(2)

where, I is the Identity matrix. The transition dynamics of the discretized system at time step t is,

h[t] = Ah[t− 1] +Bxs[t]

ps[t] = σ(Ch[t])
(3)

where, h[t] is the hidden state of the neuron, ps[t] is the probability of the event St. This allows us to
write the transition dynamics of the system as a recurrence in discrete time. The sparse spiking dy-
namics of our proposed neuronal model, characterized by the spike probability ps[t], is illustrated in
Fig. 1b. The spiking activity manifests in temporally localized patterns, mirroring the firing patterns
observed in biological neurons (Hubel & Wiesel, 1962), with periods of non-activity interspersed
between bursts. Now, instead of using a recurrent representation, we investigate how the evolution of
state dynamics can be represented by a convolution operation (with spikes as input signal), thus re-
quiring only accumulation-based computationally efficient operation. Moreover, using convolution
instead of a recurrence-based approach enables us to parallelize the framework.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

3.1.2 REPRESENTING DYNAMICS AS CONVOLUTION OVER SPIKES

There are two problems with Eqn. 3, concerning the training of a scalable spiking architecture.
Firstly, training it in its recurrent form necessitates employing a BPTT approach (Gu et al., 2021b),
which is impractical for longer sequence lengths due to its time and memory overhead. Secondly,
as the hidden state h[t] at time t can be a vector of floating points rather than spikes, the transition
operations involved would not take complete advantage of energy/power efficient neuromorphic
hardware. To achieve a fully parallelizable training procedure and leverage SNN-based operational
efficiency during inference, we investigate an alternative formulation of Eqn. 3 as a convolution
operation (Gu et al., 2021b). Since the proposed neuronal model is a time invariant system, con-
sidering the initial hidden state i.e., h[0] to be a 0-vector, the recurrent relationship can be unrolled
as,

h[i] = A
i−1

Bxs[1] +A
i−2

Bxs[2] + · · ·+ABxs[i− 1] +Bxs[i] =

i∑
j=1

(A
i−j

Bxs[j]) (4)

Thus, generalizing it to the entire sequence of length L we get,

H = K̂ ∗Xs, K̂ = (B,AB, . . . , A
L−1

B) (5)

where, ∗ represents the non-circular convolution operation. H represents the sequence of hidden
states (h[1], h[2], . . . , h[L]) of length L. K̂ is a convolutional kernel of length L as defined above
(see Appendix A for further explanation). The output of the neuronal model, i.e. probability of
spiking of the neuron at time t, is given as,

ps[i] = σ((K ∗Xs)i) (6)

where, kernel K = CK̂ = (CB,CAB, . . . , CA
L−1

B); (K ∗Xs)i =
∑i

j=1 Kjxs[i− j +1] is the

ith term of the non-circular convolution, where Ki = CA
i−1

B. Ps = (ps[1], ps[2], . . . , ps[L]) is the
sequence of probability of spikes from a neuron over the operating time steps. Thus, we can compute
the output sequence parallely by doing convolution of the input sequence of spikes with the weights
of kernel K. The demonstrated sparsity of spikes, as depicted in Fig. 1c, enables leveraging more
efficient fast-fourier transform (FFT) implementations, such as Sparse FFT (Hassanieh et al., 2012)
during training. Additionally, each element of the sequence Ps can be computed as a dot product
of a vector of real values (elements of precomputed K) and vector of spikes (subsequence of Xs).
Sparse input spikes further enables skipping unnecessary computations on zero elements within the
input signal. Specialized neuromorphic hardware accelerators (Ivanov et al., 2022; Davies et al.,
2021) can be leveraged to perform this process, thus avoiding floating point MAC operations during
inference.

3.1.3 SPIKESAMPLER LAYER

The spiking event of a specific P-SpikeSSM neuron at time t is modeled by a Bernoulli random
variable St. The spike generation process utilizes the output of the neuron, ps[t] (Eqn. 3 & 6), as
the probability of spiking at time t, as demonstrated below:

St =

{
1 if z < ps[t],

0 otherwise,

z ∼ U(0, 1)
(7)

This seemingly simple sampling process allows the proposed framework to operate in parallel with-
out incurring significant computational overhead. This SpikeSampling process can be parallelized
across both the sequence dimension and the population of neurons N , to develop a SpikeSampler
layer (Fig. 1a), facilitating the scaling of this methodology for more complex long-range depen-
dency tasks. Additionally, the on-chip deployment of models that use random number sampling

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

from a uniform distribution, on neuromorphic hardware such as Loihi-2, has been previously ex-
plored (Pierro et al., 2024). This enables the implementation of our SpikeSampler layer directly
on-chip.

