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Abstract

The increasing significance of evaluating large001
language models (LLMs) is addressed in this002
paper. We present a new evaluation framework,003
Adversarial Guessing Evaluation (AGE), de-004
signed for LLMs. AGE employs a systematic005
set of rules and metrics to evaluate reading006
comprehension abilities and confusion capa-007
bilities of LLMs across different dimensions.008
Our framework significantly reduces the need009
for large datasets, requiring only a few pairs of010
words. The results align with average outcomes011
from established comprehensive benchmarks012
and highlight areas for potential improvements013
in LLMs1.014

1 Introduction015

The landscape of natural language processing has016

undergone huge changes with the advent of large017

language models (LLMs), starting from founda-018

tional models such as BERT and ChatGPT, to019

more recent advancements like GPT-4 and LLaMA.020

These models have demonstrated exceptional capa-021

bilities in zero-shot generation, complex reasoning022

tasks, and adherence to nuanced instructions, mark-023

ing significant progress in the field.024

However, as these models evolve, so does the025

need for effective evaluation frameworks. Tradi-026

tional benchmarks such as GLUE (Wang et al.,027

2018a) and MMLU (Hendrycks et al., 2021a)028

are being replaced by more open-ended evalu-029

ations like AGIEval (Zhong et al., 2023) and030

Chatbot-Arena (Chiang et al., 2024), reflecting031

a shift towards assessing generalization across032

broader, more complex scenarios. Current eval-033

uation methods typically fall into two main cat-034

egories: reference-based, which relies on pre-035

defined answers, and preference-based, which in-036

volves subjective human judgments or model pref-037

1Codes, words, conversations, and prompts will be re-
leased upon acceptance.

erences (Qiao et al., 2023). Each of these ap- 038

proaches has its limitations, ranging from the high 039

costs of annotations to potential biases introduced 040

by human evaluators. 041

Recent research has pivoted towards using game- 042

based evaluations for LLMs, where models engage 043

in controlled word games (Qiao et al., 2023; Xu 044

et al., 2023; Liang et al., 2023a). This method not 045

only circumvents subjective bias by minimizing 046

direct interaction between researchers and models 047

but also can be evaluated in more dimensions. 048

Building on these insights, we propose the "Ad- 049

versarial Guessing Evaluation (AGE)" framework, 050

which leverages simplified rules from the game 051

"Who Is Spy" to evaluate LLMs in a structured yet 052

challenging environment. This framework not only 053

broadens the scope of model evaluation but also 054

provides a direct measure of performance across 055

diverse scenarios. 056

The primary contributions of our work are as 057

follows: 058

• Introduction of a robust but light framework 059

for the autonomous evaluation of LLMs using 060

adversarial guessing games, which expands 061

the set of evaluation tools with a methodolog- 062

ically novel approach. 063

• Comprehensive analysis of LLM perfor- 064

mances across ten distinct fields using the 065

AGE framework, thereby identifying potential 066

biases and areas of improvement for model 067

training. 068

2 Related Works 069

2.1 Evaluation of LLMs 070

The rigorous evaluation of LLMs has become a cor- 071

nerstone in advancing their capabilities and appli- 072

cations. Researchers categorize these evaluations 073

into three primary dimensions: NLP tasks, align- 074

ment evaluation, and real-world complex tasks. 075
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Figure 1: A sample conversation in AGE.

