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ABSTRACT

Visual and semantic concepts inherently organize themselves in a hierarchy, where
a higher-level textual concept, e.g., Animal, entails all images containing, e.g.,
Cat. Despite being intuitive, conventional visual recognition systems strive to
establish single-level correspondence between images and semantic concepts, and
do not explicitly capture the hierarchical relationships that exist. We present HVSA
to probe multi-level semantic information, from fine-grained to fully abstracted,
within the tree-shaped hierarchy to realize structural visual recognition. Our main
idea is to learn shared representations of images and semantic concepts in the hy-
perbolic space. Hyperbolic spaces possess suitable geometric properties to embed
tree-like data structures, thus will help capture the underlying hierarchy. While
it is challenging to acquire structure alignment of the two modalities, we achieve
the goal through a joint optimization process guided by two primary objectives.
First, we propose hierarchy-agnostic visual-semantic alignment, which leverages
a Gaussian mixture VAE to establish a “flat” representation space shared by both
modalities. Second, we introduce hierarchy-aware semantic learning to cultivate a
“hierarchical” feature space for semantic concepts solely through hyperbolic metric
learning. These two distinct objectives operate on different granularity and synergis-
tically contribute to hierarchical alignment of visual-semantic features, ultimately
enhancing structural image understanding. HVSA shows high efficacy and gener-
ality, as evidenced by its notable performance improvements across six datasets,
for both image-level (i.e., ImCLEF07A, ImCLEF07D and tieredImageNet-H) and
pixel-level (i.e., Cityscapes, LIP, and PASCAL-Person-Part) visual recognition.
Our code shall be released.

1 INTRODUCTION

Hierarchical semantic concepts occur naturally and frequently in the real world. A huge spectrum
of applications are characterized by hierarchical relationships between classes, ranging from text
categorization (Dumais & Chen, 2000; Rousu et al., 2005), to functional genomics (Guan et al., 2008;
Barutcuoglu et al., 2006). These problems share the common property that a class can be abstracted
by more general classes at separate levels of a tree hierarchy.

As humans, we can easily organize semantic into a meaningful hierarchy, e.g., Animal→Dog→
Hunting Dog or Animal→Okapi. This inductive bias enables us to reasonably interpret, e.g.,
images of Okapi, as belonging to the broader category of Animal, since we, non-mammal experts,
might have no any sense of how a rare animal Okapi looks like. Hierarchical representations can not
only properly handle such open-world cases, but also show the potential to improve interpretability
(Nauta et al., 2021) and enable better exploratory data analysis of large datasets (Deng et al., 2009).

Many efforts have been devoted to accommodate the underlying hierarchical taxonomy into deep
models for structural visual recognition, to yield structured predictions that conform to the taxonomy.
One line of work imposes the inherent logical constraints of concepts to the losses of neural networks
(Giunchiglia & Lukasiewicz, 2020; Li et al., 2020; Wehrmann et al., 2018; Chen et al., 2022), which
can enhance prediction accuracy but doesn’t guarantee consistency in predictions, especially during
inference. Another set of methods (Bi & Kwok, 2011; Chen et al., 2020; Desai et al., 2023) aims to
represent labels as low-dimensional vectors. While vector-based approaches offer interpretability, they
are limited because these embeddings only capture correlations between labels and don’t effectively
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learn the hierarchical structure among labels. Furthermore, methods adapting network architectures
(Ahmed et al., 2016; Wang et al., 2021) to accommodate hierarchical multi-label recognition tasks
show promising results with a significant cost to the model’s generalization capability.

In this work, we propose a novel approach called Hyperbolic Visual-Semantic Alignment (HVSA).
In our task setting, labels are organized hierarchically based on a given label taxonomy rather than
being mutually exclusive. Benefiting from hyperbolic wrapped normal (Mathieu et al., 2019; Nagano
et al., 2019), we model more explicitly visual-semantic interactions, with the hierarchical structure
shaped by hyperbolic geometrics. We assume that these embeddings are generated from a shared
multimodal latent space for images and labels. We determine the optimal configuration of the
multimodal latent space with two insights: (1) each visual entity (e.g., image, pixel) is represented
through a composition of multiple semantic labels, and (2) these labels are correlated in nature,
collectively forming a tree-shaped hierarchy. To address (1), we use KL divergence to align the latent
distributions of images and labels, which leads to a hierarchy-agnostic visual-semantic alignment
component for multimodal alignment. Furthermore, to address (2), we propose hierarchy-aware
semantic learning to interpret the hierarchical structure of semantic concepts defined in the label
taxonomy. Unlike previous approaches that focus on complex network designs, we start from the
perspective of embedding space. We believe that a pair of labels with superclass-subclass relationships
have similar or even overlapping embeddings. Our method uses hyperbolic entailment cones to
measure distances between categories in the embedding space. Through hyperbolic metric learning
driven by the given taxonomy, HVSA is able to build a highly hierarchical feature space for semantic
concepts.

Using the label hierarchy to guide the classification models, we are able to bridge one gap in the way
machines and humans deal with visual understanding. Extensive experiments (§5) on six datasets
verify the generalization and effectiveness of HVSA.