Surrogate Gradient: The stochastic nature of the SpikeSampler layer introduces challenges during
training, as P-SpikeSSM-based spiking architectures face the problem of non-differentiability of
spikes. To address this and enhance stability of the learning process, during the backward phase of
backpropagation, we use a surrogate operation (St) for the stochastic spiking operation at time t as,

St = E[St] = 0 · P (St = 0) + 1 · P (St = 1) = ps[t] (8)

3.1.4 WHY CHOOSE STOCHASTIC SPIKE GENERATION OVER USING LIF NEURONS?

o[1]

o[2]

o[L]

u[1]

u[2]

u[L]

SSM
Output

LIF
Neuron

s[1]

s[2]

s[L]

ps[1]

ps[2]

ps[L]

S1

S2

SL

P-Spike
SSM Output

Spike
Sampler

s[1]

s[2]

s[L]

Deterministic Process Stochastic Process

Heaviside
Function

Bernoulli R.V.
Sampling

Output
Spikes

Output
Spikes

Pa
ra
lle

l

Se
qu

en
tia

l

Pa
ra
lle

l

Pa
ra
lle

l

Figure 2: Computational flow of the
LIF-based SSM model compared to the
SpikeSampler-driven P-SpikeSSM neuronal
model. Here, L represents the total sequence
length, u[t] represents the membrane poten-
tial of LIF neuron and s[t] denotes the spike
output (either 1 or 0) at time t. Unlike the
LIF-based approach, which is constrained by
a sequential bottleneck, our probabilistic ap-
proach supports parallel processing.

The continuous-time internal dynamics of a basic
LIF neuron is outlined below,

τm · du
dt

= −(u(t)− urest) +R · I(t) (9)

where, at time t, u(t) ∈ R is the membrane potential
which can be considered as the hidden state of the
system; I(t) is the input current scaled by a constant
R; τm is the time constant associated with the decay
in membrane potential over time; urest is the resting
membrane potential. LIF neurons thus sequentially
updates its state (u) and uses deterministic Heaviside
function for spike generation.

Sequential Bottleneck Issues for LIF Neurons:
The above sequential process of state update and
spike generation causes a bottleneck during the par-
allel training of the underlying SSM based frame-
work. This results in increase in both training and
inference time (see Section 4.1.2) compared to our
method. Prior work (Stan & Rhodes, 2023) attempts
to linearize LIF neurons for parallel operation with
SSMs, but offers limited analysis on the impact of
this parallelization on model performance. In contrast, as shown in our results, our approach not
only surpasses the accuracy achieved by previous methods across multiple datasets, but does so by
being computationally simpler than the former. Additionally, the previous study has not provided
evidence for any contributions of LIF neurons to model performance improvement, beyond their use
in spike generation.

Parallel Execution in Our Model: The SpikeSampler layer compliments the parallel computa-
tional advantages of the P-SpikeSSM neuron (Eqn. 6), resulting in a parallel and efficient spike
generation process without the additional overhead of an LIF neuron (Fig. 2). During the back-
ward phase, the surrogate gradient (Eqn. 8) is utilized for effective and efficient model training.
To efficiently compute the kernel K, we capitalize on prior theoretical structural findings regard-
ing non-spiking SSMs (Gu et al., 2021a). By exploiting the decomposition of matrix A into a sum
comprising a normal and low-rank matrix, we achieve efficient computation of K in O(L) time
complexity. More details regarding efficient computation of K is added in Appendix B.

3.2 SCALING P-SPIKESSMS TO DEEPER SNN ARCHITECTURES

To expand the sequence learning capabilities of the P-SpikeSSM neuronal model and facilitate its
scalability to deeper architectures, we introduce the P-SpikeSSM neuronal layer. This layer com-
prises of N P-SpikeSSM neurons. The sparse spiking activity of layer i at time t can be characterized
by analyzing the active neuron ratio, denoted as anri[t]. This ratio is determined by the number of

spikes occurring in that layer at time t, and is defined as: anri[t] =
∑Ni

j=1 sij [t]

Ni
, where Ni is the total

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

number of neurons in layer i, and sij [t] represents the spike generated by neuron j in that layer, at
time t. The layer-wise sparse spiking activity of the P-SpikeSSM neurons is illustrated in Fig. 1c.
The high-level architecture of the proposed spiking architecture features K stacked P-SpikeSSM
Encoder layers, each of which encapsulates the layers as shown in Fig. 1a. The effect of the number
of neurons on model performance is shown in Fig. 3. This demonstrates that as the population of
neurons within a single layer increases, the spikes generated by them more effectively capture the
temporal dependencies in the input sequence.

Figure 3: Results obtained from the test
set of the ps-MNIST dataset. This ex-
periment utilizes two P-SpikeSSM neu-
ronal layers, with each layer containing
N neurons, represented on the x-axis.
The accuracy achieved is displayed on
the y-axis.

SpikeMixer Block: Since each P-SpikeSSM neuron in-
dependently processes input sequence tokens, a neuron
mixer layer in the form of a fully-connected block is in-
troduced. This facilitates the aggregation of spikes from
previous layer of P-SpikeSSM neurons and flow of infor-
mation among neuronal layers, ensuring efficient process-
ing of diverse temporal dependencies learned by various
neurons. The output of the SpikeMixer layer is given as,

fmix[t] = gelu(Is[t] ·Wm) (10)

where, Is[t] ∈ {0, 1}N are the N spikes from the previ-
ous SpikeSampler layer at time t and Wm ∈ RN×N is
a linear weight. We use gelu function as a non-linearity.
The linear layer in this module avoids floating-point MAC
operations since the input to the FC block consists of
spikes. However, due to the gelu() activation, there is
element-wise floating-point multiplication of O(n2) com-
plexity (Hendrycks & Gimpel, 2016), which is still lower
than the O(n3) MAC operation in floating-point matrix
multiplications.

