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ABSTRACT

Encoding input coordinates with sinusoidal functions into multilayer perceptrons
(MLPs) has proven effective for implicit neural representations (INRs) of low-
dimensional signals, enabling the modeling of high-frequency details. However,
selecting appropriate input frequencies and architectures while managing parameter
redundancy remains an open challenge, often addressed through heuristics and
heavy hyperparameter optimization schemes. In this paper, we introduce AIRe
(Adaptive Implicit neural Representation), an adaptive training scheme that refines
the INR architecture over the course of optimization. Our method uses a neuron
pruning mechanism to avoid redundancy and input frequency densification to
improve representation capacity, leading to an improved trade-off between network
size and reconstruction quality. For pruning, we first identify less-contributory
neurons and apply a targeted weight decay to transfer their information to the
remaining neurons, followed by structured pruning. Next, the densification stage
adds input frequencies to spectrum regions where the signal underfits, expanding
the representational basis. Through experiments on images and SDFs, we show
that AIRe reduces model size while preserving, or even improving, reconstruction
quality. Code and pretrained models will be released for public use.

1 INTRODUCTION

Implicit neural representations (INRs) have emerged as a powerful framework for modeling low-
dimensional signals — such as images and signed distance functions (SDFs) — by encoding them
directly in the parameters of neural networks (Sitzmann et al.,[2020; Tancik et al.|[2020; Saragadam
et al., 2023 Dam et al.| 2025)). Instead of storing signals discretely, INRs represent them as continuous
functions, mapping input coordinates X to a network predicting the corresponding signal value. To
capture high-frequency content, these networks typically employ two key components: (1) projecting
x into a list of sinusoidals sin(wx + ¢), where w and ¢ denote the input frequencies and phase shifts,
and (2) using periodic activation functions throughout the network layers. This combination enables
INRs to represent fine details that standard ReLU-based MLPs struggle to learn due to their spectral
bias (Tancik et al.,|2020; [Sitzmann et al.| [2020).

Choosing an appropriate network architecture and input frequencies w to accurately and compactly
fit a target signal is a challenging task. Most prior work has addressed this by enhancing the
expressiveness of INRs via tailored initialization schemes and specialized activation functions. For
example, [Zell et al.| (2022)) leveraged an initialization based on Fourier series to control the network’s
spectrum, enhancing its ability to represent fine-grained details. TUNER (Novello et al., [2025)
provided a theoretical justification for this approach and introduced a training procedure to bandlimit
the spectrum dynamically. FINER (Liu et al., 2024)), on the other hand, employed a modified sine
activation combined with bias initialization, allowing the modeling of high-frequency components.
Despite these advances, selecting a compact yet expressive architecture a priori remains difficult:
undersized networks tend to underfit the data, while oversized ones often lead to training instabilities
and increased susceptibility to overfitting.

To address this challenge, we introduce AIRe (Adaptive Implicit neural Representation), a training
framework that progressively adapts a potentially overparametrized INR to the target data through
two complementary operations: pruning and densification of neurons. For pruning, we evaluate
the contribution of each neuron using a customizable criterion (e.g. weight norms) to identify the
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Figure 1: We present AlRe, a robust training method that adaptively fits the INR architecture to the
target signal through two complementary mechanisms: (i) pruning with targeted weight decay (TWD)
which mitigates parameter redundancy and fine tuning (FT) dependence by transferring information
prior to structured neuron removal (see birds), and (ii) input frequency densification, which augments
the representation basis, enhancing convergence and details fidelity (see hand). We compare three
strategies: (i) an overparameterized SIREN model with standard training (Large), (ii) a model adapted
with AIRe (Ours), and (iii) a Small fitted with standard training. AIRe improves reconstruction
accuracy while producing more compact networks (blue box), and enhances training convergence in
settings where overparameterization leads to divergence (see statue box).

most redundant ones. To transfer information from these low-contributing neurons to more relevant
ones, we propose a novel targeted weight decay (TWD) mechanism, which penalizes their weights
prior to structured removal. Once this transfer is induced, the targeted neurons are pruned. For
densification, we introduce new input frequencies in underfit regions of the spectrum, expanding the
network’s representational capacity when necessary. By dynamically aligning model complexity with
the input data, AIRe finds compact INRs that accurately reproduce the target signal. We showcase
some of AIRe’s results in Figure[l} illustrating strong performance in reconstruction quality, model
compactness, and training stability. Our main contributions are:

* A general framework for the adaptive training of INRs, driven by pruning and densification.
The pruning component brings principles from neural network pruning to the INR setting,
while also introducing a novel targeted weight decay (TWD) strategy to preserve quality
during neuron removal (see Figure [5). For densification, we add new input frequencies
in underfit spectral regions, enhancing representational capacity (Table ). Combined,
these components enable accurate signal fitting with compact, data-adaptive architectures
(Table [T).

* A theoretical analysis of both pruning and densification mechanisms for INRs. In particular,
we leverage a harmonic expansion of sinusoidal neural networks (Theorem [T) to derive
principled densification schemes, and prove stability of our neural networks under magnitude-
based pruning (Theorem [2). Together, these promote densification and pruning mechanisms
that mitigate divergence during training (cf. Figure[d).

* An empirical evaluation of AIRe across a range of image fitting and 3D shape reconstruction
benchmarks. We show that AIRe consistently outperforms both the standard neural network
training pipeline (see Table[T)) as well as recent adaptive training methods (Table 2) in terms
of the accuracy-efficiency trade-off.

2 RELATED WORK

Implicit neural representation (INRs) emerged as a modern paradigm for learning low-dimensional

signals such as images (Chen et al., 2021} [Shi et al.| 2024), image face morphing (Schardong et al.|

2024), SDFs (Yang et al.,[2021; Novello et al., 2022; Schirmer et al.,[2024), displacement fields
et al.} 2021)), surface animation (Mehta et al., 2022; [Novello et al.| 2023)), and multiresolution signals
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(Paz et al.l|2023}; |Saragadam et al.|[2022} Lindell et al.,|2022; Wu et al.,|2023). On the methodological
side, several works have explored the representation capacity of INRs (Mehta et al., 2021} |Yiice
et al.| [2022; Saratchandran et al., 2025)), as well as the critical role of initialization strategies (Novello,
2022; |Paz et al.| 2024; Saratchandran et al., 2024} [Finn et al., 2017; [Yeom et al.| [2024).