2 RELATED WORK

Hierarchical Visual Recognition. Considering how to learn the hierarchy of categories is a common
challenge across various machine learning application domains, including functional genomics
(Giunchiglia & Lukasiewicz, 2020), multi-label image classification (Bengio et al., 2010; He et al.,
2021), and hierarchical semantic segmentation. The focus lies in ensuring that the learned knowledge
about hierarchy aligns with the label taxonomy. As a result, a series of algorithms has been proposed:
i) Previous work (Bertinetto et al., 2020; Bilal et al., 2017; Giunchiglia & Lukasiewicz, 2020) enforces
hierarchical constraints by encoding label hierarchy in loss functions to ensure consistency between
prediction results and the class hierarchy. ii) Adapting the classifier architecture to accommodate
labels with hierarchical structures is effective (Ahmed et al., 2016; Cerri et al., 2014; 2016; Wang
et al., 2021). Their hierarchies are typically fixed and tailored for specific downstream tasks such as
classification, which limit their ability to generalize across tasks. iii) Some human parsers (Liang
et al., 2018b; Wang et al., 2019; 2020b; Zhu et al., 2018; Zhou et al., 2021) attempt to explore human
hierarchical relations, and certain methods add structured knowledge to semantic segmentation
networks. With the exploration of representation learning in embedding spaces, Learning a shared
latent space for features and labels is a common and useful idea. Methods adopting this idea typically
include modules that directly map multi-hot labels to embeddings (Yeh et al., 2017; Chen et al., 2019).
However, these approaches overlook the implicit hierarchical relationships between semantic labels.
In addition, HSSN (Li et al., 2022) proposes a general framework for both HSS network design
and training by leveraging pixel-level hierarchical reasoning and representation learning. We aim
to truly convey the hierarchical relationships between labels to the model by learning hierarchical
representations of the labels themselves.

Hyperbolic Representations Learning. Traditionally, representations are learned in Euclidean
space. However, hyperbolic space representation learning has gained recognition in the deep learning
literature for representing tree-like structures and taxonomies (Ganea et al., 2018; Law et al., 2019;
Nickel & Kiela, 2017; Sala et al., 2018), text (Tao et al., 2020), and graphs (Lou et al., 2020). The
datasets often exhibit a hierarchical structure, motivated by two key factors that make hyperbolic
representations learning a suitable choice. First, generality: the hypernym-hyponym relationship is a
natural feature of words, exemplified by WordNet (Miller et al., 1990). Hyperbolic representations
learning is widely utilized for learning word and image embeddings while preserving this property
(Ganea et al., 2018; Liu et al., 2020). Second, compositionality: hierarchies often emerge from
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the composition of basic elements. This observation has driven prior work to apply hierarchical
representations learned in hyperbolic space such as image classification (Khrulkov et al., 2020),
segmentation(Weng et al., 2021) and action recognition(Long et al., 2020). In this paper, our primary
focus is to obtain a hierarchical space through representation learning that can capture semantic
structures, and achieve structure alignment between the two modalities.

3 PRELIMINARIES OF HYPERBOLIC LEARNING

Hyperbolic Geometry & Poincaré Embeddings. Hyperbolic geometry is a non-Euclidean geome-
try with constant negative sectional curvature. A pivotal property of hyperbolic space is its exponential
volume expansion concerning a ball with radius r, in contrast to the polynomial growth exhibited in
Euclidean space. This inherent exponential growth characteristic plays a pivotal role in substantiating
the natural aptitude of hyperbolic embeddings for capturing hierarchical structures. There exist
multiple, equivalent models for hyperbolic space, and we base our approach on the Poincaré ball
model, due to its conformality and convenient parameterization. The Poincaré ball model is the
Riemannian manifold Pd=(Bd, gp), where Bd={x∈Rd : ‖x‖<1} is the open d-dimensional unit
ball equipped with the Riemannian metric tensor gp and metric distance dp:

gp(x) = 4(1− ‖x‖2)−2ge, dp(x,y) = cosh−1

(
1 + 2

‖x− y‖2

(1− ‖x‖2)(1− ‖y‖2)

)
, (1)

where ge is the Euclidean metric metric.

To be able to operate on the Poincaré ball, we use the exponential mapping, i.e., expx : Rd → Bd,
to map from Euclidean space to Poincaré ball. We can also use the logarithmic mapping, i.e.,
logx : Bd → Rd, to reverse this process. Their closed-form expressions are defined as:

expx(v) = x⊕
(

tanh

(
λx||v||

2

)
v

||v||

)
, logx(u) =

2

λx
tanh−1

(
||u− x||√
1− ||x||2

)
· u− x||u− x|| (2)

where ‖.‖,⊕ denotes the euclidean norm and Möbius addition (Ungar, 2008) respectively. In practice,
the base point x is typically set to 0 which has been found to have minimal impact on results while
simplifying the associated formulas.

Wrapped Normal. In order to parametrise distributions on the Poincaré ball, we consider one
canonical generlization of normal distributions to Riemannian manifolds, which is called wrapped
normal distribution (Mathieu et al., 2019; Nagano et al., 2019). It is defined on an arbitrary Rieman-
nian manifold as the push-forward measure obtained by mapping a normal distribution along the
exponential map expi. On the Poincaré ball, the probability density function (PDF) of the wrapped
normal with mean µ and covariance Σ is given by:

Np(z|µ,Σ) = N (gp(µ)|0,Σ)

(
dp(µ,z)

sinh(dp(u,z))

)
, (3)

where N refers to the normal distribution in Euclidean space.

4 OUR APPROACH: HYPERBOLIC VISUAL-SEMANTIC ALIGNMENT

As shown in Fig. 1, HVSA consists of two parts: hierarchy-agnostic visual-semantic alignment(§4.1)
and hierarchy-aware semantic learning(§4.2). We tackle the task of hierarchical multi-label clas-
sification in which given a label taxonomy G, a neural network F(·; θ) must learn to associate an
image X∈Rh×w×3 to L interdependent labels y ∈ {0, 1}L from the taxonomy. We describe a set of
labels {y} that have hierarchical relationships in the dataset using the tree-like hierarchical structure
T = (V,E) ⊆ G (Li et al., 2022), which consists of a set of nodes V = {v1, v2, ..., vn} denoting
semantic classes and an undirected edge E between nodes with semantic relations. An undirected
edge (vi, vj) ∈ E indicates that the class j is a superclass of label i, e.g., the relationship between
vehicle and car can be expressed as (vehicle,car). For nodes vi, vj , the semantic similarity
between vi and vj can be measured by computing the distance D(vi, vj) in T . D(vi, vj) is defined
as the shortest path between vi and vj in T and reflects the semantic proximity between them.
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Figure 1: HVSA framework consists of two parts: given a feature and a set of labels, visual feature is aligned
with mixed label distributions through hierarchy-agnostic visual-semantic alignment (§4.1). Simultaneously,
to enhance hierarchical knowledge, hierarchy-aware semantic learning (§4.2) is employed to assist semantic
concepts in hyperbolic space in adhering to hierarchical knowledge.

