
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

ADAPTIVE TRAINING OF INRS
VIA PRUNING AND DENSIFICATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Encoding input coordinates with sinusoidal functions into multilayer perceptrons
(MLPs) has proven effective for implicit neural representations (INRs) of low-
dimensional signals, enabling the modeling of high-frequency details. However,
selecting appropriate input frequencies and architectures while managing parameter
redundancy remains an open challenge, often addressed through heuristics and
heavy hyperparameter optimization schemes. In this paper, we introduce AIRe
(Adaptive Implicit neural Representation), an adaptive training scheme that refines
the INR architecture over the course of optimization. Our method uses a neuron
pruning mechanism to avoid redundancy and input frequency densification to
improve representation capacity, leading to an improved trade-off between network
size and reconstruction quality. For pruning, we first identify less-contributory
neurons and apply a targeted weight decay to transfer their information to the
remaining neurons, followed by structured pruning. Next, the densification stage
adds input frequencies to spectrum regions where the signal underfits, expanding
the representational basis. Through experiments on images and SDFs, we show
that AIRe reduces model size while preserving, or even improving, reconstruction
quality. Code and pretrained models will be released for public use.

1 INTRODUCTION

Implicit neural representations (INRs) have emerged as a powerful framework for modeling low-
dimensional signals – such as images and signed distance functions (SDFs) – by encoding them
directly in the parameters of neural networks (Sitzmann et al., 2020; Tancik et al., 2020; Saragadam
et al., 2023; Dam et al., 2025). Instead of storing signals discretely, INRs represent them as continuous
functions, mapping input coordinates x to a network predicting the corresponding signal value. To
capture high-frequency content, these networks typically employ two key components: (1) projecting
x into a list of sinusoidals sin(ωx + φ), where ω and φ denote the input frequencies and phase shifts,
and (2) using periodic activation functions throughout the network layers. This combination enables
INRs to represent fine details that standard ReLU-based MLPs struggle to learn due to their spectral
bias (Tancik et al., 2020; Sitzmann et al., 2020).

Choosing an appropriate network architecture and input frequencies ω to accurately and compactly
fit a target signal is a challenging task. Most prior work has addressed this by enhancing the
expressiveness of INRs via tailored initialization schemes and specialized activation functions. For
example, Zell et al. (2022) leveraged an initialization based on Fourier series to control the network’s
spectrum, enhancing its ability to represent fine-grained details. TUNER (Novello et al., 2025)
provided a theoretical justification for this approach and introduced a training procedure to bandlimit
the spectrum dynamically. FINER (Liu et al., 2024), on the other hand, employed a modified sine
activation combined with bias initialization, allowing the modeling of high-frequency components.
Despite these advances, selecting a compact yet expressive architecture a priori remains difficult:
undersized networks tend to underfit the data, while oversized ones often lead to training instabilities
and increased susceptibility to overfitting.

To address this challenge, we introduce AIRe (Adaptive Implicit neural Representation), a training
framework that progressively adapts a potentially overparametrized INR to the target data through
two complementary operations: pruning and densification of neurons. For pruning, we evaluate
the contribution of each neuron using a customizable criterion (e.g. weight norms) to identify the

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

.Ours - 35.02dB.
.(w/ densification).

Input neuron densification
Adding neurons during training

introduces high frequency details

.w/o TWD + w/o FT - 16.35dB.

.w/ TWD + w/o FT - 41.09dB.

Components

.Small network - 32.11dB.
(w/o densification)

Convergence

Ours - CD: 1.15 x 10-3..Large - CD: 3.21 x 10-3. .Small - CD: 1.32 x 10-3.

Adaptation
Pruning & TWD

Before pruning, information is
transferred to remaining neurons

PSNR: 32.1dB - 54.9% size reduct

PSNR: 32.1dB - 37.2% size reduct

Model size is automatically
adjusted to signal complexity

Figure 1: We present AIRe, a robust training method that adaptively fits the INR architecture to the
target signal through two complementary mechanisms: (i) pruning with targeted weight decay (TWD)
which mitigates parameter redundancy and fine tuning (FT) dependence by transferring information
prior to structured neuron removal (see birds), and (ii) input frequency densification, which augments
the representation basis, enhancing convergence and details fidelity (see hand). We compare three
strategies: (i) an overparameterized SIREN model with standard training (Large), (ii) a model adapted
with AIRe (Ours), and (iii) a Small fitted with standard training. AIRe improves reconstruction
accuracy while producing more compact networks (blue box), and enhances training convergence in
settings where overparameterization leads to divergence (see statue box).

most redundant ones. To transfer information from these low-contributing neurons to more relevant
ones, we propose a novel targeted weight decay (TWD) mechanism, which penalizes their weights
prior to structured removal. Once this transfer is induced, the targeted neurons are pruned. For
densification, we introduce new input frequencies in underfit regions of the spectrum, expanding the
network’s representational capacity when necessary. By dynamically aligning model complexity with
the input data, AIRe finds compact INRs that accurately reproduce the target signal. We showcase
some of AIRe’s results in Figure 1, illustrating strong performance in reconstruction quality, model
compactness, and training stability. Our main contributions are:

• A general framework for the adaptive training of INRs, driven by pruning and densification.
The pruning component brings principles from neural network pruning to the INR setting,
while also introducing a novel targeted weight decay (TWD) strategy to preserve quality
during neuron removal (see Figure 5). For densification, we add new input frequencies
in underfit spectral regions, enhancing representational capacity (Table 4). Combined,
these components enable accurate signal fitting with compact, data-adaptive architectures
(Table 1).

• A theoretical analysis of both pruning and densification mechanisms for INRs. In particular,
we leverage a harmonic expansion of sinusoidal neural networks (Theorem 1) to derive
principled densification schemes, and prove stability of our neural networks under magnitude-
based pruning (Theorem 2). Together, these promote densification and pruning mechanisms
that mitigate divergence during training (cf. Figure 4).

• An empirical evaluation of AIRe across a range of image fitting and 3D shape reconstruction
benchmarks. We show that AIRe consistently outperforms both the standard neural network
training pipeline (see Table 1) as well as recent adaptive training methods (Table 2) in terms
of the accuracy-efficiency trade-off.

2 RELATED WORK

Implicit neural representation (INRs) emerged as a modern paradigm for learning low-dimensional
signals such as images (Chen et al., 2021; Shi et al., 2024), image face morphing (Schardong et al.,
2024), SDFs (Yang et al., 2021; Novello et al., 2022; Schirmer et al., 2024), displacement fields (Yifan
et al., 2021), surface animation (Mehta et al., 2022; Novello et al., 2023), and multiresolution signals

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

(Paz et al., 2023; Saragadam et al., 2022; Lindell et al., 2022; Wu et al., 2023). On the methodological
side, several works have explored the representation capacity of INRs (Mehta et al., 2021; Yüce
et al., 2022; Saratchandran et al., 2025), as well as the critical role of initialization strategies (Novello,
2022; Paz et al., 2024; Saratchandran et al., 2024; Finn et al., 2017; Yeom et al., 2024).

Neural network pruning has long been of interest to the machine learning community (LeCun
et al., 1989; Hassibi et al., 1993; Thimm and Fiesler, 1995; Frankle and Carbin, 2019; Hoefler et al.,
2021; Blalock et al., 2020; Menghani, 2023). Classic approaches have relied on metrics such as
weight magnitude, salience, or second-order derivatives, and are often followed by fine-tuning or
regularization (e.g., weight decay) to preserve performance (Han et al., 2015; Tessier et al., 2022).
However, it is known that methods often fail to generalize beyond their original settings (Blalock et al.,
2020). To the best of our knowledge, Zell et al. (2022) is the only prior work exploring the pruning
(or adaptation) of INRs. Their method removes input neurons to select an appropriate representational
basis, but they did not explore hidden layer pruning. In contrast, our method adapts the model size to
target redundancy in the signal detail content while choosing a fitting input frequency encoding.