Neural network pruning has long been of interest to the machine learning community (LeCun
et al.l |1989; Hassibi et al., [1993; Thimm and Fiesler, (1995} [Frankle and Carbin, [2019; |Hoefler et al.,
2021; Blalock et al.l [2020; Menghanil, [2023). Classic approaches have relied on metrics such as
weight magnitude, salience, or second-order derivatives, and are often followed by fine-tuning or
regularization (e.g., weight decay) to preserve performance (Han et al.| 2015} [Tessier et al., [2022]).
However, it is known that methods often fail to generalize beyond their original settings (Blalock et al.
2020). To the best of our knowledge, Zell et al.| (2022) is the only prior work exploring the pruning
(or adaptation) of INRs. Their method removes input neurons to select an appropriate representational
basis, but they did not explore hidden layer pruning. In contrast, our method adapts the model size to
target redundancy in the signal detail content while choosing a fitting input frequency encoding.

Recent work has investigated ways to adapt network architectures during training. The lottery ticket
hypothesis (Frankle and Carbin, |[2019) suggests that sparse subnetworks within overparameterized
models can perform just as well when trained independently. Building on this idea, RigL. (Evci et al.,
2020) dynamically adjusts connectivity by pruning and growing connections during training. While
promising, such strategies have not been studied in the context of INRs, where the objectives, data
modalities, and inductive biases differ significantly from those in standard classification tasks. In
Table 2] we adapt these methods to the INR setting and compare them with AIRe, showing that our
approach achieves superior results.

3 ADAPTIVE TRAINING OF INRS
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Figure 2: We present AlRe, a training framework that adapts network architecture through two
theoretically grounded strategies: densification and pruning. For signals with rich frequency content,
densification selects the most relevant input frequencies w; and expands the spectrum by augmenting
w with 2 - w;. To reduce network size, pruning identifies candidate neurons via magnitude criterion,
transfers information during training with a novel targeted weight decay (TWD) regularization, and
removes neurons whose norm falls below a threshold e. The function TopK(v) selects the K largest
entries of v.

Our goal is to develop a training framework that dynamically adapts a sinusoidal INR architecture to
the given data samples {x;, f; } from a low-dimensional signal £. Specifically, we want to adjust the
size of a sinusoidal MLP of depth d € N defined as f(x) = Lo S%o0--- 0 8%(x), a composition of d
sinusoidal layers S?(x) = sin(W'x + b?) parameterized by a weight matrix W* € R™+1%X% and a
bias vector b? € R™i+1, followed by an affine layer L. Observe that the first layer S maps the input
coordinates x into a harmonic embedding of the form sin(wx + ¢), where we denote w := WY as
the matrix of input frequencies and ¢ := b as the vector of phase shifts.

Although the choice of {n;}; is critical for determining network capacity, it is typically based on
empirical heuristics. Moreover, a model with poorly initialized input frequencies w may fail to
capture the full spectrum of the signal, leading to unsatisfactory reconstruction. To address these
problems, we adapt a model architecture by adding and removing neurons. More precisely, we define
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the ij-neuron hj- (x) of f as the j-th coordinate of the output of the i-th layer, that is,

h;-Jrl(x) = sin(W;il sin(y*) + b;-“), e))
where y* denotes the linear transformation of the ith layer prior to activation. Then, we densify the
input layer by appending new neurons to h° (x), introducing novel frequencies to expand the spectral

coverage. Finally, we employ a magnitude-based neuron pruning scheme to account for potential
redundancy in parameters. Figure 2 provides an overview of AlRe.

3.1 DENSIFICATION

Sinusoidal INRs employ an encoding layer to mitigate spectral bias and enhance the representation of
high-frequency signals. However, they are heavily dependent on their initialization, which may lead
to noisy reconstructions or slower training. Here, we propose a principled input neuron densification
that aims to improve reconstruction quality of highly detailed signals.

To do so, we must analyze the spectrum of an INR. This can be done by a theorem of Novello et al.
(2025), which provides a trigonometric expansion that facilitates this analysis.

Theorem 1. The neuron h§+1 admits the following amplitude-phase expansion:

' [
. o Wi 1
+1 _ : 7 +1 J
R (x) = E o sin ((k,y*) + b ), where |ax| < |l| < 5 Tl )

kezZ™s
Here, ay =[], J, (W;l"’l) is the product of Bessel functions.

This result shows that the composition of sinusoidal layers generates new frequencies of the form
(k,w), depending solely on the input frequencies w, with phase shifts determined by the biases
{¢,b"}. Additionally, the amplitudes ay depend exclusively on the hidden weight matrices W*. Thus,
the generated frequencies are governed by the input embedding, while the hidden parameters control
the amplitudes and phase shifts. Moreover, from Equation 2] we observe that

h’(x) = Z ax sin ((k, w)x + b;)
keZ"o

with bias b; = (k, @) + bj.

J

Thus, adding an input neuron with frequency w’ expands the layer spectrum from {(k, w)}x to
{(k,w) + - w'}k,. Since the frequencies in the input layer determine those appearing in the network,
the densification of the input layer greatly increases the expressiveness of the overall network.

However, identifying new frequencies to be added is fairly nontrivial. Fortunately, Theorem|[I]also
sheds light on this: the j-th column of W' influences the value of any amplitude oy related to the
generated frequency Kk - w, with k; # 0. In particular, let us consider the case of k = e;, where e;
denotes the j-th canonical basis vector. If ||[W. ;I is small, then by standard properties of Bessel
functions ae; = J1 (W) must also be small and ag..; = J2(W,}) is negligible. Conversely, when
HW*lj || is large, cuo.e; carries non-negligible energy and the frequency F' = kiwi + ... + 2k;w; +
-+ + kn,wn, may contribute to the reconstruction of the target signal. However, for it to indeed
strongly influence reconstruction, the values of W?, . must increase, which happens slowly. So, to
accelerate the training of such frequencies, we first identify highly contributing neurons by assessing
the magnitudes of their weights and initialize novel input frequencies accordingly; to be precise, for
every highly contributing w; frequency we introduce a new 2w, frequency, enabling F' to influence
the network spectrum more easily.