4.1 HIERARCHY-AGNOSTIC VISUAL-SEMANTIC ALIGNMENT

Hyperbolic Probabilistic Label Embedding. Unlike previous works (Long et al., 2020; Liu et al.,
2020; Ghadimi Atigh et al., 2021) that embed label hierarchies into hyperbolic prototypes, we model
each label in a probabilistic manner using the wrapped normal distribution. For each label l (e.g.,
person), we map its randomly-initialized label embedding fl∈Rd to a wrapped normal distribution
Np(µl,Σl). Here Σl=diag(σ2

l ), and µl∈Rd and σl∈Rd are derived from a semantic encoder (see
§4.3). In this manner, we represent each label as a unimodal Gaussian in the hyperbolic space, and
for each sample with multiple labels, its label embedding belongs to a Gaussian mixture subspace.
Formally, for a random variable z, its probability density function (PDF) is given as:

pθ(z) =
1∑L
l=1 yl

L∑
l=1

1(yl = 1)Np(z|µl,Σl), (4)

where 1(yl = 1) refers to an indicator function.

Hyperbolic Visual Embedding. Next, we learn a projection of an input image x ∈ Rh×w×3 to a
hyperbolic manifold so that we are able to compute proximity to label embedding. We achieve
this through a standard feature extractor h(·; θ) (e.g., ResNet (He et al., 2016)) with parameters θ,
followed by a visual encoder with an exponential map (Eq. 2) from the tangent space TxM to a
hyperbolic manifoldM:

x̂ = expv(x), x = h(x; θ). (5)
Here x is the representation of image x in Euclidean space, which are projected to the the hyperbolic
space, yielding x̂.

Hyperbolic Gaussian Mixture VAE. Last, we seek to align visual embedding with label embedding
to yield a shared representation space. This can be achieved based on VAE, which uses variational
inference and probabilistic modeling to learn the latent representations of data. Most VAE-based
frameworks optimize over an evidence lower bound (ELBO) (Doersch, 2016):

ELBO =

∫
M

ln
pθ(x|z)p(z)

qφ(z|x)
qφ(z|x)dM(z) = Ez∼qφ(·|x)M(·)[ln pθ(x|z)−DKL(qφ(z|x)||p(z))], (6)

Here qφ(z|x) represents the variational posterior distribution that is an approximation to the in-
tractable true posterior pθ(z|x). We use a feature extractor to obtain a standard posterior and match
it with the mixed prior distribution. However, unlike traditional VAEs, we cannot compute the KL
divergence analytically in this context. Inspired by (Shu, 2016), we approximate the KL term by:

DKL(qφ(z|x)||p(z))] ≈ ln p(zk)− ln qφ(zk|x) (7)

where zk ∼ qφ(z|x)
√
|G(·)| andG denotes the Riemannian metric. The reconstruction loss (Kingma

& Welling, 2013) is a standard negative log-likelihood with decoder parameters ϕ:
LRECON = −E

zk∼qφ(z|x)
√
|G(·)|[ln pϕ(x|zk)] (8)
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4.2 HIERARCHY-AWARE SEMANTIC LEARNING

§4.1 addresses the compositional properties of semantic concepts solely, but the learnt embedding
space cannot be guaranteed to obey the semantic hierarchy. HVSA tackles this through hierarchy-
aware semantic learning, which performs hyperbolic metric learning to reshape the semantic embed-
ding space based on the hierarchical structure defined in label taxonomy.

Hyperbolic Metric Learning. Our method is based on a max-margin loss computed in hyperbolic
space. Formally, denote {va, vp, vn} as a triplet, where va, vp, vn refer to anchor, positive and
negative nodes (i.e., categories) in T , respectively. In our design, classes with higher semantic
similarities (closer in the tree T ) to anchor are selected as positive samples, and vice versa. This
means that we have D(va, vp)<D(va, vn). Notably, our method is different from the standard triplet
loss in which positive samples come from a same class as the anchor. With a triplet {va, vp, vn}, we
formulate hyperbolic metric learning as the following max-margin loss:

LHM =
∑

(za,zp)∈P

E(za,zp) +
∑

(za,zn)∈N

max(0, γ − E(za,zn)), (9)

where za, zp, zn are feature embeddings of va, vp, vn, respectively. P and N represent sets of
anchor-positive and anchor-negative pairs, respectively. γ > 0 is a margin. The energy E(za, zn)
measures the penalty of a wrongly classified pair (va, vp), which in our case is computed as the
minimum angle required to rotate the axis of the cone at za to bring zp into the cone:

E(za,zp) = max(0,Ξ(za,zp)− ψ(za)). (10)

The aperture of the cone is ψ(za)=arcsin(K(1−||za||2)/||za||) andK is a hyper-parameter. Ξ(x, y)
computes the minimum angle between the axis of the cone at x and the vector y:

Ξ(x, y) = arccos

(
〈x, y〉(1 + ||x||2)− ||x||2(1 + ||y||2)

||x||||x− y||
√

1 + ||x||2||y||2 − 2〈x, y〉

)
(11)

Constructing Samples for Metric Learning. During metric learning, we randomly sample a set of
class triplets from T in the form {va, vp, vn}, where D(va, vp)<D(va, vn). Then, for each class,
say va, we obtain its feature embedding za by sampling from corresponding Gaussian distribution
defined in §4.1. To maintain a continuous gradient during the sampling process, we apply the
reparameterization trick (Kingma & Welling, 2013; Mathieu et al., 2019). We first sample a random
variable ε∼N (0, 1), and then obtain the embedding by: za=µva + εσva .