Recent work has investigated ways to adapt network architectures during training. The lottery ticket
hypothesis (Frankle and Carbin, 2019) suggests that sparse subnetworks within overparameterized
models can perform just as well when trained independently. Building on this idea, RigL (Evci et al.,
2020) dynamically adjusts connectivity by pruning and growing connections during training. While
promising, such strategies have not been studied in the context of INRs, where the objectives, data
modalities, and inductive biases differ significantly from those in standard classification tasks. In
Table 2, we adapt these methods to the INR setting and compare them with AIRe, showing that our
approach achieves superior results.

3 ADAPTIVE TRAINING OF INRS

Pre-trained 𝑓
Fine-tune

Acc ↗

Fine-tune
Acc ↗

Pruning scheme
Acc ↘ Params ↘

Adapted 𝑓

Pruning scheme
Densify a neuron

𝑓𝜃(𝐱)𝐱

Targeted weight decay

𝒉𝑗
𝑖

𝐖*𝑗

ℒ = ℒdata+𝛼||𝐖*𝑗
 ||TopK([-||𝐖*𝑗

 ||]𝑗)TopK([||𝐖*𝑗
 ||]𝑗)

𝑓𝜃(𝐱)𝐱𝜔𝑗

2ᐧ𝜔𝑗

𝓤(-10-4, 10-4)

Params = 100%

Acc = 100%

Prune a neuron
yes

||𝐖 *𝑗
 || < 𝝐?𝑖+1

Densification
Params ↗

Optional

𝑖+1𝑖+1

𝑖+1

Params ≤ 100%

Acc ≥ 100(1- 𝜀)%

no

Figure 2: We present AIRe, a training framework that adapts network architecture through two
theoretically grounded strategies: densification and pruning. For signals with rich frequency content,
densification selects the most relevant input frequencies ωj and expands the spectrum by augmenting
ω with 2 · ωj . To reduce network size, pruning identifies candidate neurons via magnitude criterion,
transfers information during training with a novel targeted weight decay (TWD) regularization, and
removes neurons whose norm falls below a threshold ϵ. The function TopK(v) selects the K largest
entries of v.

Our goal is to develop a training framework that dynamically adapts a sinusoidal INR architecture to
the given data samples {xj ,fj} from a low-dimensional signal f. Specifically, we want to adjust the
size of a sinusoidal MLP of depth d ∈ N defined as f(x) = L ◦ Sd ◦ · · · ◦ S0(x), a composition of d
sinusoidal layers Si(x) = sin(Wix+ bi) parameterized by a weight matrix Wi ∈ Rni+1×ni and a
bias vector bi ∈ Rni+1 , followed by an affine layer L. Observe that the first layer S0 maps the input
coordinates x into a harmonic embedding of the form sin(ωx+ φ), where we denote ω := W0 as
the matrix of input frequencies and φ := b0 as the vector of phase shifts.

Although the choice of {ni}i is critical for determining network capacity, it is typically based on
empirical heuristics. Moreover, a model with poorly initialized input frequencies ω may fail to
capture the full spectrum of the signal, leading to unsatisfactory reconstruction. To address these
problems, we adapt a model architecture by adding and removing neurons. More precisely, we define

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

the ij-neuron hi
j(x) of f as the j-th coordinate of the output of the i-th layer, that is,

hi+1
j (x) = sin

(
Wi+1

j∗ sin(yi) + bi+1
j

)
, (1)

where yi denotes the linear transformation of the ith layer prior to activation. Then, we densify the
input layer by appending new neurons to h0(x), introducing novel frequencies to expand the spectral
coverage. Finally, we employ a magnitude-based neuron pruning scheme to account for potential
redundancy in parameters. Figure 2 provides an overview of AIRe.

3.1 DENSIFICATION

Sinusoidal INRs employ an encoding layer to mitigate spectral bias and enhance the representation of
high-frequency signals. However, they are heavily dependent on their initialization, which may lead
to noisy reconstructions or slower training. Here, we propose a principled input neuron densification
that aims to improve reconstruction quality of highly detailed signals.

To do so, we must analyze the spectrum of an INR. This can be done by a theorem of Novello et al.
(2025), which provides a trigonometric expansion that facilitates this analysis.
Theorem 1. The neuron hi+1

j admits the following amplitude-phase expansion:

hi+1
j (x) =

∑
k∈Zni

αk sin
(
⟨k, yi⟩+ bi+1

j

)
, where |αk| ≤

∏
l

(
|W i+1

jl |
2

)|kl|
1

|kl|!
. (2)

Here, αk =
∏

l Jkl
(W i+1

jl) is the product of Bessel functions.

This result shows that the composition of sinusoidal layers generates new frequencies of the form
⟨k, ω⟩, depending solely on the input frequencies ω, with phase shifts determined by the biases
{φ,bi}. Additionally, the amplitudes αk depend exclusively on the hidden weight matrices Wi. Thus,
the generated frequencies are governed by the input embedding, while the hidden parameters control
the amplitudes and phase shifts. Moreover, from Equation 2 we observe that

h0(x) =

[∑
k∈Zn0

αk sin (⟨k, ω⟩x + bj)

]
j

with bias bj = ⟨k, φ⟩+ b1j .

Thus, adding an input neuron with frequency ω′ expands the layer spectrum from {⟨k, ω⟩}k to
{⟨k, ω⟩+ l ·ω′}k,l. Since the frequencies in the input layer determine those appearing in the network,
the densification of the input layer greatly increases the expressiveness of the overall network.

However, identifying new frequencies to be added is fairly nontrivial. Fortunately, Theorem 1 also
sheds light on this: the j-th column of W1 influences the value of any amplitude αk related to the
generated frequency k · ω, with kj ̸= 0. In particular, let us consider the case of k = ej , where ej
denotes the j-th canonical basis vector. If ∥W1

∗j∥ is small, then by standard properties of Bessel
functions αej = J1(W

1
ij) must also be small and α2·ej = J2(W

1
ij) is negligible. Conversely, when

∥W 1
∗j∥ is large, α2·ej carries non-negligible energy and the frequency F = k1ω1 + ... + 2kjωj +

· · · + kn0ωn0 may contribute to the reconstruction of the target signal. However, for it to indeed
strongly influence reconstruction, the values of Wi

∗j must increase, which happens slowly. So, to
accelerate the training of such frequencies, we first identify highly contributing neurons by assessing
the magnitudes of their weights and initialize novel input frequencies accordingly; to be precise, for
every highly contributing ωj frequency we introduce a new 2ωj frequency, enabling F to influence
the network spectrum more easily.

The corresponding new column in the hidden matrix W1 is initialized with random values drawn
from a uniform distribution in the range [−10−4, 10−4], ensuring a stable start for training. Finally,
the network is retrained to fine-tune all parameters, allowing it to adapt to the extended frequency
spectrum and fully leverage the increased representational capacity.

3.2 PRUNING

A key challenge when training SIRENs is to determine an appropriately sized model capable of
representing the target signal with quality. Typically, large architectures are employed to ensure

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

reconstruction accuracy, sacrificing model compactness. To avoid this, we design a pruning procedure
that detects and removes redundant neurons during training, fitting the model size to signal complexity.

We employ a magnitude-based criterion to identify uninformative neurons, a strategy widely used in
classical network pruning. We now provide a formal justification of its validity for INRs: in sinusoidal
MLPs, pruning neurons induces only a bounded perturbation to the overall function. This perturbation
depends on the ∞-operator norms of the parameter changes and the norms of the subsequent layers.