FuseClamp Block: The FuseClamp block combines the input spikes (xs) to the encoder layer with
the SpikeMixer output via a residual connection as shown in Fig. 1a. This is followed by batch
normalization (BN), after which the output is clamped between [0, 1] using σ. The FuseClamp
block is succeeded by a SpikeSampler layer that utilizes its output as probabilities to generate spikes,
which are then propagated to the subsequent layer. The operation is defined as:

pfci [t] = σ(BN(fmix[t] + xs[t])) (11)

Input Encoding and Output Decoding: We typically employ a linear layer as the input encoder,
with weight We ∈ R1×N , followed by an optional batch normalization layer and SpikeSampler
layer. This process facilitates the generation of input spike sequences for all N neurons in the sub-
sequent layer. This choice is informed by the prevalent structure of our datasets, wherein input data
sequences are commonly formatted as RL×1. For the long-range dependency based classification
tasks, the output of the final P-SpikeSSM encoder layer, is passed through a pooling-based sequence
decoder to generate the model prediction.

4 EXPERIMENTATION

Model SNN Acc.
S4 (Gu et al., 2021a) No 98.7
LSTM (Gu et al., 2020b) No 95.1
HSLMU (Voelker et al., 2020) Yes 96.8
LMU (Voelker et al., 2019) No 97.2
DSD-SNN (Han et al., 2023) Yes 97.3
Transformer (Vaswani et al., 2017) No 97.9
Spiking LMUFormer (Liu et al., 2024) Yes∗ 97.9
P-SpikeSSM (Our Model) Yes∗ 98.4

Table 1: Results comparing the accuracy of our model to
other methods on test set of psMNIST dataset.

In this section, we showcase the efficacy
of our proposed P-SpikeSSM neuronal
model-based SNN architecture by eval-
uating their performance across various
long-range dependency based datasets.
We also conduct a preliminary energy
analysis to highlight the computational
efficacy of our proposed framework.
The experiments were run on Nvidia
RTX A5000 GPUs (8) each with 24GB
memory.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Model SNN ListOps Text Retrieval Image Pathfinder
S4 (Original) (Gu et al., 2021a) No 58.35 76.02 87.09 87.26 86.05
S4 (Improved) (Gu et al., 2021a) No 59.60 86.82 90.90 88.65 94.20
Transformer (Vaswani et al., 2017) No 36.37 64.27 57.46 42.44 71.40
Sparse Transformer(Tay et al., 2020) No 17.07 63.58 59.59 44.24 71.71
Linformer (Wang et al., 2020) No 35.70 53.94 52.27 38.56 76.34
Linear Transformer (Tay et al., 2020) No 16.13 65.90 53.09 42.34 75.30
FLASH-quad (Hua et al., 2022) No 42.20 64.10 83.00 48.30 63.28
Spiking LMUFormer (Liu et al., 2024) Yes∗ 37.30 65.80 79.76 55.65 72.68
Transnormer T2 (Qin et al., 2022) No 41.60 72.20 83.82 49.60 76.80
BinaryS4D (Stan & Rhodes, 2023) Partial∗∗ 54.80 82.50 85.30 82.00 82.60
P-SpikeSSM (Our Model) Yes∗ 58.20 81.20 88.53 82.40 84.80

Table 2: Results comparing the accuracy of our model against some spiking and non-spiking
architectures on test sets of LRA benchmark tasks (*Model uses gelu activation but no floating point
matrix multiplications, **Model uses gelu act. as well as floating point matrix multiplications).

4.1 RESULTS

We evaluate our model (Table 1, 2 & 3) on multiple long-range dependency tasks across datasets
such as psMNIST (Le et al., 2015), Speech Command (SC10) (Warden, 2018) and the long-range
arena (LRA) benchmark (Tay et al., 2020). The dataset details are in Appendix C.

Permuted Sequential MNIST: A simple model comprising two P-SpikeSSM Encoder layers, each
with a P-SpikeSSM neuronal layer consisting of 400 neurons, achieves state-of-the-art results among
spiking architectures. It performs comparably to the current best non-spiking model and outperforms
non-spiking transformer-based architectures, as detailed in Table 1.

Model SNN Acc.
S4 (Gu et al., 2021a) No 98.3
Transformer (Vaswani et al., 2017) No ×
NRDE (Gu et al., 2021a) No 16.5
Performer (Choromanski et al., 2020) No 30.8
CKConv(Gu et al., 2021a) No 71.7
P-SpikeSSM (Our Model) Yes∗ 95.6

Table 3: Results comparing the accuracy obtained by our
model to other non-spiking architectures on test set of
SC10 dataset.

Speech Command: Our SNN model,
featuring four P-SpikeSSM Encoder
layers, each with 256 neurons, sur-
passes the performance of many con-
temporary non-spiking architectures on
Speech Command 10 subset (SC10) as
demonstrated in Table 3. Furthermore,
on the 35-set Speech Command dataset,
it achieves 96.23% outperforming previ-
ous spiking baselines (Liu et al., 2024;
Bittar & Garner, 2022).

Long Range Arena Benchmark:

Transformer-based non-spiking models, as demonstrated in Table 2, struggle with suboptimal per-
formance on long-context tasks in LRA benchmark. This is primarily due to the overhead incurred
during the computation of attention scores, which becomes more pronounced with longer sequence
lengths. In our analysis, we also compare our method against the LMU-based spiking model, Spik-
ingLMUFormer, as well as the BinaryS4D model (Stan & Rhodes, 2023). Although BinaryS4D is
not a fully spiking model (requires floating point MAC based matrix multiplications), it incorporates
a layer of LIF neurons to generate spikes from an underlying state-space model (SSM).