4.3 DETAILED NETWORK ARCHITECTURE

Network Structure. The visual encoder is an MLP with 3 hidden layers of sizes [512, 512, 256],
while the semantic encoder has 2 hidden layers of sizes [512, 256]. d is set to 512 by default.

Model Prediction. To compute predictions, the hyperbolic visual feature of each input image is
first transformed into Euclidean space via a logarithm mapping layer (c.f. Eq. 2). Then, the feature
is projected into a 512-dimensional space through a linear projection layer. Finally, the prediction
score of each category is determined by the inner product between the visual feature and the label
embedding of corresponding category.

Overall Loss. Our training loss L is a combination of a classification loss LCLS, the KL divergence
DKL (Eq. 7), the reconstruction loss LRECON (Eq. 8), as well as LHM for hyperbolic metric learning
(Eq. 9) for structural visual recognition, we combine them as follows:

L = LCLS + αLHM + β(DKL + LRECON), (12)

where the coefficients are empirically set as α=0.2 and β=4. Concretely, for image classification
tasks, we use cross-entropy loss as LCLS, while for segmentation, focal loss (Lin et al., 2017) is used.

5 EXPERIMENT

5.1 EXPERIMENTAL SETUP

Datasets. We evaluate HVSA on total six standard benchmark datasets (§B.1). ImCLEF07A and
ImCLEF07D (Dimitrovski et al., 2011) are for validating HVSA in hierarchical classification tasks.
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Table 1: Comparison of performance and consistency on ImCLEF07A and ImCLEF07D.
BoxE MVM MHM MBMDataset Metric HVSA (Abboud et al., 2020) (Wang et al., 2018) (Chen et al., 2020) (Patel et al., 2022)

ImCLEF07A
MAP 92.21 83.71 77.14 65.29 91.45
CMAP 92.44 84.73 76.56 66.01 91.73
CV 3.18 12.73 23.02 4.75 5.65

ImCLEF07D
MAP 90.61 87.95 88.49 75.72 89.49
CMAP 91.42 88.93 86.89 76.98 89.99
CV 5.71 11.93 10.72 7.52 7.16

A large dataset TieredImageNet-H (Bertinetto et al., 2020) containing 608 categories is used to verify
that the exponential growth of the capacity of the hyperbolic space is conducive to the hierarchical
classification of large-scale labels. Additionally Cityscapes (Cordts et al., 2016), a commonly used
urban scene analysis dataset, is used to demonstrate the performance of our model in pixel-level
classification tasks. The LIP (Liang et al., 2018a) and PASCAL-Person-Part (Xia et al., 2017) datasets
are employed to verify the efficacy of HVSA in human parsing task, and in cases of small-scale data.

Implementation Details. Following MBM (Patel et al., 2022), we trained for 600 epochs on
ImCLEF07A and ImCLEF07D using Adam as the optimizer with learning rate 1e-4 and batch size 8.
For TieredImageNet-H, we adopt ResNet-18 pretrained on the ImageNet, using the SGD optimizer
with learning rate 0.01 and batch size 4. Additionally, the images were cropped to 224x224 pixels,
and the training was conducted for 100k iterations. For Cityscapes, LIP and PASCAL-Person-Part, we
set hyper-parameters for training, following (Wang et al., 2019; Zhao et al., 2017; Zhang et al., 2020a;
Li et al., 2022). All backbones are initialized by pre-trained parameters on ImageNet-1K (Deng et al.,
2009) and the remaining layers are randomly initialized. For data preparation, following (Ruan et al.,
2019; Wang et al., 2019), we use standard data augmentation techniques, flipping in horizon and
random scaling with a factor in [0.5, 2.0]. We adopt the standard SGD solver as the optimizer with a
momentum 0.9 and weight decay of 1e−4 for segmentation and 5e−4 for classification. In addition,
we train 80K iterations for Cityscapes, with a batch size of 8 and a training crop size of 512×1024.
For PASCAL-Person-Part and LIP, we respectively train models for 80K and 120K iterations with
batch size 16 and crop size 480×480. In the initial training stages, the shared embedding space quality
is suboptimal, and large learning rate might lead to model divergence. Therefore, we begin with a
warm-up phase. Furthermore, our learning rate follows the cosine annealing policy (Loshchilov &
Hutter, 2016) with initial value of 2e-4 and range is [0, 1e-3].

Metrics. For image classification, we employ the Mean Average Precision (MAP) as the primary
metric and additionally report Constraint Violation (CV) (Patel et al., 2022) and Mean Average
Precision post Coherence correction (CMAP) (Patel et al., 2022) on ImCLEF07A and ImCLEF07D.
As conventions, we use top-1 error on tieredImageNet-H, and the mIoU for semantic segmentation.
Following (Li et al., 2022), we also report mIoUl, the average score in each hierarchy level l on
Cityscapes, LIP and PASCAL-Person-Part. Please see §B.2 for more details.

5.2 COMPARISON WITH STATE-OF-THE-ART METHODS

ImCLEF07A and ImCLEF07D. In Table 1, we compare HVSA against three competitors on
ImCLEF07A and ImCLEF07D. Here MBM (Patel et al., 2022) is the current state-of-the-art that
utilizes the geometry and probabilistic semantics of box embeddings to model label-label interactions
in multi-label classification. The results show that HVSA yields a promising gain against MBM.
Particularly, HVSA solidly outperforms MBM in terms of CV, i.e., 3.18% vs. 5.65% on ImCLEF07A
and 5.71% vs. 7.16% on ImCLEF07D. This reveals that by addressing multimodal feature alignment
in hyperbolic space, the feature space derived from our model more closely adhere to label taxonomy.

