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Abstract

Machines that can represent and describe en-001
vironmental soundscapes have practical poten-002
tial, e.g., for audio tagging and captioning. Pre-003
vailing learning paradigms of audio-text con-004
nections have been relying on parallel audio-005
text data, which is, however, scarcely available006
on the web. We propose vip-AnT that induces007
Audio-Text alignment without using any par-008
allel audio-text data. Our key idea is to share009
the image modality between bi-modal image-010
text representations and bi-modal image-audio011
representations; the image modality functions012
as a pivot and connects audio and text in a tri-013
modal embedding space implicitly.014

In a difficult zero-shot setting with no paired015
audio-text data, our model demonstrates016
state-of-the-art zero-shot performance on the017
ESC50 and US8K audio classification tasks,018
and even surpasses the supervised state of the019
art for Clotho caption retrieval (with audio020
queries) by 2.2% R@1. We further investigate021
cases of minimal audio-text supervision, find-022
ing that, e.g., just a few hundred supervised023
audio-text pairs increase the zero-shot audio024
classification accuracy by 8% on US8K. How-025
ever, to match human parity on some zero-shot026
tasks, our empirical scaling experiments sug-027
gest that we would need about 221 ≈ 2M su-028
pervised audio-caption pairs. Our work opens029
up new avenues for learning audio-text connec-030
tions with little to no parallel audio-text data.031

1 Introduction032

Environmental sound provides rich perspectives033

on the physical world. For example, if we hear:034

joyful laughing, a playful scream, and a splash; we035

not only can visualize literal objects / actions that036

might have given rise to the audio scene, but also,037

we can reason about plausible higher-level facets,038

e.g., a child speeding down a water slide at a water039

park, splashing through the water (see Figure 1).040

Machines capable of parsing, representing, and041

describing such environmental sound hold practical042

screaming and splashing people screaming  
on the water slide

Figure 1: vip-AnT pivots audio and text via visual
imagination.

promise. For example, according to the National 043

Association of the Deaf’s captioning guide, accessi- 044

ble audio caption generation systems should go be- 045

yond speech recognition (i.e., identifying speakers 046

and transcribing the literal content of their speech) 047

and provide the textual description of all the sound 048

effects, e.g., “a large group of people talking excit- 049

edly at a party” in order to provide the full informa- 050

tion contained in that audio.1 051

The dominant paradigm for studying machine 052

hearing (Lyon, 2010) has been through human- 053

annotated audio-text data, where text is either free- 054

form audio descriptions (“the sound of heavy rain”) 055

or tagsets (Salamon et al., 2014; Gemmeke et al., 056

2017; Kim et al., 2019; Drossos et al., 2020). While 057

naturally aligned audio-text data could be sourced 058

from audio-tag co-occurrences (Font et al., 2013) 059

and from video captioning data (Rohrbach et al., 060

2015; Xu et al., 2016; Oncescu et al., 2021a), they 061

are either not sufficiently related to environmental 062

sound or limited in their scale and coverage. 063

In this paper, we study large-scale audio-text 064

alignment without paired audio-text (AT) data. In- 065

spired by pivot-based models for unsupervised ma- 066

chine translation (Wu and Wang, 2007; Utiyama 067

1nad.org’s captioning guide; Gernsbacher (2015) discusses
the benefits of video captions beyond d/Deaf users.
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engine, rain, and cheers

…it has some fantastic slides with 
exciting names like The Nucleus, that 
is an indoor water roller-coaster…

screaming and splashing

People shout in the splashing water.
https://uniacco.com/blog/15-best-indoor-water-parks-in-the-uk

People shout in the splashing water.
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(image, text)
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?
Figure 2: Video-audio and image-text co-occurrences
are abundantly available on the web to support the
learning of video-audio alignment and image-text align-
ment (e.g., via large-scale video-audio and image-text
pre-training), but audio-text co-occurrences are not.