4.1.1 HYPER-PARAMETERS

Hyper-parameters Range Optimal
K: Encoder Layers (2-6) 4
N : Neurons per Layer (64-400) 256
n: Hidden State Dim. (4-64) 32
lr: Learning Rate (1e-4 - 1e-1) 0.005
Batch Size (8-256) 32
Epochs 20-200 50

Table 4: Hyper-parameters of our SNN models. Optimal
values for ListOps dataset is also shown.

Initializing the state matrix A with
HiPPO matrices (Gu et al., 2020a) leads
to optimal performance and rapid con-
vergence. Across a majority of tasks,
utilizing HiPPO-legS (further discussed
in Appendix B) consistently yields the
highest accuracy. Hyper-parameters
employed for training our model can be
found in Table 4, with additional details
in Appendix D.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

4.1.2 ABLATION STUDIES

Our Model Accuracy
w/o Surrogate (S̄t) 70.90
w/o SpikeMixer 68.90
w/o Normalization 77.80
w/ Fixed Param. σ 80.20
w/ Learnable Param. σ 81.20
w/ relu Activation 80.40

Table 5: Results showing the effect of different
components of our proposed SNN architecture on
test accuracy when trained on LRA Text dataset.

Effect of Components: We perform experi-
ments to analyze the effect of various compo-
nents introduced in this work, specifically the
surrogate (used during training) for the Spike-
Sampler layer, the SpikeMixer, and use of nor-
malization in ClampFuse layer. On more chal-
lenging datasets, such as ListOps, the model
fails to achieve better-than-random accuracy
when trained without the surrogate. For the
LRA Text task, although training without the
surrogate is feasible, it results in significantly
reduced performance, as shown in Table 5. We
also ran experiments to understand the effects of SpikeMixer layer and emphasize the performance
benefits of incorporating the SpikeMixer layer, which facilitates inter-neuron communication and
enhances the ability of the model to capture complex temporal dependencies. Since normalization
(used in the ClampFuse layer) is typically treated as a non-local operation that poses challenges for
implementation on neuromorphic hardware, we conducted an experiment to assess the impact of
removing normalization, and achieve promising result with minimal accuracy drop. We conducted
an experiment replacing the gelu layer in the SpikeMixer block with a hardware friendly relu acti-
vation function (Timcheck et al., 2023), and observed minimal performance degradation.

Parameterized σ: The function σ is defined with parameters a and b (Eqn. 1). These parame-
ters can either be treated as hyper-parameters or learned during training. We conducted additional
experiments on the LRA text dataset to analyze the impact of learning σ. Our results (Table 5) indi-
cate that allowing σ to be learnable improves model performance, though it introduces an additional
computational cost of O(N) element-wise multiplications per layer (with N neurons), compared to
using fixed values of a = 0 and b = 1 (i.e. using output of SSM directly for sampling probability).

Comparing our Stochastic Model to LIF-based Implementation: We implemented a version of
our model based on LIF neurons, where the output of the underlying SSM (operating over spike
sequences) is passed to an LIF neuron for spike generation. We use similar experimental setup as
discussed in Section 4.1 for the psMNIST dataset. This approach achieves an accuracy of 97.7%
on the ps-MNIST dataset, compared to 98.4% by our stochastic approach. Furthermore, our model
demonstrates significantly reduced training and inference times. Specifically, training for one epoch
takes approximately 1.5 minutes, compared to 6.1 minutes for the LIF-based approach on the ps-
MNIST dataset. For inference, our model takes only 9 seconds on the test set, whereas the LIF-based
approach requires 17 seconds. This disparity is largely due to the sequential processing bottleneck
inherent in the LIF-based approach, which also necessitates Backpropagation Through Time (BPTT)
(Neftci et al., 2019) during training. In contrast, our parallel framework allows for training in a single
pass using standard backpropagation.

4.2 ANALYSIS OF ENERGY EFFICIENCY

We perform a preliminary analysis comparing the energy efficiency of a non-spiking S4 model to
our spiking model during parallel inference on a 45nm CMOS technology (Han et al., 2015). For
32-bit floating points, ACC operations (cost .9pJ) consume 5.1× less energy than MAC operations
(cost 4.6pJ) (Han et al., 2015). Assuming input sequence length of L, with N neurons per layer
across K layers, the dominant computational cost per layer for the non-spiking S4 model (Gu et al.,
2021a) is (L2 + LN2) floating point MAC operations, representing the combined cost of compu-
tation (underlying SSM operated parallely and convolutional kernel is precomputed and cached) in
a single S4 layer and following linear layer with hidden dimension N . For simplicity, we estimate
the energy costs using standard convolution instead of FFT, as implementing FFT on a neuromor-
phic chip—which primarily relies on spike-based accumulative operations—is significantly more
complex. Although a complete energy calculation includes non-linear layers like gelu(), their con-
tribution is less (O(LN) operations) compared to the energy cost of the parallel SSM and linear
layers.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Building on our previous analysis, the primary computational cost per P-SpikeSSM Encoder Layer
in our spiking model is given by (IFRin · L2 + IFRo · LN2) floating-point accumulation (ACC)
operations, contributed primarily by the parallel operation of the P-SpikeSSM and SpikingMixer
layer. Here, IFRin represents the firing rate of the input layer to the P-SpikeSSM neuronal layer,
while IFRo denotes the firing rate of spikes sampled from the P-SpikeSSM neuronal layer, i.e.
input to the SpikeMixer. N here denotes the number of neurons in a P-SpikeSSM encoder layer. As
illustrated in Fig. 4, the majority of neurons in the layer remain dormant during the input sequence,
leading to sparse communication.