TieredImageNet-H. HVSA also shows significant improvements in hierarchical classification of
natural images, as shown in Table 2. HVSA consistently outperforms various methods, achieving a
remarkable reduction in error rate by 1.37% compared to the previous SOTA method, SOFT-LABELS
(Bertinetto et al., 2020). Compared to medical images, this dataset contains a large number of labels,
which poses demands on the capacity of the representation space to achieve good performance. In
contrast to the polynomial-level growth of traditional Euclidean spaces, hyperbolic spaces exhibit
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Table 2: Results on the tieredImageNet (Bertinetto et al., 2020).

Method Top-1 error
BARZ&DENZLER (Barz & Denzler, 2019) 39.03

DEVISE (Frome et al., 2013) 31.69
YOLO-v2 (Redmon & Farhadi, 2017) 30.43

HXE (Bertinetto et al., 2020) 27.68
SOFT-LABELS (Bertinetto et al., 2020) 27.78

HVSA (Ours) 26.41

Table 3: Per-hierarchy comparison of mIoU on Cityscapes (Cordts et al., 2016) val. ∗ and + denote using
DeepLabV3+ (Chen et al., 2018) and OCRNet (Yuan et al., 2020) as segmentation head, respectively.

Method Year Backbone mIoU1 mIoU2

DeepLabV2 (Chen et al., 2017) CVPR17 ResNet-101 70.22 —
PSPNet (Zhao et al., 2017) CVPR17 ResNet-101 80.91 —
PSANet (Zhao et al., 2018) ECCV18 ResNet-101 80.96 —

PAN (Li et al., 2018) ArXiv18 ResNet-101 81.12 —
DeepLabV3+ (Chen et al., 2018) ECCV18 ResNet-101 82.08 92.16

DANet (Fu et al., 2019) CVPR19 ResNet-101 81.52 —
Acfnet (Zhang et al., 2019) ICCV19 ResNet-101 81.60 —
CCNet (Huang et al., 2019) ICCV19 ResNet-101 81.08 —
HANet (Choi et al., 2020) CVPR20 ResNet-101 81.82 —
HSSN∗ (Li et al., 2022) CVPR22 ResNet-101 83.02 93.31

HRNet (Wang et al., 2020a) TPAMI20 HRNet-W48 81.96 92.12
OCRNet (Yuan et al., 2020) ECCV20 HRNet-W48 82.33 92.57

HSSN+ (Li et al., 2022) CVPR22 HRNet-W48 83.37 93.92
HVSA ∗ — ResNet-101 84.31 93.97
HVSA + — HRNet-W48 84.63 94.27

exponential-level growth in spatial capacity, which enables better performance in datasets with a
large number of labels.

Cityscapes. Table 3 compares our method against twelve famous methods on Cityscapes val.
Despite that the dataset has a relatively simple semantic hierarchy, the evaluation results demonstrate
that our method achieves 84.31%/93.97% and 84.63%/94.27% at two different evaluation levels
over the DeepLabV3+ (Chen et al., 2018) and OCRNet (Yuan et al., 2020), respectively. It performs
consistently better than the previous SOTA, i.e., HSSN+, that addresses hierarchical learning in
Euclidean space. In addition, we highlight that HVSA is superior to HSSN+ in that it does not rely
on label taxonomy during inference. The results also confirm the strong generalizability of HVSA.

LIP. The quantitative comparison results with sixteen methods on LIP val are summarized in Table 4.
As seen, our approach consistently produces the best performance (61.94%/94.95%/98.79%/) across
the three levels. Particularly, it outperforms HSSN (Li et al., 2022) by 1.5% in terms of mIoU1.

PASCAL-Person-Part. Low data volume should pose a challenge for VAE to generate shared
representation spaces for two modalities. An interesting observation is that HVSA demonstrates
superior performance even on small datasets. Table 5 provides an evaluation on PASCAL-Person-
Part test, demonstrating the superior performance of our model (76.37%/88.94%/97.88%). No-
tably, our method outperforms the previous state-of-the-art method HSSN (Li et al., 2022) by
0.93%/0.74%/0.19% in terms of mIoU1 mIoU2 and mIoU3, respectively. These results serve as
strong evidence of the efficacy of our approach in learning shared representation spaces.

5.3 ABLATION STUDY

Analysis of Key Component. Table 6 summaries the comparative results between our full model
and ablated versions without specific key component. In the first row, a hierarchy-agnostic method
is shown and trained by focal loss LFL. The second variant is training by a Gaussian mixture VAE
without hyperbolic metric learning loss LHM . From the results, we can see that by introducing
DKL, we obtain consistent performance improvements in the four datasets across all the metrics.
This confirms the efficacy of hierarchy-agnostic visual-semantic alignment, which can generalize
well for image or pixel classification tasks. By further introducing hyperbolic metric learning loss
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Table 4: Per-hierarchy comparison of mIoU on LIP (Liang et al., 2018a) val.

Method Year Backbone mIoU1 mIoU2 mIoU3

SegNet (Badrinarayanan et al., 2017) TPAMI17 ResNet-101 18.17 — —
FCN-8s (Long et al., 2015) CVPR15 ResNet-101 28.29 — —

DeepLabV2 (Chen et al., 2017) CVPR17 ResNet-101 41.64 — —
Attention (Chen et al., 2016) CVPR16 ResNet-101 42.92 — —

MMAN (Luo et al., 2018) ECCV18 ResNet-101 46.93 — —
DeepLabV3+ (Chen et al., 2018) ECCV18 ResNet-101 52.28 83.97 88.13

CE2P (Ruan et al., 2019) AAAI19 ResNet-101 53.10 — —
BraidNet (Liu et al., 2019) ACMMM19 ResNet-101 54.42 — —
SemaTree (Ji et al., 2020) ECCV20 ResNet-101 54.73 87.12 90.78

BGNet (Zhang et al., 2020a) ECCV20 ResNet-101 56.82 — —
PCNet (Zhang et al., 2020b) CVPR20 ResNet-101 57.03 — —

CNIF (Wang et al., 2019) ICCV19 ResNet-101 57.74 91.83 95.92
HHP (Wang et al., 2020b) CVPR20 ResNet-101 59.25 93.43 97.41

HSSN (Li et al., 2022) CVPR22 ResNet-101 60.37 94.75 98.86
HRNet (Wang et al., 2020a) TPAMI20 HRNet-W48 57.23 91.21 95.53
OCRNet (Yuan et al., 2020) ECCV20 HRNet-W48 58.47 92.56 96.78

HVSA — ResNet-101 61.94 94.95 98.79

Table 5: Per-hierarchy comparison of mIoU on the test set of PASCAL-Person-Part (Xia et al., 2017). The
backbone of all models is ResNet-101 (He et al., 2016).