The corresponding new column in the hidden matrix W* is initialized with random values drawn
from a uniform distribution in the range [—10~%, 10~%], ensuring a stable start for training. Finally,
the network is retrained to fine-tune all parameters, allowing it to adapt to the extended frequency
spectrum and fully leverage the increased representational capacity.

3.2 PRUNING

A key challenge when training SIRENS is to determine an appropriately sized model capable of
representing the target signal with quality. Typically, large architectures are employed to ensure
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reconstruction accuracy, sacrificing model compactness. To avoid this, we design a pruning procedure
that detects and removes redundant neurons during training, fitting the model size to signal complexity.

We employ a magnitude-based criterion to identify uninformative neurons, a strategy widely used in
classical network pruning. We now provide a formal justification of its validity for INRs: in sinusoidal
MLPs, pruning neurons induces only a bounded perturbation to the overall function. This perturbation
depends on the co-operator norms of the parameter changes and the norms of the subsequent layers.

Theorem 2. Let f be a sinusoidal INR of depth d, and let fbe the network obtained by perturbing
the k-th hidden layer weights and biases to W* and b*. Then,

sup [ £(2) = Fl@)]| < (IW* = Wl + [ = B ) L] [T 1wl
i=k+1

Theorem [2] formally guarantees that small modifications to a layer’s parameters—such as pruning
neurons with small outgoing weights — induce only proportionally small changes to the network’s
output. This justifies magnitude-based pruning both intuitively and theoretically. Our pruning
scheme uses TWD to isolate low-impact neurons, ensuring that pruning remains consistent with the
theoretical stability. We use this fact to select neurons by thresholding small ¢; norms, e.g., pruning

e i ; ~ it ~ it . .
R if ||ij;1||1 = Wit — W loo < € (where W' denotes the altered weight matrix).

However, training directly with the reconstruction loss Lg,, (e.g. MSE) often leads to relatively few
truly redundant neurons, even in overparametrized architectures. For better pruning, we employ a
targeted weight decay (TWD) strategy that reduces the contribution from near-redundant neurons,
turning them truly redundant. It consists of training the network f with the loss function,

- )

Loz=Lea+a) W1, with ac(0,1), 3)
JET

where 7 = TopK ([— ||ij]rl ||1]J> are the K indices of the neurons with the smallest column norm.

As illustrated in Figure pruning a neuron hj- (x) involves removing its outgoing connections. In

i+1

! 5

W;* and bias b}. After the TWD stage, we prune the neurons whose information content falls below

a given threshold ¢, and fine-tune the network to recover performance. Note that pruning the input

layer may have greater impact on the reconstruction since we are deleting an input frequency; that is,

we are eliminating many generated frequencies from the network spectrum (Novello et al., 2025)).

practice, we mask only the entries of the j-th column W which implicitly leaves unused the row

4 EXPERIMENTS

We evaluate AIRe on adaptive training across three tasks: image fitting, surface reconstruction (SDFs),
and novel view synthesis with NeRFs. Experiments are conducted on the DIV2K (Agustsson and
Timoftel 2017)), Stanford Repository (Curless and Levoy} |1996), and NeRF Synthetic (Mildenhall
et al., 2021) datasets. We also study AlRe in a setup where the final architecture is fixed, demon-
strating that our training procedure can improve reconstruction quality even when the reduced small
architecture is known in advance. Finally, we perform ablation studies to validate the design choices
underlying our method.

All models are implemented in PyTorch (Paszke et al.,[2019) and optimized with Adam (Kingma and’
Ba, 2015).For simplicity, we denote a sinusoidal MLP architecture by [n1, ..., n4+1], where d is the
number of hidden layers and n; is the number of neurons in the ¢-th layer.

Comparison with standard training. We compare AIRe against a baseline defined by the original,
large initial architecture (overparametrized) trained with the standard neural network training pipeline,
showing that AIRe can reduce model size while maintaining reconstruction quality by finding
more appropriate input frequencies. We evaluate this on images, SDFs, and NeRFs, adopting
commonly used architectures for each task (SIREN and FINER). Table [T] shows that AIRe achieves
substantial reductions in model size while maintaining reconstruction quality, and in several cases
even improving it.
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Table 1: Our method fits a compact INR to the target signal while preserving accuracy. We
evaluate AIRe (‘Ours’) against an overparametrized INR trained with the standard training pipeline
(‘Large’) on images (with model size [512, 256, 256]), SDFs (with architecture [256, 256, 256]), and
NeRF tasks (with size [256, 128, 128)), reporting PSNR and Chamfer Distance (X 102). AIRe enables
a strong reduction in model size, while preserving or even improving quality.