For NLP tasks, benchmarks such as GLUE (Wang076

et al., 2018b), SuperGLUE (Wang et al., 2019), and077

MMLU (Hendrycks et al., 2020) are prevalent, test-078

ing models on diverse linguistic challenges. Align-079

ment evaluations, such as those conducted using080

AlpacaEval (Li et al., 2023), focus on the utility081

and safety of model outputs. Complex task evalua-082

tions involve scenarios mimicking real-world inter-083

actions, exemplified by Webshop (Yao et al., 2022)084

and AgentBench (Liu et al., 2023), highlighting085

the practical implications of deploying LLMs in086

various environments (Schaeffer, 2023).087

2.2 Development of LLM-based Agents088

The advent of LLM-based agents marks a signif-089

icant innovation, particularly in the NLP domain.090

These agents are crafted to facilitate coherent,091

multi-turn conversations, simulating human-like092

interactions (Du et al., 2023; Liang et al., 2023b).093

Their applications extend beyond communication,094

contributing to fields such as software develop-095

ment (Qian et al., 2023; Hong et al., 2023), social096

simulation (Park et al., 2022, 2023), and robotic097

assistance (Brohan et al., 2023).098

2.3 Game Playing with Large Language099

Models100

Integrating LLMs into gaming environments, such101

as GameEval (Qiao et al., 2023) and Werewolf (Xu102

et al., 2023), sheds light on their strategic adapt-103

abilities and interaction proficiencies in multi-agent104

settings. This research area not only examines the105

gameplay mechanics of LLMs but also their inher-106

ent biases and the ways these biases are expressed107

in complex interaction frameworks.108

Expanding on these insights, in our framework.109

Simplified rules has been adopted from the game110

"Who Is Spy" (the same game in Qiao et al. (2023) 111

and Liang et al. (2023a)) to assess LLMs in a con- 112

trolled yet challenging context. AGE not only 113

expands the methodology for evaluating models 114

but also delivers a concrete metric of performance 115

across varied scenarios. 116

3 Experiments 117

3.1 Game Setting 118

In the "Who Is Spy" game, participants are divided 119

into two groups. Each game involves a pair of 120

secret words that share similar attributes but are 121

not identical. At the game’s start, each player is 122

assigned one of these secret words, which they 123

must then describe to the others without explicitly 124

revealing it. The game progresses through two 125

pivotal stages: description and guessing. 126

During the description phase, players provide 127

unique and non-repetitive clues about their as- 128

signed words. Creativity is crucial, as overly 129

straightforward descriptions can easily compro- 130

mise the game. The guessing phase marks the real 131

challenge, where players must interpret the clues 132

from the initial phase and deduce their opponents’ 133

words. This stage not only tests the players’ vocab- 134

ulary and creativity but also their ability to deceive 135

their opponents. 136

3.2 Framework: 137

Our proposed framework is as follows: LLMs will 138

be given a random order at the beginning. Each 139

LLM is assigned a secret word. In each round, 140

LLMs will review the conversation log, describe 141

their secret word, and attempt to guess the oth- 142

ers’ secret words. The AGE continues until a pre- 143

defined condition is met, such as all secret words 144
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being guessed or reaching the maximum number145