Method Year mIoU1 mIoU2 mIoU3

DeepLabV3+ (Chen et al., 2018) ECCV18 67.84 84.01 94.55
SPGNet (Cheng et al., 2019) ICCV19 68.36 — —

PGN (Gong et al., 2019) CVPR19 68.40 — —
CNIF (Wang et al., 2019) ICCV19 70.76 84.80 95.18
SemaTree (Ji et al., 2020) ECCV20 71.59 85.44 95.98
HHP (Wang et al., 2020b) CVPR20 73.12 86.13 96.86

BGNet (Zhang et al., 2020a) ECCV20 74.42 — —
PCNet (Zhang et al., 2020b) CVPR20 74.59 — —

HSSN (Li et al., 2022) CVPR22 75.44 88.20 97.69
HVSA — 76.37 88.94 97.88

LHM, our model yields substantial improvements, e.g., +10% on Cityscapes. This suggests that our
hierarchy-aware semantic learning is effective and essential for capturing the structure of semantic
hierarchy. The results also imply that the two components well complement with each other.

Geometric Space. Next, we validate the choice of hyperbolic space by comparing with a variant
of our model built in Euclidean space. The results are shown in Table 7. We observe that the
model with hyperbolic space is consistently better than the Euclidean baseline. It appears that the
performance gap is larger in image classification than semantic segmentation. We conjecture that
the label taxonomy in image classification is more complex (e.g., ImCLEF07A includes 96 classes,
while Cityscapes only has 19), in which cases hyperbolic geometry becomes much more important in
order to interpret the hierarchical structure.

Hyperbolic Metric Learning. Table 8 quantifies the effect of the coefficient α in LHM. The perfor-
mance steadily improves as α increases, reaching the best performance when α=0.2. Additionally,
as shown in Table 9, we compared the impact of different margins on the results. When γ = 1,
the best performance is achieved, for higher value of γ, the results drop again. This is related to
the exponential growth of the boundary expansion in hyperbolic space, which can accommodate
embeddings for more categories. However, when the value of γ is too large, it becomes hard to
properly allocate the embedding to a space position that complies with the taxonomy, leading to poor
convergence of the model.

KL Divergence. Table 10 illustrates how our model’s performance varies with the coefficient β
of DKL. Obviously, as β becomes larger, the performance gradually improves and setting β = 4.0
provides a best result. When β is relatively small, it leads to insufficient correlation between the
posterior and prior. Conversely, the learnable prior distribution will impose wrong guidance on the
posterior in the first few iterations, which leads to performance degradation.

8



Under review as a conference paper at ICLR 2024

Table 6: Key component analysis on Cityscapes and PASCAL-Person-Part.

Cityscapes PASCAL-Person-Part ImCLEF07A ImCLEF07DLHM DKL mIoU1 mIoU2 mIoU1 mIoU2 mIoU3 MAP CMAP CV MAP CMAP CV
72.51 80.44 65.41 80.54 91.25 69.21 70.34 10.07 68.95 70.41 12.47

4 74.27 83.14 67.38 82.69 92.31 77.27 78.56 9.23 74.37 77.04 9.44
4 4 84.63 94.27 76.37 88.94 97.88 92.21 92.44 3.18 90.76 91.42 5.71

Table 7: Study of geometric space of latent space on Cityscapes (Cordts et al., 2016), PASCAL-Person-Part (Xia
et al., 2017), ImCLEF07A and ImCLEF07D (Dimitrovski et al., 2011).

Geometric Cityscapes PASCAL-Person-Part ImCLEF07A ImCLEF07D
space mIoU1 mIoU2 mIoU1 mIoU2 mIoU3 MAP CMAP CV MAP CMAP CV

Euclidean 83.04 92.41 74.17 87.11 96.42 88.47 90.14 5.47 87.61 88.47 6.98
Hyperbolic 84.63 94.27 76.37 88.94 97.88 92.21 92.44 3.18 90.76 91.42 5.71

Table 8: Analysis of α for LHM on Cityscapes (Cordts et al., 2016), PASCAL-Person-Part (Xia et al., 2017),
ImCLEF07A and ImCLEF07D (Dimitrovski et al., 2011).

Cityscapes PASCAL-Person-Part ImCLEF07A ImCLEF07D
α mIoU1 mIoU2 mIoU1 mIoU2 mIoU3 MAP CMAP CV MAP CMAP CV

1.0 83.41 91.07 74.84 87.86 97.14 91.77 92.08 4.11 89.31 89.94 6.55
0.5 83.77 93.15 75.73 88.43 97.64 92.21 92.44 3.18 90.16 90.82 6.13
0.2 84.63 94.27 76.37 88.94 97.88 91.98 92.71 3.82 90.76 91.42 5.71
0.1 83.23 93.11 75.65 88.24 97.31 90.84 91.47 3.77 89.47 90.98 5.97

Table 9: Analysis of the margin γ (Eq. 9) on Cityscapes (Cordts et al., 2016), PASCAL-Person-Part (Xia et al.,
2017), ImCLEF07A and ImCLEF07D (Dimitrovski et al., 2011).

