
Under review as a conference paper at ICLR 2024

BAYESIAN PREFERENCE ELICITATION
FOR PERSONALIZED PREFACTUAL RECOMMENDATION

Anonymous authors
Paper under double-blind review

ABSTRACT

A prefactual recommendation, also known as an algorithmic recourse, provides
actionable guidance to an individual to overturn a machine learning prediction at a
minimal cost of efforts. Existing methods impose an explicit assumption on the
cost function, but in reality, different individuals may possess diverse and unique
cost preferences. Failing to adapt the guidance to an individual’s cost preference
can lead to irrelevant and inefficient recommendations. To personalize the guidance
to the individual cost, we propose a Bayesian preference elicitation framework
that learns the cost function from the individual’s feedback on a small number of
pairwise comparisons. This framework relies on a sequential, mutual-information-
maximization question-answering scheme to obtain a posterior distribution of an
individual’s cost weighting matrix. We then deploy this posterior to recommend a
graph-based sequential guidance with minimal expected cost, leading the individual
to achieve the desired algorithmic outcome. Numerical experiments on synthetic
and real-world datasets demonstrate the power of our method in capturing the
individual’s preference and recommending personalized recourse.

1 INTRODUCTION

Algorithmic decision-making has become an integral part of various domains, ranging from fi-
nance (Turkson et al., 2016; Wang et al., 2020), healthcare (Fatima & Pasha, 2017; Yu et al., 2021) to
online platforms and recommendation systems (Chen et al., 2019; Khanal et al., 2020). In consequen-
tial domains, a prediction from the algorithm may exert long-term effects on the life and future of
the people impacted by the prediction. If an individual receives an unfavorable prediction from the
algorithm, the individual should be given the reason behind the algorithmic decision and the necessary
steps to obtain an alternative algorithmic outcome. For instance, suppose a candidate is applying for a
graduate study and is predicted to be uncompetitive for admission; the candidate should be informed
about the recommended actions to get accepted, possibly in the next admission cycle. To equip
the individual with the power to overturn the algorithmic prediction, prefactual recommendation,
also known as algorithmic recourse, has emerged to provide individuals with actionable guidance to
rectify the undesired outcomes.

In the realm of generating recourse for machine learning model predictions, a diversity of methods
has been explored. Utilizing the gradient information of the underlying model, this method generates
counterfactual instances that closely resemble the given input, a technique pioneered by Wachter
et al. (2017). Building on this, Ustun et al. (2019) proposed an integer programming formulation,
tailored for linear classifiers, to identify actionable changes for a specific input instance. This concept
of actionable change was further extended by Poyiadzi et al. (2020), who constructed an actionability
graph using training data, delineating sequences of steps to generate counterfactual explanations. In a
similar vein, Pawelczyk et al. (2020) integrated manifold learning principles to derive counterfactual
instances, focusing on high-density regions of the data. The discourse then advanced with Karimi
et al. (2020), who introduced two distinct approaches: one leveraging Bayesian model averaging for
uncertainty, and the other employing a subpopulation-based interventional notion. This evolution
culminated in the work of Karimi et al. (2021), which introduced a paradigm shift towards minimal
interventions as a recourse, moving away from traditional nearest counterfactual explanations..

The aforementioned works typically rely on explicit assumptions about the cost function, disregarding
the inherent diversity of individual cost preferences. This neglection to tailor the guidance to an
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individual’s cost preference can result in inefficient and cost-suboptimal recommendations. To
address this issue, Yadav et al. (2021) proposed a new method to identify the recourse sets without
the need of prior knowledge of their cost functions. They introduced the Expected Minimum Cost
objective function, which is guided by two fundamental principles. The first principle asserts that
providing a single low-cost solution from a set of options is sufficient to meet the user’s needs. The
second principle acknowledges the lack of complete knowledge about the user’s true cost function
and proposes approximating user satisfaction by sampling plausible cost functions. The method aims
to achieve satisfactory recommendations tailored to the individual’s preferences by optimizing the
favorable cost outcomes within the generated recourse set.

In this work, we focus on Bayesian preference elicitation (BPE), which aims at handling uncertainty
in cost parameters. BPE entails modeling this uncertainty using a prior distribution and refining
it based on individual response, ultimately minimizing the ambiguity associated with these cost
parameters (Viappiani & Boutilier, 2010). Xie et al. (2014) introduced a Bayesian uncertainty-
based framework to learn individuals’ preferences by incorporating a mixture of Gaussian prior
beliefs. They utilized choice comparison queries to elicit user preferences and updated the posterior
distribution using constrained sampling strategies based on the responses. Furthermore, various
approaches have been proposed for selecting queries within BPE. One common criterion for question
selection is expected value information (EVOI), as utilized in works such as Chajewska et al. (2000),
Boutilier (2002), and Vendrov et al. (2020). EVOI aims to select the question that maximizes the
expected utility function with respect to the posterior distribution (Howard, 1984). Another approach
involves selecting questions based on the maximum mutual information, where the expected response
provides the highest information gain (Canal et al., 2019; Rokach & Kisilevich, 2012). From a
computational perspective, methods based on mutual information tend to be more tractable than
EVOI-based approaches (Vendrov et al., 2020). Bayesian preference elicitation offers robust cost
parameter predictions in the presence of noisy answers (Guo & Sanner, 2010; De Toni et al., 2022).

Our Contributions: In this paper, we introduce a Bayesian preference elicitation framework to
capture the unique cost preferences of individuals. Leveraging the posterior distribution obtained
from the elicitation process, we generate a graph-based sequential guidance for each individual
that effectively attains a favorable algorithmic outcome at a low personal cost. We summarize our
contributions below:

• We develop a probabilistic scheme for question selection that maximizes the mutual information
between the user’s response and the cost function parameter. Our method allows for efficient
question selection as mutual information can be analytically calculated.

• We present a belief updating formulation considering both prior-posterior distortions and response
alignment. After a proper compactification of the Bayesian posterior update problem, we develop a
projected gradient descent algorithm to find the best parameters for the posterior.

• We propose a graph-based sequential guidance scheme that leverages the posterior distribution to
minimize the expected recourse cost. The sequential guidance problem can be formulated as a
binary program and solved by off-the-shelf solvers to a sufficiently large problem size.

• We conduct extensive numerical experiments on both synthetic and real-world datasets to demon-
strate the efficiency of our Bayesian elicitation framework and graph-based recourse recommenda-
tion approach.

2 PROBLEM STATEMENT

We have a binary classifier C : Rd → {0, 1} and access to a training dataset consisting of N +M
data samples with features xi ∈ Rd, where i = 1, . . . , N +M . The dataset is divided into two parts:
a positive dataset D1 = {x1, . . . , xN} containing all instances for which C(xi) = 1 holds, and a
negative dataset D0 = {xN+1, . . . , xN+M} containing instances with a negative predicted outcome,
i.e., instances for which C(xi) = 0 holds. For a subject with input x0 ∈ Rd receiving a negative
prediction C(x0) = 0, we assume a Mahalanobis cost function cA0(x, x0) = (x− x0)⊤A0(x− x0),
with A0 being a positive semidefinite matrix.

Our framework employs this Mahalanobis distance to personalize the measure between the human
representation x0 and a specific choice xi, capturing subjective differences by extending Euclidean
distance with a linear transformation, akin to metric learning (Kulis, 2013; Yang & Jin, 2006; Bellet
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et al., 2013). This minimization aligns with our goal of efficiently achieving preferred choices. When
selecting xr, our primary criteria are to ensure a positive projected outcome C(xr) = 1 and minimize
the cost cA0

(xr, x0).

We propose a Bayesian preference elicitation framework to learn the cost function cA0(x, x0), where
A0 is an unknown matrix. This framework allows us to estimate preferences by incorporating prior
knowledge and updating our beliefs based on observed responses. Before introducing the entire
framework, we first review the definition of the Wishart distribution, which plays a crucial role in
establishing our prior belief for the cost function. The selection of the Mahalanobis distance is rooted
in the critical necessity for a weighting matrix to be positive definite, ensuring the preservation of
meaningful geometric attributes (Gelman et al., 1995). We adopt the Wishart distribution, a prevalent
choice in Bayesian modeling and machine learning to fulfill the necessity for positive definiteness,
a characteristic foundational to its application (Dawid, 1981; Hurtado Rua et al., 2015) and widely
used in diverse practical contexts.
Definition 2.1 (Wishart distribution). A probability measure P on the space of d-by-d symmetric
positive semidefinite matrices Sd+ is said to be a Wishart measure with degrees of freedom m ∈ N+,
m ≥ d and scale matrix Σ ∈ Sd++ if it admits a density function

fP(A) =
1

2
md
2 det(Σ)

m
2 Γd(

m
2 )

det(A)
m−d−1

2 exp(−1

2

〈
Σ−1, A

〉
),

where Γd is the d-variate Gamma function computed as Γd

(
n
2

)
= πd(d−1)/4

∏d
j=1 Γ

(
n
2 −

j−1
2

)
.