Figure 4: Results obtained after passing randomly sam-
pled inputs from ListOps dataset through our model.
Figure consists of histogram representing the count of
neurons associated with mean probability of spiking
(averaged over sequence length L) and Kernel Density
Estimation (KDE) plot of the data using an exponen-
tial kernel. Thus, over the entire sequence, majority of
neurons (≈ 90%) have close to 0 probability of spik-
ing, signifying sparse spiking pattern.

To illustrate with a specific example, let
us consider the ListOps dataset. An iso-
parametric state-of-the-art non-spiking S4
model achieves an accuracy of 58.35 (im-
proved version: 59.60) (Gu et al., 2021a),
while our P-SpikeSSM achieves 58.20.
For ListOps dataset, we use L = 2K
and hidden dimension of S4, i.e., N =
256. The energy consumption of the non-
spiking model is EANN = 4×(2K×2K+
2K × 256× 256) * (4.6pJ), resulting in a
total energy consumption of 2.55mJ .

Our P-SpikeSSM based architecture uses
4 encoder layers, each with number
of neurons N = 256. We em-
pirically compute the input firing rates
(IFRin) and output firing rates (IFRo)
for each encoder layer. The values for
IFRin are [0.08, 0.19, 0.16, 0.17], and
the corresponding values for IFRo are
[0.03, 0.12, 0.06, 0.07] (corresponding to
the four layers). Now, the total compu-
tational cost of our SNN is ESNN =∑4

i=1(IFRini · L2 + IFRoi · LN2) ∗ (0.9pJ).
Computing with the experimentally found values as listed above, we get ESNN = 0.036mJ . Con-
sequently, our model is > 70× more energy efficient (EANN/ESNN) based on computational cost.
Although this methodology does not include architectural details in the energy analysis, it still high-
lights the computational efficacy of our approach. By leveraging the prevalence of inactive neurons
and sparse spiking patterns of active neurons, we achieve significant improvements in energy and
power efficiency on neuromorphic platforms.

5 CONCLUSIONS

We propose a computationally efficient probabilistic spiking framework for addressing long-term
dependency sequence learning tasks. Instead of using LIF neurons, our model uses the output of
P-SpikeSSM neuronal model as the probability for generating spikes using the proposed SpikeSam-
pler layer. To tackle the non-differentiability of this stochastic spiking mechanism, we introduce
a surrogate gradient approach, enabling efficient training. To ensure scalability, our architecture
features SpikeMixer and ClampFuse layers, enabling effective sequence processing through sim-
plified accumulation-based operations. We evaluate our models on classification tasks involving
long-range dependencies, such as the LRA benchmark, ps-MNIST, and the SC10 dataset. Our mod-
els consistently outperform transformer-based non-spiking counterparts, achieving state-of-the-art
performance among SNN models, while also demonstrating exceptional computational efficiency
due to the inherent sparsity of spiking events. To further harness these energy efficiency benefits,
future work could explore deploying the model on edge devices and neuromorphic hardware, such
as Intel Loihi 2.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Malyaban Bal and Abhronil Sengupta. Spikingbert: Distilling bert to train spiking language models
using implicit differentiation. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 38, pp. 10998–11006, 2024.

Felix C Bauer, Gregor Lenz, Saeid Haghighatshoar, and Sadique Sheik. Exodus: Stable and efficient
training of spiking neural networks. Frontiers in Neuroscience, 17:1110444, 2023.

Alexandre Bittar and Philip N Garner. A surrogate gradient spiking baseline for speech command
recognition. Frontiers in Neuroscience, 16:865897, 2022.

Anthony N Burkitt. A review of the integrate-and-fire neuron model: I. homogeneous synaptic input.
Biological cybernetics, 95:1–19, 2006.

Krzysztof Choromanski, Valerii Likhosherstov, David Dohan, Xingyou Song, Andreea Gane, Tamas
Sarlos, Peter Hawkins, Jared Davis, Afroz Mohiuddin, Lukasz Kaiser, et al. Rethinking attention
with performers. arXiv preprint arXiv:2009.14794, 2020.

Mike Davies, Andreas Wild, Garrick Orchard, Yulia Sandamirskaya, Gabriel A Fonseca Guerra,
Prasad Joshi, Philipp Plank, and Sumedh R Risbud. Advancing neuromorphic computing with
loihi: A survey of results and outlook. Proceedings of the IEEE, 109(5):911–934, 2021.

Yu Du, Xu Liu, and Yansong Chua. Spiking structured state space model for monaural speech
enhancement. In ICASSP 2024-2024 IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP), pp. 766–770. IEEE, 2024.

Wei Fang, Zhaofei Yu, Zhaokun Zhou, Ding Chen, Yanqi Chen, Zhengyu Ma, Timothée Masquelier,
and Yonghong Tian. Parallel spiking neurons with high efficiency and ability to learn long-term
dependencies. Advances in Neural Information Processing Systems, 36, 2024.

Samanwoy Ghosh-Dastidar and Hojjat Adeli. Spiking neural networks. International journal of
neural systems, 19(04):295–308, 2009.

Albert Gu and Tri Dao. Mamba: Linear-time sequence modeling with selective state spaces. arXiv
preprint arXiv:2312.00752, 2023.