Cityscapes PASCAL-Person-Part ImCLEF07A ImCLEF07D
γ mIoU1 mIoU2 mIoU1 mIoU2 mIoU3 MAP CMAP CV MAP CMAP CV

2.0 83.94 94.03 76.12 88.14 97.76 90.48 90.76 4.44 90.23 90.94 5.97
1.0 84.63 94.27 76.37 88.94 97.88 92.21 92.44 3.18 90.76 91.42 5.71
0.5 81.06 90.34 74.01 85.97 94.43 90.71 91.05 4.59 88.37 90.11 6.37

Table 10: Analysis of β for DKL on Cityscapes (Cordts et al., 2016), PASCAL-Person-Part (Xia et al., 2017),
ImCLEF07A and ImCLEF07D (Dimitrovski et al., 2011).

Cityscapes PASCAL-Person-Part ImCLEF07A ImCLEF07D
β mIoU1 mIoU2 mIoU1 mIoU2 mIoU3 MAP CMAP CV MAP CMAP CV

5.0 83.07 92.15 75.67 86.67 96.11 90.35 91.07 3.76 89.32 90.26 6.14
4.0 84.63 94.27 76.37 88.94 97.88 92.21 92.44 3.18 90.76 91.42 5.71
3.0 83.76 93.24 74.36 85.72 96.37 91.07 91.76 3.81 89.96 90.55 6.22
2.0 83.13 92.47 73.44 85.26 95.93 88.14 89.07 4.12 86.14 87.04 6.71

6 CONCLUSION

This work proposes a solution for structural visual recognition from learning the shared representation
of images and semantic concepts in hyperbolic space, yielding a new algorithm HVSA. HVSA
leverages Gaussian mixture VAE to establish a representation space shared by two modes. Then,
the hierarchical feature space is generated by hyperbolic metric learning. Through analysis, we
confirm that HVSA’s shared hyperbolic representation space helps to capture potential hierarchies.
Its significant performance improvements and generalization capability are confirmed in a series of
image-level and pixel-level benchmark tests.
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This appendix provides theoretical proofs, additional results and experimental details for our paper –
HYPERBOLIC VISUAL-SEMANTIC ALIGNMENT FOR STRUCTURAL VISUAL RECOGNITION.

A EXPLANATION OF METHODOLOGICAL DETAILS

A.1 ENTAILMENT CONES

Due to the significant volume occupied by each concept in the embedding space, attempting to
achieve embeddings using a distance function leads to a severe problem of orthogonal overlap in the
embedding space. To address this issue, (Ganea et al., 2018) introduced the concept of Euclidean
cones which generalizes embeddings by substituting translated orthants with more flexible convex
cones. Recently, researchers have explored more general and flexible methods that do not necessarily
rely on Euclidean space and utilize cones in hyperbolic spaces to achieve the representation of
hierarchical semantics.

Euclidean Cones. For each vector x in RN , the aperture of the cone is based solely on the Euclidean
norm of the vector, ||x||, (Ganea et al., 2018) and is given by ψ(x) = arcsin(K/||x||) where K
is a hyper-parameter. The cones can have a maximum aperture of π/2. To ensure continuity and
transitivity, the aperture should be a smooth, non-increasing function. To satisfy properties mentioned
in (Ganea et al., 2018), the domain of the aperture function has to be restricted to (ε, 1] for some ε.
ε = f(K). Eq.13 computes the minimum angle between the axis of the cone at x and the vector
y. E(x, y) = max(0, Ξ(x, y) − ψ(x)) measures the cone-violation which is the minimum angle
required to rotate the axis of the cone at x to bring y into the cone.

Ξ(x, y) = arccos
(
||y||2 − ||x||2 − ||x− y||2

2 ||x|| ||x− y||

)
(13)

Hyperbolic Cones. The Poincaré ball is defined by the manifold DN = {x ∈ RN : ||x|| < 1}. The
distance between two points x, y ∈ DN and the norm are

dD(x, y) = arccosh(1 + 2(||x− y||2)/((1− ||x||2)(1− ||y||2)))

and ||x||D=dD(0, x)=2 arctanh(||x||) where we use ||.|| for Euclidean norm, 〈., .〉 for dot-product
and x̂=x/||x|| for a unit vector. The angle between two tangent vectors u, v ∈ TxDn is given by
cos(∠(u, v))=〈u, v〉/(||u|| ||v||). The aperture of the cone is ψ(x)=arcsin(K(1 − ||x||2)/||x||).
Ξ(x, y) computes the minimum angle between the axis of the cone at x and the vector y.

Ξ(x, y)=arccos

(
〈x, y〉(1+||x||2)− ||x||2(1+||y||2)

ω
√

1+||x||2||y||2−2〈x, y〉

)
(14)

E(x, y)=max(0, Ξ(x, y)−ψ(x)) measures the cone-violation which is the minimum angle required
to rotate the axis of the cone at x to bring y into the cone. ω=||x|| ||x−y||

B EXPERIMENTAL DETAILS

B.1 DATASETS

We conduct extensive experiments on six datasets:

• ImCLEF07A and ImCLEF07D (Dimitrovski et al., 2011) represent medical X-ray images anno-
tated with parts of the human anatomy and orientations of body parts. These two datasets consist
of 7,000 training images, 3,000 validation images, and 1,006 test images each. The IMCLEF07A
dataset encompasses a total of 96 different labels, while the IMCLEF07D dataset includes 46 labels,
making it suitable for more challenging multi-label classification tasks.

• TieredImageNet-H (Bertinetto et al., 2020) is an extension of the TieredImageNet, designed to
evaluate the performance of models in handling multi-label classification tasks with hierarchies of
13, covering 608 classes. The label taxonomy is illustrated in Fig. 2. This dataset comprises over
600,000 images, with 450,000 images in training set, 30,000 images in validation set, and 120,000
images in test set.