We write P ∼ Wd(m,Σ) to denote that P is a Wishart measure. While the general definition of
Wishart distributions allows for m to be a real number, for simplicity, our work restricts m to an
integer.

Our approach begins with Bayesian preference elicitation, where we represent our prior belief about
the random matrix Ã using a Wishart distributionWd(m,Σ). Over T rounds of cost elicitation, we
strategically select pairs from the positive dataset D1 to gather subject preferences based on the cost
function. We optimize question pairs to maximize mutual information between responses and Ã,
leveraging our prior knowledge. This informs our posterior inference, allowing us to refine our belief
about Ã. Finally, upon completing the T rounds, we generate recourse recommendations based on
the final posterior distribution of Ã.

In our notation, Sd, Sd+, and Sd++ denote spaces of d-by-d symmetric matrices, positive semi-definite
matrices, and positive definite matrices, respectively. We use I for the identity matrix. For any X in
Rd×d, we define several operations: the trace operator as Tr[X] =

∑d
i=1Xii, the Frobenius norm

as ∥X∥F , the determinant as det(X), and the vectorization of X as vec(X). The inner product
between matricesX and Y in Sd is represented as

〈
X,Y

〉
= Tr[XY ]. The notationX ⪰ Y indicates

X − Y ∈ Sd+. We use ⊗ for the outer product and IC(·) to denote the indicator function of set C.
In terms of specific matrices relevant to our study, we employ A0 to signify a deterministic matrix
specific to the user, while Ã is a random matrix representing our belief about the user’s actual matrix
A0. Subsequently, A corresponds to a realization of Ã.

3 QUESTION DETERMINATION

In our work, we primarily focus on pairwise comparisons, with an extension to listwise comparisons in
Appendix A, which entail higher computational complexity in our framework. Pairwise comparisons
offer advantages, including reduced user cognitive load (Payne et al., 1993) and increased robustness
to noisy responses and uncertain preferences (Plackett, 1975), aligning well with our approach. At
each time step t, our objective is to identify the optimal pair of questions, denoted as xi and xj , to
query. To achieve this, we make the assumption that the response obtained from questions xi and xj
adheres to the Bradley-Terry-Luce (BTL) model (Bradley & Terry, 1952): Given a pair of questions
(xi, xj) and A ∈ Sd+, define the cost difference ∆ij(A) ≜ cA(xi, x0) − cA(xj , x0). We posit that
the user response R̃κ

ij(A) can be represented by the probabilistic model:

R̃κ
ij(A) =

{
+1 with probability 1− Φ(κ∆ij(A)),

−1 with probability Φ(κ∆ij(A)),
(1)
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where κ > 0 is the slope parameter and Φ(v) = 1/(1 + e−v) is the link function. The BTL
model has applications in various machine learning domains, including reinforcement learning from
human feedback (RLHF) (Christiano et al., 2017; Ouyang et al., 2022), recommendation system
rank aggregation (Agarwal et al., 2020), and ordinal embedding tasks (Ghosh et al., 2019). The
slope parameter κ controls the model’s sensitivity to differences in cost between inputs. A higher κ
increases the sensitivity, while a lower κ reduces it, implying a higher degree of noise in the response.
As κ approaches infinity, the response relies solely on input cost differences.

We aim to maximize the mutual information between the response R̃κ
ij and the weighting matrix Ã to

gain the most information about Ã through observations. Let H(·) denote the entropy of a random
variable; the mutual information between Ã and R̃κ

ij is defined as:

MI(Ã, R̃κ
ij) = H(R̃κ

ij)−H(R̃κ
ij |Ã).

However, computing the entropy is challenging due to the continuous density of Ã. Existing methods
rely on sampling (Gao et al., 2017; Mesner & Shalizi, 2020): they involve sampling the matrices
from the positive semidefinite space and the subsequent responses based on the model (1). This
approach results in a heavy computational burden as it requires multiple iterations to accumulate
sufficient samples. The following section explores the asymptotic mutual information, which admits
an analytical expression. This analytical expression presents computational advantages and eliminates
the need for extensive sampling.

3.1 COMPUTING THE MUTUAL INFORMATION

To efficiently compute mutual information, we consider the limit as κ approaches infinity, which
corresponds to the noiseless case of the BTL model. Before stating the following proposition,
we introduce the term γκij ≜ Prob(R̃κ

ij(Ã) = +1). This probability accounts for two layers of
randomness: one arising from the matrix Ã, and the other stemming from the R̃κ

ij following the BTL
model after the realization of Ã.
Proposition 3.1 (Asymptotic mutual information). Let Pt−1 represent the prior distribution of
Ã at time t and assuming Pt−1 has a continuous density, and define γij ≜ limκ→∞ γκij . Then
γij = Pt−1(∆ij(Ã) ≤ 0) and

lim
κ→+∞

MI(Ã, R̃κ
ij) = −γij log2(γij)− (1− γij) log2(1− γij).

To evaluate γij , note that ∆ij(Ã) = (xi − x0)⊤Ã(xi − x0)− (xj − x0)⊤Ã(xj − x0). Recall that
the belief of Ã follows a Wishart distribution, and by the property of Wishart distribution (Rao, 2009,
Section 8b.2), we have that

(xi − x0)⊤Ã(xi − x0) ∼ σiχ2
m, (xj − x0)⊤Ã(xj − x0) ∼ σjχ2

m,

where σ2
i = (xi−x0)⊤Σ(xi−x0), σ2

j = (xj−x0)⊤Σ(xj−x0), and χ2
m is a chi-squared distribution

with m degrees of freedom. Then ∆ij(Ã) is the difference of two gamma random variables. We
establish the following theorem for computing Pt−1(∆ij(Ã) ≤ 0) with this property.
Theorem 3.2 (Probability value). Suppose that Pt−1 ∼ Wd(m,Σ). For any xi and xj such that
zi ≜ xi − x0 and zj ≜ xj − x0 are not parallel to each other, define the following quantities:

σ2
i ≜ z⊤i Σzi, σ

2
j ≜ z⊤j Σzj , and ρ ≜

[zi ⊗ zi]⊤[Σ⊗ Σ][Id2 + C][zj ⊗ zj ]
2σ2

i σ
2
j

,

where C ∈ Rd2×d2

is a commutation matrix, i.e., C =
∑d

i=1

∑d
j=1[ej ⊗ ei][ei ⊗ ej ]⊤, with ei

denotes the i-th column vector of the identity matrix Id. Then ρ ∈ [0, 1) and

Pt−1(∆ij(Ã) ≤ 0) = (
1 + c

1− c
)a+

1
2

Γ(2a+ 1)Γ(1)

Γ(a+ 3
2 )Γ(a+

1
2 )

2F1

(
2a+ 1, a+

1

2
; a+

3

2
;−1 + c

1− c

)
, (2)

where the parameters a, b, and c admit values

a =
m− 1

2
, b =

8σ2
i σ

2
j (1− ρ)√

4(σ2
i − σ2

j )
2 + 16σ2

i σ
2
j (1− ρ)

, c = −
2(σ2

i − σ2
j )√

4(σ2
i − σ2

j )
2 + 16σ2

i σ
2
j (1− ρ)

,

and 2F1 is the Gauss’ hypergeometric function.
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Theorem 3.2 provides an analytical expression for computing Pt−1(∆ij(Ã) ≤ 0), offering significant
computational advantages because we do not need to run time-consuming, intensive simulations to
estimate this quantity. In fact, for each sample Â drawn from a Wishart distribution, the computational
complexity of evaluating (xi−x0)⊤Â(xi−x0) isO(d2), resulting in an overall complexity ofO(Ld2)
for an empirical estimator with L samples. In contrast, the analytical expression derived in Theorem
3.2 has a computational complexity similar to that of computing ρ. The calculation of the quantity ρ
requires performing Kronecker product operations. Specifically, we obtain intermediate results by
calculating [zi ⊗ zi]⊤[Σ⊗ Σ] and [Id2 + C][zj ⊗ zj ]. Notably, [zi ⊗ zi]⊤[Σ⊗ Σ] = [Σzi ⊗ Σzi]

⊤,
allowing us to avoid the direct computation of Σ ⊗ Σ. This approach results in a computational
complexity of O(d2) for the analytical expression, significantly lower than the complexity of the
sampling method.

3.2 QUESTION SELECTION

To select the next question, we aim to identify a pair of indices (i, j) ∈ [N ]× [N ], representing two
inputs xi and xj , drawn from the positive dataset D1. Our primary goal is to maximize the mutual
information associated with the question pair (xi, xj). While κ is finite in practice, our framework
selects the pair (xi, xj) based on the asymptotic mutual information with κ = +∞. Empirical
results in Appendix D.5 demonstrate that our framework performs effectively with finite κ, indicating
convergence of the posterior distribution to the ground truth A0 in such cases. The strategy for
selecting the question (xi, xj) involves a nested iteration over the positive dataset D1. This approach
exhibits a computational complexity of O(N2), where N represents the cardinality of D1.