Imgs Large Ours Size SDFs Large Ours Size NeRF Large Ours Size

®v2K) pSNR PSNR reduct. | S  CD  CD reduct. | $™©  PSNR PSNR reduct.
#00 3196 31.56 35.89% | Armadillo 0.62 0.63 35.00% |Lego 2572 2530 73.30%
#01  37.93 35.63 65.28% | Bunny 0.76  0.71 30.86% | Materials 23.71 23.62 72.33%
#02 3076 29.17 52.39% |Dragon  0.73 0.61 26.83% | Ficus 2423 24.82 70.33%
#03 3740 35.04 56.80% |Buddha 059 0.56 33.14% |Hotdog 29.69 28.68 41.27%
#04  33.88 31.09 60.08% | Lucy 0.92 0.58 39.09% |Drums  22.17 22.02 52.50%

Comparison z.igainst existing pruning bas_elines Table 2: Comparison of pruning criteria. Re-
are provided in Table 2} for the task of image sults are on the image representation task.
representation using the same configuration as in

Table|l} with a SIREN architecture. For this com- Method PSNR?T SSIM?T

parison, we consider two model-agnostic pruning Baseline 34.60 +3.82 0.92+0.03
methods with publicly available implementations, DepGraph 2756 +2.12 0.82 +0.04
DepGraph (Fang et al.,[2023)) and RigL (Evciet al.| RigL 3429 +£3.37  0.95+0.01
2020), as well as a baseline given by training a AlRe (ours) | 37.07+3.74 0.95 +0.01

reduced architecture from scratch with standard
training. The pruning rate of each method is set to approximately 25% of the original parameters,
and we follow the hyperparameter choices reported in the respective papers. AIRe consistently
outperforms these pruning methods, demonstrating its effectiveness for INR architecture adaptation
over training.

4.1 AIRE VS. SMALL NETWORKS

AlRe starts with a large architecture and progressively reduces its size during training, resulting in a
small network. To evaluate how effectively AIRe leverages its architectures, we compare it against
standard training applied directly to both the initial (large) architecture and the final (small) one. We
conduct this evaluation for image fitting (DIV2K) and SDF reconstruction (Stanford Repository).

For the SDF reconstruction task, we follow the implementation in (Novello et al.| 2022)), training
each network for 10% epochs, sampling 10* on-surface points and 10* off-surface points uniformly.
Meshes are extracted from the trained SDFs via marching cubes with a resolution of 5123, and all
surfaces were normalized to [—1, 1]3. For evaluation, we report the number of network parameters
(Params) and the Chamfer Distance (CD) between reconstructed and ground-truth surfaces. We also
evaluate AIRe without densification, as SDFs typically contain less details than other applications.

Table 3: AIRe vs. directly trained large and small networks. We compare AIRe with standard
training applied to large and small architectures on both SDF reconstruction (Stanford) and image
fitting (DIV2K). Metrics are CD (x102) for SDFs and PSNR for images, along with parameter
reduction relative to the large model. AIRe achieves accuracy comparable to or better than the large
network while using the same reduced parameter budget as the small one.

}g,‘;ge' Variant CD (x10?) | i:(zi‘:lc 6l f}gfjgf)l Variant PSNR 1 f;flflc t1
Large 0.65+0.11 - Large  39.59 +£3.30 -

SIREN Small 0.89+0.09 83.96% |SIREN Small 34.60+3.82 24.95%
Ours 0.64 £0.03 83.96% Ours 37.07 £3.74 24.95%

Large 2.14+041 - Large  38.77 £2.98 -
FINER Small 5.08+3.51 83.96% |FINER Small 38.87+3.44 24.95%
Ours 0.88+0.15 83.96% Ours 39.91+3.89 24.95%
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For training, we start with a large network [256, 256, 256], trained from scratch for 200 epochs.
We then select 192 neurons from both hidden layers and continue training with targeted weight
decay (TWD) for 500 epochs. Finally, the selected neurons are pruned, and the resulting smaller
network [64, 64, 256] is retrained for 300 epochs. Table left) shows that AIRe provides a better
SDF reconstruction than the large network in all cases. We also highlight that our approach obtains
similar or better accuracy compared to the initial, large network trained from scratch while using
roughly between a third and a sixth of the network parameters for surface representation. Aditionally,
we found that AIRe has a comparable time overhead (76.8s) compared to the large SIREN model
(76.0s). Moreover, even when training a small architecture during 83.2s, it performs worse than
AlRe with 0.86 x 10? for CD metric. Figure shows some qualitative comparisons of AIRe and the
small architecture with standard training on the Armadillo, Buddha, and Lucy models, showing that
AlRe provides, in general, a lower (bluer) distance from the ground-truth surface.

LSTHY . ~ Y RS,
small network AlRe (ours) small network AIRe (ours) small network AlRe (ours)

Figure 3: Qualitative comparison of SDF reconstructions on the Armadillo, Buddha, and Lucy models
using a SIREN with wg = 60 and small network size [64, 64, 256]. Left: results of training the final
small network directly. Right: results of AIRe. Colors indicate the distance from the ground-truth
surface, from dark blue (0) to dark red (> 0.01). AIRe produces reconstructions that are consistently
closer to the ground truth than those obtained by training the small network from scratch.

Additionally, AIRe mitigates divergence during the training of SDF models, as illustrated in Figure 4]
We illustrate this by initializing a large network of size [256, 256, 256, 256] and training it on the
Armadillo for half the epochs with wy = 60 and small network architecture [64, 64, 256]. Under
standard training, the large network diverges, producing reconstructions with severe noise and artifacts.
In contrast, AIRe yields a more accurate reconstruction despite using less than half the parameters of
the initial model.

>”

\‘\ large network

-

ground truth

27

\\ AIRe (ours) \\

Figure 4: Qualitative comparison on the Armadillo. Left: ground truth. Middle: standard training of
the large network, which diverges and produces noisy artifacts. Right: AIRe, which avoids divergence
and yields a cleaner reconstruction with fewer parameters.
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For the evaluation on the image fitting task, we use the FINER subset of the DIV2K dataset, randomly
selecting 90% of the pixels of each image for training and using the remaining 10% for testing.
Training is performed with Mean Square Error (MSE) loss, a batch size of 65,536 pixels, and
evaluation is based on Peak Signal-to-Noise Ratio (PSNR). All experiments use sinusoidal MLPs
with wy = 30 trained for 5000 epochs. For AIRe, we first train for 250 epochs with MSE to capture
low-frequency information, then add 128 new input neurons and fine-tune for 2000 epochs. Next, we
train for 2250 epochs with TWD, prune 384 input neurons, and fine-tune the resulting network for
an additional 500 epochs. The resulting small network of size [256, 512, 512] is compared against a
model of the same size trained from scratch with MSE for 5000 epochs.