Theorem 2. Let f be a sinusoidal INR of depth d, and let f̃ be the network obtained by perturbing
the k-th hidden layer weights and biases to W̃k and b̃k. Then,

sup
x

∥∥∥f(x)− f̃(x)
∥∥∥
∞

≤
(
∥Wk − W̃k∥∞ + ∥bk − b̃k∥∞

)
∥L∥∞

d∏
i=k+1

∥Wi∥∞.

Theorem 2 formally guarantees that small modifications to a layer’s parameters—such as pruning
neurons with small outgoing weights – induce only proportionally small changes to the network’s
output. This justifies magnitude-based pruning both intuitively and theoretically. Our pruning
scheme uses TWD to isolate low-impact neurons, ensuring that pruning remains consistent with the
theoretical stability. We use this fact to select neurons by thresholding small ℓ1 norms, e.g., pruning

hi
j if ∥Wi+1

∗j ∥1 = ∥Wi+1 − W̃
i+1

∥∞ ≤ ϵ (where W̃
i+1

denotes the altered weight matrix).

However, training directly with the reconstruction loss Ldata (e.g. MSE) often leads to relatively few
truly redundant neurons, even in overparametrized architectures. For better pruning, we employ a
targeted weight decay (TWD) strategy that reduces the contribution from near-redundant neurons,
turning them truly redundant. It consists of training the network f with the loss function,

Lα,I = Ldata + α
∑
j∈I

∥Wi+1
∗j ∥1, with α ∈ [0, 1), (3)

where I = TopK
([

−∥Wi+1
∗j ∥1

]
j

)
are the K indices of the neurons with the smallest column norm.

As illustrated in Figure 2, pruning a neuron hi
j(x) involves removing its outgoing connections. In

practice, we mask only the entries of the j-th column Wi+1
∗j , which implicitly leaves unused the row

Wi
j∗ and bias bij . After the TWD stage, we prune the neurons whose information content falls below

a given threshold ϵ, and fine-tune the network to recover performance. Note that pruning the input
layer may have greater impact on the reconstruction since we are deleting an input frequency; that is,
we are eliminating many generated frequencies from the network spectrum (Novello et al., 2025).

4 EXPERIMENTS

We evaluate AIRe on adaptive training across three tasks: image fitting, surface reconstruction (SDFs),
and novel view synthesis with NeRFs. Experiments are conducted on the DIV2K (Agustsson and
Timofte, 2017), Stanford Repository (Curless and Levoy, 1996), and NeRF Synthetic (Mildenhall
et al., 2021) datasets. We also study AIRe in a setup where the final architecture is fixed, demon-
strating that our training procedure can improve reconstruction quality even when the reduced small
architecture is known in advance. Finally, we perform ablation studies to validate the design choices
underlying our method.

All models are implemented in PyTorch (Paszke et al., 2019) and optimized with Adam (Kingma and
Ba, 2015).For simplicity, we denote a sinusoidal MLP architecture by [n1, ..., nd+1], where d is the
number of hidden layers and ni is the number of neurons in the i-th layer.

Comparison with standard training. We compare AIRe against a baseline defined by the original,
large initial architecture (overparametrized) trained with the standard neural network training pipeline,
showing that AIRe can reduce model size while maintaining reconstruction quality by finding
more appropriate input frequencies. We evaluate this on images, SDFs, and NeRFs, adopting
commonly used architectures for each task (SIREN and FINER). Table 1 shows that AIRe achieves
substantial reductions in model size while maintaining reconstruction quality, and in several cases
even improving it.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Table 1: Our method fits a compact INR to the target signal while preserving accuracy. We
evaluate AIRe (‘Ours’) against an overparametrized INR trained with the standard training pipeline
(‘Large’) on images (with model size [512, 256, 256]), SDFs (with architecture [256, 256, 256]), and
NeRF tasks (with size [256, 128, 128]), reporting PSNR and Chamfer Distance (×102). AIRe enables
a strong reduction in model size, while preserving or even improving quality.

Imgs
(Div2K)

Large
PSNR

Ours
PSNR

Size
reduct.

SDFs
(Stanford)

Large
CD

Ours
CD

Size
reduct.

NeRF
(Synthetic)

Large
PSNR

Ours
PSNR

Size
reduct.

#00 31.96 31.56 35.89% Armadillo 0.62 0.63 35.00% Lego 25.72 25.30 73.30%
#01 37.93 35.63 65.28% Bunny 0.76 0.71 30.86% Materials 23.71 23.62 72.33%
#02 30.76 29.17 52.39% Dragon 0.73 0.61 26.83% Ficus 24.23 24.82 70.33%
#03 37.40 35.04 56.80% Buddha 0.59 0.56 33.14% Hotdog 29.69 28.68 41.27%
#04 33.88 31.09 60.08% Lucy 0.92 0.58 39.09% Drums 22.17 22.02 52.50%

Table 2: Comparison of pruning criteria. Re-
sults are on the image representation task.

Method PSNR↑ SSIM↑
Baseline 34.60 ± 3.82 0.92 ± 0.03
DepGraph 27.56 ± 2.12 0.82 ± 0.04
RigL 34.29 ± 3.37 0.95 ± 0.01
AIRe (ours) 37.07 ± 3.74 0.95 ± 0.01

Comparison against existing pruning baselines
are provided in Table 2, for the task of image
representation using the same configuration as in
Table 1, with a SIREN architecture. For this com-
parison, we consider two model-agnostic pruning
methods with publicly available implementations,
DepGraph (Fang et al., 2023) and RigL (Evci et al.,
2020), as well as a baseline given by training a
reduced architecture from scratch with standard
training. The pruning rate of each method is set to approximately 25% of the original parameters,
and we follow the hyperparameter choices reported in the respective papers. AIRe consistently
outperforms these pruning methods, demonstrating its effectiveness for INR architecture adaptation
over training.

4.1 AIRE VS. SMALL NETWORKS

AIRe starts with a large architecture and progressively reduces its size during training, resulting in a
small network. To evaluate how effectively AIRe leverages its architectures, we compare it against
standard training applied directly to both the initial (large) architecture and the final (small) one. We
conduct this evaluation for image fitting (DIV2K) and SDF reconstruction (Stanford Repository).

For the SDF reconstruction task, we follow the implementation in (Novello et al., 2022), training
each network for 103 epochs, sampling 104 on-surface points and 104 off-surface points uniformly.
Meshes are extracted from the trained SDFs via marching cubes with a resolution of 5123, and all
surfaces were normalized to [−1, 1]3. For evaluation, we report the number of network parameters
(Params) and the Chamfer Distance (CD) between reconstructed and ground-truth surfaces. We also
evaluate AIRe without densification, as SDFs typically contain less details than other applications.

Table 3: AIRe vs. directly trained large and small networks. We compare AIRe with standard
training applied to large and small architectures on both SDF reconstruction (Stanford) and image
fitting (DIV2K). Metrics are CD (×102) for SDFs and PSNR for images, along with parameter
reduction relative to the large model. AIRe achieves accuracy comparable to or better than the large
network while using the same reduced parameter budget as the small one.