4 POSTERIOR UPDATE

This section focuses on estimating the posterior distribution Pt given the prior distribution Pt−1 at
time t and the response Rij ∈ {+1,−1}. We aim to update the distribution based on the available
information and refine our belief of the cost matrix A0.

4.1 PROBLEM FORMULATION OF POSTERIOR UPDATE

Before formulating the posterior update problem, we revisit the Kullback-Leibler (KL) divergence.
Definition 4.1 (Kullback-Leibler (KL) divergence). Given two distributions P and Q such that
P is absolutely continuous with respect to Q, the KL divergence from P to Q is KL(P ∥Q) ≜
EP[log dP/dQ], where dP/dQ is the Radon-Nikodym derivative of P with respect to Q.

Let Mij = (xi − x0)(xi− x0)⊤ − (xj − x0)(xj − x0)⊤. It is evident that
〈
Mij , Ã

〉
= ∆ij(Ã). We

propose to use an approximate posterior that is determined by solving:

min KL(P ∥ Pt−1) + τκEP[Rij

〈
Mij , Ã

〉
]

s. t. P ∼ Wd(m,Σ), m ∈ N+, Σ ∈ Sd++
Tr[Σ] = d, d ≤ m ≤ mt−1.

(3)

Two primary objectives guide our formulation. First, we seek to minimize the distortion between
the prior distribution Pt−1 and the posterior distribution Pt by quantifying the KL divergence. This
approach draws inspiration from stochastic variational inference techniques (Hoffman et al., 2013;
Bottou, 2010), where the KL divergence measures the proximity between the variational distribution
and the posterior distribution. We choose the reverse KL divergence KL(P ∥ Pt−1) over the forward
KL divergence KL(Pt−1 ∥ P) based on Bayes’ theorem (Schervish, 2012, Theorem 1.31). This
theorem establishes that the posterior distribution is absolutely continuous with respect to the prior
distribution, ensuring that the reverse KL divergence is well-defined.

Secondly, our main goal is to maximize the likelihood Prob(R̃κ
ij(Ã) = Rij) to align the observed

response with preferences represented by Ã. This is equivalent to minimizing the probability
Prob(R̃κ

ij(Ã) ̸= Rij), which can be expressed as:

Prob(R̃κ
ij(Ã) ̸= Rij) =

∫
Sd+

(1− Φ(−κRij∆ij(S))) fP(S)dS =

∫
Sd+

Φ(κRij∆ij(S))fP(S)dS.
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The last equality follows from the property Φ(−v) = 1−Φ(v). The above integral is computationally
intensive to compute, so we approximate the function Φ(v) by a linear function v 7→ v, resulting in
an approximation:

Prob(R̃κ
ij(Ã) ̸= Rij) ≈

∫
Sd+
κRij∆ij(S)fP(S)dS = κEP[Rij∆ij(Ã)] = κEP[Rij⟨Mij , Ã⟩].

To balance fidelity to the prior distribution with alignment with observed responses, we introduce
the positive parameter τ . Finally, problem (3) imposes a Wishart parametric form on the posterior to
facilitate successive updating steps. We leverage the following fact to reformulate the problem (3)
into one that exclusively involves the parameters m and Σ.
Fact 4.2 (KL divergence between Wishart distributions (Penny, 2001)). Let P ∼ Wd(mp,Σp) and
Q ∼ Wd(mq,Σq) be two Wishart distributions Sd+. The KL divergence from P to Q amounts to

KL(P ∥Q) = −mq

2
log det

(
Σ−1

q Σp

)
+
mp

2

(
Tr[Σ−1

q Σp]− d
)
+ log

Γd

(mq

2

)
Γd

(mp

2

) + mp −mq

2
ψd

(mp

2

)
,

where ψd is the multivariate digamma function.

When the prior distribution is a Wishart distribution Pt−1 ∼ Wd(mt−1,Σt−1), Fact 4.2 asserts that
the loss function of problem (3) is

L(m,Σ) =− mt−1

2
log det

(
Σ−1

t−1Σ
)
+
m

2

(
Tr[Σ−1

t−1Σ]− d
)
+ log

Γd

(mt−1

2

)
Γd

(
m
2

)
+
m−mt−1

2
ψd

(m
2

)
+ τκmTr[RijMijΣ].

If we fix a value of the integer m with d ≤ m ≤ mt−1 and solve only over the matrix variable Σ,
then we obtain the equivalent optimization problem

min ℓ(Σ) ≜ −mt−1

m log det(Σ) + Tr[(Σ−1
t−1 + τκRijMij)Σ]

s. t. Σ ∈ Sd++, Tr[Σ] = d.
(4)

Problem (4) has a non-empty feasible set: in fact, the identity matrix is a feasible solution. Nev-
ertheless, the feasible set of (4) is open due to the constraint Σ ∈ Sd++. The next result asserts a
compactification of this feasible set.
Proposition 4.3 (Compactification). Problem (4) is equivalent to

min
{
ℓ(Σ) : Σ ∈ Sd+, Tr[Σ] = d, Σ ⪰ εI

}
, (5)

where the constant ε is ε ≜ d1−d exp(− m
mt−1

∥Σ−1
t−1 + τκRijMij∥F (

√
d+ d)) > 0.

Problem (5) has a compact feasible set and is amenable to a projected gradient descent algorithm.
Let Σ∗(m) be the solution to (5) for a fixed m. Our problem remains to infer the optimal integer
d ≤ m∗ ≤ mt−1 such that (m∗,Σ∗(m∗)) minimizes the loss function L(m,Σ). It is achieved by
solving problem (5) for all admissible values of m.

4.2 PROJECTED GRADIENT DESCENT ALGORITHM FOR POSTERIOR UPDATE

We apply the projected gradient method to solve problem (5). LetD be the feasible set of problem (5),
defined as D ≜ {Σ ∈ Rd×d : Σ ∈ Sd+, Tr[Σ] = d, Σ ⪰ εI}. We now study the projection onto the
feasible set of (5). For any symmetric matrix S, define the projection operator on the feasible set

Proj(S) ≜ min{∥S − Σ∥2F : Σ ∈ Sd+, Σ ⪰ εI, Tr[Σ] = d}.
The following lemma demonstrates that the projection onto the set D can be simplified to the
projection onto a simplex in Rd.
Lemma 4.4 (Projection operator). For any symmetric matrix S with the eigendecomposition S =
V diag(s)V ⊤, where s ∈ Rd is the vector of eigenvalues, we have Proj(S) = V diag(λ⋆ + ε1)V ⊤,
where 1 is a d-dimensional vector of all ones and λ⋆ solves the projection onto the simplex problem

λ⋆ = argmin
{
∥λ− (s− ε1)∥22 : λ ≥ 0, λ⊤1 = (1− ε)d

}
. (6)
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Algorithm 1 Projected gradient descent to
solve (5)
Input: Prior scaling matrix Σt−1 ∈ Sd++, de-

grees of freedom m
Parameter: Constant learning rate t > 0,

Number of iterations: K ∈ N+

Initialization: Set Σ(0) ← Σt−1

for k = 0, . . . ,K − 1 do
Compute gradient:
g ← −mt−1

m Σ−1
(k) +Σ−1

t−1 + τκRijMij

Gradient descent and projection:
Σ(k+1) ← Proj(Σ(k) − tg)

end for
Output: Σ(K)

The steps of the projected gradient descent algorithm
are summarized in Algorithm 1. For brevity, we omit
the details of projection onto D. We refer the reader
to the Appendix C.4 for further details.

We prove the strong convexity and Lipschitz continu-
ity of the gradient of the objective function ℓ, which
are crucial for the convergence guarantee of Algo-
rithm 1.
Lemma 4.5 (Smoothness). The objective function ℓ
is strongly convex with parameter mt−1/(md

2) and
has a Lipschitz continuous gradient with Lipschitz
constant mt−1/(mε

2) on D.

By Lemma 4.5, Algorithm 1 exhibits linear conver-
gence rate (Beck, 2017, Theorem 10.29).

5 RECOURSE RECOMMENDATION

This section presents a model-agnostic recourse-generation method inspired by FACE (Poyiadzi
et al., 2020). The central concept of this method involves two key steps. First, we construct a graph
representation based on the given dataset, where each data point corresponds to a node in the graph.
Second, we employ a shortest path algorithm to find the optimal path from the initial input x0 to a
node that yields a positive prediction according to the underlying machine learning model. Following
this path, we generate a recourse that suggests a feasible and actionable counterfactual explanation.

Figure 1: Visualization of a graph G, deci-
sion boundary, recourse search. Problem (7a)
seeks a path from x0 (grey) to a positive pre-
diction (blue). Crossed blue nodes with no
links to negatives can be pruned.