Table 3] (right) shows that AIRe applied to SIREN and FINER networks achieves better convergence
than standard training applied directly to either large or small networks. AIRe improves mean accuracy
by 2.47 dB on SIREN and 1.04 dB on FINER, consistently outperforming standard MSE training.
These results demonstrate that AIRe effectively transfers information from the overparameterized
model to its small counterpart.

4.2 ABLATIONS

Effect of varying pruning rate. We now ablate key design choices of AlRe, focusing on the rate
of pruning and densification during training. First, we analyze the effect of pruning on reconstruction
quality. We compare the accuracy drop of an adapted INR relative to a pre-trained network of size
[512,512,512] (528K parameters), which achieves a PSNR of 43.67 dB (gray point in Figure
right). We apply AlRe to the same architecture, starting with standard training for 2250 epochs,
followed by selecting p% of neurons from each hidden layer to prune (p € {0.2,0.4,0.6,0.8}) and
training with TWD for another 2250 epochs. Finally, we prune the selected neurons and fine-tune the
resulting network for 500 epochs, totaling 5000 epochs of adaptation.

28% size reduct. 52% size reduct. 72% size reduct. 88% size reduct.
(381K params) (254K params) (149K params) (65K params)

L &

Size w/o w/

" reduct.[TWD TWD
| 12% 14.35 43.43
B 28%  |15.61 40.28

§ 48% 14.07 41.25
72% 14.00 21.60

% 12%  |41.24 43.57
Lft‘ = 08%  [42.93 4354
S 48%  |41.98 42.75
72% |37.28 38.25

-

e

Figure 5: TWD reduces the dependence of finetune (FT) when pruning. TWD effectively transfers
information before pruning. Left: qualitative results with 28%, 52%, 72%, and 88% of parameters
pruned. The first row shows results without TWD, and the second row with TWD. Right: Table with
the PSNR values for each case.
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As shown in Figure[5] TWD enables ef- Table 4: Effect of pruning and densification on SIREN

fective transfer of information to the re- and FINER networks (DIV2K).
maining neurons so that a pruned net-

work (without fine-tuning) with only Method SIRENPSNR 1T FINER PSNR 1
28% of its weights still retains 92% of Small 36.44 + 4.0 40.84 + 3.85
the original network’s accuracy. In con- Prune 37.58 + 3.77 41.80 + 3.80
trast, pruning without TWD leads to a Densify+Prune | 39.47 + 4.31 41.88 + 4.24

severe degradation in image quality. Af-
ter full training, AIRe achieves a quality drop of less than 2.1% with just 28% of the parameters,
compared to a 3.8% drop when TWD is removed from the pipeline.
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With vs. without densification. We ablate the role of densification in our pipeline using the same
configuration as Table 2, training all models for 5000 epochs on a subset of DIV2K. In Table ] we
compare: (i) a small architecture trained from scratch; (ii) a large model pruned (without densification)
to match the small architecture; and (iii) our proposed AIRe scheme, which iteratively adds and
removes input neurons until matching the small architecture. Pruning alone yields a modest accuracy
gain for SIREN, while the Densify+Prune (AIRe) strategy provides a substantial boost. For FINER,
pruning slightly improves reconstruction quality, but densification brings little benefit — consistent
with the fact that FINER models are already more expressive and less dependent on additional
frequency capacity.

Pruning after densification vs. before densification. Intuitively, increasing model capacity
before removing redundancies should improve convergence. To verify this, we train a network
of size [256, 512, 256] and compare two schedules: pruning before densification and pruning after
densification. For densify-then-prune, we train for 400 epochs with MSE, add 128 input neurons,
fine-tune for 200 epochs, train with TWD for 200 epochs, prune 50% of the neurons in the second
hidden layer, and fine-tune for 1200 epochs. For prune-then-densify, we train for 200 epochs with
MSE, continue for 200 epochs with TWD, prune 50% of the second hidden layer, fine-tune for 200
epochs, add 128 neurons, and finally fine-tune for 1400 epochs. As a baseline, we also train a network
with the final small network [512, 256, 256] from scratch for 2000 epochs.

Prune before densify Densify before prune
Epoch 0

Epoch 150 Epoch 150

Small network Prune before densify Densify before prune Epoch 0

... . ”\

30.040B" um \ 33.980B" uw \ 34.61dB uw \

Error

c
kel
S
o

3

2
a

Figure 6: Comparison of training strategies with the small network, prune-before-densify, and
densify-before-prune. Gray boxes show information transfer during TWD. The 1st row displays
inferences using the most contributive neurons, the 2nd row shows reconstructions for the redundant
neurons selected. Now, each column present the inferences after ¢t € {0, 150} epochs of starting
TWD regularization.

The average PSNR of the small network is 30.06 dB. By contrast, prune-then-densify yields 33.41
dB, while densify-then-prune reaches 33.99 dB, demonstrating that both strategies outperform
standard training. Figure 6] (left) shows that standard training produces worse error maps, while the
purple boxes on the right illustrate that densify-before-prune better preserves high-frequency details
compared to prune-before-densify.

5 CONCLUSION

We introduced AlIRe, a dynamic training framework for implicit neural representations (INRs) that
adaptively aligns network architecture with the complexity of the target signal. The framework
integrates two complementary components: pruning, which removes redundant neurons to mitigate
overparameterization, and densification, which expands the network’s expressivity by selectively
introducing new input frequencies based on a principled spectral analysis.

Our approach contributes toward automating architecture adaptation in INR learning, offering a more
efficient and flexible alternative to static design choices. As future work, we aim to develop more
advanced mechanisms for information transfer during pruning, extend our method to a broader class
of architectures, and explore its applicability to more data modalities beyond images and surfaces.
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A PROOFS

A.1 THEOREM 1

In the main paper, we present an identity (Thrm 1) derived by Novello et al.| (2025)), which linearizes
the j-th hidden neuron of the (i + 1)-th layer, h;“. Similar results have been presented in|Yiice et al.
(2022) for the case of shallow SIRENs. The identity below extends this analysis to hidden neurons at
arbitrary depths.