and Isahara, 2007), we propose vip-AnT, short for068

VIsually Pivoted Audio and(N) Text. vip-AnT069

uses images as a pivot modality to connect audio070

and text. It parallels our motivating example: hear-071

ing a sound, humans can visually imagine the asso-072

ciated situation and literally describe it. Pivoting073

is practically viable because there are abundantly074

available image-text (VT) and video-audio (VA) co-075

occurrences on the web (see Figure 2). We can use076

them to supervise an image-text alignment model077

and an image-audio (VA) alignment model; shar-078

ing the image modality between the two alignment079

models will link audio and text implicitly.080

Besides the fully unsupervised pivoting model081

vip-AnT, we consider improving it with two cases082

of varying AT supervision. (1) unsupervised cura-083

tion: whereby noisy AT pairs are explicitly mined084

from the pivoting model and serve as additional085

training data, and (2) few-shot curation: whereby086

a small number of human-annotated AT pairs are087

made available at training time.088

We quantify the quality of the AT alignments089

via zero-shot audio-text retrieval and zero-shot au-090

dio classification. On the Clotho caption retrieval091

task (Drossos et al., 2020), without any parallel AT092

data, vip-AnT surpasses the supervised state of the093

art by 2.2% R@1; on zero-shot audio classification094

tasks, it establishes new state of the arts, achiev-095

ing 57.1% accuracy on ESC50 (Piczak, 2015) and096

44.7% accuracy on US8K (Salamon et al., 2014). 097

We also show that unsupervised curation, i.e., min- 098

ing noisy pairs from the pivoting model, can sur- 099

prisingly increase performance further (e.g., +5.7% 100

on ESC50 and +9.3% on US8K). Finally, we find 101

that few-shot curation with only a few hundred su- 102

pervised AT pairs during pre-training increases the 103

zero-shot audio classification accuracy by 8% on 104

US8K. However, for ESC-50, according to empiri- 105

cal scaling laws we demonstrate, it would require 106

around 221 ≈ 2M aligned audio-text pairs for the 107

zero-shot model to match human parity on ESC50 108

under our setup, which is an order-of-magnitude 109

more than the largest currently-available audio-text 110

corpus of Kim et al. (2019). 111

2 Related work 112

Supervised audio representation learning. 113

While automatic speech recognition has been a 114

core focus of the audio processing community, 115

environment sound classification has emerged as a 116

new challenge and is drawing more attention (Sala- 117

mon et al., 2014; Piczak, 2015; Gemmeke et al., 118

2017). Some prior work in learning sound event 119

representations are supervised by category labels 120

(Dai et al., 2017; Boddapati et al., 2017; Kumar 121

et al., 2018; Guzhov et al., 2021b; Gong et al., 122

2021). Others use weaker forms of supervision 123

for tagging (Kumar and Raj, 2017; Kong et al., 124

2018) and localization (McFee et al., 2018; Kim 125

and Pardo, 2019). 126

Learning audio representations from visual 127

imagination. There are two main paradigms for 128

using visual information to derive audio represen- 129

tations. In the two-stage setup, an image encoder 130

is first pre-trained; these weights are used as ini- 131

tialization of the supervised audio model (Guzhov 132

et al., 2021b; Gong et al., 2021). The other adopts 133

contrastive learning: it exploits the image-audio 134

alignment inherent in videos and learns audio and 135

image / video representations jointly (Korbar et al., 136

2018; Wang et al., 2021; Nagrani et al., 2021). 137

We use insights from both directions by (1) using 138

CLIP’s image encoder, which has been pre-trained 139

on image-text pairs (Radford et al., 2021), to initial- 140

ize an audio encoder and (2) using contrastive pre- 141

training on image-audio pairs. Throughout training, 142

we do not require any labeled images or audio. 143

Tri-modal learning of audio-text alignment. 144

Our work extends recent work that generalizes the 145
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Model AE Init. Objective AT Supervision VT
Alignment

Zero-shot
AT Retrieval

MMV (Alayrac et al., 2020) Random Lbi-bi None Trainable 7
VATT (Akbari et al., 2021) Random Lbi-bi None Trainable 7
AudioCLIP (Guzhov et al., 2021a) ImageNet Ltri 2M Audio Tags Trainable 7
Wav2CLIP (Wu et al., 2021) Random Lbi-bi None Frozen 7
vip-AnT (ours) Image CLIP Lbi-bi None Frozen X
vip-AnT +AT (ours) Image CLIP Lbi-bi Caption Curation Frozen X

Table 1: Survey of recent prior work studying for tri-modal (images, audio, and text) representation learning. AE
is short for Audio Encoder. Some work experiments with more than one objective, we report the best or the one it
advocates. Importantly, we report zero-shot audio-text retrieval between audio and full-sentence text descriptions,
along with scaling laws associated with that setup.

bi-modal contrastive learning to a tri-modal set-146

ting (Alayrac et al., 2020; Akbari et al., 2021).147

While they also connect audio and text implic-148

itly by using images as a pivot, the quality of this149

audio-text alignment has rarely been studied. To150

our knowledge, we present the first comprehensive151

evaluation of the inferred audio-text alignment via152

zero-shot retrieval / classification.153

The work closest to ours are Audio-154

CLIP (Guzhov et al., 2021a) and Wav2CLIP (Wu155

et al., 2021). AudioCLIP’s pre-training setup is156

similar to ours, but requires human-annotated157

textual labels of audio, while ours does not.158

Wav2CLIP is concurrent with our work; while159

similar-in-spirit, our model not only performs160

significantly better, but also, we more closely ex-161

plore methods for improving audio-text alignment162

specifically.163

Pivot-based alignment models. The pivoting164

idea for alignment learning can date back to Brown165

et al. (1991). Language pivots (Wu and Wang,166

2007; Utiyama and Isahara, 2007) and image piv-167

ots (Specia et al., 2016; Hitschler et al., 2016;168

Nakayama and Nishida, 2017) have been explored169

in machine translation. Pivot-based models have170

also been shown to be helpful in learning image-171

text alignment (Li et al., 2020). We focus on the172

tri-modal case.173

3 Model174

We first formalize tri-modal learning by assum-175

ing available co-occurrence data for every pair of176

modalities, and present bi-bi-modal pre-training as177

an alternative when there is no paired audio-text178

data (§ 3.1). Then we implement vip-AnT via bi-179

bi-modal pre-training (§ 3.2) and describe model180

variants for cases of varying AT supervision (§ 3.3).181
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Figure 3: Learning paradigm of vip-AnT.

3.1 Tri-modal representation learning 182

Tri-modal representation learning between images, 183

audio, and text aims to derive representations from 184

co-occurrence patterns among the three modali- 185

ties (Alayrac et al., 2020; Akbari et al., 2021). We 186

consider a simple tri-modal representation space, 187

which relies on encoding functions gV : V → V, 188

gA : A → A, and gT : T → T to map images v, 189

audios a, and text t (v ∈ V, a ∈ A, and t ∈ T ), 190

respectively, to a shared vector space: v,a, t ∈ Rd 191

(v ∈ V,a ∈ A, and t ∈ T). Instead of pre- 192

specifying the precise semantics of this continu- 193

ous space, vector similarities across modalities are 194

optimized to reconstruct co-occurrence patterns 195

in training corpora, i.e., two vectors should have 196

a higher dot product if they are more likely to 197

co-occur. We use contrastive learning with the 198

InfoNCE loss (Sohn, 2016; van den Oord et al., 199

2018): 200

Lcst(A,B) = 201∑
i

exp s(a(i), b(i))∑
a exp s(a, b(i))

+
exp s(a(i), b(i))∑
b exp s(a(i), b)