Model
(SDFs) Variant CD (×10²) ↓ Size

reduct. ↓
Model
(Images) Variant PSNR ↑ Size

reduct. ↓

SIREN
Large 0.65 ± 0.11 -

SIREN
Large 39.59 ± 3.30 -

Small 0.89 ± 0.09 83.96% Small 34.60 ± 3.82 24.95%
Ours 0.64 ± 0.03 83.96% Ours 37.07 ± 3.74 24.95%

FINER
Large 2.14 ± 0.41 -

FINER
Large 38.77 ± 2.98 -

Small 5.08 ± 3.51 83.96% Small 38.87 ± 3.44 24.95%
Ours 0.88 ± 0.15 83.96% Ours 39.91± 3.89 24.95%

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

For training, we start with a large network [256, 256, 256], trained from scratch for 200 epochs.
We then select 192 neurons from both hidden layers and continue training with targeted weight
decay (TWD) for 500 epochs. Finally, the selected neurons are pruned, and the resulting smaller
network [64, 64, 256] is retrained for 300 epochs. Table 3(left) shows that AIRe provides a better
SDF reconstruction than the large network in all cases. We also highlight that our approach obtains
similar or better accuracy compared to the initial, large network trained from scratch while using
roughly between a third and a sixth of the network parameters for surface representation. Aditionally,
we found that AIRe has a comparable time overhead (76.8s) compared to the large SIREN model
(76.0s). Moreover, even when training a small architecture during 83.2s, it performs worse than
AIRe with 0.86× 102 for CD metric. Figure 3 shows some qualitative comparisons of AIRe and the
small architecture with standard training on the Armadillo, Buddha, and Lucy models, showing that
AIRe provides, in general, a lower (bluer) distance from the ground-truth surface.

small network AIRe (ours) AIRe (ours)AIRe (ours)small network small network

Figure 3: Qualitative comparison of SDF reconstructions on the Armadillo, Buddha, and Lucy models
using a SIREN with ω0 = 60 and small network size [64, 64, 256]. Left: results of training the final
small network directly. Right: results of AIRe. Colors indicate the distance from the ground-truth
surface, from dark blue (0) to dark red (≥ 0.01). AIRe produces reconstructions that are consistently
closer to the ground truth than those obtained by training the small network from scratch.

Additionally, AIRe mitigates divergence during the training of SDF models, as illustrated in Figure 4.
We illustrate this by initializing a large network of size [256, 256, 256, 256] and training it on the
Armadillo for half the epochs with ω0 = 60 and small network architecture [64, 64, 256]. Under
standard training, the large network diverges, producing reconstructions with severe noise and artifacts.
In contrast, AIRe yields a more accurate reconstruction despite using less than half the parameters of
the initial model.

AIRe (ours)ground truth

(init, std), (final, adapt), (final, std)

large network

Figure 4: Qualitative comparison on the Armadillo. Left: ground truth. Middle: standard training of
the large network, which diverges and produces noisy artifacts. Right: AIRe, which avoids divergence
and yields a cleaner reconstruction with fewer parameters.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

For the evaluation on the image fitting task, we use the FINER subset of the DIV2K dataset, randomly
selecting 90% of the pixels of each image for training and using the remaining 10% for testing.
Training is performed with Mean Square Error (MSE) loss, a batch size of 65,536 pixels, and
evaluation is based on Peak Signal-to-Noise Ratio (PSNR). All experiments use sinusoidal MLPs
with ω0 = 30 trained for 5000 epochs. For AIRe, we first train for 250 epochs with MSE to capture
low-frequency information, then add 128 new input neurons and fine-tune for 2000 epochs. Next, we
train for 2250 epochs with TWD, prune 384 input neurons, and fine-tune the resulting network for
an additional 500 epochs. The resulting small network of size [256, 512, 512] is compared against a
model of the same size trained from scratch with MSE for 5000 epochs.

Table 3 (right) shows that AIRe applied to SIREN and FINER networks achieves better convergence
than standard training applied directly to either large or small networks. AIRe improves mean accuracy
by 2.47 dB on SIREN and 1.04 dB on FINER, consistently outperforming standard MSE training.
These results demonstrate that AIRe effectively transfers information from the overparameterized
model to its small counterpart.

4.2 ABLATIONS

Effect of varying pruning rate. We now ablate key design choices of AIRe, focusing on the rate
of pruning and densification during training. First, we analyze the effect of pruning on reconstruction
quality. We compare the accuracy drop of an adapted INR relative to a pre-trained network of size
[512, 512, 512] (528K parameters), which achieves a PSNR of 43.67 dB (gray point in Figure 5,
right). We apply AIRe to the same architecture, starting with standard training for 2250 epochs,
followed by selecting p% of neurons from each hidden layer to prune (p ∈ {0.2, 0.4, 0.6, 0.8}) and
training with TWD for another 2250 epochs. Finally, we prune the selected neurons and fine-tune the
resulting network for 500 epochs, totaling 5000 epochs of adaptation.

w
ith

ou
t T

W
D

w
ith

 T
W

D

28% size reduct.
(381K params)

52% size reduct.
(254K params)

72% size reduct.
(149K params)

88% size reduct.
(65K params)

Size
reduct.

w/o
TWD

w/
TWD

w
/o

FT

12% 14.35 43.43
28% 15.61 40.28
48% 14.07 41.25
72% 14.00 21.60

w
/F

T

12% 41.24 43.57
28% 42.93 43.54
48% 41.98 42.75
72% 37.28 38.25

Figure 5: TWD reduces the dependence of finetune (FT) when pruning. TWD effectively transfers
information before pruning. Left: qualitative results with 28%, 52%, 72%, and 88% of parameters
pruned. The first row shows results without TWD, and the second row with TWD. Right: Table with
the PSNR values for each case.

Table 4: Effect of pruning and densification on SIREN
and FINER networks (DIV2K).

Method SIREN PSNR ↑ FINER PSNR ↑
Small 36.44 ± 4.20 40.84 ± 3.85
Prune 37.58 ± 3.77 41.80 ± 3.80
Densify+Prune 39.47 ± 4.31 41.88 ± 4.24

As shown in Figure 5, TWD enables ef-
fective transfer of information to the re-
maining neurons so that a pruned net-
work (without fine-tuning) with only
28% of its weights still retains 92% of
the original network’s accuracy. In con-
trast, pruning without TWD leads to a
severe degradation in image quality. Af-
ter full training, AIRe achieves a quality drop of less than 2.1% with just 28% of the parameters,
compared to a 3.8% drop when TWD is removed from the pipeline.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

With vs. without densification. We ablate the role of densification in our pipeline using the same
configuration as Table 2, training all models for 5000 epochs on a subset of DIV2K. In Table 4, we
compare: (i) a small architecture trained from scratch; (ii) a large model pruned (without densification)
to match the small architecture; and (iii) our proposed AIRe scheme, which iteratively adds and
removes input neurons until matching the small architecture. Pruning alone yields a modest accuracy
gain for SIREN, while the Densify+Prune (AIRe) strategy provides a substantial boost. For FINER,
pruning slightly improves reconstruction quality, but densification brings little benefit – consistent
with the fact that FINER models are already more expressive and less dependent on additional
frequency capacity.

Pruning after densification vs. before densification. Intuitively, increasing model capacity
before removing redundancies should improve convergence. To verify this, we train a network
of size [256, 512, 256] and compare two schedules: pruning before densification and pruning after
densification. For densify-then-prune, we train for 400 epochs with MSE, add 128 input neurons,
fine-tune for 200 epochs, train with TWD for 200 epochs, prune 50% of the neurons in the second
hidden layer, and fine-tune for 1200 epochs. For prune-then-densify, we train for 200 epochs with
MSE, continue for 200 epochs with TWD, prune 50% of the second hidden layer, fine-tune for 200
epochs, add 128 neurons, and finally fine-tune for 1400 epochs. As a baseline, we also train a network
with the final small network [512, 256, 256] from scratch for 2000 epochs.

34.61dB33.98dB30.04dB

Small network Prune before densify Densify before prune

P
re

di
ct

io
n

E
rr

or

Epoch 0 Epoch 150 Epoch 0 Epoch 150
Prune before densify Densify before prune

Figure 6: Comparison of training strategies with the small network, prune-before-densify, and
densify-before-prune. Gray boxes show information transfer during TWD. The 1st row displays
inferences using the most contributive neurons, the 2nd row shows reconstructions for the redundant
neurons selected. Now, each column present the inferences after t ∈ {0, 150} epochs of starting
TWD regularization.