Theorem 3. The hidden neuron h;ﬂ admits the following amplitude-phase expansion:

7 . 1 7 ‘ ?+1 !
th(X) _ Z one sin ({k, y') + ij) 7 where |og| < H <j21 Tl @
z !

keZmi

Here, o = [}, J, (W;fl) is the product of Bessel functions.
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Before starting the proof, recall that we defined hé“ (x) = sin ( =y ij’ sin(y}) + b§+1) , with
yi = [y}] , the linear, non-activated contribution of the i-th layer. To simplify notation, we drop the

indices i and 7 + 1 from W™ b yi and n,.

Proof. The first part of the proof consists of verifying

sin (Z Wi sin(y;) +bj> = Z oxsin ((k,y) +b;) and

=1 kezm

cos (Z Wi sin(y;) + bj> = Z Qi COS ( k,y) + bj).

=1

&)

The proof is by induction in n. For the base case n = 1, we use the sum of angles identities and the
Bessel function of the first kind properties (see (Abramowitz and Stegun, 1964, num. 9.1.42, 9.1.43))
to prove sin (W1 sin(y1) +b;) = > ez Ju(Wj1) sin(ky; + by):

sin (Wj1 sin(y1) + b;) = sin (W1 sin(y1)) cos(b;) + cos (le sin(yy)) sin(b;)

= Z Je(W1;) sin(ky ) cos(b; Z Ji(W1;) cos(lyr) sin(b;)
k€Z odd lEZ even

= Z‘Jk 1) sin(kyr + bj) ZJ; 1) sin(lyr + b;)
k€Z odd lEZ even

:ZJk 1) sin(kyr + b;).
keZ

In the third equality we combined the formula sin(u) cos(v) = Ww and the fact that

J_1(u) = (=1)*Jx(u) to rewrite the summations. The proof of the cosine analogous expansion
cos (W sin(y1) + b;) =3 Ji(Wj1 + bj) cos(lyy) is similar.

Assume that equation E]hold for n — 1, with n > 1, we prove that it also holds for n (the induc-
tion step).

n n—1
sin <Z Wi sin(y;) + bj> = sin (Z Wi sin(y;) + bj> cos (an sin(yn))

=1 =1

n—1
+ cos (Z Wi sin(y;) + bj> sin (W;, sin(y,,))

=1

— Z axJ; (W) sin ( k,y) + b]‘) cos(lyn)

keZn—1 I€Z even

+ Z axJi(Wjy,) cos ( k,y) + bj) sin(ly,,)

kezZn—1,1€7Z odd
Z Qy sin ( )+ b, )
kezZn
We use the induction hypothesis in the second equality and an argument similar to the one used in the
base case to rewrite the harmonic sum. Again, the cosine activation function case is analogous.

For the second part of the proof, we must prove the inequality in Equation equation[I} For that, note
that cue = [} 1 Ji, (W), and that

|mgj")
|Jk(le)| < T, k> 0, ng >0 6)

But this also holds for W;; < 0 since |Jx(—u)| = |Ji(u)|, and for & < 0 as |J_g(u)| =
|(=1)*Ji(u)| = |Jx(u)|. Then, substituting equation E] in ax = [~ Jk,(Wj;), we obtain the
desired result. O
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A.2 THEOREM 2

Theorem 4. Let fy be a sinusoidal INR of depth d, and let ]?9 be the network obtained by perturbing

the k-th hidden layer weights and biases to WF and bk Then,
d

Fo0) = Jox)| < (IW* = W oo + [B* = B o) [Llloe [T 1IW']le.
i=k+1

sup
X

Proof. First, note that x — Lx is || L||-Lipschitz for infinity norms:
ILx — Lx'[l o = [IL(x = X')[loo < [[Lloollx — x|
Second, note that x — sin(x) is 1-Lipschitz also for infinity norms, and thus x Si(x) =
sin(W'x + b") is also ||W"||-Lipschitz:
[| sin(Wix 4+ b) — sin(W'x’ + b")||oe < || sin [|Lip (WX + b?) — (WX’ + b%)||
< [IW* (x = %) loo < [[W'loo I — x| o

It thus follows that, for any x:

H(Losdo-~-oSko---oS°)(x)—(LoSdo-~-o§%---oS°)(x)H

oo

§||L||00H(sdo 08" 0. 08% () — (Sdo~~~o§ko~~~oso)(X)H

o0

oo

wsz) |(8% 0 08%)(x) ~ (8" 0+ 0 8")(x)

W1||Oo> sin( Wk Sk1lo...0 S%)(x) + bk)
i=k+1

- sm(Wk(Sk Yoo 08%)(x) + Bk)”

oo

W’“(S’“ Lo 08%(x) +bk)

8l

8

< | Lfloo (lf[ IW* o ||SlnHL1p
(
(
(

1

+

— (WH(S* o 08%)(x) + BY)|

oo

oo

wst st o))

11 Wz”m> |(WE = WH) (85 1o 0 8%)(x) + (b — BY)|
L

I1 WZ||DO>

=k

< Ll H Wiuoo) (IW* = W (85 o080 6o, + b = B ).

Finally, note that since sines lie in [—1,+1], it must hold that ||(S*"*o.--0S%)(x)| =
max; |[(S*7! o 08%)(x)];| < max; 1 = 1, from which we conclude the proof. O

B SIGNED DISTANCE FUNCTIONS

In Table E] we evaluate AIRe (‘Ours’) against an overparametrized, large INR of size [256, 256, 256]
and a small, reduced model of size [128, 128, 256]. These last two are fitted with the standard training
pipeline, and the reconstruction quality was measured using the Chamfer Distance (x 10?).