, (1) 202

where A,B are two sets of data points from two 203

different modal domains, respectively; a(i), b(i) 204

are vector representations of the co-occuring pair 205
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(a(i), b(i)) which are encoded by gA(a(i)) and206

gB(b(i)), respectively; s(a, b) computes the simi-207

larity between a and b, which we take to be scaled208

cosine similarity.209

If we had access to co-occurrence data between210

all pairs of modalities, we could optimize the tri-211

modal loss:212

Ltri(V,A, T ) =213

Lcst(V,A) + Lcst(A, T ) + Lcst(V, T ) . (2)214

But, differently from image-text and image-215

audio pairs, which are abundantly available on the216

web, audio-text data is scarce. Instead, tri-modal217

representation learning minimizes a “bi-bi-modal"218

loss:219

Lbi-bi(V,A, T ) = Lcst(V,A) + Lcst(V, T ) . (3)220

3.2 Visually pivoted audio and text221

We propose vip-AnT, which aligns audio and text222

via visual images. Our model capitalizes on the223

availability of VA and VT pairs. It follows the224

bi-bi-modal learning paradigm (see Equation 3) to225

learn a tri-modal representation space. The image226

encoder is shared between the VA alignment model227

(i.e., Lcst(V,A)) and the VT alignment model (i.e.,228

Lcst(V, T )) and thus connects audio and text in the229

tri-modal embedding space implicitly.230

Image and text encoders. Instead of learning231

gV and gT from scratch, we build on a pre-trained232

CLIP model, which has been pre-trained on We-233

bImageText (WIT), a dataset of 400 million image-234

text pairs gathered from the internet (Radford et al.,235

2021). CLIP has been shown highly performant236

on VT tasks, e.g., zero-shot image classification.237

We use the ViT-B/32 model in this work, which238

consists of a 12-layer vision Transformer (ViT) and239

a 12-layer language Transformer (Vaswani et al.,240

2017; Dosovitskiy et al., 2021). Given CLIP’s241

strong VT alignment, we use its image encoder242

as gV and text encoder as gT . During learning, gV243

and gT are kept frozen and thus the joint VT rep-244

resentation space is untouched (see Figure 3). We245

minimize only the first loss term of Equation 3:246

min
ΘA

Lcst(V,A) , (4)247

where ΘA are the trainable parameters of the audio248

encoder gA.249
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Figure 4: Left: three-channel image versus one-
channel Spectrogram features of audio. We use
ViT (Dosovitskiy et al., 2021) to encode images and
audio. ViT uses a convolution layer to encode non-
overlapped image patches into a sequence of image to-
kens, but for audio we modify the convolution stride to
allow for overlaps between neighbor patches.
Right: adapting the convolution layer of ViT for au-
dio encoding. For simplicity’s sake, we omit the output
channels of kernel weights and positional embeddings.

Audio encoder. Our audio encoder has the same 250

vision Transformer architecture as CLIP’s image 251

encoder (ViT-B/32). In § 4, we show that initializ- 252

ing the audio encoder with CLIP’s visual weights 253

significantly improves convergence speed and accu- 254

racy. The architectural modifications which enable 255

the use of visual CLIP’s architecture for audio are 256

(Figure 4 for an illustration): 257

(1) We customize the convolution stride to allow 258

for overlaps between neighbor patches of Spectro- 259

gram features of audio. 260

(2) In the input embedding layer, we average the 261

kernel weights of the convolution layer along the 262

input channel to account for 1-channel Mel-filter 263

bank features of audio (cf. RGB channels of im- 264

ages). 265

(3) We up-sample the 2-dimensional positional em- 266

beddings of image tokens to account for longer 267

audio token sequences. 268

Image-audio pre-training. We conduct VA pre- 269

training on AudioSet (AS; Gemmeke et al. 270

(2017)).VA co-occurrence gathering, audio pre- 271

processing, model hyperparameters, and training 272

setups can be found in Appendix C. We measure 273

the VA pre-training performance by retrieval preci- 274

sion and recall. Audio is relevant if it has the same 275

set2 of labels as the image query, and vice versa. 276

Figure 5 illustrates the top-1 retrieval performance 277

2Recall that each audio clip in AudioSet is annotated with
multiple labels.
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Figure 5: Image → Audio retrieval performance per
image-audio pre-training epoch, evaluated on the AS
balanced training set. "CLIP" and "Rand" indicates that
the audio encoder is initialized from CLIP’s image en-
coder and has random initialization, respectively.

with images as the query (similar trends are ob-278

served when using audio as the query). Compared279

with random initialization, initializing the audio280

encoder from CLIP’s image encoder leads to faster281

convergence and better VA alignment. As we will282

see, this performance on VA retrieval transfers to283

downstream AT tasks.284

3.3 Unsupervised and few-shot curation285

To improve the AT alignments beyond pivoting, we286

consider curating audio-text pairs, and then per-287

forming an additional fine-tuning step by train-288

ing the audio encoder with the AT loss, i.e.,289

Lcst(A, T ).3 During AT fine-tuning, we keep the290

text encoder gT frozen and only fine-tune the audio291

encoder.292

Unsupervised curation. We consider explicitly293

mining AT pairs from the unsupervised pivoting294

model. Because this method requires no human su-295

pervision we refer to it as “unsupervised curation."296

Concretely, for each video segment in AudioSet,297

we extract a video frame, and input that frame to298

the original CLIP image encoder. Then, we encode299

a large set of candidate captions, and perform Im-300

age→ Text retrieval over them by using the CLIP301

text encoder. The top candidate captions according302

to cosine similarity are then paired with the audio303

that corresponds to the original video clip.304

We consider multiple caption sources to search305

over. As noted by Kim et al. (2019), captions for306

images and captions for environmental audio are307

significantly different in focus. We consider two308

3Since our goal is to improve AT alignment, we primarily
focus on AT fine-tuning; nonetheless, we compare AT fine-
tuning to full VAT fine-tuning as in Equation 2 in Appendix F.