The average PSNR of the small network is 30.06 dB. By contrast, prune-then-densify yields 33.41
dB, while densify-then-prune reaches 33.99 dB, demonstrating that both strategies outperform
standard training. Figure 6 (left) shows that standard training produces worse error maps, while the
purple boxes on the right illustrate that densify-before-prune better preserves high-frequency details
compared to prune-before-densify.

5 CONCLUSION

We introduced AIRe, a dynamic training framework for implicit neural representations (INRs) that
adaptively aligns network architecture with the complexity of the target signal. The framework
integrates two complementary components: pruning, which removes redundant neurons to mitigate
overparameterization, and densification, which expands the network’s expressivity by selectively
introducing new input frequencies based on a principled spectral analysis.

Our approach contributes toward automating architecture adaptation in INR learning, offering a more
efficient and flexible alternative to static design choices. As future work, we aim to develop more
advanced mechanisms for information transfer during pruning, extend our method to a broader class
of architectures, and explore its applicability to more data modalities beyond images and surfaces.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Milton Abramowitz and Irene A Stegun. Handbook of mathematical functions with formulas, graphs,
and mathematical tables, volume 55. US Government printing office, 1964.

Eirikur Agustsson and Radu Timofte. Ntire 2017 challenge on single image super-resolution: Dataset
and study. In 2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops
(CVPRW), pages 1122–1131, 2017. doi: 10.1109/CVPRW.2017.150.

Davis Blalock, Jose Javier Gonzalez Ortiz, Jonathan Frankle, and John Guttag. What is the state of
neural network pruning? Proceedings of machine learning and systems, 2:129–146, 2020.

Yinbo Chen, Sifei Liu, and Xiaolong Wang. Learning continuous image representation with local
implicit image function. In Proceedings of the IEEE/CVF conference on computer vision and
pattern recognition, pages 8628–8638, 2021.

Brian Curless and Marc Levoy. A volumetric method for building complex models from range images.
In Proceedings of the 23rd annual conference on Computer graphics and interactive techniques,
pages 303–312, 1996.

Sumit Kumar Dam, Mrityunjoy Gain, Eui-Nam Huh, and Choong Seon Hong. High-frequency first:
A two-stage approach for improving image inr. arXiv preprint arXiv:2508.15582, 2025.

Utku Evci, Trevor Gale, Jacob Menick, Pablo Samuel Castro, and Erich Elsen. Rigging the lottery:
Making all tickets winners. In International Conference on Machine Learning, pages 2943–2952.
PMLR, 2020.

Gongfan Fang, Xinyin Ma, Mingli Song, Michael Bi Mi, and Xinchao Wang. Depgraph: Towards any
structural pruning. In Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition, pages 16091–16101, 2023.

Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning for fast adaptation of
deep networks. In International conference on machine learning, pages 1126–1135. PMLR, 2017.

Jonathan Frankle and Michael Carbin. The lottery ticket hypothesis: Finding sparse, trainable
neural networks. In International Conference on Learning Representations, 2019. URL https:
//openreview.net/forum?id=rJl-b3RcF7.

Song Han, Jeff Pool, John Tran, and William Dally. Learning both weights and connections for
efficient neural network. Advances in neural information processing systems, 28, 2015.

Babak Hassibi, David G Stork, and Gregory J Wolff. Optimal brain surgeon and general network
pruning. In IEEE international conference on neural networks, pages 293–299. IEEE, 1993.

Torsten Hoefler, Dan Alistarh, Tal Ben-Nun, Nikoli Dryden, and Alexandra Peste. Sparsity in deep
learning: Pruning and growth for efficient inference and training in neural networks. The Journal
of Machine Learning Research, 22(1):10882–11005, 2021.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In Yoshua
Bengio and Yann LeCun, editors, 3rd International Conference on Learning Representations,
ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings, 2015. URL
http://arxiv.org/abs/1412.6980.

Yann LeCun, John Denker, and Sara Solla. Optimal brain damage. Advances in neural information
processing systems, 2, 1989.

David B Lindell, Dave Van Veen, Jeong Joon Park, and Gordon Wetzstein. Bacon: Band-limited co-
ordinate networks for multiscale scene representation. In Proceedings of the IEEE/CVF conference
on computer vision and pattern recognition, pages 16252–16262, 2022.

Zhen Liu, Hao Zhu, Qi Zhang, Jingde Fu, Weibing Deng, Zhan Ma, Yanwen Guo, and Xun Cao.
Finer: Flexible spectral-bias tuning in implicit neural representation by variable-periodic activa-
tion functions. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 2713–2722, 2024.

10

https://openreview.net/forum?id=rJl-b3RcF7
https://openreview.net/forum?id=rJl-b3RcF7
http://arxiv.org/abs/1412.6980

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Ishit Mehta, Michaël Gharbi, Connelly Barnes, Eli Shechtman, Ravi Ramamoorthi, and Manmohan
Chandraker. Modulated periodic activations for generalizable local functional representations. In
Proceedings of the IEEE/CVF International Conference on Computer Vision, pages 14214–14223,
2021.

Ishit Mehta, Manmohan Chandraker, and Ravi Ramamoorthi. A level set theory for neural implicit
evolution under explicit flows. In European Conference on Computer Vision, pages 711–729.
Springer, 2022.

Gaurav Menghani. Efficient deep learning: A survey on making deep learning models smaller, faster,
and better. ACM Computing Surveys, 55(12):1–37, 2023.

Ben Mildenhall, Pratul P Srinivasan, Matthew Tancik, Jonathan T Barron, Ravi Ramamoorthi, and
Ren Ng. Nerf: Representing scenes as neural radiance fields for view synthesis. Communications
of the ACM, 65(1):99–106, 2021.

Tiago Novello. Understanding sinusoidal neural networks. arXiv preprint arXiv:2212.01833, 2022.

Tiago Novello, Guilherme Schardong, Luiz Schirmer, Vinicius da Silva, Helio Lopes, and Luiz Velho.
Exploring differential geometry in neural implicits. Computers & Graphics, 108:49–60, 2022.

Tiago Novello, Vinicius da Silva, Guilherme Schardong, Luiz Schirmer, Helio Lopes, and Luiz Velho.
Neural implicit surface evolution. In Proceedings of the IEEE/CVF International Conference on
Computer Vision, pages 14279–14289, 2023.

Tiago Novello, Diana Aldana, Andre Araujo, and Luiz Velho. Tuning the frequencies: Robust training
for sinusoidal neural networks. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, 2025.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative style,
high-performance deep learning library. Advances in neural information processing systems, 32,
2019.

Hallison Paz, Daniel Perazzo, Tiago Novello, Guilherme Schardong, Luiz Schirmer, Vinicius da Silva,
Daniel Yukimura, Fabio Chagas, Helio Lopes, and Luiz Velho. Mr-net: Multiresolution sinusoidal
neural networks. Computers & Graphics, 2023.

Hallison Paz, Tiago Novello, and Luiz Velho. Implicit neural representation of tileable material
textures, 2024.

Vishwanath Saragadam, Jasper Tan, Guha Balakrishnan, Richard G Baraniuk, and Ashok Veeraragha-
van. Miner: Multiscale implicit neural representation. In European Conference on Computer
Vision, pages 318–333. Springer, 2022.

Vishwanath Saragadam, Daniel LeJeune, Jasper Tan, Guha Balakrishnan, Ashok Veeraraghavan,
and Richard G Baraniuk. Wire: Wavelet implicit neural representations. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 18507–18516, 2023.

Hemanth Saratchandran, Sameera Ramasinghe, and Simon Lucey. From activation to initialization:
Scaling insights for optimizing neural fields. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 413–422, 2024.