The strategy for constructing the graph is as follows.
We begin by creating a directed graph G = (V, E),
which captures the underlying geometric structure of
the available data. In this graph, each node xi ∈ V
corresponds to a sample from the training set, while
an edge (xi, xj) ∈ E represents a feasible transition
from node xi to node xj . By constructing this graph,
we establish the connectivity between different sam-
ples and enable the exploration of potential paths for
sequential recourse.

Recall that x0 is classified by C as negative: C(x0) =
0. After T rounds of cost-elicitation, we obtain a
Wishart posterior distribution PT ∼ Wd(mT ,ΣT )
representing our belief about the subject’s cost matrix
A0. Suppose we are given a graph G = (V,E), where
V is the node set and E is the edge set. For each edge
e, we use o(e) and d(e) to represent the origin and
destination of this edge. The cost on edge e is

ce = (xo(e) − xd(e))⊤A(xo(e) − xd(e)) =
〈
A,Me

〉
,

where Me = (xo(e) − xd(e))(xo(e) − xd(e))⊤. Any path from x0 to a positively-predicted sample
can be represented by a binary vector z ∈ {0, 1}|E|. The cost of this path is a random variable〈
A,
∑

e∈E Meze
〉
, where the source of randomness is in A. Supposing risk neutrality, we propose to

find the recourse by solving the stochastic optimization problem

min
z∈Z

EPT

[〈∑
e∈E

Meze, A
〉]
, (7a)

that finds the sequential recourse with minimum expected cost. The set Z contains all possible paths
that (i) start from x0, (ii) have an end-node in the positively-predicted class

Z =

z ∈ {0, 1}|E| :

∑
e∈E:o(e)=x0

ze = 1∑
e∈E:o(e)=xi

ze −
∑

e∈E:d(e)=xi
ze = 0 ∀xi : C(xi) = 0, xi ̸= x0∑

xi∈V :C(xi)=1

∑
e∈E:d(e)=xi

ze = 1

 .

7
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The first constraint indicates that the sum of the outflows from x0 is one. The second constraint is a
flow conservation constraint, indicating that for each node other than x0 that is predicted to be in
the negative class (i.e., orange nodes in Figure 1), then the sum of the inflows equals the sum of the
outflows. Thanks to the moment condition EPT

[A] = mTΣT of the Wishart distribution and the
linearity of the expectation operator, the recourse finding problem above is equivalent to

min
z∈Z

〈∑
e∈E

Meze,ΣT

〉
, (7b)

where we have dropped the parametermT from the objective function becausemT > 0. Problem (7b)
is a binary linear program that can be solved effectively using solvers like Mosek and GUROBI.

6 NUMERICAL EXPERIMENTS

We conducted extensive numerical experiments on synthetic and real-world datasets to evaluate our
method: Prefactual Recommendation by Bayesian Preference Elicitation (Bayesian PR). Specifically,
we employed three real-world benchmark datasets: the German, Bank, Student datasets, which are
commonly used in recourse methods research. Additionally, we conducted comparisons with the
graph-based recourse recommendation method Feasible and Actionable Counterfactual Explanation
(FACE) (Poyiadzi et al., 2020) and the non-graph-based recourse recommendation methods Wachter
(Wachter et al., 2017) and DiCE (Mothilal et al., 2020).

6.1 EXPERIMENTAL SETTINGS

We provide an overview of our data processing procedures, ground truth matrix A0 generation, and
details regarding the architecture of the classifier C. All experiments were conducted on a 2x20
core Xeon Gold 6248 2.50GHz. We utilized min-max normalization for continuous features and
one-hot encoding for categorical features, following the approach outlined in Mothilal et al. (2020).
To generate the ground truth matrix cost A0 for each user x0, we created a random d× d matrix A
with independent zero-mean, unit-variance normal distribution elements, and computed A0 = AA⊤.
For classification, we employed a three-layer MLP with 50 neurons in the first layer, followed by two
hidden layers, each containing 20 neurons, and an output neuron with sigmoid activation. The dataset
was split into an 80% training set and a 20% testing set. For FACE, Wachter, and DiCE, we adhere to
the setups outlined in their respective papers. In our method, we set the hyperparameters τ and κ
such that τκ = 1.

6.2 GRAPH-BASED COST-ADAPTIVE RECOURSE

In this experiment, we utilize a graph-based recourse recommendation method from Section 5 to
generate a path and evaluate it using path cost and validity metrics. For the path P from x0 to xr,
we consider two types of true costs on edges: Mahalanobis distance and ℓ1 norm. The path cost for
Mahalanobis distance is defined as the sum of Mahalanobis distances of the edges in P with respect to
the ground truthA0, expressed as cA0

(P ) =
∑T−1

t=0 (xt+1−xt)⊤A0(xt+1−xt). For ℓ1 norm, the path
cost is defined as the sum of ℓ1 norms of the edges in P , expressed as cℓ1(P ) =

∑T−1
t=0 ∥xt+1−xt∥1.

The recommended recourse xr (the terminal node in the recommended path) is valid if the classifier
predicts it as positive, i.e., C(xr) = 1. The validity is the ratio of xr with positive prediction over the
total number of xr.

In Table 1, we represent the true cost through the Mahalanobis distance, consistent with the founda-
tional principles of our framework. In this setup, our framework accurately specifies the cost function
type to align with the Mahalanobis distance, whereas FACE misspecifies it. As a result, our method
shows enhanced cost efficiency when compared to FACE, as evidenced by our empirical results. This
improvement suggests that our approach identifies more direct paths from the initial point x0 to the
recommended recourse xr, resulting in more efficient and practical recommendations.

On the other hand, in our analysis presented in Table 2, we consider scenarios where the true cost is
described by the ℓ1 norm, introducing a case of misspecification in our framework’s cost function.
Notably, in these instances, FACE accurately specifies the cost function, aligning perfectly with the
true underlying cost structure. Despite this advantage for FACE, our method exhibits comparable

8
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Table 1: Comparison of cost and validity of Bayesian PR and FACE using Mahalanobis distance as
the true cost.

Method Synthetic German Bank Student
Cost Validity Cost Validity Cost Validity Cost Validity

FACE 0.18 ± 0.18 1.00 ± 0.00 0.19 ± 0.15 1.00 ± 0.00 1.27 ± 0.70 1.00 ± 0.00 1.14 ± 0.63 1.00 ± 0.00
Bayesian PR 0.03 ± 0.01 1.00 ± 0.00 0.16 ± 0.13 1.00 ± 0.00 0.97 ± 0.90 1.00 ± 0.00 1.11 ± 0.62 1.00 ± 0.00

performance. It particularly stands out in the Synthetic and Student datasets, as detailed in Table 2.
The superior results in these specific datasets underscore the robustness and adaptability of our
approach, demonstrating its effectiveness in providing accurate recommendations even when there
is a discrepancy between the presumed and actual cost functions. Additionally, a more extensive
comparison with non-graph-based methods is presented in Tables 5 and 6 in Appendix D. These
comparisons reveal that our method outperforms the non-graph-based approach in real-world datasets,
further validating its practical utility and effectiveness in diverse scenarios.

Table 2: Comparison of cost and validity of Bayesian PR and FACE using ℓ1 norm as the true cost.

Method Synthetic German Bank Student
Cost Validity Cost Validity Cost Validity Cost Validity

FACE 0.36 ± 0.12 1.00 ± 0.00 0.45 ± 0.19 1.00 ± 0.00 1.05 ± 0.35 1.00 ± 0.00 1.20 ± 0.35 1.00 ± 0.00
Bayesian PR 0.24 ± 0.09 1.00 ± 0.00 0.45 ± 0.20 1.00 ± 0.00 1.13 ± 0.17 1.00 ± 0.00 1.20 ± 0.18 1.00 ± 0.00

6.3 MEAN RANK PERFORMANCE

In this section, we rank the recourses based on individual preferences using the mean rank metric
(Bertsimas & O’Hair, 2013). We begin by ranking all recourses in the positive dataset D1 (with size
N ) according to their Mahalanobis distances from x0 with respect to A0. The recourse with the
smallest distance receives rank 1, while the one with the largest distance is ranked N . Subsequently,
we replace the ground truth A0 with the mean mTΣT and rank the recourses in D1 again. We
fetch the top-K recourses and obtain the corresponding ranking w.r.t. A0. For top-K recourses, we
write the mean rank r̄ as r̄ = (

∑K
i=1 ri − rmin)/rmax with rmin =

∑K
i=1 i = (K + 1)K/2 and

rmax =
∑N

i=N−K+1 i = (2N −K + 1).

We generate plots in Figure 2 to display the mean rank across various question counts (T ∈ [1, 10])
with a fixed K value of 30. The trend across all datasets generally exhibits a decrease in mean rank
as the number of questions posed to x0 increases. This behavior indicates that the estimated matrix
mTΣT approaches the true matrix A0 more closely as more questions are asked.
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Figure 2: Effect of the number of questions T to the average mean rank on all datasets.