vision-focused caption sets: (1) MSCOCO (Lin 309

et al., 2014) captions (VC); and (2) because 310

MSCOCO captions are limited to 80 object cat- 311

egories, we generate free-captions from GPT-J 312

(Wang and Komatsuzaki, 2021) conditioned on 313

MSCOCO captions as a prompt (FC). We addi- 314

tionally consider audio-focused captions from the 315

training set of AudioCaps (Kim et al., 2019) and 316

Clotho (Drossos et al., 2020) (AC).4 As a base- 317

line, we also consider a random caption alignment, 318

which assigns a random caption from AC to each 319

clip (instead of pivoting on images). The bottom 320

half of Table 2 summarizes different ways of curat- 321

ing AT pairs without additional supervision. 322

Few-shot curation. For comparison to our un- 323

supervised methods, we also explore the effect of 324

incorporating limited amounts of AT supervision, 325

specifically, via captions from AudioCaps (GC) 326

and textual labels of AudioCaps (GL). 327

4 Audio-text experiments 328

We use two types of tasks to evaluate the quality 329

of the AT alignments learned by our model: AT 330

retrieval and zero-shot audio classification. 331

AT retrieval. We conduct audio-text retrieval on 332

two audio captioning datasets: 333

(1) AudioCaps (Kim et al., 2019) builds on Au- 334

dioSet (Gemmeke et al., 2017) and provides cap- 335

tions for a subset of audio clips in AudioSet 336

(sourced from YouTube). As we have pre-trained 337

the audio encoder on AudioSet, we consider audio- 338

text retrieval on AudioCaps as in-domain evalua- 339

tion. 340

(2) Clotho (Drossos et al., 2020) consists of audio 341

clips which have a duration of 15-30 seconds and 342

come from Freesound (Font et al., 2013). It has a 343

different sound source from AudioCaps and is used 344

for out-of-domain evaluation. 345

We study the out-of-domain generalizability of 346

our models by applying them to Clotho directly, 347

without further fine-tuning on it.5 348

Zero-shot audio classification. We consider the 349

following three widely used datasets for audio clas- 350

sification. 351

4We do not use the alignment of these captions — just the
captions themselves.

5Clotho audio clips (15-30s) are longer than our pre-
training audio clips (10s). See Appendix E for adaptation
details.
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GL Gold textual Labels are used to construct AL pairs. (120816 aligned pairs)
example Gurgling

GC Gold Captions from AudioCaps provide an upper bound on the quality of AL alignment. (44118
aligned pairs)

example Children screaming in the background as the sound of water flowing by.

U
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up
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AC Audio-focused Captions originate from the training captions of AudioCaps and Clotho. We
perform caption retrieval by using CLIP and the prompt "the sound of". (1080078 aligned pairs)

example A balloon is rubbed quickly and slowly to make squeaking sounds.

FC Free Captions are generated by priming GPT-J with MSCOCO captions. We perform caption
retrieval by using CLIP and the prompt "a photo of". (1224621 aligned pairs)

example The blue colored person is jumping on the white and yellow beach ball.

VC Vision-focused Captions originate from MSCOCO. We perform caption retrieval by using CLIP
and the prompt "a photo of". (1172276 aligned pairs)

example A sky view looking at a large parachute in the sky.

RC
Random Captions indicates that we break the gold AL alignment in AudioCaps by randomly
sampling a caption for each audio clip. They are used as a lower bound on the quality of AL
alignment. (44118 aligned pairs)

example A whoosh sound is heard loudly as a car revs its engines.

Table 2: Different ways of curating AT pairs. Gurgling is described as "the bubbling sound of water flowing
through a narrow constriction, such as from a bottle with a narrow neck". The example comes from this YouTube
video: 1O7-QuhweZE.

Model
AudioCaps Clotho

Text→Audio Audio→Text Text→Audio Audio→Text
R@1 R@10 R@1 R@10 R@1 R@10 R@1 R@10

Supervised SOTA 18.0 62.0 21.0 62.7 4.0 25.4 4.8 25.8
VA-Rand 1.3 7.3 5.6 24.5 1.3 7.5 3.2 13.5
vip-AnT 0.8 7.9 10.1 38.1 1.9 9.5 7.0 25.6

+AT w/ GL 12.4 52.9 13.0 51.2 6.7 29.0 6.8 27.0
+AT w/ GC 27.7 78.0 34.3 79.7 11.1 40.5 11.8 41.0

+AT w/ AC 9.9 45.6 15.2 52.9 6.7 29.1 7.1 30.7
+AT w/ FC 8.9 41.5 14.7 50.0 6.5 27.7 7.8 29.7
+AT w/ VC 6.9 35.7 13.5 49.4 5.5 25.6 7.6 28.2
+AT w/ RC 3.8 19.9 10.7 38.1 3.5 16.9 5.5 24.9

OracleAV-CLIP 4.8 27.8 6.6 31.2

Table 3: Audio caption retrieval performance (%) on AudioCaps test set and Clotho evaluation set. "Supervised
SOTA" indicates the supervised state of the art from Oncescu et al. (2021b). OracleAV-CLIP: we replace audio
with the corresponding image and evaluate image-text retrieval performance of CLIP (Radford et al., 2021). For
each Clotho audio clip, we extract an audio clip which has a duration of at most 18 seconds and up-sample the
positional embeddings accordingly. VA-Rand and vip-AnT indicates that, in VA pre-training, the audio encoder
is initialized randomly and from CLIP, respectively. We further fine-tune vip-AnT on AT data, which is curated
using different ways: GL, GC, AC, FC, VC, and RC (see Table 2 for details).

(1) ESC50 (Piczak, 2015) contains 2000 audio352

clips from 50 classes. Each audio clip has a du-353

ration of 5 seconds and a single textual label. We354

follow the standard k-fold data splits.355

(2) US8K (Salamon et al., 2014) contains 8732356

audio clips from 10 classes. Each audio clip has357

a duration less than 4 seconds and a single textual 358

label. We follow the standard k-fold data splits. 359

(3) AudioSet (Gemmeke et al., 2017) is a bench- 360

mark dataset for multi-label classification. Au- 361

dioSet provides balanced and unbalanced training 362

sets. The balanced set consists of 22-thousand au- 363
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Model ESC50 US8K AS

Supervised 95.7±1.4 86.0±2.8 37.9

Z
er

o-
sh

ot

VA-Rand 37.6(33.0) 41.9(38.1) 1.7( 2.0)

vip-AnT 57.1(49.9) 44.7(37.8) 2.6( 2.8)