Hemanth Saratchandran, Sameera Ramasinghe, Violetta Shevchenko, Alexander Long, and Simon
Lucey. A sampling theory perspective on activations for implicit neural representations. In
Proceedings of the 41st International Conference on Machine Learning, ICML’24. JMLR.org,
2025.

Guilherme Schardong, Tiago Novello, Hallison Paz, Iurii Medvedev, Vinícius Da Silva, Luiz Velho,
and Nuno Gonçalves. Neural implicit morphing of face images. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pages 7321–7330, 2024.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Luiz Schirmer, Tiago Novello, Vinícius da Silva, Guilherme Schardong, Daniel Perazzo, Hélio Lopes,
Nuno Gonçalves, and Luiz Velho. Geometric implicit neural representations for signed distance
functions. Computers & Graphics, 125:104085, 2024.

Kexuan Shi, Xingyu Zhou, and Shuhang Gu. Improved implicit neural representation with fourier
reparameterized training. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 25985–25994, 2024.

Vincent Sitzmann, Julien Martel, Alexander Bergman, David Lindell, and Gordon Wetzstein. Im-
plicit neural representations with periodic activation functions. Advances in neural information
processing systems, 33:7462–7473, 2020.

Matthew Tancik, Pratul Srinivasan, Ben Mildenhall, Sara Fridovich-Keil, Nithin Raghavan, Utkarsh
Singhal, Ravi Ramamoorthi, Jonathan Barron, and Ren Ng. Fourier features let networks learn
high frequency functions in low dimensional domains. Advances in Neural Information Processing
Systems, 33:7537–7547, 2020.

Hugo Tessier, Vincent Gripon, Mathieu Léonardon, Matthieu Arzel, Thomas Hannagan, and David
Bertrand. Rethinking weight decay for efficient neural network pruning. Journal of Imaging, 8(3):
64, 2022.

Georg Thimm and Emile Fiesler. Evaluating pruning methods. In Proceedings of the International
Symposium on Artificial neural networks, pages 20–25, 1995.

Zhijie Wu, Yuhe Jin, and Kwang Moo Yi. Neural fourier filter bank. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pages 14153–14163, 2023.

Guandao Yang, Serge Belongie, Bharath Hariharan, and Vladlen Koltun. Geometry processing with
neural fields. Advances in Neural Information Processing Systems, 34:22483–22497, 2021.

Taesun Yeom, Sangyoon Lee, and Jaeho Lee. Fast training of sinusoidal neural fields via scaling
initialization. arXiv preprint arXiv:2410.04779, 2024.

Wang Yifan, Lukas Rahmann, and Olga Sorkine-hornung. Geometry-consistent neural shape represen-
tation with implicit displacement fields. In International Conference on Learning Representations,
2021.

Gizem Yüce, Guillermo Ortiz-Jiménez, Beril Besbinar, and Pascal Frossard. A structured dictionary
perspective on implicit neural representations. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 19228–19238, 2022.

Andreas Zell, Nuri Benbarka, Timon Hoefer, and Hamd Ul Moqueet Riaz. Seeing implicit neural
representations as fourier series. In 2022 IEEE/CVF Winter Conference on Applications of
Computer Vision (WACV). IEEE Computer Society, 2022.

A PROOFS

A.1 THEOREM 1

In the main paper, we present an identity (Thrm 1) derived by Novello et al. (2025), which linearizes
the j-th hidden neuron of the (i+ 1)-th layer, hi+1

j . Similar results have been presented in Yüce et al.
(2022) for the case of shallow SIRENs. The identity below extends this analysis to hidden neurons at
arbitrary depths.

Theorem 3. The hidden neuron hi+1
j admits the following amplitude-phase expansion:

hi+1
j (x) =

∑
k∈Zni

αk sin
(
⟨k, yi⟩+ bi+1

j

)
, where |αk| ≤

∏
l

(
|W i+1

jl |
2

)|kl|
1

|kl|!
. (4)

Here, αk =
∏ni

l=1 Jkl
(W i+1

jl) is the product of Bessel functions.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Before starting the proof, recall that we defined hi+1
j (x) = sin

(∑ni

l=1 W
i+1
jl sin(yil) + bi+1

j

)
, with

yi =
[
yil
]
l

the linear, non-activated contribution of the i-th layer. To simplify notation, we drop the
indices i and i+ 1 from Wi+1,bi+1, yi, and ni.

Proof. The first part of the proof consists of verifying

sin

(
n∑

l=1

Wjl sin(yl) + bj

)
=
∑

k∈Zm

αk sin
(
⟨k, y⟩+ bj

)
and

cos

(
n∑

l=1

Wjl sin(yl) + bj

)
=
∑

k∈Zm

αk cos
(
⟨k, y⟩+ bj

)
.

(5)

The proof is by induction in n. For the base case n = 1, we use the sum of angles identities and the
Bessel function of the first kind properties (see (Abramowitz and Stegun, 1964, num. 9.1.42, 9.1.43))
to prove sin (Wj1 sin(y1) + bj) =

∑
k∈Z Jk(Wj1) sin(ky1 + bj):

sin
(
Wj1 sin(y1) + bj

)
= sin

(
Wj1 sin(y1)

)
cos(bj) + cos

(
Wj1 sin(y1)

)
sin(bj)

=
∑

k∈Z odd

Jk(W1j) sin(ky1) cos(bj) +
∑

l∈Z even

Jl(W1j) cos(ly1) sin(bj)

=
∑

k∈Z odd

Jk(Wj1) sin(ky1 + bj) +
∑

l∈Z even

Jl(Wj1) sin(ly1 + bj)

=
∑
k∈Z

Jk(Wj1) sin(ky1 + bj).

In the third equality we combined the formula sin(u) cos(v) = sin(u+v)+sin(u−v)
2 and the fact that

J−k(u) = (−1)kJk(u) to rewrite the summations. The proof of the cosine analogous expansion
cos
(
Wj1 sin(y1) + bj

)
=
∑

Jl(Wj1 + bj) cos(ly1) is similar.

Assume that equation 5 hold for n − 1, with n > 1, we prove that it also holds for n (the induc-
tion step).

sin

(
n∑

l=1

Wjl sin(yl) + bj

)
= sin

(
n−1∑
l=1

Wjl sin(yl) + bj

)
cos
(
Wjn sin(yn)

)
+ cos

(
n−1∑
l=1

Wjl sin(yl) + bj

)
sin
(
Wjn sin(yn)

)
=

∑
k∈Zn−1, l∈Z even

αkJl(Wjn) sin
(
⟨k, y⟩+ bj

)
cos(lyn)

+
∑

k∈Zn−1, l∈Z odd

αkJl(Wjn) cos
(
⟨k, y⟩+ bj

)
sin(lyn)

=
∑

k∈Zn

αk sin
(
⟨k, y⟩+ bj

)
We use the induction hypothesis in the second equality and an argument similar to the one used in the
base case to rewrite the harmonic sum. Again, the cosine activation function case is analogous.

For the second part of the proof, we must prove the inequality in Equation equation 1. For that, note
that αk =

∏n
l=1 Jkl

(Wjl), and that

|Jk(Wjl)| <

(
|Wjl|

2

)k
k!

, k > 0, Wjl > 0 (6)

But this also holds for Wjl ≤ 0 since |Jk(−u)| = |Jk(u)|, and for k ≤ 0 as |J−k(u)| =
|(−1)kJk(u)| = |Jk(u)|. Then, substituting equation 6 in αk =

∏n
l=1 Jkl

(Wjl), we obtain the
desired result.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

A.2 THEOREM 2

Theorem 4. Let fθ be a sinusoidal INR of depth d, and let f̃θ be the network obtained by perturbing
the k-th hidden layer weights and biases to W̃k and b̃k. Then,

sup
x

∥∥∥fθ(x)− f̃θ(x)
∥∥∥
∞

≤
(
∥Wk − W̃k∥∞ + ∥bk − b̃k∥∞

)
∥L∥∞

d∏
i=k+1

∥Wi∥∞.