7 CONCLUSION

In this paper, we propose a personalized algorithmic recourse framework based on Bayesian prefer-
ence elicitation. Our approach employs mutual-information-maximization question-answering and
efficient posterior updates for precise cost parameter estimation. We enhance recommendations with
a graph-based sequential guidance method guided by the posterior distribution, achieving relevant
and effective personalized recourse. Extensive evaluations of synthetic and real-world data validate
the efficacy of our method in capturing individual preferences and delivering personalized solutions.
One limitation is our assumption about a specific class of cost functions, which may not cover the
diversity of individual characteristics. Future research should explore relaxing this assumption to
accommodate a broader range of cost functions, considering factors like risk-seeking and risk-averse
behaviors, to enhance the applicability of our framework.
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The appendix is organized as follows.

• The discussion of listwise comparison is included in Section A.
• The proof details of Proposition 3.1 and Theorem 3.2 is given in Section B.
• The proof details of Proposition 4.3, Lemma 4.4, Lemma 4.5 and the details of algorithm are

collected in Section C.
• Additional experiment results are included in Section D.

A EXPANDING FROM PAIRWISE TO LISTWISE COMPARISON

Consider the option of listwise comparison in addition to pairwise comparison. In listwise comparison,
the objective is to identify a choice set comprising r inputs that maximizes the mutual information
between the response and the random matrix Ã. Consider a choice set xi = (xi1 , xi2 , . . . , xir )

with r elements. There are
(
N
r

)
such possible choice sets. To facilitate the analysis, we introduce a

permutation π, defined as π : [r]→ [r], where π(xj)l denotes xπ(xj)l .

One of the most widely used models for rank generation is the Plackett-Luce (PL) Model
(Plackett, 1975; Luce, 2012). The PL model is defined as follows: Given a set of questions
xi = (xi1 , xi2 , . . . , xir ) and A ∈ Sd+, the probability of observing the response R̃κ

i as a certain
ordered list π(xi) is expressed as:

Prob
(
R̃κ

i (A) = π(xi)
)
=

r∏
j=1

exp(−κcA(π(xi)j , x0))∑r
l=j exp(−κcA(π(xi)l, x0))

.

Notably, when r = 2, the PL model reduces to the BTL model as defined in equation (1).

Our objective is to identify a choice set xi fromD1 that maximizes the mutual informationMI(Ã, R̃κ
i )

between Ã and R̃i. Here,
MI(Ã, R̃κ

i ) = H(R̃κ
i )−H(R̃κ

i |Ã),
where Πr represents the set containing all permutations of [r], with a cardinality of r!. H(R̃κ

i |Ã) can
be expressed as:

H(R̃κ
i |Ã) =

∫
S∈Sd+

fPt−1
(S)H

(
R̃κ

i |Ã = S
)
dS

= −
∑
π∈Πr

∫
s∈Sd+

fPt−1
(S)

r∏
j=1

exp(−κcS(π(xi)j , x0))∑r
l=j exp(−κcS(π(xi)l, x0))

log

 r∏
j=1

exp(−κcS(π(xi)j , x0))∑r
l=j exp(−κcS(π(xi)l, x0))

 dS.

Also, H(R̃κ
i ) can be expressed as:

H(R̃i) = −
∑
π∈Πr

Prob
(
R̃κ

i (Ã) = π(xj)
)
log
(
Prob

(
R̃κ

i (Ã) = π(xj)
))

.

Prob(R̃κ
i (Ã) = π(xj)) can be computed as:

Prob
(
R̃κ

i (Ã) = π(xj)
)
=

∫
S∈Sd+

Prob
(
R̃κ

i (Ã) = π(xj)|Ã = S
)
fPt−1

(S)dS

=

∫
S∈Sd+

r∏
j=1

exp(−κcS(π(xi)j , x0))∑r
l=j exp(−κcS(π(xi)l, x0))

fPt−1(S)dS.

To evaluate MI(Ã, R̃κ
i ), we must compute H(R̃κ

i |Ã) and Prob(R̃κ
i (Ã)). Unfortunately, there are

no straightforward analytical expressions for these two terms, necessitating the use of sampling
methods for estimation (Gao et al., 2017; Mesner & Shalizi, 2020). Given that the complexity
of computing cA(·, ·) is O(d2) and the complexity of estimating H(R̃κ

i |Ã) and Prob(R̃κ
i (Ã)) is
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O(Md2), where M is the sample size, we further need to search for the choice set xi with the highest
mutual information. This search has a complexity of O(

(
N
r

)
). Consequently, employing listwise

comparison results in a substantial computational burden compared to pairwise comparison with an
analytic expression for mutual information.

B PROOFS OF SECTION 3

B.1 PROOF OF PROPOSITION 3.1

Proof of Proposition 3.1. The mutual information between Ã and R̃κ
ij is given by

MI(Ã, R̃κ
ij) = H(R̃κ

ij)−H(R̃κ
ij |Ã).

Using the definition of conditional entropy, H(R̃κ
ij |Ã) can be calculated as follows:

H(R̃κ
ij |Ã) =

∫
S∈Sd+

fPt−1
(S)H(R̃κ

ij |Ã = S)dS

=

∫
S∈Sd+

fPt−1(S)h (Φ(κ∆ij(S))) dS

=

∫
S∈Sd+,∆ij(S) ̸=0

fPt−1
(S)h (Φ(κ∆ij(S))) dS +

∫
S∈Sd+,∆ij(S)=0

fPt−1
(S)h (Φ(κ∆ij(S))) dS.

Here, h(z) = −z log2(z)− (1− z) log2(1− z). Since h(Φ(0)) = 1, we have∫
S∈Sd+,∆ij(S)=0

fPt−1
(S)h (Φ(κ∆ij(S))) dS =

∫
S∈Sd+,∆ij(S)=0

fPt−1
(S)dS = Pt−1(∆ij(Ã) = 0).

Observe that ∆ij(Ã) is a continuous random variable defined on R. Hence, Pt−1(∆ij(Ã) = 0) = 0
and

H(R̃κ
ij |Ã) =

∫
S∈Sd+, ∆ij(S)̸=0

fPt−1
(S)h (Φ(κ∆ij(S))) dS.

It is evident that 0 < h(x) < 1 for 0 < x < 1, and as x approaches 0 or 1, the limit of h(x) is 0.
Additionally, when ∆ij(S) > 0, the limit as κ approaches infinity for Φ(κ∆ij(S)) is 1, while for
∆ij(S) < 0, the limit is 0. Therefore, when ∆ij(S) ̸= 0,

lim
κ→+∞

h (Φ(κ∆ij(S))) = 0.

Also note that |fPt−1(S)h(Φ(κ∆ij(S))| ≤ fPt−1(S) and
∫
S∈Sd+

fPt−1(S)dS = 1. By Dominated
convergence theorem, we can have

lim
κ→+∞

H(R̃κ
ij |Ã) = lim

κ→∞

∫
S∈Sd+,∆ij(S)̸=0

fPt−1
(S)h (Φ(κ∆ij(S))) dS

=

∫
S∈S+,∆ij(S)̸=0

fPt−1
(S) lim

κ→+∞
h (Φ(κ∆ij(S))) dS = 0.

This can be explained by the fact that as κ tends to infinity, R̃κ
ij becomes entirely determined by Ã,

resulting in a conditional entropy of limκ→+∞H(R̃κ
ij |Ã) = 0.

As for H(R̃κ
ij), we have

H(R̃κ
ij) = −γκij log2(γκij)− (1− γκij) log2(1− γκij).
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The probability value γκij that R̃κ
ij admits the value of +1 is computed as

γκij ≜ P(R̃κ
ij(Ã) = +1)

=

∫
S∈Sd+

P(R̃κ
ij(Ã) = +1|Ã = S)fPt−1

(S)dS

=

∫
S∈Sd+

(1− Φ(κ∆ij(S))fPt−1(S)dS

=

∫
S∈Sd+,∆ij(S)̸=0

(1− Φ(κ∆ij(S)))fPt−1
(S)dS +

∫
S∈Sd+,∆ij(S)=0

(1− Φ(κ∆ij(S)))fPt−1
(S)dS.

Considering that
∫
S∈Sd+,∆ij(S)=0

(1 − Φ(κ∆ij(S))fPt−1
(S)dS = 1

2Pt−1(∆ij(Ã) = 0) and based

on Theorem B.2, we have Pt−1(∆ij(Ã) = 0) = 0. Therefore,

γκij =

∫
S∈Sd+,∆ij(S) ̸=0

(1− Φ(κ∆ij(S)))fPt−1
(S)dS.

For any S ∈ Sd+ such that ∆ij(S) ̸= 0, we have
lim

κ→+∞
1− Φ(κ∆ij(S)) = I{∆ij(S)≤0}(S).