+AT w/ GL 67.2(64.5) 62.6(61.0) 15.4(18.9)

+AT w/ GC 69.5(64.2) 71.9(67.1) 13.3(13.6)

AudioCLIP 69.4 65.3

+AT w/ AC 62.8(55.7) 54.0(47.0) 11.6(12.3)

+AT w/ FC 62.5(58.0) 52.7(50.0) 11.2(12.2)

+AT w/ VC 61.9(58.0) 52.7(50.3) 8.9(10.7)

+AT w/ RC 51.6(36.1) 42.3(28.5) 4.1( 4.6)

Wav2CLIP 41.4 40.4

Table 4: Zero-shot audio classification accuracies (%)
on ESC50 and US8K and mAPs (%) on AudioSet (AS).
"Supervised" indicates that we fine-tune vip-AnT for
supervised audio classification. In the zero-shot set-
ting, we use a prompt ‘the sound of ’ by default; accu-
racies in the parenthesis are obtained without using the
prompt. "+AT" means that we fine-tune vip-AnT on
AT pairs curated through different ways. AudioCLIP is
pre-trainined using the 2 million textual labels of Au-
dioSet; +AT w/ GL and +AT w/ GC are trained with
only 44K labels / captions. Wav2CLIP is most directly
comparable to our fully unsupervised pivoting model
vip-AnT.

dio clips and the unbalanced set contains around 2364

million audio clips. It also provides 20-thousand365

balanced audio clips for evaluation (more data366

statistics can be found in Table 5 in Appendix A).367

For each audio clip a, we predict the label t with368

the closest cosine similarity in the tri-modal space:369

arg max
i

cos(t(i),a) . (5)370

4.1 Main results371

Our prediction results for AT retrieval are given in372

Table 3 and for zero-shot classification in Table 4373

(Appendix G contains qualitative results of the tri-374

modal representations).375

Initializing with visual CLIP weights helps.376

Comparing VA-Rand to vip-AnT, we see accu-377

racy increases in all classification and retrieval se-378

tups. For example, on AudioCaps, vip-AnT out-379

performs VA-Rand by 4.5% R@1 and 13.6% R@10.380

This confirms that the findings of Gong et al. (2021)381

carry-over to unsupervised audio pre-training.382

Pivoting works well for Audio → Text.383

vip-AnT, exhibits surprisingly strong perfor-384

mance on AT retrieval tasks and zero-shot classifi-385

cation. For example, it outperforms the supervised386

0 20 40 60 80 100
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jackhammer
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air conditioner

street music

children playing

car horn

dog bark

engine idling

siren

gun shot

VIP-ANT+AT w/ GC

Figure 6: Per-class accuracy on US8K.

baseline (Oncescu et al., 2021b) by 2.2% R@1 for 387

text retrieval, without being trained or fine-tuned 388

on Clotho, and without ever having seen an aligned 389

AT pair. 390

Prompting (usually) helps. Inspired by the zero- 391

shot image classification setups of CLIP (Radford 392

et al., 2021), we prefix textual labels with a prompt 393

in zero-shot audio classification. We empirically 394

find that the prompt ‘the sound of ’ works well. Us- 395

ing it greatly improves zero-shot multi-class classi- 396

fication accuracy (see Table 4). Take vip-AnT, the 397

prompt gives rise to an improvement of 7.2% on 398

ESC50 and 6.9% on US8K, but hurts multi-label 399

classification performance on AS. 400

Random curation helps. Even when the audio- 401

text pairs used to train that objective are sampled 402

entirely at random (+AT w/ RC), vip-AnT im- 403

proves, e.g., R@1 for Text→ Audio retrieval in- 404

creases from 0.8% to 3.8%. We conjecture that 405

RC at least makes audio representations aware of 406

and lean towards the text cluster of the joint VT 407

representation space. While this result also holds 408

for AS classification (+1.5% mAP), performance 409

decreases for ESC50 (-5.5% accuracy) and US8K 410

(-2.4% accuracy). 411

Unsupervised curation is universally helpful. 412

vip-AnT fine-tuned with unsupervised audio cap- 413

tions (+AT w/ AC) outperforms both pivoting 414

(vip-AnT) and random curation (+AT w/ RC) in 415

all cases. Thus, explicitly mining unsupervised AT 416

pairs can be a helpful approach. Performance with 417

automatically generated captions (FC) is similar to 418

captions written by humans (AC). 419

Supervision is still the most helpful. Fine- 420

tuning vip-AnT on GC pairs leads to the highest 421

accuracies on ESC50 and US8K. However, we do 422
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Figure 7: Audio retrieval and zero-shot classification performance versus level of language supervision.