Albert Gu, Tri Dao, Stefano Ermon, Atri Rudra, and Christopher Ré. Hippo: Recurrent memory
with optimal polynomial projections. Advances in neural information processing systems, 33:
1474–1487, 2020a.

Albert Gu, Caglar Gulcehre, Thomas Paine, Matt Hoffman, and Razvan Pascanu. Improving the gat-
ing mechanism of recurrent neural networks. In International Conference on Machine Learning,
pp. 3800–3809. PMLR, 2020b.

Albert Gu, Karan Goel, and Christopher Ré. Efficiently modeling long sequences with structured
state spaces. arXiv preprint arXiv:2111.00396, 2021a.

Albert Gu, Isys Johnson, Karan Goel, Khaled Saab, Tri Dao, Atri Rudra, and Christopher Ré. Com-
bining recurrent, convolutional, and continuous-time models with linear state space layers. Ad-
vances in neural information processing systems, 34:572–585, 2021b.

Bing Han, Feifei Zhao, Yi Zeng, Wenxuan Pan, and Guobin Shen. Enhancing efficient contin-
ual learning with dynamic structure development of spiking neural networks. arXiv preprint
arXiv:2308.04749, 2023.

Song Han, Jeff Pool, John Tran, and William J. Dally. Learning both weights and connections for
efficient neural networks, 2015.

LM Harrison, O David, and KJ Friston. Stochastic models of neuronal dynamics. Philosophical
Transactions of the Royal Society B: Biological Sciences, 360(1457):1075–1091, 2005.

Haitham Hassanieh, Piotr Indyk, Dina Katabi, and Eric Price. Simple and practical algorithm for
sparse fourier transform. In Proceedings of the twenty-third annual ACM-SIAM symposium on
Discrete Algorithms, pp. 1183–1194. SIAM, 2012.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Dan Hendrycks and Kevin Gimpel. Gaussian error linear units (gelus). arXiv preprint
arXiv:1606.08415, 2016.

AL Hodgkin and AF Huxley. A quantitative description of membrane current and its application to
conduction and excitation in nerve. Bulletin of mathematical biology, 52:25–71, 1990.

Weizhe Hua, Zihang Dai, Hanxiao Liu, and Quoc Le. Transformer quality in linear time. In Inter-
national conference on machine learning, pp. 9099–9117. PMLR, 2022.

David H Hubel and Torsten N Wiesel. Receptive fields, binocular interaction and functional archi-
tecture in the cat’s visual cortex. The Journal of physiology, 160(1):106, 1962.

Dmitry Ivanov, Aleksandr Chezhegov, and Denis Larionov. Neuromorphic artificial intelligence
systems. Frontiers in Neuroscience, 16:959626, 2022.

Patrick Kidger, James Morrill, James Foster, and Terry Lyons. Neural controlled differential equa-
tions for irregular time series. Advances in Neural Information Processing Systems, 33:6696–
6707, 2020.

Quoc V Le, Navdeep Jaitly, and Geoffrey E Hinton. A simple way to initialize recurrent networks
of rectified linear units. arXiv preprint arXiv:1504.00941, 2015.

Zeyu Liu, Gourav Datta, Anni Li, and Peter Anthony Beerel. Lmuformer: Low complexity yet
powerful spiking model with legendre memory units. arXiv preprint arXiv:2402.04882, 2024.

Andrew Maas, Raymond E Daly, Peter T Pham, Dan Huang, Andrew Y Ng, and Christopher Potts.
Learning word vectors for sentiment analysis. In Proceedings of the 49th annual meeting of the
association for computational linguistics: Human language technologies, pp. 142–150, 2011.

Paul A Merolla, John V Arthur, Rodrigo Alvarez-Icaza, Andrew S Cassidy, Jun Sawada, Filipp
Akopyan, Bryan L Jackson, Nabil Imam, Chen Guo, Yutaka Nakamura, et al. A million spiking-
neuron integrated circuit with a scalable communication network and interface. Science, 345
(6197):668–673, 2014.

Emre O Neftci, Hesham Mostafa, and Friedemann Zenke. Surrogate gradient learning in spiking
neural networks: Bringing the power of gradient-based optimization to spiking neural networks.
IEEE Signal Processing Magazine, 36(6):51–63, 2019.

Alessandro Pierro, Philipp Stratmann, Gabriel Andres Fonseca Guerra, Sumedh Risbud, Timothy
Shea, Ashish Rao Mangalore, and Andreas Wild. Solving qubo on the loihi 2 neuromorphic
processor. arXiv preprint arXiv:2408.03076, 2024.

Zhen Qin, Xiaodong Han, Weixuan Sun, Dongxu Li, Lingpeng Kong, Nick Barnes, and Yiran
Zhong. The devil in linear transformer. arXiv preprint arXiv:2210.10340, 2022.

Abhronil Sengupta, Yuting Ye, Robert Wang, Chiao Liu, and Kaushik Roy. Going deeper in spiking
neural networks: Vgg and residual architectures. Frontiers in neuroscience, 13:95, 2019.

Sumit B Shrestha and Garrick Orchard. Slayer: Spike layer error reassignment in time. Advances
in neural information processing systems, 31, 2018.

Matei Ioan Stan and Oliver Rhodes. Learning long sequences in spiking neural networks. arXiv
preprint arXiv:2401.00955, 2023.