of rounds. Figure 1 exemplifies a conversation in146

AGE, where four LLMs have been assigned the147

words ‘cake’ and ‘bread’. After several turns, GPT-148

4 correctly guesses the others’ secret words, fol-149

lowed by Claude-3.150

3.3 Evaluation:151

Different from previous works where the average152

turn of the First Correct Guessing (FCG) as the153

score is taken directly (Qiao et al., 2023; Liang154

et al., 2023a), AGE gets one step further by ab-155

stracting two key attributes from the game, which156

are reading comprehension and confusing capabil-157

ity. Both capabilities can be measured with the158

locations of FCG. For an agent in AGE, assume159

the better the reading comprehension, the quicker160

the FCG will be found. Similarly, the better the161

confusing capability, the later its opponents’ FCG162

will occur.163

AGE incorporates three basic measurements for164

evaluation. In one AGE scenario, LLMs (Large165

Language Models) are strategically divided into166

two groups based on their assigned secret words.167

Let the first group be denoted as A, which includes168

LLMs assigned the secret word one, denoted as169

{a1, a2, . . . , ai}. The second group, denoted as B,170

consists of LLMs assigned the secret word two,171

represented as {b1, b2, . . . , bj}. Each LLM’s first172

successful guess in the game is recorded in the set173

F , comprising the first correct guessing for both174

groups: {fa1, fa2, . . . , fai, fb1, fb2, . . . , fbj}. This175

structured approach facilitates a systematic analysis176

of guessing dynamics and strategy efficacy within177

the AGE framework.178

The first metric, comprehension, is defined for179

each model from sets A and B with the first correct180

guess f as:181

comprehension =
1

log2(f + 1)
182

This metric measures the reading comprehension183

of the model. As the location of the First Correct184

Guess (FCG) occurs later, the comprehension de-185

creases.186

The second metric, confusion, measures the ca-187

pability of a model in confusing other participants.188

For a model belonging to set A, this score is calcu-189

lated using all of the models in set B and the length190

of the AGE, l, as:191

confusion = logl+1(min(fb1, fb2, . . . , fbj))192

The confusion of an LLM is calculated based on 193

the timing of correct guesses by its opponents; the 194

later these occur, the higher the confusion score. 195

Finally, based on the comprehension and con- 196

fusion metrics, AGE introduces a unified metric 197

called the AGE score, which considers both met- 198

rics with equal weight: 199

AGE score =
2× (comprehension × confusion)
(comprehension + confusion)

200

3.4 Secret Words 201

Table 1: A comparison with previous studies (Qiao et al.,
2023; Liang et al., 2023a)

Study Word Pairs Unified Metrics
GameEval 11 No
SpyGame 50 No

AGE 531 AGE score

The AGE framework features a significantly ex- 202

panded set of secret word pairs compared to previ- 203

ous studies, encompassing 11 distinct lists. Specifi- 204

cally, List A contains 45 pairs, which were curated 205

by real annotators using web searches. The remain- 206

ing ten lists were generated with the assistance of 207

ChatGPT and span ten different categories of news, 208

including Business, Entertainment, among others. 209

These lists have between 49 and 60 word pairs 210

each. As indicated in Table 1, AGE offers a sub- 211

stantially larger repository of word pairs (a total of 212

531 pairs) compared to its predecessors (which pro- 213

vided only 50 and 11 pairs, respectively). Addition- 214

ally, AGE employs more sophisticated evaluation 215

metrics, thereby enhancing the reliability of LLM 216

assessments in comparison to earlier frameworks. 217

In the following sections, two experiments based 218

on AGE will be conducted to assess popular LLMs. 219

To ensure rapid performance, the correlation be- 220

tween target words and responses will be evaluated 221

using the Jaro similarity metric (a string metric for 222

measuring the edit distance between two sequences, 223

ranging from 0 to 1, where 1 indicates exact simi- 224

larity), with a threshold value greater than 0.8, and 225

a dictionary of similar words created by annotators. 226

4 Results 227

4.1 AGE with Four LLMs 228

In this experiment, four prominent LLMs were 229

included in the AGE: GPT-3.5, GPT-42, LLama- 230

2https://www.openai.com
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Table 2: Performance Metrics for LLMs, ordered by
AGE score (macro), Rc for comprehension, Cc for con-
fusion, Avg.P refers to the average of popular metrics
(MMLU, HellaSwag, HumanEval, BIG-Bench Hard,
GSM-8K and MATH).

Model Rc Cc AGE Avg.P

Claude3 0.4011 0.4736 0.3260 84.83%
LLama3 0.3794 0.4926 0.3093 79.36%
GPT4 0.3846 0.4668 0.3089 79.45%