not see similar improvements on AS, presumably423

because multi-label classification is more challeng-424

ing and requires more direct language supervision,425

such as audio labels. This is further evident when426

we fine-tune vip-AnT on GL and obtain the high-427

est accuracy (18.9% mAP) on AS (see Table 4).428

For retrieval, GL uses only audio labels as the429

text, which provide less dense language supervision430

than GC and is thus slightly worse than GC, but431

still, it gives better AT alignment than all automatic432

methods. As captions become semantically further433

from the audio-caption domain, e.g., GC < AC <434

FC < VC, the AT alignment becomes weaker, and435

thus leading to worse retrieval performance. The436

fine-tuned audio encoder generalizes to the out-437

of-domain Clotho successfully, displaying a trend438

similar to AudioCaps.439

Supervision improves per-class accuracy in gen-440

eral. We further plot zero-shot classification ac-441

curacy for each audio class (see Figure 6 for US8K442

and Figure 12 in Appendix H for ESC50). Clearly,443

language supervision improves per-class accuracy444

in general. The highest improvement is observed445

on ‘siren’ because ‘siren’ rarely appears in image446

descriptions while GC contains a lot of textual de-447

scriptions of ‘vehicle’ audio.448

4.2 Level of language supervision449

We have observed that AT fine-tuning on AT pairs450

mined without any additional supervision (e.g., AC,451

FC, and VC) can improve the AT alignment, but452

supervised alignments are still the most effective.453

But: how much supervised data is really needed?454

To understand the relationship between supervision455

and performance, we vary the number of gold AT456

pairs (i.e., training samples of AudioCaps) used457

for AT fine-tuning. On the audio-text retrieval458

task (see Figure 7a), unsurprisingly, fine-tuning459

on more aligned AT pairs results in higher audio- 460

text retrieval / zero-shot classification performance. 461

Surprisingly, using only 442 (around 1%) AT pairs 462

of AudioCaps gives rise to as strong AT alignment 463

as VT alignment (cf. OracleAV-CLIP in Table 3). 464

Beyond the very few-shot setting, as we increase 465

the number of supervised AT pairs used during 466

fine-tuning, we observe a roughly linear relation- 467

ship between zero-shot performance and the log 468

of the number of supervised pairs (this observa- 469

tion is similar to (Kaplan et al., 2020)’s observa- 470

tions regarding transformers). While it’s not clear 471

how reliable extrapolations from this roughly lin- 472

ear trend are, we roughly estimating the amount 473

of annotated AT pairs required for the zero-shot 474

performance to equal human parity for ESC50 of 475

81% (Piczak, 2015): our estimate is that 221 ≈ 2M 476

supervised audio caption pairs would be needed. 477

We’re hopeful both (1) that larger curated audio- 478

text datasets will become available; and (2) that 479

future work can improve the data efficiency of the 480

pre-training process. 481

5 Conclusion 482

We have presented vip-AnT for unsupervised 483

audio-text alignment induction. Based on the pivot- 484

ing idea, our model learns image-text alignment 485

and image-audio alignment explicitly and sepa- 486

rately via bi-modal contrastive pre-training. The 487

image modality is shared between the two and 488

thus pivots audio and text in the tri-modal em- 489

bedding space implicitly, without using any paired 490

audio-text data. We empirically find that our model 491

achieves strong performance on zero-shot audio- 492

text tasks. We further strengthen the audio-text 493

alignment by using varying kinds of audio-text su- 494

pervision. Experimental results show that even 495

un-aligned audio-caption pairs can help. 496
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Abstract

This supplementary material includes (1) data749
statistics (§ A), (2) hyperparameters of opti-750
mizers (§ B), (3) details about bi-bi-modal751
pre-training (§ C), (4) supervised audio clas-752
sification (§ D), (5) interpolating pre-trained753
position embeddings for Clotho audio-caption754
retrieval (§ E), (6) comparison between VAT755
fine-tuning and AT fine-tuning (§ F), (7) a qual-756
itative study of the geometry of the tri-modal757
embedding space (§ G), and (8) additional find-758
ings from the audio-text retrieval task.759

A Data statistics760

Table 5 presents data statistics of all the datasets761

used in the paper.762

B Optimizer hyperparameters763

Table 6 presents optimizer hyperparameters used764

in our learning tasks.765

C Bi-bi-modal pre-training766

C.1 Audio-Video co-occurences767

For training data, we gather VA co-occurrences768

from AudioSet,which contains temporally aligned769

audio and video frames from 10-second clips gath-770

ered from around 2 million YouTube videos (Gem-771

meke et al., 2017). To construct aligned image-772

audio pairs from AS, we adopt a sparse sampling773

approach (Lei et al., 2021): we first, extract four774

equal-spaced video frames from each clip. Then,775

during training, we randomly sample a frame from776

the four, and treat it as co-occurring with the cor-777

responding audio clip. At test time, we always use778

the second video frame as the middle frame to con-779

struct image-audio pairs. We use the unbalanced780

training set, which consists of around 2 million781

video clips, to pre-train the audio encoder. Since782

AudioSet does not provide an official validation783

set, we validate the audio encoder and tune model784

hyperparameters on the balanced training set.785

C.2 Audio preprocessing786

We use Kaldi (Povey et al., 2011) to create Mel-787

filter bank features (FBANK) from the raw audio788

signals. Specifically, we use the Hanning window,789

128 triangular Mel-frequency bins, and 10 millisec-790

ond frameshift. We always use the first audio chan-791

nel when an audio clip has more than one channel.792

We apply two normalizations: (1) before applying793

Kaldi, we subtract the mean from the raw audio 794

signals; and (2) we compute the mean and standard 795

deviation of FBANK on the unbalanced AS train- 796

ing set, and then normalize the FBANK of each au- 797

dio clip. For data augmentation, inspired by Gong 798

et al. (2021), we frequency masking and the time 799

masking: we randomly mask out one-fifth FBANK 800

along the time dimension and one-forth FBANK 801

along the frequency dimension during training. 802

C.3 Training dynamics 803

The architecture of our audio encoder follows the 804

vision Transformer of CLIP (ViT-B/32, see (Rad- 805

ford et al., 2021) for more details). For the trade-off 806

of efficiency and efficacy, we set the convolution 807

stride to 16× 24. This results in around 300 audio 808

tokens for a kernel size of 32×32 and an input size 809

of 1000×128 (all in the form of time× frequency). 810

We optimize the model with LARS (You et al., 811

2017), where the initial learning rates for model 812

weights and model biases are set to 2e-1 and 4.8e- 813

3, respectively (detailed hyperparameters can be 814

found in Table 6 in Appendix B). We pre-train our 815

model on 4 NVIDIA Quadro RTX 8000 GPUs and 816

for 25 epochs. We empirically set the batch size to 817

432 to fit the GPU memory. The full pre-training 818

can be done within 24 hours. 819

D Supervised audio classification 820

To perform supervised audio classification, we add 821

a classification head (a linear layer) on top of the 822

pre-trained audio encoder. For multi-class classi- 823

fication, the classification head projects the vector 824

representation of an audio clip onto the class space. 825

We fine-tune the model by minimizing the cross- 826

entropy loss: 827∑
i

log p(y(i)|a(i)) , (6) 828

where y(i) is the gold label of a(i). For supervised 829

multi-label classification, the classification head 830

estimates the likelihood that an audio clip has some 831

textual label. We thus minimize the per-label binary 832

cross-entropy loss: 833∑
i

∑
l

log p(l = 1|a(i)) , (7) 834

where l enumerates all possible audio labels. 835

ESC50 and US8K classification. We initial- 836

ize the audio encoder from random initialization, 837

CLIP, and vip-AnT, respectively. Among them, 838
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STAT. AudioSet ESC50 US8K AudioCaps Clotho