Table [ shows a per-scene breakdown of the SDF quantitative results presented in the main paper
when wy = 60 and and the small network size is [64, 64, 256]. The per-scene breakdown is consistent
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Table 5: Quantitative comparisons on representing surfaces from the Stanford 3D Scanning Repository
with wy = 30. We compare the adapted network trained with \method{ }, the large network with
standard training (large), and the model with small architecture and standard training (small). We
report the average chamfer distance (Avg CD (x102)) between reconstructed and ground-truth
surfaces and the percentage of network parameters compared to the large architecture (lower is
better).

g{)‘;‘:}e' Variant CD (x10%) | f:;;c (0l
Large 0.56 +£0.08 -

SIREN Small  0.59+0.09 62.14
Ours  0.58+0.06 62.14

Large 0.63+0.09 -
FINER Small 0.67+0.09 62.14
Ours 0.63+0.06 62.14

Table 6: Per-scene quantitative comparisons on representing surfaces from the Stanford 3D Scanning
Repository with wg = 60 and model size [64, 64, 256]. We compare AlRe, the network with large
architecture, and the model with small architecture. We report the chamfer distance (CD (x102))
between reconstructed and ground-truth surfaces (lower is better). Best values in bold, second best
values underlined.

2
Model Variant ‘ CD (x107)

‘Armadil]o Bunny Dragon Happy Buddha Lucy

Large 0.60 0.75 0.65 0.50 0.74
SIREN  Small 0.99 0.79 0.82 0.98 0.86
Ours 0.65 0.69 0.62 0.64 0.61
Large 2.13 2.06 2.17 274 1.60
FINER  Small 5.51 10.80 4.57 2.58 1.92
Ours 0.88 0.95 0.73 1.10 0.76

with the aggregate quantitative metrics. Our method outperforms the small network in all cases. It
also obtains similar or better accuracy compared to the large network but uses roughly 1/6 of network
parameters.

Figure[7)shows additional examples of surface reconstructions using SIREN with wy = 60 and model
architecture [64, 64, 256]. As in the other examples, the surface trained using our method presented a
lower error compared to the small network. We also see in Figure[§|an example using FINER with
settings wy = 60 and network architecture [64, 64, 256]. Note that AIRe offers a better reconstruction
than the small network with less artifacts.

{ W
Small network AlIRe (ours) Small network AlRe (ours)

Figure 7: Additional qualitative comparisons on representing surfaces based on the Dragon and
Bunny models using a SIREN network with wy = 60 and model architecture [64, 64, 256]. Left:
results of training the small network. Right: results of AIRe. We illustrate the unsigned distance from
the ground-truth surface using a color scale from dark blue (zero) to dark red (> 0.01).
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Small network AlRe (ours)

Figure 8: A case with the Bunny model using a FINER network with wg = 60 and model size
[64, 64, 256]. The final, small network (left) presents several artifacts, which does not occur with the
AlRe method (right).

Finally, we present Table[7] where we compare the time overhead when training the large, small and
adapted models. Observe that the AIRe and the large model have an equivalent training time but with
a substantial reduction in parameter. Furthermore, observe that a small model trained during the same
amount of time has much worse accuracy than a network trained with AIRe.

Table 7: Time overhead comparisons when training SDFs. We consider an large, overparametrized
network and a small network that are fitted for 1000 epochs. We compare them with a network
adapted during 1000 epochs using AIRe up to a size equal to the small network. We also train the
final network for 2000 epochs to compare the reconstruction quality along a time budget.

SDF Large Small Small AlRe
(103 epochs) (2 x 103 epochs) (Ours)
Armadillo 52 27 55 52
Bunny 34 17 35 34
Dragon 60 31 65 60
Happy Buddha | 159 83 179 162
Lucy 75 39 82 76
AVERAGE 76.0 394 83.2 76.8

C IMAGES

We present ablation studies to support the choice of hyperparameters for AIRe. First, we investigate
the optimal allocation of epochs between the targeted weight decay stage and the fine-tuning stage
under a fixed training budget. Specifically, we train SIREN |Sitzmann et al.|(2020) and FINER [Liu
et al.|(2024) models, each with two hidden layers of 512 neurons, for a total of 5000 epochs. Training
begins with standard optimization for x epochs, followed by targeted weight decay for y epochs,
where z,y € {100, 750, 1000, 1250, 1500, 1750, 2000, 2250}. The remaining 5000 — 2 — y epochs
are allocated to fine-tuning.

Figure 0] shows the PSNR for each epoch distribution, where the z-axis corresponds to the number
of epochs used for the initial standard training stage, and the y-axis indicates the number of epochs
allocated to the targeted weight decay stage. As shown, SIREN models benefit from increased
training time in both the standard training and targeted weight decay stages, resulting in improved
reconstruction accuracy. In contrast, FINER models show only marginal improvements when the
initial training stage exceeds 1000 epochs.

To determine the optimal pruning configuration, both in terms of which layers to prune and the
amount per layer, we train models with the best-performing epoch distribution for both SIREN and
FINER over 5000 epochs, applying varying levels of pruning to each layer. Figure[I0]presents the
PSNR of each reconstruction, where x represents the percentage of neurons pruned in the first layer,
and y denotes the percentage pruned in the second layer.
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SIREN PSNR finer PSNR
37.00

22504 %05 %17 3625 3640 3643 2250
36.75

20004 3607 3613 3625 634 3642 2000

36.50

17501 3601 3617 324 3634 3638 3848 1750
36.25
1500 3597 3611 3623 3629 3635 3643 3649 1500
=
36.00 E >
1250 3596 3606 3618 3630 3635 3644 1250 4
35.75 39.75
1000 3594 3604 314 21 B3 B4 1000
35.50 39.50
750{ 389 3593 3605 3621 3629 FB31 750 4
35.25 39.25

500 | 3587 395 308 317 325 3632 500

T T T T T T T T 35.00
500 750 1000 1250 1500 1750 2000 2250 1000 1250 1500 1750 2000 2250
X X

39.00

Figure 9: Ablation of the number of epochs used to pre-train the model (x axis), to train with targeted
weight decay (y axis) and fine tune. The total training lasts for 5000 epochs, and each value refers to
the mean PSNR over the DIV2K dataset. (Left) SIREN [Sitzmann et al.| (2020) architecture shows
that longer standard training and targeted weight decay stage improve quality, even with fewer fine
tuning epochs. (Right) FINER architecture shows less consistency in the results, demonstrating that
above 1000 epochs of standard training the results improve, but show no clear pattern.