Yi Tay, Mostafa Dehghani, Samira Abnar, Yikang Shen, Dara Bahri, Philip Pham, Jinfeng Rao,
Liu Yang, Sebastian Ruder, and Donald Metzler. Long range arena: A benchmark for efficient
transformers. arXiv preprint arXiv:2011.04006, 2020.

Jonathan Timcheck, Sumit Bam Shrestha, Daniel Ben Dayan Rubin, Adam Kupryjanow, Garrick
Orchard, Lukasz Pindor, Timothy Shea, and Mike Davies. The intel neuromorphic dns challenge.
Neuromorphic Computing and Engineering, 3(3):034005, 2023.

Arnold Tustin. A method of analysing the behaviour of linear systems in terms of time series. Jour-
nal of the Institution of Electrical Engineers-Part IIA: Automatic Regulators and Servo Mecha-
nisms, 94(1):130–142, 1947.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need, 2017.

Aaron Voelker, Ivana Kajić, and Chris Eliasmith. Legendre memory units: Continuous-time repre-
sentation in recurrent neural networks. Advances in neural information processing systems, 32,
2019.

Aaron R Voelker, Daniel Rasmussen, and Chris Eliasmith. A spike in performance: Training hybrid-
spiking neural networks with quantized activation functions. arXiv preprint arXiv:2002.03553,
2020.

Sinong Wang, Belinda Z Li, Madian Khabsa, Han Fang, and Hao Ma. Linformer: Self-attention
with linear complexity. arXiv preprint arXiv:2006.04768, 2020.

Pete Warden. Speech commands: A dataset for limited-vocabulary speech recognition. arXiv
preprint arXiv:1804.03209, 2018.

Mingqing Xiao, Qingyan Meng, Zongpeng Zhang, Yisen Wang, and Zhouchen Lin. Training feed-
back spiking neural networks by implicit differentiation on the equilibrium state. Advances in
Neural Information Processing Systems, 34:14516–14528, 2021.

Kashu Yamazaki, Viet-Khoa Vo-Ho, Darshan Bulsara, and Ngan Le. Spiking neural networks and
their applications: A review. Brain Sciences, 12(7):863, 2022.

Zhaokun Zhou, Yuesheng Zhu, Chao He, Yaowei Wang, Shuicheng Yan, Yonghong Tian, and
Li Yuan. Spikformer: When spiking neural network meets transformer. arXiv preprint
arXiv:2209.15425, 2022.

Rui-Jie Zhu, Qihang Zhao, and Jason K Eshraghian. Spikegpt: Generative pre-trained language
model with spiking neural networks. arXiv preprint arXiv:2302.13939, 2023.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

A DERIVING CONVOLUTIONAL REPRESENTATION OF P-SPIKESSM
NEURONAL DYNAMICS

At time step t, the discretized neuronal model exhibits transition dynamics described as follows:

h[t] = Ah[t− 1] +Bxs[t]

ps[t] = σ(Ch[t])
(S1)

where, h[t] is the hidden state of the neuron, ps[t] is the probability of the spiking event St. A, B,
C are the discretized parameters of the time-invariant system. Considering at time step 0, h[0] = 0,
we get,

h[1] = Bxs[1]

h[2] = ABxs[1] +Bxs[2] (S2)

Unrolling like this to time step i we get,

h[i] = A
i−1

Bxs[1] +A
i−2

Bxs[2] + · · ·+ABxs[i− 1] +Bxs[i] =

i∑
j=1

(A
i−j

Bxs[j]) (S3)

Thus, the convolutional kernel K̂, whose length is given by the length of the input sequence L, is
defined as,

K̂ = (B,AB, . . . , A
L−1

B) (S4)

Now H , i.e., sequence of hidden states can be computed as a non-circular convolution given as,
H = K̂ ∗Xs, where Xs is the input sequence of spikes.

Thus, ps[t] = σ((K ∗Xs)t) = σ(
∑t

j=1 Kjxs[t− j+1]), where K = (CB,CAB, . . . , CA
L−1

B).

B HIPPO-LEGS MATRIX

HiPPO (high-order polynomial projection operators) (Gu et al., 2020a) is a versatile framework that
enables the analysis of various families of measures. Utilizing this operator as either a closed-form
ordinary differential equation (ODE) or a linear recurrence, we can efficiently update the optimal
polynomial approximation as the input function unfolds over time. HiPPO-legS can generalize to
different time scales. HiPPO enables the hidden state to effectively memorize the historical pattern
of input spikes (in our paper). The elements of the HiPPO-legS (Scaled Legendre) matrix ∈ Rn×n

is given below,

Amk = −


√
2m+ 1

√
2k + 1, if m > k

m+ 1, if m = k

0, if m < k

(S5)

B.1 COMPUTING KERNEL K

The efficient computation of K has been proposed in literature (Gu et al., 2021a), thus speeding up
the parallel training of SSM based neuronal architectures. We briefly go over the overview on how it
is achieved. The primary concern in computing K is the repeated multiplication of the state matrix
to create the individual terms Ki. Thus to compute K, the time complexity for a simple approach
of chained multiplication is O(n2L), were n is the hidden state dimension and L is the sequence
length. Now the idea is that, if we had the state matrix to be a diagonal matrix, then theoretically
we could compute K efficiently using Vandermonde product. Thus, the goal is to diagonalize the
matrix A. Now, the ideal scenario is if A is a normal matrix, i.e., it is diagonalizable with a unitary