# Train 2041789 (unbalanced) 2000 (5-fold) 8732 (10-fold) 44118 (×1 caption) 3839 (dev-train)
# Dev 22160 (balanced) 1045 (dev-val)
# Val 441 (×5 caption) 1045 (dev-test)
# Test 20371 (balanced) 860 (×5 caption) 1043 (withheld)
# Class 527 50 10 5 captions / audio
Duration 10s 5s 0-4s 10s 15-30s
Task Multi-label CLF Multi-class CLF Multi-class CLF Captioning Captioning
Source YouTube Freesound Freesound YouTube (AudioSet) Freesound

Table 5: Statistics of the data used in this paper. CLF is the abbreivation of "classification". In AudioSet (Gemmeke
et al., 2017) audio clips come from distinct videos. Balanced split means that there are at least 59 samples for each
of 527 sound classes. We managed to download 18036 out of 22160 videos in the balanced training split, 16416
out of 20371 videos in the test / evaluation split, and 1715367 out of 2041789 videos in the unbalanced split.

Hyperparam. VA AT ESC50 US8K

Optimizer LARS (You et al., 2017)
Batch size 432 64 50
Weight decay 1e-6
LR of weight 2e-1 1e0
LR of bias 4.8e-3 2.4e-2
Warmup epoch 10
Training epoch 25 50

Hyperparam. AS balanced AS unbalanced

Optimizer Adam (Kingma and Ba, 2015)
Batch size 12 128
Weight decay 1e-7
Learning rate 5e-5
Warmup step 1000
Training epoch 25 5
LR scheduler MultiStepLR (γ = 0.5)

Table 6: Hyperparameters of the optimizers used for
VA pre-training, AL fine-tuning, ESC50 classification,
US8K classification, balanced AS classification, and
unbalanced AS classification. The learning rate (LR)
in balanced AS classification is scheduled by epoch: 5,
9, 10, 11, 12 epochs. In unbalanced AS classification it
is scheduled by optimization step: 7.5, 15, 20, 25, 35,
40, 45, 50 thousand steps.

vip-AnT performs best. It surpasses random ini-839

tialization and CLIP on both datasets (see Table 7).6840

Notably, it outperforms the strong baseline AST-P841

on ESC50 (+0.1%), though AST-P has used gold842

audio labels for supervised pre-training.843

AS classification. We consider balanced and un-844

balanced training for AS classification and train an845

individual model on the balanced set and the unbal-846

anced set, respectively. Since the audio encoder has847

been pre-trained on the unbalanced AudioSet train-848

ing set, it could be directly used without further849

6We find that vip-AnT initialization leads to fast conver-
gence, so it can bring better classification results than other ini-
tialization methods with the same number of training epochs.

AS Classification

Dataset AST AST? AST† vip-AnT

Unbalanced 43.4 44.7
Balanced 34.7 35.8 31.4 37.9

US8K and ESC50 Classification

Dataset AST-S AST-P CLIP vip-AnT

US8K 82.5±6.0 86.0±2.8

ESC50 88.7±0.7 95.6±0.4 89.7±1.5 95.7±1.4

Table 7: Multi-label classification mAPs (%) on AS
and Supervised audio classification accuracies (%) on
ESC50 and US8K. AST, AST-S, and AST-P indicates
the results reported by Gong et al. (2021). We follow
their suggestions and test the their best model (AST?)
on our test set. Note that the best model has been
trained on the combination of balanced and unbalanced
AS training sets. † indicates that we follow the settings
of AST and train it on our data. CLIP and vip-AnT
indicate that the audio encoder is initialized from CLIP
and from vip-AnT, respectively.

fine-tuning. Nevertheless, we fine-tune the last k 850

layers of the Transformer architecture of vip-AnT 851

and investigate whether task-specific fine-tuning 852

helps(see Figure 8). When k = 0 the model is 853

basically a linear probe. It inspects if contrastive 854

pre-training learns separable audio representations. 855

As we increase k, i.e., fine-tuning more layers, the 856

model exhibits a tendency of over-fitting the train- 857

ing set. We use k = 4 as a trade-off between under- 858

fitting and over-fitting. Our model achieves the 859

best mAP of 37.9% for balanced training, which 860

surpasses AST by 6.5% (see Table 7). While for 861

unbalanced training, we find it crucial to fine-tune 862

the whole model. Again, our model outperforms 863

AST (+1.4% mAP). 864
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Figure 8: Fine-tuning last k = 0, 2, 4, 6, 8 layers of the
pre-trained audio encoder for AS classification. mAP
is measured on the AS balanced training set per fine-
tuning epoch.