SIREN PSNR finer PSNR

37 41

3444

37.35

0.4 3442 3461 3479 35.00 3517 35.24 35.14 38.10 38

|G
;

38.91 37

32

X

Figure 10: Ablation of the quality degradation with respect to the percentage of prune on the 1st
hidden layer (x axis) and the 2nd hidden layer (y axis). The total training lasts for 5000 epochs, and
each value refers to the mean PSNR over the DIV2K dataset. Observe that both images show that
pruning the 1st layer retains more quality than pruning the 2nd layer. (Left) A SIREN [Sitzmann et al/|
(2020) architecture reconstruction quality is preserved even with an extreme prune of 60%. (Right)
FINER architecture quality is better retained when pruning the first layer, albeit with less percentage.

Both SIREN and FINER benefit from pruning the first layer, although the optimal percentage of
neuron removal differs between the two. In contrast, pruning hidden layers generally leads to a
degradation in reconstruction quality.

We also perform an ablation study on the use of regularization to improve neuron removal during
training. Specifically, we train a sinusoidal INR using three configurations: standard weight decay,
targeted weight decay, and no regularization prior to pruning. Standard weight decay yields the lowest
reconstruction accuracy at 34.2dB, while removing regularization improves the result by 0.51dB. The
targeted weight decay stage achieves the best performance, increasing accuracy to 36.9 dB.

For the densification strategy, we examine the impact of varying both the number of training epochs
before densification and the percentage of new input neurons added. Concretely, the INR is initially
trained for x epochs, then its first layer is expanded by (y * 100)%, and the augmented network is
fine-tuned for the remaining 3000 — « epochs. The results are presented in Figure [T}
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Percentage of 1st layer densification

500 1000 1500 2000
Epochs pre-densification

Figure 11: Ablation on the epochs trained before densifying (x axis) compared to the percentage of
input neurons added (y axis).

As expected, increasing the number of neurons leads to higher PSNR values. Additionally, accuracy
improves when a larger number of neurons is added early in the training process (i.e., before 1500
epochs).

D ADDITIONAL DISCUSSIONS

We provide further details regarding the parameter settings used in our experiments. The targeted
weight decay stage is trained using the following the loss function

Ea,I = Laaa + Z ”W*J H17

JjET

where « is a parameter that starts at zero and increases linearly up to one at the end of this stage. For
the pruning scheme, we use the Prune package in PyTorch, using structured masks over the to remove
the corresponding weights. Specifically, when pruning neuron h%, we mask the entries of the j-th

column of W*. This removes all the neuron’s influence from the network. As for the densification
technique, we preserve the optimizer state of previous neurons to minimize training affectation.

We trained using a 12 GB NVIDIA GPU (TITAN X Pascal) and a 24 GB NVIDIA GPU (RTX 4090).
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D.1 NEURAL RADIANCE FIELDS

We adopt the torch-ngp framework[ﬂfor NeRF implemented by FINER that considers two networks:
A density network that takes a 3D position as input and outputs a density value and a geometric
feature vector v € R'82; and a color network that receives v and a 3D direction and returns a RGB
color. NeRF computes the color of a pixel with volume rendering using 3D points sampled on a ray
traced from the center of the virtual camera through the pixel Mildenhall et al.| (2021)). We set the
batch size to 4,096 rays and Adam optimizer with learning rate of 0.0002, 5; = 0.9, 51 = 0.99,
e = 107!, and exponential learning rate decay of 0.1. We update the model weights using an
exponential moving average with a decay of 0.95. We follow FINER’s experimental setting, where
for each scene of the Blender dataset, we have 25 images for training, 200 images for testing, all
downsampled to 200 x 200 pixels. We employ the PSNR and the number of network parameters
(Params) as evaluation metrics.

We evaluate three approaches for NeRF training: Large and Small networks, which train from scratch
for 1.5 x 103 epochs a density network of size [182, 182, 182] and color networks with architecture
[182,182,182] and [91,91, 182], respectively. On the other hand, AIRe considers training from
scratch for 300 epochs the same networks from Large model, then selecting 50% of neurons from
both hidden layers of the density network for 750 epochs of TWD, followed by pruning of selected
neurons, and finally 450 epochs of fine-tuning of both density and color networks.

Table 8: Quantitative comparisons between AIRe’s pruning scheme with training from scratch the
‘Large’ and ‘Small’ networks. We report the average PSNR between reconstructed and ground-truth
test views (higher is better), the PSNR difference with respect to Large (higher is better), and the
percentage of network parameters with respect to Large (higher is better). Best values in bold, second
best values underlined.

Method | Chair Drums Ficus Hotdog Lego Materials Mic Ship Avg | Size reduct.
Large |34.04 24.81 28.84 3342 2996 27.01 33.96 22.55 29.32 -
Small |33.12 24.14 27.77 32.06 28.75 2647 33.68 22.28 28.53| 20.74%
Ours |33.23 24.11 27.82 33.10 28.82 26.21 33.59 22.26 28.64| 20.74%

PSNR?

Table [8| shows that compared to Large, the decrease in PSNR of AIRe was 13.9% lower than the
PSNR of the Small network approach, even when both have the same number of network parameters.
The pruning procedure allows our NeRF to save more than 20% of network parameters compared to
the Large approach. We also see qualitative improvements compared to the Small network, such as
shadows/bright spots in the Hotdog (see Figure|[I).

"https://github.com/ashawkey/torch-ngp
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Ground Truth TWD+P (Ours) Small

Figure 12: Qualitative comparisons on representing NeRFs using the Hotdog (top), Chair (middle),
and Lego (bottom) scenes from the Blender dataset. First column: ground-truth views. Second
column: results of our proposed approach of targeted weight decay for pruning (TWD+P). Third
column: results of training from scratch a small network (Small) with an architecture equivalent to
ours after pruning. Differences in quality highlighted by insets.
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