Proof. First, note that x 7→ Lx is ∥L∥∞-Lipschitz for infinity norms:

∥Lx− Lx′∥∞ = ∥L(x− x′)∥∞ ≤ ∥L∥∞∥x− x′∥∞.

Second, note that x 7→ sin(x) is 1-Lipschitz also for infinity norms, and thus x 7→ Si(x) =
sin(Wix+ bi) is also ∥Wi∥∞-Lipschitz:

∥ sin(Wix+ bi)− sin(Wix′ + bi)∥∞ ≤ ∥ sin ∥Lip∥(Wix′ + bi)− (Wix′ + bi)∥∞
≤ ∥Wi(x− x′)∥∞ ≤ ∥Wi∥∞∥x− x′∥∞.

It thus follows that, for any x:∥∥∥(L ◦ Sd ◦ · · · ◦ Sk ◦ · · · ◦ S0)(x)− (L ◦ Sd ◦ · · · ◦ S̃k ◦ · · · ◦ S0)(x)
∥∥∥
∞

≤ ∥L∥∞
∥∥∥(Sd ◦ · · · ◦ Sk ◦ · · · ◦ S0)(x)− (Sd ◦ · · · ◦ S̃k ◦ · · · ◦ S0)(x)

∥∥∥
∞

≤ ∥L∥∞

(
d∏

i=k+1

∥Wi∥∞

)∥∥∥(Sk ◦ · · · ◦ S0)(x)− (S̃k ◦ · · · ◦ S0)(x)
∥∥∥
∞

= ∥L∥∞

(
d∏

i=k+1

∥Wi∥∞

)∥∥∥sin(Wk(Sk−1 ◦ · · · ◦ S0)(x) + bk)

− sin(W̃k(Sk−1 ◦ · · · ◦ S0)(x) + b̃k)
∥∥∥
∞

≤ ∥L∥∞

(
d∏

i=k+1

∥Wi∥∞

)
∥ sin ∥Lip

∥∥∥(Wk(Sk−1 ◦ · · · ◦ S0)(x) + bk)

− (W̃k(Sk−1 ◦ · · · ◦ S0)(x) + b̃k)
∥∥∥
∞

= ∥L∥∞

(
d∏

i=k+1

∥Wi∥∞

)∥∥∥(Wk − W̃k)(Sk−1 ◦ · · · ◦ S0)(x) + (bk − b̃k)
∥∥∥
∞

≤ ∥L∥∞

(
d∏

i=k+1

∥Wi∥∞

)(∥∥∥(Wk − W̃k)(Sk−1 ◦ · · · ◦ S0)(x)
∥∥∥
∞

+
∥∥∥bk − b̃k

∥∥∥
∞

)

≤ ∥L∥∞

(
d∏

i=k+1

∥Wi∥∞

)(
∥Wk − W̃k∥∞

∥∥(Sk−1 ◦ · · · ◦ S0)(x)
∥∥
∞ +

∥∥∥bk − b̃k
∥∥∥
∞

)
.

Finally, note that since sines lie in [−1,+1], it must hold that
∥∥(Sk−1 ◦ · · · ◦ S0)(x)

∥∥
∞ =

maxi
∣∣[(Sk−1 ◦ · · · ◦ S0)(x)]i

∣∣ ≤ maxi 1 = 1, from which we conclude the proof.

B SIGNED DISTANCE FUNCTIONS

In Table 5 we evaluate AIRe (‘Ours’) against an overparametrized, large INR of size [256, 256, 256]
and a small, reduced model of size [128, 128, 256]. These last two are fitted with the standard training
pipeline, and the reconstruction quality was measured using the Chamfer Distance (×102).

Table 6 shows a per-scene breakdown of the SDF quantitative results presented in the main paper
when ω0 = 60 and and the small network size is [64, 64, 256]. The per-scene breakdown is consistent

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Table 5: Quantitative comparisons on representing surfaces from the Stanford 3D Scanning Repository
with ω0 = 30. We compare the adapted network trained with \method{}, the large network with
standard training (large), and the model with small architecture and standard training (small). We
report the average chamfer distance (Avg CD (×102)) between reconstructed and ground-truth
surfaces and the percentage of network parameters compared to the large architecture (lower is
better).

Model
(SDFs) Variant CD (×10²) ↓ Size

reduct. ↓

SIREN
Large 0.56 ± 0.08 -
Small 0.59 ± 0.09 62.14
Ours 0.58 ± 0.06 62.14

FINER
Large 0.63 ± 0.09 -
Small 0.67 ± 0.09 62.14
Ours 0.63 ± 0.06 62.14

Table 6: Per-scene quantitative comparisons on representing surfaces from the Stanford 3D Scanning
Repository with ω0 = 60 and model size [64, 64, 256]. We compare AIRe, the network with large
architecture, and the model with small architecture. We report the chamfer distance (CD (×102))
between reconstructed and ground-truth surfaces (lower is better). Best values in bold, second best
values underlined.

Model Variant CD (×102) ↓

Armadillo Bunny Dragon Happy Buddha Lucy

SIREN
Large 0.60 0.75 0.65 0.50 0.74
Small 0.99 0.79 0.82 0.98 0.86
Ours 0.65 0.69 0.62 0.64 0.61

FINER
Large 2.13 2.06 2.17 2.74 1.60
Small 5.51 10.80 4.57 2.58 1.92
Ours 0.88 0.95 0.73 1.10 0.76

with the aggregate quantitative metrics. Our method outperforms the small network in all cases. It
also obtains similar or better accuracy compared to the large network but uses roughly 1/6 of network
parameters.

Figure 7 shows additional examples of surface reconstructions using SIREN with ω0 = 60 and model
architecture [64, 64, 256]. As in the other examples, the surface trained using our method presented a
lower error compared to the small network. We also see in Figure 8 an example using FINER with
settings ω0 = 60 and network architecture [64, 64, 256]. Note that AIRe offers a better reconstruction
than the small network with less artifacts.

Small network AIRe (ours) Small network AIRe (ours)

Figure 7: Additional qualitative comparisons on representing surfaces based on the Dragon and
Bunny models using a SIREN network with ω0 = 60 and model architecture [64, 64, 256]. Left:
results of training the small network. Right: results of AIRe. We illustrate the unsigned distance from
the ground-truth surface using a color scale from dark blue (zero) to dark red (≥ 0.01).

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Small network AIRe (ours)

Figure 8: A case with the Bunny model using a FINER network with ω0 = 60 and model size
[64, 64, 256]. The final, small network (left) presents several artifacts, which does not occur with the
AIRe method (right).

Finally, we present Table 7, where we compare the time overhead when training the large, small and
adapted models. Observe that the AIRe and the large model have an equivalent training time but with
a substantial reduction in parameter. Furthermore, observe that a small model trained during the same
amount of time has much worse accuracy than a network trained with AIRe.

Table 7: Time overhead comparisons when training SDFs. We consider an large, overparametrized
network and a small network that are fitted for 1000 epochs. We compare them with a network
adapted during 1000 epochs using AIRe up to a size equal to the small network. We also train the
final network for 2000 epochs to compare the reconstruction quality along a time budget.