GPT3.5 0.3566 0.4755 0.2877 65.46%

3-70B-instruct3, and Claude-3-Opus4. The termi-231

nation condition was set when the conversation232

reached five rounds.233

Out of 972 conversations, 886 successfully ex-234

tended beyond two rounds. Within this subset,235

85.89% (761 conversations) accurately guessed236

both secret words, demonstrating the effective per-237

formance of these LLMs in the game.238

To benchmark against common metrics, an av-239

erage performance score, Avg.P , was computed240

based on data from various sources including the241

Hugging Face5, the LLama website6, and papers242

by Anthropic (2024) and OpenAI et al. (2024).243

The results were closely aligned with average244

scores from renowned metrics such as MMLU245

(Hendrycks et al., 2021b), HellaSwag (Zellers et al.,246

2019), HumanEval (Chen et al., 2021), BIG-Bench247

Hard (Suzgun et al., 2022), GSM-8K (Cobbe248

et al., 2021), and MATH (Hendrycks et al., 2021b).249

Claude-3-Opus outperformed other models, with250

LLama-3-70B and GPT-4 closely behind, and GPT-251

3.5 showing the least effective performance.252

The close correlation between our framework253

outcomes and established benchmarks underscores254

the robust capability of these LLMs in conversa-255

tional games.256

4.2 GPT-3.5 vs others in 10 fields257

In this study, only two different LLMs with varied258

topics were incorporated into each AGE, specifi-259

cally including GPT-3.5 to minimize operational260

costs. The experimental setup spanned ten topics,261

where each LLM engaged in six conversations per262

word pair with GPT-3.5, 3 for word A and 3 for263

word B. The termination criterion for each session264

3https://www.replicate.com
4https://www.anthropic.com/claude
5https://huggingface.co/spaces/

open-llm-leaderboard/open_llm_leaderboard
6https://ai.meta.com/blog/meta-llama-3/

Figure 2: GPT-3.5 vs others in 10 fields

was set at five dialogue rounds. A total of 2,482 265

successful conversations—defined as those extend- 266

ing beyond two rounds with all intended words 267

correctly identified—were collected and subjected 268

to analysis. Figure 2 illustrates the distribution of 269

the macro-averaged AGE scores comparing each 270

model against GPT-3.5 across the various topics. 271

The results demonstrate that when using only 272

GPT-3.5 as the adversary, GPT-4 achieves the 273

highest average performance (0.4150), followed 274

by claude-3-opus (0.3763), and then llama-3-70b 275

(0.3528). This indicates that GPT-4 is more famil- 276

iar with GPT-3.5. The heatmap further reveals that 277

sports (0.3627 average) and technology (0.3579) 278

are the two topics most familiar to LLMs, while 279

science (0.3199) and health (0.3258) rank the low- 280

est. These results may also contribute to the future 281

enhancement of LLMs. Further t-tests were also 282

performed between the models’ AGE score. The 283

results, all of p-values were below 0.01, indicate 284

that the models are independent. 285

5 Conclusion 286

In this paper, we present a simplified version of 287

the word guessing game rules (Who Is Spy) and 288

propose the AGE framework for evaluating LLMs. 289

We introduce three unified metrics aimed at assess- 290

ing reading comprehension, confusion capability, 291

and the overall AGE score, which accounts for 292

both aspects. Our findings reveal a close alignment 293

with the average values from multiple well-known 294

benchmarks across four LLMs. Further insights 295

gained from experiments across ten topics suggest 296

avenues for enhancing these models. 297
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6 Limitations298

Firstly, due to limitations and costs, the comparison299

between guessed words and target words will in-300

clude annotations by the authors of this paper (who301

have agreed to use and publish these annotations).302

These annotations help align different words with303

the same meaning to the correct target, but they304

may introduce biases from the annotators.305

Secondly, only four LLMs are considered in this306

paper. They vary in size and structure. A limitation307

of the evaluation is that more LLMs, fine-tuned308

from the same base model, should be tested to309

control the influence of size and structure. Due to310

space constraints, this issue will be addressed in311

future work.312

Thirdly, the word pairs used in the second exper-313

iment are collected with the assistance of an LLM,314

which may introduce bias when evaluating such315

LLMs, as well as the word pairs in the first experi-316

ment may also include biases from the creator.317
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