Since |(1 − Φ(κ∆ij(S)))fPt−1
(S)| ≤ fPt−1

(S) and
∫
S∈S+ fPt−1

(S)dS = 1, then by Dominated
convergence theorem, we can see that

γij ≜ lim
κ→∞

γκij

= lim
κ→∞,∆ij(S) ̸=0

∫
S∈Sd+

(1− Φ(κ∆ij(S)))fPt−1
(S)dS

=

∫
S∈Sd+,∆ij(S) ̸=0

lim
κ→∞

(1− Φ(κ∆ij(S)))fPt−1(S)dS

=

∫
S∈Sd+,∆ij(S) ̸=0

I{∆ij(S)≤0}(S)fPt−1
(S)dS

= Pt−1(∆ij(Ã) ≤ 0).

The last equality is because ∆ij(Ã) is a continuous variable. Thus, limκ→+∞H(R̃κ
ij) =

−γij log2(γij)− (1− γij) log2(1− γij) and

lim
κ→+∞

MI(R̃κ
ij , Ã) = lim

κ→+∞
H(R̃κ

ij)− lim
κ→+∞

H(R̃κ
ij |Ã)

= −γij log2(γij)− (1− γij) log2(1− γij).
This finishes the proof.

B.2 PROOF OF THEOREM 3.2

Before proving Theorem 3.2, we present the following fact.
Fact B.1 (Correlation). Suppose that A follows a Wishart distribution, A ∼ Wd(m,Σ), for some
parameters (m,Σ) where m ≥ d is an integer. The followings hold:

(i) For any u, v ∈ Rd, Cov(u⊤Au, v⊤Av) ≥ 0.

(ii) For any u, v ∈ Rd\{0}, let ρ be the correlation coefficient between u⊤Au and v⊤Av. Then
ρ = 1 if and only if u = kv for some k ̸= 0.

Proof of Fact B.1. We first prove part (i). Because A follows a Wishart distribution with m being an
integer, we can decompose A as a sum

A =

m∑
i=1

GiG
⊤
i ,
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where G1, . . . , Gm are independent d-variate Gaussian random vectors with zero mean:

Gi =
(
g1i , g

2
i , . . . , g

d
i

)
∼ Nd(0,Σ).

Therefore, we find

Cov
(
u⊤Au, v⊤Av

)
=

m∑
i=1

m∑
j=1

Cov
(
u⊤GiG

⊤
i u, v

⊤GjG
⊤
j v
)

=

m∑
i=1

m∑
j=1

Cov
(
∥G⊤

i u∥22, ∥G⊤
j v∥22

)
=

m∑
i=1

Cov
(
∥G⊤

i u∥22, ∥G⊤
i v∥22

)
.

The last equality follows from that Gi and Gj are independent when i ̸= j, thus ∥G⊤
i u∥22 and

∥G⊤
i v∥22 are independent and Cov(∥G⊤

i u∥22, ∥G⊤
i v∥22) = 0.

If Cov
(
∥G⊤

i u∥22, ∥G⊤
i v∥22

)
≥ 0, for i = 1, 2, . . . , n, then Cov

(
u⊤Au, v⊤Av

)
≥ 0. Since

Cov
(
∥G⊤

i u∥22, ∥G⊤
i v∥22

)
= Cov

(
d∑

k=1

(
ukg

k
i

)2
,

d∑
l=1

(
vlg

l
i

)2)

=

d∑
k=1

d∑
l=1

Cov
((
ukg

k
i

)2
,
(
vlg

l
i

)2)
=

d∑
k=1

d∑
l=1

(ukvl)
2
Cov

((
gki
)2
,
(
gli
)2)

.

If Cov
((
gki
)2
,
(
gli
)2) ≥ 0, for k, l ∈ [d], Cov

(
∥G⊤

i u∥22, ∥G⊤
i v∥22

)
≥ 0. If k = l, then

Cov
((
gki
)2
,
(
gki
)2)

= Var
((
gki
)2) ≥ 0.

Now we consider the case k ̸= l. Without loss of generality, we assume that k < l. Since Gi follows
a d-variate normal distribution with zero mean,

(
gki , g

l
i

)
follows a bivariate normal distribution with

zero mean:

(gki , g
l
i) ∼ N2

(
0,

(
Σkk Σkl

Σlk Σll

))
.

To simplify the proof, we temporarily drop the i from (gki , g
l
i) and let σ2

1 = Σkk, σ2
2 = Σll and the

correlation coefficient of gki and gli be ρ. Then, Σkl = Σlk = ρσ1σ2.

Cov
((
gk
)2
,
(
gl
)2)

= E
[(
gk
)2 (

gl
)2]− E

[(
gk
)2]E [(gl)2]

= E
[(
gk
)2 (

gl
)2]−Var

[
gk
]
Var

[
gl
]

= E
[(
gk
)2 (

gl
)2]− σ2

1σ
2
2 .

(8)

It remains to compute E
[(
gk
)2 (

gl
)2]

. Based on the law of total expectation, we have

E
[(
gk
)2 (

gl
)2]

= E
[
E
[(
gk
)2 (

gl
)2∣∣∣gk]] = E

[(
gk
)2 E [(gl)2∣∣∣gk]] . (9)

Based on Ross (2010, Example 5c in Chapter 6), the distribution of gl conditional on gk = a follows
a normal distribution

gl|gk = a ∼ N
(
ρ
σ2
σ1
a, (1− ρ2)σ2

2

)
.
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Thus, we find

E
[(
gl
)2∣∣∣gk = a

]
= Var

[
gl
∣∣gk = a

]
+ E

[
gl
∣∣gk = a

]2
= (1− ρ2)σ2

2 +

(
ρ
σ2
σ1
a

)2

.

Then we have

E
[(
gl
)2∣∣∣gk] = (1− ρ2)σ2

2 +

(
ρ
σ2
σ1
gk
)2

. (10)

Plugging (10) into (9), we can have

E
[(
gk
)2 (

gl
)2]

= E

[(
(1− ρ2)σ2

2 +

(
ρ
σ2
σ1
gk
)2
)(

gk
)2]

= (1− ρ2)σ2
2E
[(
gk
)2]

+

(
ρ
σ2
σ1

)2

E
[(
gk
)4]

= (1− ρ2)σ2
2σ

2
1 +

(
ρ
σ2
σ1

)2 (
3σ4

1

)
= σ2

1σ
2
2 + 2ρ2σ2

1σ
2
2 .

(11)

Substituting (11) into (8), we obtain

Cov
((
gk
)2
,
(
gl
)2)

= E
[(
gk
)2 (

gl
)2]− σ2

1σ
2
2 = 2ρ2σ2

1σ
2
2 ≥ 0.

This completes the proof for part (i). To prove part (ii), note that the Kronecker form of
Cov(u⊤Au, v⊤Av) is

Cov(u⊤Au, v⊤Av) = (u⊗ u)⊤Cov(vec(A))(v ⊗ v).

Here, Cov(vec(A)) = m[Σ ⊗ Σ][Id2 + C] (Christensen, 2015) and C is the commutation matrix,
defined as

C =

d∑
k=1

d∑
l=1

(el ⊗ ek)(ek ⊗ el)⊤.

According to Christensen (2015), the matrix [Σ ⊗ Σ][Id2 + C] is positive definite if Σ is positive
definite. Since we have Σ is positive definite, then Cov(vec(A)) = m[Σ⊗Σ][Id2+C] is also positive
definite. Then there exist B ∈ Sd2

++ such that Cov (vec(A)) = BB. The correlation coefficient ρ is
computed as follows

ρ =
Cov(u⊤Au, v⊤Av)√
Var(u⊤Au)Var(u⊤Au)

=
(u⊗ u)⊤Cov(vec(A))(v ⊗ v)√

(u⊗ u)⊤Cov(vec(A))(u⊗ u)(v ⊗ v)⊤Cov(vec(A))(v ⊗ v)

=
(B(u⊗ u))⊤ (B(v ⊗ v))
∥B(u⊗ u)∥2∥B(v ⊗ v)∥2

.

By Cauchy-Schwarz inequality, ρ = 1 if and only if B(u⊗u) = λB(v⊗ v), λ > 0. Since B ∈ Sd2

++,
we have

B(u⊗ u) = λB(v ⊗ v)⇔ u⊗ u = λ(v ⊗ v).
Note that u⊗ u = vec(uu⊤). Thus, uu⊤ = λvv⊤ and u⊤u = λv⊤v. Consider that

λ∥v∥22∥u∥22 = ∥u∥42 = u⊤uu⊤u = u⊤(λvv⊤)u = λ(v⊤u)2.

Therefore, we have (v⊤u)2 = ∥v∥22∥u∥22. By Cauchy-Schwarz inequality, we have u = kv, for
k ∈ R. Since u, v ∈ Rd\{0}, we have k ̸= 0.