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Table S1: Hyper-parameters used for obtaining the best result on individual datasets used for evalu-
ating P-SpikeSSM-based SNN models.

psMNIST SC10 ListOpns Text Retrieval Image Pathfinder
K: #Encoder Layers 2 4 4 4 4 4 4
N : Neurons per Layer 400 256 256 256 200 256 256
n: Hidden State Dim. 64 32 32 16 32 32 64
lr: Learning Rate 0.01 0.002 0.005 0.0005 0.003 0.005 0.0005
Batch Size 64 32 32 64 32 32 32
Epochs 100 50 50 80 50 150 150

matrix (UAU−1 is a diagonal matrix, where U is a square matrix such that UH = U−1). A is
initialized to HiPPO matrices which are not normal matrices. However, HiPPO can be decomposed
into a diagonal matrix and a low-rank matrix. Following this, we can leverage previous theoretical
results (Gu et al., 2021a) on reducing the underlying SSM to the computation of Cauchy kernels and
calculate K, in linear order of time complexity w.r.t the sequence length L.

C DATASET DETAILS

Permuted Sequential MNIST: To heighten the complexity of the classification task, permuted se-
quential MNIST (psMNIST) (Le et al., 2015) reconfigures the presentation of images compared to
the original MNIST dataset. While MNIST has each 28 × 28 grayscale image as a unified entity,
psMNIST arranges the pixels in a sequence and in a permuted order. Thus, tackling this task de-
mands more sophisticated models capable of effectively retaining and synthesizing information over
time.

Speech Command Dataset (SC10): We use the 10-class subset of Speech Command dataset (War-
den, 2018) following previous works (Kidger et al., 2020; Gu et al., 2021a) and evaluate our model
on the raw unprocessed signals of length 16000.

Long range Arena Benchmark: To demonstrate the long-range dependency analysis capability of
our spiking architecture, we leverage the Long Range Arena (LRA) benchmark (Tay et al., 2020),
spanning various classification tasks from textual to image domains. Following are the five tasks
utilized for evaluation,

• ListOps: In this task, our focus lies in modeling hierarchically structured data within a
long-context framework. The sequence length for this task is upto 2K.

• Text: In this task, we process the IMDB dataset (Maas et al., 2011) of movie reviews
and perform the task of sentiment analysis in a byte-level. This is done to ensure a long
sequence length of 4K.

• Retrieval: In this task, we assess the model’s capacity to encode and retain compressed rep-
resentations essential for matching and retrieval purposes. The input consists of byte-level
sequences (of length 4K) from two documents, and the goal is to analyze their similarity.

• Image: In this task, we perform an image classification task based on a sequence of pixels
of the original image. The dataset is CIFAR-10 and the sequence length is 1K.

• Pathfinder: In this task, we treat a 32×32 image as a sequence of pixels of length 1K. Our
objective is to make a binary decision regarding whether two points, depicted as circles, are
linked by a path composed of dashes.

D ADDITIONAL EXPERIMENTAL RESULTS

In Table S1, we list the optimal set of hyper-parameters used for each of the tasks. As mentioned in
the main text, the state matrix A is initialized to the HiPPO-legS matrix as shown in Eqn. S5. The
step size for discretization (∆) is restricted between [0.001, 0.1]. The memory footprint ranges from
≈ 6GB for psMNIST to ≈ 23GB for SC10. The dataset splits are aligned with prior literature (Tay
et al., 2020).

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Additional Experiments: We also tested our model on the sequential CIFAR-10 dataset, achieving
an accuracy of 85.6%. The hyper-parameters used are similar to the one used for LRA Image dataset,
as shown in Table S1. If we pass real valued probabilities instead of spikes, we achieve improved
accuracy (87.2%). However, this approach sacrifices the energy efficiency advantages provided by
the spiking sparsity in our original model. Our model processes the input as a sequence of pixels, yet
it achieves performance comparable to other state-of-the-art models, such as PSN Fang et al. (2024)
(PSN: 88.45% and Sliding PSN: 86.70%), which processes the image as a sequence of columns.

Memory Footprint: Based on previous analysis (Tay et al., 2020) on LRA tasks, the Transformer
models in Table 2 are configured with 4 layers, hidden dimension of 256 and 4 attention heads,
resulting in approximately 600K parameters in total. Our models establish state-of-the-art per-
formance in the spiking domain and comprehensively outperforms non-spiking transformer based
architectures as shown in Table 2. Furthermore, considering identical parameters (A,B,C) for neu-
rons in the same layer, the average parameter count of our models across all five LRA tasks is around
≈ 250K, representing a reduction of ≈ 2.4× compared to the parameter count of the transformers
used.

16

	Introduction
	Related Works
	Methodology
	P-SpikeSSM Formulation
	P-SpikeSSM Discrete Time Dynamics
	Representing Dynamics as Convolution over Spikes
	SpikeSampler Layer
	Why Choose Stochastic Spike Generation over Using LIF Neurons?

	Scaling P-SpikeSSMs to Deeper SNN Architectures

	Experimentation
	Results
	Hyper-parameters
	Ablation Studies

	Analysis of Energy Efficiency

	Conclusions
	Deriving Convolutional Representation of P-SpikeSSM Neuronal Dynamics
	HiPPO-legS Matrix
	Computing Kernel K

	Dataset Details
	Additional Experimental Results