SDF Large Small
(103 epochs)

Small
(2× 103 epochs)

AIRe
(Ours)

Armadillo 52 27 55 52
Bunny 34 17 35 34
Dragon 60 31 65 60
Happy Buddha 159 83 179 162
Lucy 75 39 82 76
AVERAGE 76.0 39.4 83.2 76.8

C IMAGES

We present ablation studies to support the choice of hyperparameters for AIRe. First, we investigate
the optimal allocation of epochs between the targeted weight decay stage and the fine-tuning stage
under a fixed training budget. Specifically, we train SIREN Sitzmann et al. (2020) and FINER Liu
et al. (2024) models, each with two hidden layers of 512 neurons, for a total of 5000 epochs. Training
begins with standard optimization for x epochs, followed by targeted weight decay for y epochs,
where x, y ∈ {100, 750, 1000, 1250, 1500, 1750, 2000, 2250}. The remaining 5000− x− y epochs
are allocated to fine-tuning.

Figure 9 shows the PSNR for each epoch distribution, where the x-axis corresponds to the number
of epochs used for the initial standard training stage, and the y-axis indicates the number of epochs
allocated to the targeted weight decay stage. As shown, SIREN models benefit from increased
training time in both the standard training and targeted weight decay stages, resulting in improved
reconstruction accuracy. In contrast, FINER models show only marginal improvements when the
initial training stage exceeds 1000 epochs.

To determine the optimal pruning configuration, both in terms of which layers to prune and the
amount per layer, we train models with the best-performing epoch distribution for both SIREN and
FINER over 5000 epochs, applying varying levels of pruning to each layer. Figure 10 presents the
PSNR of each reconstruction, where x represents the percentage of neurons pruned in the first layer,
and y denotes the percentage pruned in the second layer.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Figure 9: Ablation of the number of epochs used to pre-train the model (x axis), to train with targeted
weight decay (y axis) and fine tune. The total training lasts for 5000 epochs, and each value refers to
the mean PSNR over the DIV2K dataset. (Left) SIREN Sitzmann et al. (2020) architecture shows
that longer standard training and targeted weight decay stage improve quality, even with fewer fine
tuning epochs. (Right) FINER architecture shows less consistency in the results, demonstrating that
above 1000 epochs of standard training the results improve, but show no clear pattern.

Figure 10: Ablation of the quality degradation with respect to the percentage of prune on the 1st
hidden layer (x axis) and the 2nd hidden layer (y axis). The total training lasts for 5000 epochs, and
each value refers to the mean PSNR over the DIV2K dataset. Observe that both images show that
pruning the 1st layer retains more quality than pruning the 2nd layer. (Left) A SIREN Sitzmann et al.
(2020) architecture reconstruction quality is preserved even with an extreme prune of 60%. (Right)
FINER architecture quality is better retained when pruning the first layer, albeit with less percentage.

Both SIREN and FINER benefit from pruning the first layer, although the optimal percentage of
neuron removal differs between the two. In contrast, pruning hidden layers generally leads to a
degradation in reconstruction quality.

We also perform an ablation study on the use of regularization to improve neuron removal during
training. Specifically, we train a sinusoidal INR using three configurations: standard weight decay,
targeted weight decay, and no regularization prior to pruning. Standard weight decay yields the lowest
reconstruction accuracy at 34.2dB, while removing regularization improves the result by 0.51dB. The
targeted weight decay stage achieves the best performance, increasing accuracy to 36.9 dB.

For the densification strategy, we examine the impact of varying both the number of training epochs
before densification and the percentage of new input neurons added. Concretely, the INR is initially
trained for x epochs, then its first layer is expanded by (y ∗ 100)%, and the augmented network is
fine-tuned for the remaining 3000− x epochs. The results are presented in Figure 11.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Figure 11: Ablation on the epochs trained before densifying (x axis) compared to the percentage of
input neurons added (y axis).

As expected, increasing the number of neurons leads to higher PSNR values. Additionally, accuracy
improves when a larger number of neurons is added early in the training process (i.e., before 1500
epochs).

D ADDITIONAL DISCUSSIONS

We provide further details regarding the parameter settings used in our experiments. The targeted
weight decay stage is trained using the following the loss function

Lα,I = Ldata + α
∑
j∈I

∥W∗j∥1,

where α is a parameter that starts at zero and increases linearly up to one at the end of this stage. For
the pruning scheme, we use the Prune package in PyTorch, using structured masks over the to remove
the corresponding weights. Specifically, when pruning neuron hi

j , we mask the entries of the j-th
column of Wi. This removes all the neuron’s influence from the network. As for the densification
technique, we preserve the optimizer state of previous neurons to minimize training affectation.

We trained using a 12 GB NVIDIA GPU (TITAN X Pascal) and a 24 GB NVIDIA GPU (RTX 4090).

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

D.1 NEURAL RADIANCE FIELDS

We adopt the torch-ngp framework 1 for NeRF implemented by FINER that considers two networks:
A density network that takes a 3D position as input and outputs a density value and a geometric
feature vector v ∈ R182; and a color network that receives v and a 3D direction and returns a RGB
color. NeRF computes the color of a pixel with volume rendering using 3D points sampled on a ray
traced from the center of the virtual camera through the pixel Mildenhall et al. (2021). We set the
batch size to 4, 096 rays and Adam optimizer with learning rate of 0.0002, β1 = 0.9, β1 = 0.99,
ϵ = 10−15, and exponential learning rate decay of 0.1. We update the model weights using an
exponential moving average with a decay of 0.95. We follow FINER’s experimental setting, where
for each scene of the Blender dataset, we have 25 images for training, 200 images for testing, all
downsampled to 200 × 200 pixels. We employ the PSNR and the number of network parameters
(Params) as evaluation metrics.

We evaluate three approaches for NeRF training: Large and Small networks, which train from scratch
for 1.5× 103 epochs a density network of size [182, 182, 182] and color networks with architecture
[182, 182, 182] and [91, 91, 182], respectively. On the other hand, AIRe considers training from
scratch for 300 epochs the same networks from Large model, then selecting 50% of neurons from
both hidden layers of the density network for 750 epochs of TWD, followed by pruning of selected
neurons, and finally 450 epochs of fine-tuning of both density and color networks.
Table 8: Quantitative comparisons between AIRe’s pruning scheme with training from scratch the
‘Large’ and ‘Small’ networks. We report the average PSNR between reconstructed and ground-truth
test views (higher is better), the PSNR difference with respect to Large (higher is better), and the
percentage of network parameters with respect to Large (higher is better). Best values in bold, second
best values underlined.

Method Chair Drums Ficus Hotdog Lego Materials Mic Ship Avg Size reduct.

PS
N

R
↑ Large 34.04 24.81 28.84 33.42 29.96 27.01 33.96 22.55 29.32 -

Small 33.12 24.14 27.77 32.06 28.75 26.47 33.68 22.28 28.53 20.74%
Ours 33.23 24.11 27.82 33.10 28.82 26.21 33.59 22.26 28.64 20.74%

Table 8 shows that compared to Large, the decrease in PSNR of AIRe was 13.9% lower than the
PSNR of the Small network approach, even when both have the same number of network parameters.
The pruning procedure allows our NeRF to save more than 20% of network parameters compared to
the Large approach. We also see qualitative improvements compared to the Small network, such as
shadows/bright spots in the Hotdog (see Figure 1).

1https://github.com/ashawkey/torch-ngp

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Ground Truth TWD+P (Ours) Small

Figure 12: Qualitative comparisons on representing NeRFs using the Hotdog (top), Chair (middle),
and Lego (bottom) scenes from the Blender dataset. First column: ground-truth views. Second
column: results of our proposed approach of targeted weight decay for pruning (TWD+P). Third
column: results of training from scratch a small network (Small) with an architecture equivalent to
ours after pruning. Differences in quality highlighted by insets.

20

	Introduction
	Related work
	Adaptive training of INRs
	Densification
	Pruning

	Experiments
	AIRe vs. small networks
	Ablations

	Conclusion
	Proofs
	Theorem 1
	Theorem 2

	Signed distance functions
	Images
	Additional discussions
	Neural Radiance Fields