The proof of Theorem 3.2 relies on the following auxiliary result which asserts the distributional
form of the difference of two Gamma random variables.
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Theorem B.2 (Difference of correlated Gamma distributions (Holm & Alouini, 2004, Theo-
rem 6)). Let Z1 ∼ Γ(α, β1) and Z2 ∼ Γ(α, β2) be two correlated Gamma random vari-
ables, where (α, β) is the shape-scale parameterization. Suppose that the correlation coefficient
ρ = Cov(Z1, Z2)/

√
Var(Z1)Var(Z2) ∈ [0, 1). The difference ∆ = Z1 − Z2 has the probability

density function

∀δ ∈ R\{0} : f∆(δ) =
|δ|α+ 1

2

Γ(α)
√
π
√
β1β2(1− ρ)

(
1

(β1 + β2)2 +−4β1β2ρ

) 2α−1
4

exp

(
δ
2

1− ρ

(
1

β2
− 1

β1

))
Kα− 1

2

(
|δ|
√
(β1 + β2)2 − 4β1β2ρ

2β1β2(1− ρ)

)
,

where Kα− 1
2

denotes the modified Bessel function of the second kind and order α− 1
2 .

We are now ready to prove Theorem 3.2.

Proof of Theorem 3.2. Because P ∼ Wd(m,Σ), let σ2
i = (xi − x0)⊤Σ(xi − x0), we have (xi −

x0)
⊤A(xi−x0) ∼ σ2

i χ
2
m or equivalently (xi−x0)⊤A(xi−x0) ∼ Γ(k = m

2 , θ = 2σ2
i ), where (k, θ)

is the shape-scale parameter of the Gamma distribution. Similarly, we have (xj −x0)⊤A(xj −x0) ∼
Γ(k = m

2 , θ = 2σ2
j ). The correlation of (xi − x0)⊤A(xi − x0) and (xj − x0)⊤A(xj − x0) can be

computed as

ρ =
Cov((xi − x0)⊤A(xi − x0), (xj − x0)⊤A(xj − x0))√
Var((xi − x0)⊤A(xi − x0))Var((xj − x0)⊤A(xj − x0))

.

By the property of Chi-square distribution, we have Var((xi − x0)
⊤A(xi − x0)) = 2mσ4

i and
Var((xj − x0)⊤A(xj − x0)) = 2mσ4

j . Let zi = xi − x0 and zj = xj − x0. The covariance is
calculated as follows:

Cov(z⊤i Azi, z
⊤
j Azj) = Cov(

d∑
k1,k2=1

Ak1,k2
zi,k1

zi,k2
,

d∑
l1,l2=1

Al1,l2zj,l1zj,l2)

=

d∑
k1,k2=1

d∑
l1,l2=1

zi,k1zi,k2zj,l1zj,l2Cov(Ak1,k2 , Al1,l2).

According to Christensen (2015), the covariance matrix of P ∼ Wd(Σ,m) has a Kronecker form,
i.e. Cov(Vec(A)) = m[Σ ⊗ Σ][Id2 + C]. Using this result, we can write Cov(z⊤i Azi, z

⊤
j Azj) =

m[zi ⊗ zi]⊤[Σ⊗ Σ][Id2 + C][zj ⊗ zj ]. Thus, we have

ρ =
[zi ⊗ zi]⊤[Σ⊗ Σ][Id2 + C][zj ⊗ zj ]

2σ2
i σ

2
j

.

Let ∆ = z⊤i Azi − z⊤j Azj . Considering Fact B.1, where zi and zj are non-parallel vectors, we can
establish that ρ ∈ [0, 1), allowing us to apply Theorem B.2. This theorem enables us to determine that
the distribution of ∆ adheres to the type II McKay distribution (Holm & Alouini, 2004), characterized
by the following parameters:

a =
m− 1

2
, b =

8σ2
i σ

2
j (1− ρ)√

4(σ2
i − σ2

j )
2 + 16σ2

i σ
2
j (1− ρ)

, c = −
2(σ2

i − σ2
j )√

4(σ2
i − σ2

j )
2 + 16σ2

i σ
2
j (1− ρ)

.

Let E0 = (1−c2)a+1
2√

π2aba+1Γ(a+ 1
2 )

. The probability γij = P(⟨A,Mij⟩ ≤ 0) can be expressed as follows:

γij = P(⟨A,Mij⟩ ≤ 0) =

∫ 0

−∞
f∆(δ)dδ

= E0

∫ 0

−∞
|δ|a exp

(
−δ c

b

)
Ka

(
|δ|
b

)
dδ

= E0

∫ ∞

0

δa exp
(
δ
c

b

)
Ka

(
δ

b

)
dδ.
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The solution of
∫∞
0
δa exp(δ c

b )Ka(
δ
b )dδ can be found in Holm & Alouini (2004, Appendix 2):∫ ∞

0

xµ−1 exp(−ηx)Ka(βx)dx =

√
π(2β)a

(η + β)µ+a

Γ(µ+ a)Γ(µ− a)
Γ(µ+ 1

2 )

2F1

(
µ+ a, a+

1

2
;µ+

1

2
;
η − β
η + β

)
,

where µ > |a| and η+ β > 0. To compute the integral, we can assign the values µ = a+1, η = − c
b ,

and β = 1
b . Then we verify if they satisfy the required conditions. Since m ≥ 2, a is always positive,

which means µ = a+ 1 > |a|. The condition 0 ≤ ρ < 1 implies that b > 0. Additionally, we have
0 < |c| < 1. Therefore, we can conclude that η + β = − c

b +
1
b = 1−c

b > 0. Hence, the conditions
for µ, η, and β are satisfied.

Solving the integral, we obtain:∫ ∞

0

δ(a+1)−1 exp
(
−
(
−c
b

)
δ
)
Ka

(
1

b
δ

)
dδ =

√
π(2 1

b )
a

(−c+1
b )2a+1

Γ(2a+ 1)Γ(1)

Γ(a+ 3
2 )

2F1

(
2a+ 1, a+

1

2
; a+

3

2
;
−c− 1

−c+ 1

)
.

Plugging the result back, we obtain:

γij =

(
1 + c

1− c

)a+ 1
2 Γ(2a+ 1)Γ(1)

Γ(a+ 3
2 )Γ(a+

1
2 )

2F1

(
2a+ 1, a+

1

2
; a+

3

2
;−1 + c

1− c

)
.

This completes the proof.

C DETAILS OF ALGORITHM AND PROOFS OF SECTION 4

C.1 PROOF OF PROPOSITION 4.3

Proof of Proposition 4.3. Observe that the identity matrix I is a feasible solution to problem (4). The
minimal solution of problem (4) is determined only by the feasible decisions Σ with an objective
value of at most ℓ(I). All such solutions Σ should satisfy

−mt−1

m
log det(Σ) + Tr[(Σ−1

t−1 + τκRijMij)Σ] = ℓ(Σ) ≤ ℓ(I) = Tr[(Σ−1
t−1 + τκRijMij)],

where the first equality follows from the definition of ℓ, while the second equality follows because
log det(I) = 0. Rearranging the above inequality, we have

−mt−1

m
log det(Σ) ≤ Tr[(Σ−1

t−1 + τκRijMij)(I − Σ)]

≤ ∥Σ−1
t−1 + τκRijMij∥F ∥I − Σ∥F

≤ ∥Σ−1
t−1 + τκRijMij∥F (∥I∥F + ∥Σ∥F )

≤ ∥Σ−1
t−1 + τκRijMij∥F (

√
d+ d),

where the second inequality follows from Cauchy-Schwarz, and the last inequality follows from that
denoting by {λi}i≤d the eigenvalues of the matrix Σ, we have

∥Σ∥F =
√
Tr[ΣΣ] =

√√√√ d∑
i=1

λ2i ≤

√√√√( d∑
i=1

λi

)2

= d.

Since
∑d

i=1 λi = d and λi > 0, therefore λi ≤ d, i = 1, 2, . . . d. Setting λmin = min1≤i≤d λi, we
have

−mt−1

m
log(dd−1λmin) ≤ −

mt−1

m
log(Πd

i=1λi) = −
mt−1

m
log det(Σ) ≤ ∥Σ−1

t−1+τκRijMij∥F (
√
d+d).

By rearranging the inequality above, we have λmin ≥ ε, which implies Σ ⪰ εI . The statement above
shows that adding the extra constraint Σ ⪰ εI has no impact on the optimal value and the optimal
solution of problem (4) and we can transform problem (4) into the equivalent form (5).
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C.2 PROOF OF LEMMA 4.4

Proof of Lemma 4.4. We have

∥S − Σ∥2F = ∥V diag(s)V ⊤ − Σ∥2F = ∥diag(s)− V ⊤ΣV ∥2F ,

thus, we can rewrite the projection operator as

Proj(S) = argmin{∥diag(s)− V ⊤ΣV ∥2F : Σ ∈ Sd+, Σ ⪰ εI, Tr[Σ] = d}.