E Position embedding interpolation865

Clotho (Drossos et al., 2020) audio has a duration866

of 15-30 seconds, which is longer than 10-second867

audio clips used in pre-training. To apply our pre-868

trained audio encoder to Clotho audio-caption re-869

trieval, we up-sample the pre-trained positional870

embeddings to account for the longer audio token871

sequences. Table 8 shows retrieval performance872

of 10-second audio and 18-second audio. In gen-873

eral, longer audio gives rise to better audio-caption874

retrieval performance.875

F VAT versus AT fine-tuning876

Given caption-augmented AudioCaps audio (Kim877

et al., 2019), we can improve the pre-trained au-878

dio encoder via contrastive vision-audio-text (VAT)879

fine-tuning and contrastive audio-text (AT) fine-880

tuning. Figure 9 shows a comparison between the881

two fine-tuning techniques on zero-shot ESC50882

classification and AudioCaps audio retrieval. In883

general, AT fine-tuning results in better results on884

the two tasks.885

G Analyzing tri-modal representations886

To better understand the geometry of tri-modal887

embeddings of our pivoting, unsupervised cura-888

tion, and supervised curation, we study how AT889

fine-tuning influences the tri-modal representation890

space. Specifically, we analyze vip-AnT (pivot-891

ing), vip-AnT +AT (w/ RC) (unsupervised cura-892

tion), and vip-AnT +AT (w/ GC) (supervised cu-893

ration) using pivotability.894

Audio

Image

TextRetrieval Path

top-k top-5

start

895

Pivotability measures how likely images can 896

pivot audio and text. We quantify it for each aligned 897

VAT triplet via a two-step retrieval probe. Starting 898

at a given audio clip, we retrieve k nearest image 899

neighbors; for each image neighbor, we retrieve 900

the top-5 nearest captions. Since each audio clip 901

has 5 gold captions, we compute pivotability as the 902

ratio of the number of retrieved gold captions to 903

5. A gold caption may be retrieved more than one 904

time, but we always count it as 1, so pivotability is 905

always between 0 and 1. 906

We conduct this experiment on AudioCaps test 907

set. For each k, i.e., how many images will be 908

retrieved for a given audio clip, we average pivota- 909

bility scores over all test triplets (see Figure 10). 910

Which pairs are pivotable? To study what 911

kinds of audio are more likely to be pivoted with 912

text by images, we set k = 5, i.e., 5 images will be 913

retrieved for each given audio clip. We consider an 914

AT pair as pivotable if at least 3 out of 5 gold cap- 915

tions of the audio clip are retrieved, i.e., pivotability 916

is equal to or larger than 0.6. Figure 11 illustrates 917

the categories of the audio clips in pivotable AT 918

pairs. Unsurprisingly, audio about speech and ve- 919

hicle is more pivotable because the two categories 920

are among the top three frequent categories in AS.7 921

Given that AT fine-tuning improves Audio→ Im- 922

age retrieval, we wonder if it could also help find 923

novel categories of audio that can be pivoted with 924

text. We find that this is indeed the case (see Ta- 925

ble 9). For example, vip-AnT +AT (w/ GC) finds 926

more fine-grained speech categories because most 927

AT pairs in AudioCaps are about speech. In con- 928

trast, vip-AnT +AT (w/ RC) finds two additional 929

novel insect categories, presumably because RC 930

suffers from less data bias than GC. 931

H Additional results 932

Asymmetric retrieval performance. For Text 933

→ Audio retrieval, our unsupervised pivoting 934

model is not as good as on Audio → Text. This 935

could be because audio is intrinsically more diffi- 936

cult to retrieve with specificity than text in our cor- 937

pus, e.g., because sound events co-occur (a baby 938

7Music is the second most frequent category in AS. It is
not shown in the figure because AudioCaps excludes all music
audio.
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Model
10-second Clotho (eval) 18-second Clotho (eval)

Text→Audio Audio→Text Text→Audio Audio→Text
R@1 R@10 R@1 R@10 R@1 R@10 R@1 R@10

VA-Rand 1.4 7.4 3.2 13.1 1.3 7.5 3.2 13.5
vip-AnT 1.9 10.1 6.1 23.7 1.9 9.5 7.0 25.6

+AT w/ GL 6.0 27.1 6.1 25.4 6.7 29.0 6.8 27.0
+AT w/ GC 10.2 39.0 10.3 37.2 11.1 40.5 11.8 41.0

+AT w/ AC 5.9 26.3 8.2 30.3 6.7 29.1 7.1 30.7
+AT w/ FC 5.7 26.6 6.6 28.0 6.5 27.7 7.8 29.7
+AT w/ VC 5.2 25.2 7.0 25.9 5.5 25.6 7.6 28.2
+AT w/ RC 3.5 16.3 5.7 23.6 3.5 16.9 5.5 24.9

Table 8: Interpolating positional embeddings to account for Clotho audios which are longer than 10 seconds.
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Figure 9: Comparing VAT and AT fine-tuning on zero-shot ESC50 classification and AudioCaps audio retrieval.

0 20 40 60 80 100
k Nearest Image Neighbors

0

5

10

15

20

25

30

35

C
ap

tio
n 

R
et

rie
va

l S
uc

ce
ss

 R
at

e 
(%

)

k = inf

10

12

14

k = 5

VIP-ANT +AT w/ GC +AT w/ RC

Figure 10: Tri-modal pivotability. +AT (w/ GC) and
+AT (w/ RC) indicate that vip-AnT is further fine-
tuned on GC and RC, respectively.

may cry in street with sirens in the background939

or in a room with dogs barking), there may be a940

broader range of captions that accurately describe941

them. However, it could also be the case that AT942

alignment is bounded by VT alignment because VA943

pre-training biases audio representations towards944

Figure 11: Categories of the audio that can be pivoted
with text by images. Larger text indicates that the re-
lated audio is more likely to be pivoted with text.

image representations. We check this hypothesis by 945

conducting image-text retrieval on AudioCaps. Au- 946

dioCaps provides aligned image-audio-text triplets, 947

so we simply replace audio with the corresponding 948

image. We find that the Text → Image retrieval 949

performance of CLIP is much better than the Text 950

→ Audio retrieval performance of vip-AnT (see 951

the OracleAV-CLIP row of Table 3). It is also close 952

to the Image→ Text retrieval performance of CLIP. 953

15



+AT w/ GC ‘female speech, woman speaking’,
‘narration, monologue’, ‘vibration’

+AT w/ RC
‘bee, wasp, etc.’, ‘female speech,
woman speaking’, ‘insect’, ‘narra-
tion, monologue’, ‘vibration’

Table 9: Comparing against vip-AnT, the two fine-
tuned versions of vip-AnT find novel audio categories
in pivotable AT pairs.
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Figure 12: Per-class accuracy on ESC50.

In contrast, vip-AnT exhibits a large gap between954

the Text → Audio retrieval performance and the955

Audio→ Text retrieval performance.956

Per-class accuracy on ESC50 is illustrated in957

Figure 12.958
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