• Cityscapes (Cordts et al., 2016) is an urban scene parsing dataset with 5k finely annotated images,
which contains 2,975/500/1,524 in train/val/test splits, respectively. The segmentation performance

14



Under review as a conference paper at ICLR 2024

is evaluated over 19 fine-grained concepts and 6 super-classes. We illustrate its label taxonomy in
Fig. 3 (left).

• LIP (Liang et al., 2018a) is a large-scale human body parsing dataset including 50,462 single-
person images with intimate pixel-wise annotations of 19 part categories. Holding by (Wang et al.,
2019; 2020b; Li et al., 2022), the 19 subclasses are further reduced to two classes (upper-body
and lower-body) and eventually to the human-body (see Fig. 3 (middle)). The images are
divided into 30,462/10,000/10,000 images for train/val/test.

• PASCAL-Person-Part (Xia et al., 2017) contain 1,716 and 1,817 images in train and test split,
respectively. It provides careful pixel-wise annotations for six body parts and has a similar hierarchy
with LIP. The label taxonomy is shown in Fig. 3 (right).

All

Figure 2: Illustration of label taxonomy in TieredImageNet-H (Bertinetto et al., 2020).
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All

Figure 3: Illustration of label taxonomy in Cityscapes (left) (Cordts et al., 2016) , LIP (middle) (Liang et al.,
2018a) and PASCAL-Person-Part (right) (Xia et al., 2017).

Table 11: Analysis of training/inference cost on Cityscapes (Cordts et al., 2016) val. (See §B.3)

Method mIoU1 mIoU2 # Param (M) FLOPs FPS
DeepLabV3+ (Chen et al., 2018) 82.08 92.16 62.7 83.40G 8.34

HSSN (Li et al., 2022) 83.02 93.31 64.3 87.39G 6.38
HVSA 84.31 93.97 68.1 89.11G 6.11

B.2 METRICS

For image classification, we use top-1 error to fairly evaluate performance on tieredImageNet-H. And
we employ the Mean Average Precision (MAP) metric to ensure a fair comparison. Additionally, we
provide the evaluation results of Constraint Violation (CV) (Patel et al., 2022) and Mean Average
Precision post Coherence correction (CMAP) (Patel et al., 2022) on ImCLEF07A and ImCLEF07D.
Constraint violation is a punitive metric that employs latent label taxonomy to assess label prediction
consistency. Lower CV values indicate higher predictive classification consistency. For Mean Average
Precision post Coherence correction, given a complete label taxonomy, coherence can be imposed
post-hoc by applying a modification. The CMAP value close to MAP value suggests that the model
better captures the latent label hierarchy in the label space. Formally, CV and CMAP are defined as:

• Constraint Violation. Constraint Violatio serves as a penalizing metric, aiming to quantify the
degree to which the label scores generated by the model deviate from the partial ordering of the
latent label taxonomy, irrespective of the true labels associated with the instances.

CV =
1

|D||T |

|D|∑
k=1

∑
(vi,vj)∈T

1(s
(k)
i − s

(k)
j < 0) (15)

where |D| represents the quantity of samples, and s denotes the confidence score.

• Mean Average Precision post Coherence correction. In the context of a given complete label
taxonomy G, post hoc consistency can be enforced by applying a modification function δ : RL →
RL to the label scores generated by the model. This modification ensures that for all (li, lj) ∈ T ,
it holds that δ(si)− δ(sj) < 0. The specific strategy of the modification is to adjust the score si
for each label li to be either the maximum score of any of its descendants δMG in the taxonomy G
or the minimum score of its ancestors δmG in the system. Specifically, for scores generated by the
model, the definitions of these two modification functions are as follows:

δmG (s)i = min
lj∈AncG(li)∪{li}

sj , δMG (s)i = max
lj∈DesG(li)∪{li}

sj (16)

where AncG(l) and DesG(l) denote the sets of ancestors and descendants of label l in the graph
G, respectively

As conventions, we adopt the mean intersection-over-union (mIoU) for semantic segmentation. And
following (Li et al., 2022), we also report mIoUl, the score for each hierarchy level l. For hierarchy-
agnostic methods, the scores of each non-leaf layer calculated by combining the segmentation
predictions of its subclasses.
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B.3 TRAINING AND INFERENCE COMPUTATION EFFICIENCY

Table 11 evaluates the training and inference efficiency against two methods HSSN (Li et al., 2022)
and DeepLabV3+ (Chen et al., 2018) on Cityscapes val, in terms of FLOPs, FPS, and the number of
parameters. As seen, our model basically exhibits a similar level of training and inference efficiency
as the other two methods. Though it has more parameters, a larger FLOPs, and runs slower (smaller
FPS), the gap is minor. Considering the superior performance and generalization capability of our
model, the additional cost is acceptable.

B.4 VISUALIZATION

Figure 4: Visual results on PASCAL-Person-Part (Xia et al., 2017)(Left) and Cityscapes (Cordts et al., 2016).
Top: HSSN (Li et al., 2022), Bottom: HVSA.

In Fig.4, we provide some visualization comparison between HSSN with our method on two datasets.
HVSA achieves good performance in the scene of occlusion and tiny targets, showing the robustness.
As shown in the second and the last column, major mistakes such as misclassifies happen in the results
of HSSN. However, HVSA handles the severe mistakes, which indicates that compared to imposing
hierarchical constraints in Euclidean space, our method is more effective in learning hierarchical
knowledge among labels. Additional visualization results are provided in Fig 5 and Fig 6. We present
the prediction results of the baseline method HSSN (left) and HVSA (right). It can be seen that,
compared to the baseline model, the results of HVSA consistently align better with the hierarchical
visual world.
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Figure 5: Visual results on PASCAL-Person-Part (Xia et al., 2017).
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Figure 6: Visual results on Cityscapes (Cordts et al., 2016).
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