Let Σ⋆ be the minimizer of the above optimization problem. We can observe that the minimum
occurs when (V ⊤Σ⋆V )ij = 0, i ̸= j, therefore V ⊤Σ⋆V is diagonal. In other words, Σ⋆ shares the
same eigenbasis with S and we can parametrize Σ⋆ = V diag(σ⋆)V ⊤, where σ⋆ ∈ Rd is a vector
containing the eigenvalues of Σ⋆. Moreover, σ⋆ solves

min ∥σ − s∥22
s. t. σ ∈ Rd

+, σ ≥ ε, σ⊤1 = d,
(12)

in which the constraints of the above vector-optimization problem are obtained by rewriting the
corresponding semidefinite constraints Σ ⪰ εI and Tr[Σ] = d using the eigenvalues.

Problem (12) is similar to the projection onto the simplex problem (6), which is recited here for
convenience:

min ∥λ− (s− ε1)∥22
s. t. λ ≥ 0, λ⊤1 = (1− ε)d.

Let λ⋆ be the optimal solution to (6), then the following relationship holds: σ⋆ = λ⋆ + ε1. To see
this, note that λ⋆ + ε1 is a feasible solution to (12) and σ⋆ − ε1 is a feasible solution to (6). We have

∥σ⋆ − s∥22 ≤ ∥λ⋆ + ε1− s∥22 ≤ ∥σ⋆ − ε1− (s− ε1)∥22 = ∥σ⋆ − s∥22.

Thus, λ⋆ + ε1 is also an optimal solution to (12). Since the set {λ : λ ≥ ε, λ⊤1 = d} is convex and
closed, the projection onto this set is unique. Therefore, σ⋆ = λ⋆+ε1. This completes the proof.

C.3 PROOF OF LEMMA 4.5

Proof of Lemma 4.5. The Hessian of ℓ is

∇2ℓ(Σ) =
mt−1

m
Σ−1 ⊗ Σ−1.

For any Σ ∈ D, its eigenvalues lie in the interval [ε, d]. Consider the eigendecomposition of
Σ = UΛU⊤, where Λ is a diagonal matrix containing the eigenvalues of Σ. We have

∇2ℓ(Σ) =
mt−1

m
(UΛ−1U⊤)⊗ (UΛ−1U⊤)

=
mt−1

m
(U ⊗ U)(Λ−1 ⊗ Λ−1)(U⊤ ⊗ U⊤).

Observe that
1

d2
I ⪯ Λ−1 ⊗ Λ−1 ⪯ 1

ε2
I.

Thus,
mt−1

md2
I ⪯ ∇2ℓ(Σ) ⪯ mt−1

mε2
I.

Therefore, ℓ is strongly convex and has Lipschitz gradient on D.

C.4 DETAILS OF ALGORITHM

Consider the simplex {λ ∈ Rd : λ ≥ 0, λ⊤1 = (1 − ε)d}, where ε is a small positive value.
Building on previous work by Held et al. (1974), we present Algorithm 3 for efficiently computing
the projection onto the simplex. The algorithm has a complexity of O(d log d).
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Algorithm 2 Projection onto D
Input: Input S ∈ Sd, ε

Conduct eigendecomposition of S = V ΛV ⊤.
λ← diagonal(Λ), y ← λ− ε1.
Obtain the projection y⋆ of y onto simplex using Algorithm 3.
λ⋆ ← y⋆ + ε1, Λ⋆ ← diag(λ⋆), Σ← V Λ⋆V ⊤.

Output: Σ

Algorithm 3 Projection onto simplex {λ ∈ Rd : λ ≥ 0, λ⊤1 = (1− ε)d}
Input: x ∈ Rd

Sort x into u: u1 ≥ u2 ≥ · · · ≥ ud.
Set M = max1≤k≤d

{
k :
(∑k

i=1 ui − (1− ε)d
)
/k < uk

}
.

Set η =
(∑M

i=1 ui − (1− ε)d
)
/M .

For i = 1, 2, . . . , d, set zi = max{xi − η, 0}.
Output: z

D ADDITIONAL EXPERIMENTS

D.1 DATASET

We conduct our experiments on three real-world datasets: German (Dua & Graff, 2017), Bank (Dua
& Graff, 2017), and Student (Cortez & Silva, 2008) dataset. Table 3 reports the features of each
dataset. For synthetic dataset, we sample a tuple (x1, x2) from a uniform distributions U(−2, 4) and
U(−2, 7), respectively. Subsequently, we compute f(x1) = 1 + x1 + 2x21 + x31 − x41. We set the
label y = 1 if x2 ≥ f(x1), otherwise we set y = 0.

Table 3: The features of real-world datasets.

Dataset Features

German status, duration, credit amount, personal status, age
Bank age, education, balance, housing, loan, campaign, previous, outcome

Student age, study time, famsup, higher, internet, health, absence, G1, G2

D.2 CLASSIFIER

In this section, we report the accuracy and AUC of the MLP classifiers across the four datasets in
Table 4.

Table 4: Accuracy and AUC of the MLP classifier.

Dataset Synthetic German Bank Student

Accuracy 0.97 0.72 0.88 0.93
AUC 0.99 0.62 0.66 0.97

D.3 COMPARISON WITH GRADIENT-BASED METHOD

We have conducted a comparative analysis between our proposed Bayesian PR method and the
non-graph-based methods, Wachter and DiCE. The results, as presented in Table 5 and Table 6, reveal
that our proposed approach demonstrates comparable performance to the gradient-based methods
while achieving superior results on real-world datasets such as German, Bank, and Student.
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Table 5: Comparison of cost and validity between Bayesian PR and non-graph-based method DiCE
and Wachter using Mahalanobis distance as the true cost.

Method Synthetic German Bank Student
Cost Validity Cost Validity Cost Validity Cost Validity

DiCE 0.01 ± 0.01 1.00 ± 0.00 0.17 ± 0.19 1.00 ± 0.00 2.35 ± 0.45 1.00 ± 0.00 0.44 ± 0.57 1.00 ± 0.00
Wachter 0.002 ± 0.004 1.00 ± 0.00 0.11 ± 0.08 1.00 ± 0.00 0.55 ± 0.28 1.00 ± 0.00 0.41 ± 0.28 1.00 ± 0.00

Bayesian PR 0.09 ± 0.06 1.00 ± 0.00 0.09 ± 0.78 1.00 ± 0.00 0.54 ± 0.31 1.00 ± 0.00 0.39 ± 0.23 1.00 ± 0.00

Table 6: Comparison of cost and validity between Bayesian PR and non-graph-based method DiCE
and Wachter using ℓ1 norm as the true cost.

Method Synthetic German Bank Student
Cost Validity Cost Validity Cost Validity Cost Validity

DiCE 0.10 ± 0.04 1.00 ± 0.00 0.21 ± 0.22 1.00 ± 0.00 3.23 ± 1.15 1.00 ± 0.00 0.53 ± 0.95 1.00 ± 0.00
Wachter 0.04 ± 0.03 1.00 ± 0.00 0.15 ± 0.11 1.00 ± 0.00 0.85 ± 0.44 1.00 ± 0.00 1.07 ± 0.75 1.00 ± 0.00

Bayesian PR 0.10 ± 0.67 1.00 ± 0.00 0.12 ± 0.09 1.00 ± 0.00 0.81 ± 0.43 1.00 ± 0.00 0.96 ± 0.57 1.00 ± 0.00

D.4 POSTERIOR LOSS

Figure 3 shows a sample of loss ℓ(Σ) for each dataset. We perform the question selection for
T = 5 sessions. Given the optimum degree of freedom m, we perform the posterior update for 1000
iterations and plot the results. The figure shows that the losses converge after 1000 iterations.
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Figure 3: The posterior-update loss ℓ(Σ) given the optimum degree of freedom m for each dataset.
We plot the loss for different numbers of questions T .

D.5 RISK MEASUREMENT

In Figures 4 to 7, we present histograms illustrating the Mahalanobis distances for each dataset based
on the posterior distribution PT when T = 10, with varying values of κ (+∞, 1, 5, and 10). For each
pair of x0 and xr, we generate 1000 samples of A from PT and calculate the Mahalanobis distance
between x0 and xr for each sample. These histograms offer a visual representation of the distribution
of these sampled distances. Additionally, we include statistics such as the mean, standard deviation,
and the true Mahalanobis distance computed using A0. Notably, as T increases, the means tend to
converge closer to the true cost values for all datasets and across all values of κ, accompanied by
narrower standard deviations, demonstrating the effectiveness of our framework even with finite κ.
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Figure 4: The histogram of Mahalanobis distances based on the posterior distribution for all datasets
when κ = +∞.
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Figure 5: The histogram of Mahalanobis distances based on the posterior distribution for all datasets
when κ = 1.
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Figure 6: The histogram of Mahalanobis distances based on the posterior distribution for all datasets
when κ = 5.
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Figure 7: The histogram of Mahalanobis distances based on the posterior distribution for all datasets
when κ = 10.
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